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Solution of the Poisson-Schrdinger problem for a single-electron transistor
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An outstanding problem of a quantitative description of electronic properties of a vertical gated quantum dot
has been solved by a self-consistent approach to the Poisson andiSghraequations. We have calculated
the confinement potential and determined the conditions for single-electron tunneling. A good agreement with
experiment has been obtained for the 12 single-electron current peaks as a function of gateWpfage
source-drain voltag¥q=0, the bounds on diamond-shaped regions invpe V¢4 plane, for which the flow
of current is blocked; and the current-gate voltage characteristics in an external magnetic field.

A quantum dotQD) is a semiconductor nanostructure, in The ionized donors in the-GaAs layers screen the electric
which the space accessible for electrons is limited in all thredield of the gate. A concentration of donors increases step-
dimensions by the interfaces and/or external voltages appliedise in the direction of the source and drain. Since the au-
to electrodes. Excess electrons confined in the QD’s fornthors of Refs. 5 and 6 did not give accurate values of the
bound states, which exhibit features Wfelectron artificial ~Material parameters of the doped layers, we have assumed
atoms! 3 Among many types of QD’s fabricated by modern that there exist twa-GaAs layers with donor concentrations
nanotechnology, gated QD'gate-controlled QD)8 are N1 andny, wheren,>n;. The first layer (;-GaAs) deter-
especially interesting. In these QD's, it is possible to changénines the electronic properties of the QD for small gate volt-
the confinement potential by changing the gate voltage, angges. For a large enough gate voltage, all the donors in the
therefore to modify the electronic properties of artificial at-first layer are ionized, and the secongd-GaAs layer be-
oms, which leads to the possibility of constructing a single-comes effective in a screening. The thickness offtix&aAs
electron transistct. Recently, very interesting transport- layer has been taken to be so large that the electric field
spectroscopy studies with vertical gated QD’s werevanishes near the source and drain for all the applied gate
performed by Taruchat al® and Kouwenhovert al® voltages. The above sequence of layers is symmetrically re-

Until now, these remarkable resdtfshave been inter- peated on the other side of the,lixGay osAs layer. This
preted only qualitatively in the framework of a two- model nanostructure allows us to reproduce the electronic
dimensional modéel=? In these papergo,the confinement po- properties of the nanodeviceand considerably simplifies
tential was assumed to be parabolic and independent of thealculations.
gate voltage. In our previous pap@rwe proposed a phe- For a gate-controlled QD, we have elaborated a self-
nomenological model with an anharmonic confinement poconsistent method of solution of the Poisson and Stihger
tential, which was assumed to be a linear function of the gat€quations, which consists of several steps. In the first step,
voltage. In the present paper, we present the fistour  Wwe calculate the confinement potential, which is treated as an
knowledgeé complete self-consistent solution of the three-external potential for thé\-electron problem solved in the
dimensional Poisson-Schdimger problem for the vertical last step by the Hartree-Fock method. The potential energy
gated QD, and provide a full quantitative description of allU¢oni(r) of the confinement of an excess electron in the QD
the electronic properties observédn these QD’s. Contrary is given by
to previous studie§;! the confinement potential is not as-
sumed but calculated as a function of the gate voltage, the Ucont(r)=Uan(2) —eeq(r), (1)

geometry of the. nanodevice, and the d_onor distribution. whereUy,(2) is the potential energy of the electron in the
The nanodevict® has a nearly cylindrical shape, and con- GaAS/Ab ,Ga 16A8/IN 055 o5AS double barrier, and is

sists of several layers made of different materials. In thethe eleméntary charge' The‘potentiaj which or,iginates

direction of the cylinder(z) axis, the geometry of the nan- from the voltages applied to the external electrodes and the

odey]ce is asymmetric with respect to the source andl dra'ﬂ)nized donors im-GaAs layers, is calculated from the Pois-
positions. However, the experimental results, in particular,

the Coulomb diamonds,are almost perfectly symmetric son equation

with respect to the source-d_rain _polari_ty. Therefore, we have V204(r) = — pg(r)/ege, )
assumed a model nanodevice, in which the layers are sym-

metrically placed in the direction. The model nanostructure wherepy(r) is the density of the charge of ionized donors,
applied in the present paper is displayed in the inset of Fige is the permittivity of the vacuum, anel is the static di-

1. The 40-nm-high Schottky gate is placed on the side of thelectric constant of GaAs. Since the experimemtsre per-
cylinder with the radius R=220 nm close to the formed at very low temperatures-200 mK), we assume
Aly 55,Gay 76As barriers and the 12-nm-thick JpGay gsAs  that the donor at the positianbecomes ionized, if the total
layer, which forms a QD region. An undoped GaAs spacempotential energyJ(r) of the electron is larger than the bind-
separates the QD from a fluctuating field of single impuritiesing energy of the electron on the donor center. The potential
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4 . into account the values of the potentig}, for z=0, i.e.,
source / drain ’ . - .

57 ¢4(p,0). Since an analytic form of the potential is more
- convenient in the Hartree-Fock method, we have fitted the
following sixth-order polynomial to the numerical results ob-

— tained from the Poisson equation:

n,- GaAs (150nm)

n,- GaAs (20nm)
GaAs (3nm)

o |- AlGaAs (7.5nm)

InGaAs

©(p)=Votarp®+ asp*+ agp®. (4)

gate

Form (4) is used in Eqg.(1) to calculate the confinement
potential energy. Figure 1 displays the numerical solutions of
the Poisson equation and fitted polynomials of the sixth and
second order for different gate voltages. We note the consid-
erable deviations of the solutions of the Poisson equation
from the parabolic potential, and their strong dependence on
the gate voltage. These properties of the confinement poten-
tial, being in contradiction with the commonly used para-
bolic, gate-voltage-independent, confinement potentidls,
are crucial to explaining the transport-spectroscopy déta.

. | . | In the last step, we solve the eigenvalue problem for the
0 100 200 N-electron system by the Hartree-Fock method, with the po-
tential energy of the external field assumed toUbg(r)

FIG. 1. Potential energy-{ee,) calculated from Eq(2) (sym- = Ucon(r). In the Hartree-Fock method, we apply the one-
bols and fitted with polynomials of the sixttsolid curves and  €lectron wave functions expanded in the Gaussian Batts.
second(dashed curvesorder as a function op and gate voltage 1he electron probability density depends on the confinement
V,. Inset: Schematic of the model nanodevice applied in thePotential, which is determined by the concentration of the
present calculations. The thicknesses of the layers are given in tH@nized donors. Due to the Coulomb coupling between the
parentheses. excess electrons and donor ions, the Poisson and dinlyer

equations have to be solved self-consistently. This process is
energy of the electrob) (r) = —ed(r) is determined by the repeated until self-consistency of the electrostatic potential
electrostatic potentia[)(r) = QDd(r) + (pe(r), where (pe(r) is and Hartree-Fock solutions is I’_eaChed. -
the potential of the field created by the electrons confined in The actual shape of the vertical QBef. 13 can deviate

€9, [eV]

pnm ]

the QD, and is calculated as follows: from the ideal cylindrical form. We have taken into account
this asymmetry and introduced an anisotropy of the QD as a

N-1 | n(r")]? small perturbation of the rotational symmetry. We have

eu(r)=— Amege &4 J d3r’W- ()  found that the small anisotropy slightly changes the ground-

state energy of th&l-electron artificial atom, which leads to
In Eq. (3), the sum runs over all the occupieM{ 1) one- @ better agreement with experiment. The anisotropy has been
electron states, whose wave functiofgr) are obtained by included in the Hartree-Fock method by replacing varigble
the Hartree-Fock method. Such a treatment provides a stén Eq. (4) with p, wherep?=(1+ 3)2x?+(1—y)?y? and y
tionary description of the tunneling of thMth electron is the anisotropy parameter. Since not all the parameters of
through the dot, which is valid if the probability of finding the QD (Ref. 5 are known with a sufficient precision, we
the tunneling electron inside the dot is much smaller tharhave adjusted the values of donor concentratiopnandn,,
finding that outside the dot. anisotropy parametey, and potential-well depthl, slightly
When solving Poisson equatiof®), we have set the changing their nominal values, in order to obtain an agree-
boundary conditions, which take into account external volt-ment with experiment. This leads to the following values:
ages applied to the leads and the free charge of the leads = 6.3x10' cm 3, n, =17.5x10' cm 2, y =0.035,
(with the image charges of electrons in the dot inclyded andU,=—55 meV (the energy of the I§ysGa, g5AS con-
These boundary conditions have been put on the total potertuction band bottom with respect to that of the GaAs
tial ®(r) on the surface of the cylinder. Because the sourcepacey. The nominal value ofh; was estimated to be
and drain form Ohmic contacts, we take ®{roucd =Vs  7.5x 10" cm 2. Moreover, we have set the electron effec-
and ®(rgrain) = Vg, WhereVg and Vg are the source and tive band mass to be 0.065 of the electron rest mass,
drain voltages, respectively. Since the metal gate is in con=12.6, and the AJ,,Ga ;gAs barrier height= 220 meV.
tact with an undoped semiconductor, we take into accoun{Ve have checked that the present results are not sensitive to
the Schottky barrier¢g=0.65 eV, which leads to the small changes of the parametéts.
boundary condition®(ry,:e) =Vy— ¢bg. Moreover, we re- The self-consistent solution of the Poisson-Sdmger
quire that the normal derivatives df(r) vanish on the side problem provides the ground-state enerd@y of the
surface of the cylinder between the leads. Poisson equatidi-electron artificial atom. The occupancy of electronic shells
(2) has been solved by the relaxation method in the cylindriis determined by the cylindrical symmetry of the problem
cal coordinates 4,z) on the finite-difference meshp( (the influence of the anisotropy is smallherefore, the first
=iAp,z;=]Az), which leads to the numerical solutions three shells are filled by two, four, and six electrons. The
®4(pi, zj). Due to the small thickness of the QD, we take present calculations have been performed for these shells,
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FIG. 2. Chemical potentialsolid curve$ calculated forN

=1,...,12electrons confined in the QD as a function of gate
voltage. Zero on the energy scale corresponds to the Fermi energy
of the source and drain fov;=V4y=0. The measuredRef. 5 8

peaks of the source-drain current are also shown.

i.e., forN=1,...,12electrons. In Fig. 2, we plot the calcu-
lated chemical potentigky=Ey—Ey-; as a function ol

for Vs=V4=0. When considering the tunneling of tihh
electron, the energiesy andEy_4 are calculated with the
use of the same confinement potential. Therefore, in the cal-
culations of both terms iy, the energies of an environ-  FiG. 4. Magnetic-field dependence of calculatedlid curves
ment are the same and cancel out. In this way, the Chemicahd measure(Ref. 5 (dashed curvesgate voltage, for which the
potential wy also takes into account the interaction of the current peak appears fot,;=0. The occupied one-electron orbitals
electrons confined in the dot with the environment. The cur-of N-electron artificial atoms are conventionally labeled according
rent can flow through the gated QD even/if—V4=0, pro-  to the cylindrical symmetrys, p, d, f, andg denote thez compo-
vided that chemical potentigty is aligned with the Fermi nent of angular orbital momentumM =0, 1, 2, 3, and 4in units#),
energy of the source and drain. Since we have set the Ferrreispectively, and: are the signs oM. Cusps, resulting from the
energy of the source to be equal to zero, the straight line iground-state transformations, are marked by arrows and triangles
Fig. 2 corresponds t¥s=V4=0. The crossing points gf,,  (See text

magnetic field [ T ]

with this line allow us to determine the values of gate volt-
age, for which the current peaks appear. The calculated rela-
tive positions of the peaks very well agree with experimental
results? and show that the electronic shells are filled accord-
ing to Hund’s rule.

We have also determined the conditions for the current to
flow under the source-drain voltage applied. The calculated
lower (upped bounds on the voltages, abogelow) which
the source-drain current can flow, are reported in Fig. 3. The
experimental datij.e., the positions of current peaks on the
Vg—Vsq plane, are shown by shaded regions. The white,
diamond-shaped, regions correspond to the values of volt-
ages, for which the current does not flow through the
nanodevice, i.e., the electron tunneling is blocked. To the
best of our knowledge, we have obtained the first theoretical
P ST results for the Coulomb diamonds in the frame of the
-0 quantum-mechanical approach, which very well agree with
I the experimental dafa.

We have extended the present approach to the case of
external magnetic field applied in thedirection. Figure 4
displays the gate voltage, for which the electrons tunnel

FIG. 3. Coulomb diamonds: solid curves show the ugifmever) ~ through the QD in the magnetic field fovs4=0. Solid
bounds on the gate and source-drain voltages, bé&dave which ~ curves in Fig. 4 are obtained from chemical potentjag,
the source-drain current flows. Shaded regions show the measure@nverted into the gate voltadef. Fig. 2. The cusps in the
positions of current peaks. curves in Fig. 4 result from the changes of the spin-orbital

gate voltage [ V ]

2.0

drain - source voltage [ V ]
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configuration of the ground state of tieelectron artificial ~ tion of the ground state appears at a lower critical field for
atom in the magnetic field. Since the condition for the flowthe increasing gate voltage. The gate-voltage dependence of
of current is determined by the chemical potential of thethe confinement potential is of crucial importance in the ex-
electrons confined in the QD, each change offXkelectron  planation of the observédchanges of critical magnetic
ground state is seen two times as the cusps in the curvefields. The present approach has allowed us to obtain all the
which correspond to the tunneling of tiéth electron(ar- ~ ground-state transformatiotisobserved in experimerit.

rows) and (N+ 1)th electron(triangles. The cusps resulting [N summary, we have solved the outstanding problem of a
from the same ground-state transformation are connected fjpantitative interpretation of transport-spectroscopy results

thin dashed lines in Fig. 4. If the gate voltage becomes les®r vertical gated quantum dots, and obtained a complete
negative, the lateral confinement potential is more (it theoretical description of the electronic properties of these

Fig. 1) and the confined electrons become weakly localizedNanostructures.
Since the magnetic field more strongly affects the weakly This work was partly supported by the Polish Government
localized electrons, the magnetic-field-induced transformaScientific CommittedKBN Grant No. 2P03B 561)3
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