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Solution of the Poisson-Schro¨dinger problem for a single-electron transistor
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~Received 21 July 1999; revised manuscript received 7 October 1999!

An outstanding problem of a quantitative description of electronic properties of a vertical gated quantum dot
has been solved by a self-consistent approach to the Poisson and Schro¨dinger equations. We have calculated
the confinement potential and determined the conditions for single-electron tunneling. A good agreement with
experiment has been obtained for the 12 single-electron current peaks as a function of gate voltageVg for
source-drain voltageVsd50, the bounds on diamond-shaped regions in theVg2Vsd plane, for which the flow
of current is blocked; and the current-gate voltage characteristics in an external magnetic field.
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A quantum dot~QD! is a semiconductor nanostructure,
which the space accessible for electrons is limited in all th
dimensions by the interfaces and/or external voltages app
to electrodes. Excess electrons confined in the QD’s fo
bound states, which exhibit features ofN-electron artificial
atoms.1–3 Among many types of QD’s fabricated by mode
nanotechnology, gated QD’s~gate-controlled QD’s!4,5 are
especially interesting. In these QD’s, it is possible to cha
the confinement potential by changing the gate voltage,
therefore to modify the electronic properties of artificial a
oms, which leads to the possibility of constructing a sing
electron transistor.4 Recently, very interesting transpor
spectroscopy studies with vertical gated QD’s we
performed by Taruchaet al.5 and Kouwenhovenet al.6

Until now, these remarkable results5,6 have been inter-
preted only qualitatively in the framework of a two
dimensional model.7–9 In these papers,10 the confinement po-
tential was assumed to be parabolic and independent o
gate voltage. In our previous paper,10 we proposed a phe
nomenological model with an anharmonic confinement
tential, which was assumed to be a linear function of the g
voltage. In the present paper, we present the first~to our
knowledge! complete self-consistent solution of the thre
dimensional Poisson-Schro¨dinger problem for the vertica
gated QD, and provide a full quantitative description of
the electronic properties observed5,6 in these QD’s. Contrary
to previous studies,7–11 the confinement potential is not a
sumed but calculated as a function of the gate voltage,
geometry of the nanodevice, and the donor distribution.

The nanodevice4,5 has a nearly cylindrical shape, and co
sists of several layers made of different materials. In
direction of the cylinder~z! axis, the geometry of the nan
odevice is asymmetric with respect to the source and d
positions. However, the experimental results, in particu
the Coulomb diamonds,6 are almost perfectly symmetri
with respect to the source-drain polarity. Therefore, we h
assumed a model nanodevice, in which the layers are s
metrically placed in thez direction. The model nanostructur
applied in the present paper is displayed in the inset of F
1. The 40-nm-high Schottky gate is placed on the side of
cylinder with the radius R5220 nm close to the
Al0.22Ga0.78As barriers and the 12-nm-thick In0.05Ga0.95As
layer, which forms a QD region. An undoped GaAs spa
separates the QD from a fluctuating field of single impuriti
PRB 610163-1829/2000/61~7!/4461~4!/$15.00
e
ed
m

e
d

-

he

-
te

-

l

e

e

in
r

e
m-

g.
e

r
.

The ionized donors in then-GaAs layers screen the electr
field of the gate. A concentration of donors increases st
wise in the direction of the source and drain. Since the
thors of Refs. 5 and 6 did not give accurate values of
material parameters of the doped layers, we have assu
that there exist twon-GaAs layers with donor concentration
n1 and n2, wheren2.n1. The first layer (n1-GaAs) deter-
mines the electronic properties of the QD for small gate vo
ages. For a large enough gate voltage, all the donors in
first layer are ionized, and the secondn2-GaAs layer be-
comes effective in a screening. The thickness of then2-GaAs
layer has been taken to be so large that the electric fi
vanishes near the source and drain for all the applied g
voltages. The above sequence of layers is symmetrically
peated on the other side of the In0.05Ga0.95As layer. This
model nanostructure allows us to reproduce the electro
properties of the nanodevice,5 and considerably simplifies
calculations.

For a gate-controlled QD, we have elaborated a s
consistent method of solution of the Poisson and Schro¨dinger
equations, which consists of several steps. In the first s
we calculate the confinement potential, which is treated a
external potential for theN-electron problem solved in the
last step by the Hartree-Fock method. The potential ene
Ucon f(r ) of the confinement of an excess electron in the Q
is given by

Ucon f~r !5Udb~z!2ewd~r !, ~1!

whereUdb(z) is the potential energy of the electron in th
GaAs/Al0.22Ga0.78As/In0.05Ga0.95As double barrier, ande is
the elementary charge. The potentialwd , which originates
from the voltages applied to the external electrodes and
ionized donors inn-GaAs layers, is calculated from the Poi
son equation

¹2wd~r !52rd~r !/«0«, ~2!

whererd(r ) is the density of the charge of ionized donor
«0 is the permittivity of the vacuum, and« is the static di-
electric constant of GaAs. Since the experiments5 were per-
formed at very low temperatures (;200 mK), we assume
that the donor at the positionr becomes ionized, if the tota
potential energyU(r ) of the electron is larger than the bind
ing energy of the electron on the donor center. The poten
4461 ©2000 The American Physical Society



s

g
a

lt
ea
d
te
rc

o
u

ti
dr

s
ke

re
the
b-

t
of
nd

sid-
tion

on
ten-
a-
,
.
the
po-

e-
.
ent
he
the

s is
tial

nt
s a
ve
nd-
o
een

s of
e

ee-
s:

As

c-
,

e to

lls
m

he
ells,

th
t
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energy of the electronU(r )52eF(r ) is determined by the
electrostatic potentialF(r )5wd(r )1we(r ), wherewe(r ) is
the potential of the field created by the electrons confined
the QD, and is calculated as follows:

we~r !52
e

4p«0« (
n51

N21 E d3r 8
ucn~r 8!u2

ur2r 8u
. ~3!

In Eq. ~3!, the sum runs over all the occupied (N21) one-
electron states, whose wave functionscn(r ) are obtained by
the Hartree-Fock method. Such a treatment provides a
tionary description of the tunneling of theNth electron
through the dot, which is valid if the probability of findin
the tunneling electron inside the dot is much smaller th
finding that outside the dot.

When solving Poisson equation~2!, we have set the
boundary conditions, which take into account external vo
ages applied to the leads and the free charge of the l
~with the image charges of electrons in the dot include!.
These boundary conditions have been put on the total po
tial F(r ) on the surface of the cylinder. Because the sou
and drain form Ohmic contacts, we take onF(r source)5Vs
and F(rdrain)5Vd , where Vs and Vd are the source and
drain voltages, respectively. Since the metal gate is in c
tact with an undoped semiconductor, we take into acco
the Schottky barrierfB50.65 eV, which leads to the
boundary condition:F(rgate)5Vg2fB . Moreover, we re-
quire that the normal derivatives ofF(r ) vanish on the side
surface of the cylinder between the leads. Poisson equa
~2! has been solved by the relaxation method in the cylin
cal coordinates (r,z) on the finite-difference mesh (r i
5 iDr,zj5 j Dz), which leads to the numerical solution
wd(r i , zj ). Due to the small thickness of the QD, we ta

FIG. 1. Potential energy (2ewd) calculated from Eq.~2! ~sym-
bols! and fitted with polynomials of the sixth~solid curves! and
second~dashed curves! order as a function ofr and gate voltage
Vg . Inset: Schematic of the model nanodevice applied in
present calculations. The thicknesses of the layers are given in
parentheses.
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into account the values of the potentialwd for z50, i.e.,
wd(r,0). Since an analytic form of the potential is mo
convenient in the Hartree-Fock method, we have fitted
following sixth-order polynomial to the numerical results o
tained from the Poisson equation:

w̃~r!5v01a2r21a4r41a6r6. ~4!

Form ~4! is used in Eq.~1! to calculate the confinemen
potential energy. Figure 1 displays the numerical solutions
the Poisson equation and fitted polynomials of the sixth a
second order for different gate voltages. We note the con
erable deviations of the solutions of the Poisson equa
from the parabolic potential, and their strong dependence
the gate voltage. These properties of the confinement po
tial, being in contradiction with the commonly used par
bolic, gate-voltage-independent, confinement potentials7–9

are crucial to explaining the transport-spectroscopy data5,6

In the last step, we solve the eigenvalue problem for
N-electron system by the Hartree-Fock method, with the
tential energy of the external field assumed to beUext(r )
5Ucon f(r ). In the Hartree-Fock method, we apply the on
electron wave functions expanded in the Gaussian basis10,12

The electron probability density depends on the confinem
potential, which is determined by the concentration of t
ionized donors. Due to the Coulomb coupling between
excess electrons and donor ions, the Poisson and Schro¨dinger
equations have to be solved self-consistently. This proces
repeated until self-consistency of the electrostatic poten
and Hartree-Fock solutions is reached.

The actual shape of the vertical QD~Ref. 13! can deviate
from the ideal cylindrical form. We have taken into accou
this asymmetry and introduced an anisotropy of the QD a
small perturbation of the rotational symmetry. We ha
found that the small anisotropy slightly changes the grou
state energy of theN-electron artificial atom, which leads t
a better agreement with experiment. The anisotropy has b
included in the Hartree-Fock method by replacing variabler

in Eq. ~4! with r̃, wherer̃25(11g)2x21(12g)2y2 andg
is the anisotropy parameter. Since not all the parameter
the QD ~Ref. 5! are known with a sufficient precision, w
have adjusted the values of donor concentrationsn1 andn2,
anisotropy parameterg, and potential-well depthU0, slightly
changing their nominal values, in order to obtain an agr
ment with experiment. This leads to the following value
n1 5 6.331016 cm23, n2 517.531016 cm23, g 50.035,
andU05255 meV ~the energy of the In0.05Ga0.95As con-
duction band bottom with respect to that of the Ga
spacer!. The nominal value ofn1 was estimated14 to be
7.531016 cm23. Moreover, we have set the electron effe
tive band mass to be 0.065 of the electron rest mass«
512.6, and the Al0.22Ga0.78As barrier height5 220 meV.
We have checked that the present results are not sensitiv
small changes of the parameters.15

The self-consistent solution of the Poisson-Schro¨dinger
problem provides the ground-state energyEN of the
N-electron artificial atom. The occupancy of electronic she
is determined by the cylindrical symmetry of the proble
~the influence of the anisotropy is small!. Therefore, the first
three shells are filled by two, four, and six electrons. T
present calculations have been performed for these sh
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i.e., for N51, . . . ,12electrons. In Fig. 2, we plot the calcu
lated chemical potentialmN5EN2EN21 as a function ofVg
for Vs5Vd50. When considering the tunneling of theNth
electron, the energiesEN and EN21 are calculated with the
use of the same confinement potential. Therefore, in the
culations of both terms inmN , the energies of an environ
ment are the same and cancel out. In this way, the chem
potential mN also takes into account the interaction of t
electrons confined in the dot with the environment. The c
rent can flow through the gated QD even ifVs2Vd.0, pro-
vided that chemical potentialmN is aligned with the Fermi
energy of the source and drain. Since we have set the F
energy of the source to be equal to zero, the straight lin
Fig. 2 corresponds toVs5Vd50. The crossing points ofmN

FIG. 3. Coulomb diamonds: solid curves show the upper~lower!
bounds on the gate and source-drain voltages, below~above! which
the source-drain current flows. Shaded regions show the meas
positions of current peaks.

FIG. 2. Chemical potential~solid curves! calculated for N
51, . . . ,12 electrons confined in the QD as a function of ga
voltage. Zero on the energy scale corresponds to the Fermi en
of the source and drain forVs5Vd50. The measured~Ref. 5!
peaks of the source-drain current are also shown.
l-
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with this line allow us to determine the values of gate vo
age, for which the current peaks appear. The calculated r
tive positions of the peaks very well agree with experimen
results,5 and show that the electronic shells are filled acco
ing to Hund’s rule.

We have also determined the conditions for the curren
flow under the source-drain voltage applied. The calcula
lower ~upper! bounds on the voltages, above~below! which
the source-drain current can flow, are reported in Fig. 3. T
experimental data,6 i.e., the positions of current peaks on th
Vg2Vsd plane, are shown by shaded regions. The wh
diamond-shaped, regions correspond to the values of v
ages, for which the current does not flow through t
nanodevice, i.e., the electron tunneling is blocked. To
best of our knowledge, we have obtained the first theoret
results for the Coulomb diamonds in the frame of t
quantum-mechanical approach, which very well agree w
the experimental data.6

We have extended the present approach to the cas
external magnetic field applied in thez direction. Figure 4
displays the gate voltage, for which the electrons tun
through the QD in the magnetic field forVsd50. Solid
curves in Fig. 4 are obtained from chemical potentialsmN ,
converted into the gate voltage~cf. Fig. 2!. The cusps in the
curves in Fig. 4 result from the changes of the spin-orb

red

FIG. 4. Magnetic-field dependence of calculated~solid curves!
and measured~Ref. 5! ~dashed curves! gate voltage, for which the
current peak appears forVsd50. The occupied one-electron orbita
of N-electron artificial atoms are conventionally labeled accord
to the cylindrical symmetry:s, p, d, f , andg denote thez compo-
nent of angular orbital momentumM50, 1, 2, 3, and 4~in units\),
respectively, and6 are the signs ofM. Cusps, resulting from the
ground-state transformations, are marked by arrows and trian
~see text!.
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configuration of the ground state of theN-electron artificial
atom in the magnetic field. Since the condition for the flo
of current is determined by the chemical potential of t
electrons confined in the QD, each change of theN-electron
ground state is seen two times as the cusps in the cur
which correspond to the tunneling of theNth electron~ar-
rows! and (N11)th electron~triangles!. The cusps resulting
from the same ground-state transformation are connecte
thin dashed lines in Fig. 4. If the gate voltage becomes
negative, the lateral confinement potential is more flat~cf.
Fig. 1! and the confined electrons become weakly localiz
Since the magnetic field more strongly affects the wea
localized electrons, the magnetic-field-induced transform
no

L.

M

es,

by
ss

.
y
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tion of the ground state appears at a lower critical field
the increasing gate voltage. The gate-voltage dependenc
the confinement potential is of crucial importance in the e
planation of the observed5 changes of critical magnetic
fields. The present approach has allowed us to obtain all
ground-state transformations15 observed in experiment.5

In summary, we have solved the outstanding problem o
quantitative interpretation of transport-spectroscopy res
for vertical gated quantum dots, and obtained a comp
theoretical description of the electronic properties of the
nanostructures.
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Scientific Committee~KBN Grant No. 2P03B 5613!.
l. A

G.

the
be
1P.A. Maksym and T. Chakraborty, Phys. Rev. Lett.65, 108
~1990!.

2M.A. Kastner, Phys. Today46~1!, 24 ~1993!.
3R.C. Ashoori, Nature~London! 379, 414 ~1996!.
4D.G. Austing, T. Honda, and S. Tarucha, Semicond. Sci. Tech

11, 388 ~1996!.
5S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, and

Kouwenhoven, Phys. Rev. Lett.77, 3613~1996!.
6L.P. Kouwenhoven, T.H. Oosterkamp, M.W.S. Danoesastro,

Eta, D.G. Austing, T. Honda, and S. Tarucha, Science278, 1788
~1997!.

7M. Eto, Jpn. J. Appl. Phys.36, 3924~1997!.
8H. Tamura, Physica B249-251, 210 ~1998!.
9O. Steffens, M. Suhrke, and U. Ro¨ssler, Physica B256-258, 147
l.

P.

.

~1998!.
10B. Szafran, S. Bednarek, and J. Adamowski, Acta Phys. Po

94, 555 ~1998!.
11T. Ezaki, N. Mori, and C. Hamaguchi, Phys. Rev. B56, 6428

~1997!.
12S. Bednarek, B. Szafran, and J. Adamowski, Phys. Rev. B59, 13

036 ~999!.
13M. Eto, J. Phys. Soc. Jpn.66, 2244~1997!.
14T.H. Oosterkamp, W.G. van der Wiel, L.P. Kouwenhoven, D.

Austing, T. Honda, and S. Tarucha~unpublished!.
15A detailed discussion of the dependence of the properties of

nanodevice on the geometry and donor concentrations will
given elsewhere.


