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Numerical simulation of fractal conductance fluctuations in soft-wall quantum cavities
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Magnetoconductance fluctuations in quantum cavities are numerically calculated for soft-wall confinement
potentials. Employing a tight-binding lattice consisting of 2003200 sites, the conductance fluctuations are
confirmed to be fractal for one order of magnitude in magnetic-field scale. We find no emergence of self-affine
conductance fluctuations with fine scales in a Sinai billiard, suggesting that the hierarchical phase space
structure in the underlying classical dynamics alone cannot explain recent experimental observations.
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Ever since ballistic electron transport was attained in
crocavities fabricated from a two-dimensional electron ga
semiconductor heterojunctions, a considerable amount o
fort has been made to uncover novel properties of cond
tance fluctuations in quantum cavities having chaotic cla
cal dynamics.1 The most striking feature of the chaot
dynamics is the hierarchical structure in phase space. Re
investigations2–6 have attempted to associate the self-sim
phase-space structure directly with reproducible fluctua
patterns in the conductance.

There are two classes of the self-affinity of the cond
tance fluctuations. The investigations on one class stem f
an experimental observation of hierarchical replications
the fluctuation pattern in Sinai billiards.2 Theoretically, nu-
merical simulation is the only technique available to exam
this remarkable behavior. However, to the best of our kno
edge, no one has succeeded in reproducing the experim
observation in a convincing manner.7 The failure is generally
ascribed to limited computational resources. Although
recursive Green’s-function method is a powerful techniq
to calculate the conductance of quantum cavities, the disc
lattice must be fine enough to retain the hierarchical prop
ties in the classical dynamics.

Another class of the self-affinity was first predicted by
semiclassical theory, and is termed fractal conducta
fluctuations.3 The statistical properties of the magnetic-fie
correlation of the conductance are related to the probab
distribution of areas enclosed by electron trajectories i
cavity.8 The probability distribution decays exponentially f
hard-wall cavities, whereas it obeys a power law when
confinement potential of cavities is smooth.9 The latter is
believed to originate from trajectories trapped around
Kolmogorov-Arnol’d-Moser islands in the phase spac
which give rise to a long dwell time in the system. Th
power-law distribution leads to a fractal behavior of the ma
netoconductance fluctuations.3 The fractal dimensionD of
the conductance fluctuations is predicted3,10 to be given by
the power-law exponentb as D522b/2. Therefore, the
theory provides a tool for quantitative analysis of quant
transport in a chaotic system. The theoretical prediction w
soon confirmed in experiments.4–6

The phenomenon of the fractal conductance fluctuati
calls our attention to the importance of the boundary pot
tial. The soft-wall confinement explains a discrepancy in
perimental observations:11 The weak localization conduc
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tance peak12,13in ballistic cavities around zero magnetic fie
often behaves as if the dynamics were chaotic although
cavity is made to realize regular dynamics. The confinem
potential is inevitably soft in split-gate devices, and so t
classical dynamics unintentionally becomes chaotic. Si
the soft-wall potential in real devices is generally omitted
theoretical analysis, the drastic influence of the confinem
potential signifies a demand for numerical simulations.

In this paper, the magnetoconductance is calcula
quantum-mechanically using a lattice model. By increas
the number of lattice sites, we are able to establish the fra
conductance fluctuations for one order of magnitude in m
netic field scale. We also examine the conductance fluc
tions when a Sinai diffuser is introduced in the cavity.

We consider a square-shaped cavity, defined in 0,x,
y,W, attached by two leads. The cavity and the leads
surrounded by an infinite barrier. A soft-wall potential
assumed within the cavity region. For simplicity, we use
potential determined as a function of the distance in the n
mal direction from the cavity boundary:

UW~x,y!5uWFexpS 2
x

dD1expS 2
W2x

d D1expS 2
y

dD
1expS 2

W2y

d D G . ~1!

The soft-wall potential is set to be absent for part of t
cavity boundary where the leads are attached~Fig. 1!. The
cavity is simulated by a square lattice with 2003200 sites,
unless stated otherwise. To avoid peculiarities that may a
when the device geometry is symmetric, the two leads
assumed to be nonidentical. One lead with width18

201W is
attached at 0.65,y/W,0.74 and the other with width21

201W
is attached at 0.7,x/W,0.8. The conductance is calculate
using the lattice Green’s-function technique.14

Let us first investigate the classical dynamics in the mo
cavity potential. The electron trajectory is gradually d
flected from the boundary by a forceF(x,y)5
2“UW(x,y). We solve Newton’s equation numerically u
ing a predictor-corrector method:15

x~ i 11!5x~ i !1v~ i !Dt1F„x~ i !…~Dt !2/~2m!, ~2!
4457 ©2000 The American Physical Society
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v~ i 11!5v~ i !1$F„x~ i !…1F„x~ i 11!…%Dt/~2m!, ~3!

where x( i )5„x( i ),y( i )… and v( i ) are the position and the
velocity of an electron at thei th time step of periodDt. The
accuracy of the numerical calculation was checked by mo
toring the energy conservation. In the inset of Fig. 2,
show an example of chaotic trajectories trapped in the cav
The probabilityP(t) to stay in the cavity for a time longe
than t decays algebraically, as shown in Fig. 2, with t
power-law exponent 1.6. The deviation from the power-l
behavior for smallt is due to direct trajectories between th
leads. In the large-t regime, the probability distribution
rather obeys an exponential behavior, which is a remnan
that in a hard-wall cavity.

The curves labeleda andb in Fig. 3 show the quantum
mechanical conductance for hard- and soft-wall potenti
respectively. Here,f05h/e is the magnetic flux quantum
The electron energy is23.7t with t being the nearest
neighbor hopping amplitude, and so the ratio between
cavity width and the Fermi wavelength isW/lF517.5. This
value is chosen to correspond to the devices examine
Refs. 2 and 4. In both leads, three transverse modes are
cupied. The electron injection properties thus are conside
to be fairly classical.

FIG. 1. Cavity potentialUW with a soft-wall confinement. The
decay lengthd of the boundary potential is 0.12W. The width of th
leads is 18

201W and 21
201W.

FIG. 2. Classical probabilityP(t) of an electron to stay in a
cavity with d50.12W longer than a timet in a perpendicular mag
netic field that corresponds toBW2510f0 in Fig. 3. The inset
shows a chaotic trajectory trapped in the cavity.
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A fractal analysis of the conductance fluctuations is c
ried out in Fig. 4. We use the same ‘‘box-counting’’ alg
rithm described in Ref. 4. The magnetic-field range is
vided with an intervalDB. The difference of maximum and
minimum conductance values within the interval is summ
over the whole segments. The number of boxesN(DB) is
given by dividing the sum byDB. As indicated by the solid
line, a power-law behavior is found over one order of ma
nitude of the magnetic-field scale for the soft-wall cav
~circles!. For the hard-wall cavity~triangles!, the slope keeps
decreasing for smallerDB. The fractal dimension for the
soft-wall cavity isD51.3560.05. The value ofD we ob-
tained in our numerical simulation is incidentally in goo
agreement with the experimental observation.4 However, we
do not attempt to make a comparison with the experimen
the actual confinement potential that determines the fra
dimension is unknown.

We observe deviations from the power-law behavior
both small and largeDB. The deviation for largeDB is due
to the loss of correlation. Since the conductance fluctuati

FIG. 3. Magnetoconductance for the hard-wall cavity~curvea),
soft-wall cavity ~curveb), and soft-wall cavity containing an anti
dot ~curvec). The dotted line shows curvec with the magnetic-field
scale multiplied by a factor 1.79. For curveb, uW50.3t, d
50.12W. For curvec, uW5uS50.3t, d50.025W, r 050.547W,
x050.515W, y050.525W.

FIG. 4. Fractal analysis for the conductance fluctuations plo
in Fig. 3. Triangles, circles, and diamonds correspond to the cu
a ~hard wall!, b ~soft wall!, andc ~Sinai billiard!, respectively. The
dotted lines show the slopes when the power-law exponent is 1
2. The solid line is a guide for eyes, giving the fractal dimens
D51.35. The inset shows the number of boxesN for the soft-wall
cavity. The solid and dotted lines are obtained using 1003100 and
2003200 lattices, respectively.
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are uncorrelated when the magnetic flux piercing through
cavity is changed by more than one flux quantum, the fra
dimension approaches 2 whenDBW2/f0.1. The deviation
for small DB is attributed to the limited number of lattic
sites. In the inset of Fig. 4,N(DB) evaluated using
1003100 and 2003200 lattices is shown by solid and dotte
lines, respectively. The device parameters are scaled acc
ingly so that the potential profile is identical with respect
the Fermi wavelength, apart from differences arising fro
the discrete lattice. The energy is, for example,22.8t for the
1003100 lattice. Although the dependence ofN on DB is
closer to the power-law behavior in comparison to that fo
hard-wall cavity, the power-law dependence is restricted
narrow range ofDB when the number of lattice sites is re
duced. For the 2003200 lattice, the fractal dimension be
comes 1 forDBW2/f0,0.06, indicating the absence of co
ductance fluctuations in this magnetic-field scale. W
emphasize that the curves in Fig. 4 always exhibit upw
bowing as the slope in small and large magnetic-field sc
is fixed to be 1 and 2, respectively. Therefore, the frac
behavior can be judged quite rigorously.

Assuming that the power-law exponents for the dw
time and for the enclosed area are identical,3 D51.2 is ex-
pected from the classical simulation. There are several p
sible explanations for the relatively large disagreement ofD.
In the quantum-mechanical calculation, hard-wall potent
are assumed outside of the cavity. These boundary poten
do not influence the classical trajectories. The electron w
function, however, is expelled from the periphery of the ca
ity. This may also be part of the reason the fractal behavio
limited to over one order of magnitude ofDB. As the limited
number of lattice sites restricts the power-law behavior t
narrow range ofDB, the number of lattice sites needs to
increased further for detailed comparison with classi
simulations.

Having demonstrated that the number of lattice sites
large enough to generate the fractal conductance fluctuat
we next examine the conductance of a Sinai billiard. W
place in the cavity an antidot potential

US~x,y!5uSF11cosS p
r

r 0
D G4

, ~4!

which is defined forr[A(x2x0)21(y2y0)2,r 0. When
the diameter of the antidot potential is increased, the mag
toconductance exhibits a regular oscillation with peri
d(BW2/f0)'1 ~curve c in Fig. 3!, in agreement with the
experimental observation.2 The oscillation is expected to b
due to the Aharonov-Bohm effect. As the Aharonov-Boh
loop is not explicitly defined in the cavity geometry, period
oscillations emerge only if the constrictions created betw
the antidot and the cavity boundary transmit least numbe
modes. Tayloret al.2 observed that the quantum interferen
structure was hierarchically repeated with reduced sc
when magnetic field approached zero. In contrast to the
periment, however, fluctuations with scales smaller th
those in the absence of the antidot do not appear in
numerical results. On the contrary, the fluctuations with fi
scales tend to be suppressed for large antidot diameters
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suppression is plausible because of the reduced numbe
cavity modes, which results in less evolved mode-mixi
effects.

Similar problems are experienced when the width of
lead is varied. On the one hand, resonance features are
nounced when the lead is narrow, as the level broaden
induced by the lead is suppressed. They may lead to con
tance fluctuations with smaller magnetic-field scales. On
other hand, reducing the lead width also decreases the n
ber of occupied modes in the lead. Fluctuations with fi
conductance scale are eliminated when there are only a
modes in the leads. This can be understood by conside
the fact that the conductance fluctuations consist of transm
sion resonances with unity amplitude, in units of 2e2/h,
when the cavity is terminated by single-mode leads.~The
unity amplitude is achieved provided that the system is sy
metric.!

Nevertheless, the conductance occasionally develops
affine-like fluctuations. The curve labeledc in Fig. 3 is an
example where the conductance fluctuations appear to
tain a self-affinity.16 However, because of the above
mentioned reason, the self-affinity, if indeed present, ta
place in large magnetic-field scales. In the experiment
Taylor et al.,2 a replica of the fluctuation pattern was o
served near zero magnetic-field with the magnetic field sc
by about a factor of 20 smaller than the original. However
should be stressed that there is no reason to observe the
similarity nor a particular magnification factor since th
phase-space structure of the Sinai billiards, which is
pected to be responsible for the exact similarity, is mer
self-similar. In this respect, the fluctuation pattern in curvec
is self-similar. The self-similarity is recognized for sever
magnification factors, and because of that the fluctuation
tern does not show the exact similarity. We show the b
case by the dotted line, for which the magnetic field is m
tiplied by 1.79. Therefore, our numerical result suggests t
the experimental observation in the Sinai geometry canno
explained by the self-similarity of the underlying classic
dynamics alone. However, since the conductance fluc
tions are fractal in our simulation merely over one order
magnetic-field scale, it is possible that the lattice is not fi
enough to resolve the exact self-affinity. As a matter of fa
the fluctuation pattern in curvec is not fractal as shown in
Fig. 4 despite the soft-wall potential. This is probably due
the relatively large antidot size.~The diameter of the antido
potential at the Fermi level isr 050.547W.! Placing an anti-
dot in the middle of the cavity reduces the conduction area
electrons, resulting in less developed chaotic behavior.
reduction may be critical when the lattice system is bar
able to produce the fractal conductance fluctuations. To
cure a comparable conduction area, the cavity has to be m
larger in accordance with the antidot size. The number
lattice sites to investigate unambiguously the exact s
affinity hence needs to be considerably larger than that
the fractal conductance fluctuations. Nevertheless, with
2003200 lattice, we observe no sign of fluctuations with fi
scales in the vicinity of zero magnetic field for various an
dot potentials we examined.17

In conclusion, we have numerically examined the cond
tance fluctuations in quantum cavities. When the lattice
fine enough, the fluctuation pattern is found to be fractal
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soft-wall cavities. The upper bound of the magnetic-fie
scale for the fractal behavior occurs when the magnetic fi
is varied by more than one flux quantum threading throu
the cavity. In numerical results, the lower bound is set by
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coarseness of the lattice. Despite the successful observ
of the fractal conductance fluctuations, the nonstatistical s
affinity in Sinai billiards is not found in our numerica
results.
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