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Numerical simulation of fractal conductance fluctuations in soft-wall quantum cavities
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Magnetoconductance fluctuations in quantum cavities are numerically calculated for soft-wall confinement
potentials. Employing a tight-binding lattice consisting of 200 sites, the conductance fluctuations are
confirmed to be fractal for one order of magnitude in magnetic-field scale. We find no emergence of self-affine
conductance fluctuations with fine scales in a Sinai billiard, suggesting that the hierarchical phase space
structure in the underlying classical dynamics alone cannot explain recent experimental observations.

Ever since ballistic electron transport was attained in mitance pealé*3in ballistic cavities around zero magnetic field
crocavities fabricated from a two-dimensional electron gas iroften behaves as if the dynamics were chaotic although the
semiconductor heterojunctions, a considerable amount of ef:avity is made to realize regular dynamics. The confinement
fort has been made to uncover novel properties of condugPotential is inevitably soft in split-gate devices, and so the
tance fluctuations in quantum cavities having chaotic classiclassical dynamics unintentionally becomes chaotic. Since
cal dynamics. The most striking feature of the chaotic the soft-wall potential in real devices is generally omitted in
dynamics is the hierarchical structure in phase space. Recelfteoretical analysis, the drastic influence of the confinement
investigationd® have attempted to associate the self-similarPotential signifies a demand for numerical simulations.

phase-space structure directly with reproducible fluctuation In this paper, the magnetoconductance is calculated
patterns in the conductance. quantum-mechanically using a lattice model. By increasing

There are two classes of the self-affinity of the conducthe number of lattice sites, we are able to establish the fractal
tance fluctuations. The investigations on one class stem frogonductance fluctuations for one order of magnitude in mag-
an experimental observation of hierarchical replications ofetic field scale. We also examine the conductance fluctua-
the fluctuation pattern in Sinai billiardsTheoretically, nu-  tions when a Sinai diffuser is introduced in the cavity.
merical simulation is the only technique available to examine We consider a square-shaped cavity, defined #xp
this remarkable behavior. However, to the best of our knowly<W, attached by two leads. The cavity and the leads are
edge, no one has succeeded in reproducing the experimengrrounded by an infinite barrier. A soft-wall potential is
observation in a convincing mannethe failure is generally assumed within the cavity region. For simplicity, we use a
ascribed to limited computational resources. Although thepotential determined as a function of the distance in the nor-
recursive Green’s-function method is a powerful techniquenal direction from the cavity boundary:
to calculate the conductance of quantum cavities, the discrete
lattice must be fine enough to retain the hierarchical proper-

ties in the classical dynamics. Uw(X,Y) = U exr{ X +ex;< _ WX +exr{ - X)
Another class of the self-affinity was first predicted by a ' d d d

semiclassical theory, and is termed fractal conductance W—

fluctuations’ The statistical properties of the magnetic-field +expg — oy (1)

correlation of the conductance are related to the probability d

distribution of areas enclosed by electron trajectories in a

cavity’ The probability distribution decays exponentially for The soft-wall potential is set to be absent for part of the

hard-wall cavities, whereas it obeys a power law when theayity boundary where the leads are attachiéig. 1). The

confinement potential of cavities is smodStithe latter is cavity is simulated by a square lattice with 20200 sites,

believed to originate from trajectories trapped around thenless stated otherwise. To avoid peculiarities that may arise

Kolmogorov-Arnol'd-Moser islands in the phase space.yhen the device geometry is symmetric, the two leads are

which give rise to a long dwell time in the system. The gssumed to be nonidentical. One lead with widdhw is

power-law distribution leads to a fractal behavior of the mag-attached at 0.65y/W<0.74 and the other with widt§W

netoconductance fluctuatioAsThe fractal dimensiorD of is attached at 0Zx/W<0.8. The conductance is calculated

the conductance fluctuations is predicttito be given by using the lattice Green’s-function technigife.

the power-law exponeng as D=2— /2. Therefore, the Let us first investigate the classical dynamics in the model

theory provides a tool for quantitative analysis of quantumcayity potential. The electron trajectory is gradually de-

transport in a chaotic system. The theoretical prediction wWagected from the boundary by a forceF(x,y)=

soon confirmed in experimerits? . —VUy(x,y). We solve Newton’s equation numerically us-
The phenomenon of the fractal conductance fluctuatlon;*ng a predictor-corrector methda:

calls our attention to the importance of the boundary poten-

tial. The soft-wall confinement explains a discrepancy in ex-

perimental observatioris: The weak localization conduc- x(i+1)=x(i)+v(i)At+F(Xx(i))(At)%/(2m), 2
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FIG. 3. Magnetoconductance for the hard-wall cayayrvea),
soft-wall cavity (curveb), and soft-wall cavity containing an anti-
] ) ] ] dot (curvec). The dotted line shows cunewith the magnetic-field

FIG. 1. Cavity potentialJ, with a soft-wall confinement. The ¢-5e multiplied by a factor 1.79. For cunig uy=0.3, d
decay lengtid of the boundary potential is 0.12W. The width of the —q 12y, For curve ¢, Uy=Us=0.%, d=0.025N, r,=0.547W,
leads iszeW and o5 W. Xo=0.515N, yo=0.525N.

v(i+1)=v(i) +{F(x(i))+Fx(i+1))}At/(2m), (3 A fractal analysis of the conductance fluctuations is car-
. . , ) » ried out in Fig. 4. We use the same “box-counting” algo-
where x(i) = (x(i),y(i)) and v(i) are the position and the jihm described in Ref. 4. The magnetic-field range is di-
velocity of an electron at thizh time step of periodt. The  yiqeqd with an interval B. The difference of maximum and
accuracy of the numerical calculation was checked by moniminimum conductance values within the interval is summed
toring the energy conservation. In the inset of Fig. 2, wey or the whole segments. The number of bok#a\ B) is
show an example of chaotic trajectories trapped in the cavitygiven by dividing the sum b\B. As indicated by the solid
The probabilityP(t) to stay in the cavity for a time longer |jhe 3 power-law behavior is found over one order of mag-
thant decays algebraically, as shown in Fig. 2, with the iy ge of the magnetic-field scale for the soft-wall cavity
power-law exponent 1.6. The deviation from the power-law(gjrcleq. For the hard-wall cavitytriangles, the slope keeps
behavior for smalt is due to direct trajectories between the decreasing for smalleAB. The fractal dimension for the
leads. In the largée- regime, the probab_ility_ distribution soft-wall cavity isD=1.35+0.05. The value oD we ob-
rathgr obeys an expon_ennal behavior, which is a remnant bineq in our numerical simulation is incidentally in good
that in a hard-wall cavity. N agreement with the experimental observafidtowever, we
The curves labeled andb in Fig. 3 show the quantum- 45 ot aitempt to make a comparison with the experiment as
mechanical conductance for hard- and soft-wall potentialsyye actyal confinement potential that determines the fractal
respectively. Herego=h/e is the magnetic flux quantum. §imension is unknown.
The electron energy is-3.7t with t being the nearest-  \ye gpserve deviations from the power-law behavior for
neighbor hopping amplitude, and so the ratio between thgyi, small and larga B. The deviation for larga\B is due

cavity width and the Fermi wavelengthV8/Ag=17.5. This {4 the |oss of correlation. Since the conductance fluctuations
value is chosen to correspond to the devices examined in

Refs. 2 and 4. In both leads, three transverse modes are oc-

cupied. The electron injection properties thus are considered
to be fairly classical. 0
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. ‘ FIG. 4. Fractal analysis for the conductance fluctuations plotted

10 100 1000 in Fig. 3. Triangles, circles, and diamonds correspond to the curves
a (hard wal), b (soft wall), andc (Sinai billiard), respectively. The
dotted lines show the slopes when the power-law exponent is 1 and

FIG. 2. Classical probability?(t) of an electron to stay in a 2. The solid line is a guide for eyes, giving the fractal dimension
cavity with d=0.12WV longer than a time in a perpendicular mag- D=1.35. The inset shows the number of bokéfor the soft-wall
netic field that corresponds tBW?=10¢, in Fig. 3. The inset cavity. The solid and dotted lines are obtained usingx.000 and
shows a chaotic trajectory trapped in the cavity. 200x% 200 lattices, respectively.

time (arb. units)
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are uncorrelated when the magnetic flux piercing through theuppression is plausible because of the reduced number of
cavity is changed by more than one flux quantum, the fractatavity modes, which results in less evolved mode-mixing
dimension approaches 2 whaBW?/ ¢o>1. The deviation effects.
for small AB is attributed to the limited number of lattice  Similar problems are experienced when the width of the
sites. In the inset of Fig. 4N(AB) evaluated using lead is varied. On the one hand, resonance features are pro-
100x 100 and 206 200 lattices is shown by solid and dotted nounced when the lead is narrow, as the level broadening
lines, respectively. The device parameters are scaled accorghguced by the lead is suppressed. They may lead to conduc-
ingly so that the potential profile is identical with respect tognce fluctuations with smaller magnetic-field scales. On the
the Fermi wavelength, apart from differences arising fromgiher hand, reducing the lead width also decreases the num-
the discrete lattice. The energy is, for exampie2.8 for the  per of occupied modes in the lead. Fluctuations with fine
100x 100 lattice. Although the dependence Mfon AB is  snductance scale are eliminated when there are only a few
closer to the power-law behavior in comparison to that for gy gdes in the leads. This can be understood by considering
hard-wall cavity, the power-law dependence is restricted 10 e fact that the conductance fluctuations consist of transmis-
narrow range ofAB when the number of lattice sites is re- gy resonances with unity amplitude, in units o&2¢h,
duced. For the 200200 lattice, the fractal dimension be- \yhen the cavity is terminated by single-mode lea@he
comes 1 forABW?/ ¢,<0.06, indicating the absence of con- ynity amplitude is achieved provided that the system is sym-
ductance fluctuations in this magnetic-field scale. Wemetric.)
emphasize that the curves in Fig. 4 always exhibit upward Neyertheless, the conductance occasionally develops self-
bowing as the slope in small and large magnetic-field scalegtfine-like fluctuations. The curve labeledin Fig. 3 is an
is fixed to be 1 and 2, respectively. Therefore, the fractapyample where the conductance fluctuations appear to con-
behavior can be judged quite rigorously. tain a self-affinity!® However, because of the above-
~ Assuming that the power-law exponents for the dwellpmentioned reason, the self-affinity, if indeed present, takes
time and for the enclosed area are identicBl=1.2 is ex- place in large magnetic-field scales. In the experiment by
pected from the classical simulation. There are several POSraylor et al.? a replica of the fluctuation pattern was ob-
sible explanations for the relatively large disagreemeri2.of seryed near zero magnetic-field with the magnetic field scale
In the quantum-mechanical calculation, hard-wall potentialsyy apout a factor of 20 smaller than the original. However, it
are assumed outside of the cavity. These boundary potentialgoy|d be stressed that there is no reason to observe the exact
do not influence the classical trajectories. The electron Wavgimilarity nor a particular magnification factor since the
function, however, is expelled from the periphery of the Cav-phase-space structure of the Sinai billiards, which is ex-
ity. This may also be part of the reason the fractal pehavior i?)ected to be responsible for the exact similarity, is merely
limited to over one order of magnitude AB. As the limited  se|f-similar. In this respect, the fluctuation pattern in curve
number of lattice sites restricts the power-law behavior to 35 self-similar. The self-similarity is recognized for several
narrow range ofAB, the number of lattice sites needs to be magnification factors, and because of that the fluctuation pat-
increased further for detailed comparison with classicatern does not show the exact similarity. We show the best
simulations. ~ case by the dotted line, for which the magnetic field is mul-
Having demonstrated that the number of lattice sites igjplied by 1.79. Therefore, our numerical result suggests that
large enough to generate the fractal conductance fluctuationghe experimental observation in the Sinai geometry cannot be
we next examine the conductance of a Sinai billiard. Wegxplained by the self-similarity of the underlying classical
place in the cavity an antidot potential dynamics alone. However, since the conductance fluctua-
tions are fractal in our simulation merely over one order of
A magnetic-field scale, it is possible that the lattice is not fine
14 co 5( WL” @ enough to resolve the exact self-affmlty. As a matter of fact,
r ' the fluctuation pattern in curve is not fractal as shown in
Fig. 4 despite the soft-wall potential. This is probably due to
the relatively large antidot siz€The diameter of the antidot
which is defined forr=/(x—xg)*+ (y—Yo)°<ro. When potential at the Fermi level is,=0.54®.) Placing an anti-
the diameter of the antidot potential is increased, the magnedot in the middle of the cavity reduces the conduction area of
toconductance exhibits a regular oscillation with periodelectrons, resulting in less developed chaotic behavior. The
S(BW?/ ¢pg)~1 (curvec in Fig. 3), in agreement with the reduction may be critical when the lattice system is barely
experimental observatichThe oscillation is expected to be able to produce the fractal conductance fluctuations. To se-
due to the Aharonov-Bohm effect. As the Aharonov-Bohmcure a comparable conduction area, the cavity has to be made
loop is not explicitly defined in the cavity geometry, periodic larger in accordance with the antidot size. The number of
oscillations emerge only if the constrictions created betweeilattice sites to investigate unambiguously the exact self-
the antidot and the cavity boundary transmit least number céffinity hence needs to be considerably larger than that for
modes. Tayloet al? observed that the quantum interferencethe fractal conductance fluctuations. Nevertheless, with the
structure was hierarchically repeated with reduced scaleg00x 200 lattice, we observe no sign of fluctuations with fine
when magnetic field approached zero. In contrast to the exscales in the vicinity of zero magnetic field for various anti-
periment, however, fluctuations with scales smaller thardot potentials we examinéd.
those in the absence of the antidot do not appear in our In conclusion, we have numerically examined the conduc-
numerical results. On the contrary, the fluctuations with finetance fluctuations in quantum cavities. When the lattice is
scales tend to be suppressed for large antidot diameters. Tfiae enough, the fluctuation pattern is found to be fractal for

Us(Xx,y)=Ug
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soft-wall cavities. The upper bound of the magnetic-fieldcoarseness of the lattice. Despite the successful observation
scale for the fractal behavior occurs when the magnetic fieldf the fractal conductance fluctuations, the nonstatistical self-

is varied by more than one flux quantum threading throughaffinity in Sinai billiards is not found in our numerical
the cavity. In numerical results, the lower bound is set by theesults.
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lead by 0.05while leaving away from the cavity. As a conse-
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The computation speed can be drastically improved if the cavity

potential can be split into identical segments. The size of the
matrix that we have to deal with to calculate the lattice Green’s
function is determined by the number of transverse lattice sites.
Therefore, the Green’s function of a decomposed segment is
calculated much faster than that of the whole system. Taking
advantage of the identity of the potential, the Green’s function
of the rest of the segments can be calculated using gauge trans-
formation. The Green'’s function of the system is obtained from
that of the decomposed segments by restoring the bonds be-
tween the segments. We employed this method by dividing the
antidot device into four components @ty=W/2. (The con-
finement potential has to be modified to satisfy the identity.
Although we calculated the magnetoconductance using a
500% 500 lattice, the self-affine fluctuations were not found.



