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Phase diagram for the Anderson lattice model
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We study the competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida interaction in
the framework of the Anderson lattice model with an extra intersite exchange term. By using an approximation
based on an atomic expansion, we obtain, for the symmetric half-filled case, a phase diagram analog to the
Doniach diagram for the Kondo lattice. The qualitative and quantitative progress in the description of experi-
mental results for the cerium Kondo compounds with respect to previous approaches is discussed. We also
calculate the specific heat which exhibits a two-peak structure as a function of temperature.

I. INTRODUCTION intersite f-f interaction termJ,; comes mostly from the in-
direct RKKY interaction, the value of, has been taken
It is well established that there exists, in cerium com-proportional toJZ. Strong antiferromagnetic short-range
pounds at low temperatures, a strong competition betweegorrelations decrease drastically the Kondo temperature with
the Kondo effect, which is characterized by a heavy-fermiorrespect to that defined for one impurity and can yield roughly
behavior and tends to demagnetize the system, and thgénstant values 6Fy versusly . This point is in good agree-
Ruderman-Kittel-Kasuya-Yosid&KKY) interaction, which  ment with experimental results in Cef8i, (Ref. 4 where
tends to yield a magnetic ordering. It results that some cege Kondo temperatur§y is roughly constant with pressure

rium Kondo compounds are nonmagnetic and exhibit "’hp to 17 kbar and in CeRGe, (Refs. 5,6 where Ty in-

heavy-fermion behavior, while o.ther ones order magnetlcallyCreases much less rapidly with pressure than the single im-
and have a smaller heavy-fermion charadter.

I purity Kondo temperatur&y, above the critical pressure of
int;—rg?:t(i:(()):]ﬁzztl?ar;gr?tggggr;[g: dKob;d?hszeD(gn?gghth;:é:;(rzsupression of the magnetic order. A similar behavior can be

which gives the Kel and Kondo temperatures as a function1‘ound when the relative concentration is varied in a ternary
of the intrasite exchange constaht: the Neel temperature alloy such as Ce(RuXRh’S)ZSiZ'm.SUCh drastic reduction of
is first increasing withJ«|, then passing through a maxi- the Kondo temperature in a lattice with respect to the one-

mum and reaching zero at a quantum critical point, while thé;‘mpurity _"alf,‘e has been also obtained by considering the
Kondo temperaturél, is exponentially increasing in the exhaustion” problem due to the fact that only the conduc-

single impurity Kondo model. The parameidg| increases tion electrons within an energy range of ordgy, from the

with applied pressure or varies with the relative concentraFermi ene_rgygare able to screen the localized electrons in the
tion in ternary systems. Such behavior of theeNempera-  Kondo lattice: _ _ _
ture has been experimentally observed with increasing pres- !N the present paper, we adopt an alternative point of view
sure in several cerium Kondo compounds, but the Kondcﬁ”dj instead of the Kondo Ham|lton|an, we cons@er the pe-
temperature of a compound can be smaller than that prdiodic Anderson modelPAM), which can describe both
dicted by the Doniach diagraf. Kondo and mtermedlate_ valenc_e C_erlum compou_nds. Th_en,

The Kondo lattice has been studied in a m8agth both ~ We perform the exact diagonalization of the on-site Hamil-

intrasite (x) and intersite magnetic exchange interactiontonian, as previously used for the Anderson laffl@nd the

(characterized by a nearest-neighbor exchange conggant Hubbard Hamiltonian&! and we treat the intersite terms
by means of a mean-field approximation. For sufficientIyW'th'n the same preceding diagrammatic approximation. The

large intersite antiferrromagnetic correlations, this modeParameters of this PAM Hamiltonian include the hybridiza-

yields a decrease of the Kondo temperature as compared #9n V thef-electron energf;, and the local Coulomb re-
the one-impurity value, giving, therefore, a “revisited” ver- pulsion U between thef electrons. It corresponds to the

sion of the Doniach diagram with a rather flat Kondo tem-Kondo lattice model in the “_m“//|'_5f|ﬁo* where the phys-
peratureT in the nonmagnetic case, as observed in severdfS S Well described by an intrasite exchange conitant
cerium compounds. But the two parametégsandJ, can-

not be considered as independent from each other and it is )
necessary to take into account the relationship between them Jo= 2VU

to obtain the real dependence ©f versusJy. Since the KTE(E;+U)"

(€Y
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Thus, based on the results of Ref. 3, we include an extravhere

nearest-neighbor Heisenberg term in order to see the effect

of intersite magnetic correlations. In the next section, we t'=—Ju(fl,fi,). (8
resent our model Hamiltonian and the approximation L

gdopted that takes into account the strong IocpaFI) correlation Second, we make the approximation of Refs. 10 and 11 to

between thé electrons in a simplified way. In the third sec- U€at the intersite part of the Hamiltoniah,+7;. By

tion, we present the theoretical results and the comparisodrouping the lattice Green functions in matrix form

with experiments. Then, in the last section, we present some Gl%w) G(w)

comments and the conclusion. ' | )

Gij(w):<

Gl(w) Gff(w) ©
Il. THE THEORETICAL MODEL Y Y
The periodic Anderson modéPAM) including nearest- and defining the hopping matrices
neighbor exchange interactions is described by the following 0
Hamiltonian: Tz( ,> for i,j nearest neighbors,
Tij: O t (1
H=Ho+H,+Hz, 2 0 otherwise,
where we obtain the following Dyson-like equation:
Ho=>, {E U vl d 4 H 3)
0~ ~ Nis 2 nitrniu— ( icHio 'C') ' G”(w)=g(w)5,1—g(w)§ Tikaj(w). (11)
_ z dat d The matrix elements dj,(w) are the atomic Green func-
Hi=- £ Gijdigdje @) tions at zero temperature which have the form
4 Ai
Hy=—2> J;S-S, (5) Gan(@) =24 T (12)
i

wherea! (a;,) is the operator that creatéannihilate3 one "€ polesp; and the residue#y; are determined from the
electron of spino in thea=d or f orbital at theith site,n®  €igenvalues and eigenvectorsidj which are given in Table
—a aj, is the number operator in that orbital, agflis the ! of Ref. lloalr(‘ja_ b”tﬁf prehmwgarg adccgunt offthlst\(voﬂikw?l 0
f-electron spin at that site. The parameters included in thE'aVe included In the unperturbe reen functions af the
first term are the enerds; of the 4F electrons, the Coulomb [€MPerature excitations present in the exact atomic solution

repulsionU between twd electrons of opposite spin on the ?f th?hHaerlltlltongn. In tfhe p;_resent vet:3|_(|)tnf of thti approxtlma-
same site, and the local hybridizatianh betweenf and d lon, Ihe fatlice Lsreen functions are built from the zero tem-

electrons. The conduction-electron hopptigand the inter- perature atomic Green functions, and their temperature de-
site exchangd;; betweerf-electron spins have been consid- pendenc_e will be descrlbed uniquely via the_ Matsul_aqra
ered only for nearest-neighbor sites, in which case they as{[equenmes. We have als_o impraved the_ _numerlcal precision
sume the valuesandJ,,, respectively. Here we consider the 0 allow for the computation of the spe_cmc heat. .
symmetric case (B;+U=0) at half-filing (two electrons Equation(11) can be solved by Fourier transformation
per sitg, where the chemical potential is equal to zero. G(q,0)=[1-g(w)E(q)] ‘g(w) (13)

The approximation that we adopt consists of two steps. ' '
First, we transform the exchange tefi3 into a one-particle ~ Where
term by applying a mean-field approximation

1 )
- _ L ald (Ri=R)) =
S-S S (A (A B@=— 3 Tyet @ Wme@T (9
(A 2 = iog 'jo/ljo'lio jo'ia/lic!jo
The matrix elements are

1
T
—(figTiaX o fi)) = Zzmim, SR COha b ACOLICIIL a9
. e A(q,0) '
£ f £ of
+Z[mi(an_njl)—’_mj(nm_nil)]v (6) Goco) 9ii+ Y(@)e(q) 6
(0, @) =—————~—,
wherem;=(n{,)—(n{) is the magnetization at tri¢h site. A0, o)
In this paper we will be restricted to the nonmagnetic phase,
wherem;=0 and(f:;fjj)z(ffgfj,, =<ijUfiU>. In this case, Gui(q,0)= i (17
we have Alg,0)
where
y=—t' ! fi,tH.C)— ! fi)?
Hp= U g (ol He)=dugy (fufin)® (@) Y©0)= ()~ God @)ri(w), 19
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A(q,w)=1-A(w)e(q)/t—B(w)[e(q)/t]?>, (19 The two-operator averages of the model are directly
evaluated as a sum over Matsubara frequenegigs (2n
A(w)=tggd(w) +1t'gsr(w), (20 +L)7lp:
g 1 .
B(o)=tt"y(w). 2D (bl,a)= im =3 Giiwge. (33
e

The lattice Green functions are obtained from the inverse . _
Fourier transformation At low temperatures the asymptotic part of the series has to

be evaluated as an integral by considerisigas a continu-

1 » B ous variable. The averagjé fi,) appearing in Eq(8) de-
- =— “(Ri=Ry) jo
GIJ(“’)_N Eq G(q,w)e™ = (22 fines a self-consistent evaluation of the lattice Green func-
o tions, which always converges, provided thatis negative.
Fori=j they can be calculated as The specific heat can be calculated directly from the de-
rivative of the internal energy
Gii(w)= E G(q,0) 2 Fle(a)/t] dE
C= T (34)
=f dx po(X)F(x), (23)  The internal energy per site is given by

where po(x) is the tight-binding density of states of the E=(d{,[di, H])+(f{,[fi,, H])+2V(d] f,
simple cubic lattice. For the nearest-neighbor Green func-

tions, the corresponding expression is —6t(d] d;,)—6t’ (f1 f (o)~ 3In(fl f ]U>2+ E/ny,

Giijy(w) = % > G(gw)eh=—- % j dx po(X)F (X)x. 39
a (24) wheren; is thef-electron concentration. The first two terms
are calculated by
As the kernel function above has the general form

C+Dx (a] [aj,, H])=lim = 2 [iw, Ga}a(iwn)—l]eiwnf_

F(X)= —, 25 =07
0 1—Ax—Bx? (29 (36)
with C and D defined from Eqs(15—(17), the different In the next section, we will present first the averages
Green functions can be expressed in terms of the integrdd;, f;,) and(f/ f i) for different values of the parameters.
transform Within the approximation that we have adopted here, these

two averages provide a good account for the intragite
correlation and the intersité-f correlation functions. Fi-

_ Po(X)
H(z)= f dx X—Z (26) nally, Eqgs.(34)—(36) will give the specific heat curves versus
. temperature for the same values of the parameters.
Thus, for the general cask,#0 we obtain
Ill. RESULTS
GiP(w) =K, H(Z,)—K_H(Z.), 27)

First of all, we plot in Fig. 1 the averages!| f;,) and
(fl f j»» (Wherei andj are nearest neighboras a function of
temperature for different values of the parametersV, and
Jy . We choosée;= —3t andV=t. For these values of the

1
Glij(@)=5{Z-K_H(Z-)=Z.K.H(Z,)}, (29

where parameters, the Anderson Hamiltonian is equivalent to a
Kondo exchange Hamiltonian witldx=—4t/3, which is
+ /A2 K d
Z.=— ﬂ (29) much smaller than the widt= 12t of the conduction band.
N 2B We take several values af;=0,—3t,—6t, and —12 in
order to study the effect of antiferromagnetic intersite corre-
C+DZ. lations. Each curve is a smooth and monotonically increasing

K= B(Z_—-Z,)" (30 function whose derivative exhibits a well marked maximum,
) ) ) which corresponds to a kind of crossover temperature. We
The solution for the particular cagg =0 is define the Kondo temperatufig as the crossover tempera-
D 1 D 1 ture determined from the average! f;,). The correlation
G¥(w)=——— _( C+ _) H(—), (31  temperaturel,, below which short-range magnetic corre-
A AlTTA lations arise, is defined in a similar way with respect to
(fl £ i»)- More preciselyTx and T, are taken here equal to
1+ EH(E)} (32 the temperatures of the maxima of the derivatives of the

A \A curves of Fig. 1 with respect to temperature. From the curves

Gl (w)=— X



444 BERNHARD, LACROIX, IGLESIAS, COQBLIN PRB 61

T T T T T
/1
1.2 DA S — JH= .
L Do |
I/ | ———= Jy=-3t
1.0 N e ] =6t
FAS jH 121
- - | Ao \ e - =— R
IR X H
0.8 | 1A N -
1! I\
F | |
/,/ J ] C ’I I, /
S —— Jg= 1 0.6 | Iy 4
! 7 1 ) 4 .
.................... //// -0 JH =-3t -1 a /' ] ! i
—-—-=J, =—6t I

A ,/ ________________ j” =12t 0.4 | L1y .

<df> L __ /- H I I |
[
I

i 1 0.2 - II | -
i T | Lol TR | M ¥

0347 10” 10° 10 10° - i/ 1

T/t AT SR ”

0.0 -2 = 0 2

5 5 10 10 10 10

FIG. 1. The averaged;,f;,) (lower curveg and(f/.f;,) (up- T/t

per curves as a function of temperature f&;=—3t, V=t, and

different values ofl, . FIG. 3. Specific heat as a function of temperature for the same

parameters as in Fig.1.

in Fig. 1, one can remark thalle,, increases rapidly with in Fig. 1. The specific heat curves show a clear peak near

|[Ju|, while T« seems to saturate to a constant value. Here, |q.cor and another one t~t. As expected, the low tempera-

contrast with the preceding Kondo lattice treatment in Ref. 3ture peak increases withl,|, approaches first the high
i t t Hls -
the curves giving(d;,f;,) and(f;,f;,) do not presentany o,0ratre peak and becomes even larger for the highest
phase transition but are rather smooth. This indicates that tr\%ﬂue 3] =12t
cor'responding definition offx provides an improved de- So far, we have studie@l, and T, as a function ofl,
scrllzptlon 02f the Kondlo efffe(;]t. qT for constank; /t andV/t values. The corresponding value of
lgure 2 gives a plot of the two temperatufa_gan cor — thed-f exchange parametdg has also been considered as a
versus the intersite antiferromagnetic correlation parametel -+ |n particular, the adopted valde|=4t/3 is quite
gH for V= rt] and E;=—3t. We sele thitztge;tre |Sdah0f03hs'”9 small. Thus, it is interesting to deduce the diagrar pfand
Ketvx(/jee? the IW? cé_urves atava “H*AIN ' tant t ﬁ_tlt ti Teor @s a function ofl Jx|, to see what happens when this
ondo temperaturd  remains roughly constant, whiie the parameter increases. As previously established for the Kondo
_short-_range correlation temperatuFg, increases very rap- lattice? in cerium compounds, the intersite Heisenberg ex-
idly W'th |‘]H|'h h d d £ th change between localized spins originates mainly from the
_Figure 3 shows the temperature dependence of the Spgy k' interaction which is mediated by the conduction elec-
cific heat for the same values of the parameters as those usgd < \ia the hybridization. In Ref. 3, /t has been taken
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FIG. 2. Crossover temperatur@ and T, as a function of FIG. 4. Crossover temperatur€g andT,, as a function of the

Jy /t for V=t andE;=—3t. ratio |V/E¢| for V=0.% andJy given by Eq.(38).
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IV. CONCLUDING REMARKS

The present approach provides a phase diagram for the
———= V=03IE/ Anderson lattice described by both the Anderson Hamil-
b= V=1.0IEfI tonian and an additional Heisenberg-type exchange interac-
- ;o) ] tion between the # spins on nearest neighbors. The calcu-
1.0 | | lation has been performed here in the nonmagnetic case, as
! previously for the Kondo lattic The magnetic phases of the

Anderson lattice have been recently studied through a related
approximation developed in Ref. 14.

The present treatment of the Anderson lattice is similar to
the “revisited” Doniach diagram for the Kondo lattitand
gives both the Kondo temperatufigc and the short-range
correlation temperaturf .,,. The Kondo temperature in-
creases firstly and then remains constant as a functibh,pf
in Fig. 2 or|V/E| in Fig. 4. Thus, this result gives also a
revisited version of the Doniach diagram and shows That
remains roughly constant willv/E;| or |Jx| and then under
T/t pressure in the nonmagnetic region above the quantum criti-

cal point where the N temperatureTy disappears. Our

FIG. 5. Specific heat fo=0.5, J, given by Eq.(38) and  Calculation can also account for the occurrence of antiferro-
different values of V/E]. magneticlike short-range correlations in some Cerium com-

pounds at a temperatuifg,, much larger thak , such as in
CeRuySi, whereT,,~60-70 K andTx~14-23 K(Refs. 7
proportional to i /t)?. We take here the same relation be-and 19 and in CeCy whereT,,~10 K andT¢~5 K.'®
tweenJy and theJx value given by the Schrieffer-Wolff We obtain two improvements with respect to the preced-
transformatiort? We obtain a good description of the physi- ing Kondo lattice mean-field calculatiéiiThe curves giving
cal situation of Cerium Kondo compounds if we choose herdd! f;,) and (fiTUfJ-U> are smooth and do not present any
) phase transition, implying thafy and T, correspond to
J—H=—0 S(J_K) (37) crossover temperatures. This point is well known for the
t Tt Kondo effect, and it has also been established Tigy; by
or, equivalently, by using Eq1), neutron scattering experimeritsThe values o_btained here
for Tx and T, are smaller, and consequently in better agree-

L

L

0.5

107 10 10

J gv4 ment with the experimental values. As shown in Figs. 2 and
H__ 5 (38) 4, T/t is typically of order 0.3-0.4 and, since the conduc-
t (Eft) tion bandwidth isW=12t, Ty is much smaller here than in

Figure 4 shows the plot of the two crossover temperaturesRef' 3.
_ We h I i th ific h&@tvhich exhibit
T and T, versus|V/E;| for V=0.5 andJ, given by Eg. e have also derived the specific h€which exhibits

i . : two maxima at temperatures roughly equal g, and t.
(38). We see thatT,, increases rapidly andy remains P gny €q Sr

hi VIE. ab | hi | Further experiments would be interesting to check this form
roug thorr]wstant versqd i E ovE azva ueh_ro#g y eqlrj]a of the specific heat curves. Finally, the inclusion of the extra
to 1, whic corresponds 0 =Jy~ —2t, which 1S muc intersite exchange term in the nonmagnetic phase is neces-
smaller than the widthV= 12t of the conduction band. Thus, sary to obtain a good description of cerium Kondo com-
Fig. 4 represents the d|ggra_m giviig and T, within the pounds and further theoretical work will be still important to
periodic Anderson Hamiltonian and the paramétéiE;| is better understand this point.
expected to be proportional to the pressure.

Finally, we show in Fig. 5 the specific heat for the same
parameters as those in Fig. 4 and for different values of
VI|E;|. We see that there are also two peaks, the first one We aknowledge the support of the Brazil-France coopera-
corresponding td ., and the second one to rougttly tion agreement Capes-Cofecub, Project No. 196/96.
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