Probing the metal-insulator transition in Ni(III)-oxide perovskites

J.-S. Zhou and J. B. Goodenough

Texas Materials Institute, ETC 9.102, University of Texas at Austin, Austin, Texas 78712-1063

B. Dabrowski, P. W. Klamut, and Z. Bukowski

Department of Physics, Northern Illinois University, DeKalb, Illinois 60116

(Received 6 July 1999)

Systematic measurements of the resistivity $\rho(T)$ and thermoelectric power $\alpha(T)$ under hydrostatic pressure have been made on single-valent perovskites of the family LnNiO₃ (Ln=La, Pr, Nd, Sm_{0.5}Nd_{0.5}); they distinguish the influences of chemical and hydrostatic pressure on the insulator-metal transition occurring at a temperature T_t . The data suggest the coexistence above T_t of fluctuations of more localized electrons in a Fermi-liquid background with an ordering of the two phases into a static charge-density/spin-density wave below T_t .

The LnNiO₃ perovskites contain low-spin Ni (III) : t^6e^1 configurations, and one electron per $Ni(III)$ occupies an orbitally twofold-degenerate σ^* band of *e*-orbital parentage of the NiO₃ array. The tight-binding width of the narrow σ^* band is controlled by the $(180^{\circ} - \phi)$ Ni-O-Ni interactions and is given by $¹$ </sup>

$$
W_b \approx \varepsilon_\sigma \lambda_\sigma^2 \cos \phi, \tag{1}
$$

where ε_{σ} is a one-electron energy and λ_{σ} is the Ni:*e* $-0:2p_{\sigma}$ covalent-mixing parameter for the σ -bonding *d* electrons of *e* symmetry. Substitution of a smaller $Ln³⁺$ ion for La³⁺ increases ϕ by increasing the mismatch of the equilibrium Ln-O and Ni-O bond lengths. The critical energy *U* is, in this case, the on-site coulomb energy to add an electron to a low-spin $\text{Ni}(III)t^6e^1$ configuration to make it $\text{Ni}(II)t^6e^2$. Metallic LaNiO₃ exhibits an enhanced Pauli paramagnetism, $\frac{2}{3}$ which indicates that the bandwidth approaches the Mott-Hubbard transition from the itinerantelectron side. Therefore substitution of a smaller $Ln³⁺$ ion for La³⁺, which increases ϕ in Eq. (1), allows one to study experimentally the Mott-Hubbard transition. Although the metallic character of rhombohedral $LaNiO₃$ was established in 1965,³ it was not until 1991 that Lacorre *et al.*⁴ used high oxygen pressure to obtain the orthorhombic samples from $La_{1-x}Pr_{x}NiO_{3}$ to EuNiO₃. This family exhibits an insulatormetal transition at a temperature T_t (Ref. 5) and a transition to an unusual long-range antiferromagnetic order below a $T_N \le T_t$ (Ref. 6) that has been interpreted⁷ to be a chargedensity wave/spin-density wave (CDW/SDW) phase. The metal-insulator transition at T_t was suggested^{5,8} to be the opening of a charge-transfer gap between the O-2*p* and upper Mott-Hubbard band in a globally homogeneous electronic phase and the decrease in T_N with decreasing tolerance factor to indicate that the spins are associated with localized electrons in the antiferromagnetic phase. With this interpretation, the observation^{9,10} that T_t decreases sharply with hydrostatic pressure was attributed to an increasing *t* factor, and a $dt/dP = 0.0004/kbar$ was calculated. On the other hand, the observation¹¹ that substitution of ¹⁸O for ¹⁶O in NdNiO₃ increases $T_t=T_N$ by 10.3 K without introducing any change in t or W_b demonstrated that some oxygen vibrational frequency ω_0 plays an important role in the determination of T_t . Retaining the assumption that T_t occurs at a critical bandwidth, it was suggested that the bandwidth has a form analogous to the Holstein¹² polaron bandwidth

$$
W = W_b \exp(-\lambda \varepsilon_p / \hbar \omega_O), \tag{2}
$$

where ω_o^{-1} is the period of the cooperative oxygen displacements that define a polaron and stabilize it by an energy ε_p ; $\lambda = \varepsilon_p / W_b$ is a measure of the strength of the electron coupling to the atomic displacements. However, the $LnNiO₃$ family is single valent, a condition that is incompatible with polaron formation; and this problem was not addressed.

In this paper we report resistivity $\rho(T)$ and thermoelectric power $\alpha(T)$ under different hydrostatic pressures *P* for LaNiO₃, PrNiO₃, NdNiO₃, and $\text{Sm}_{0.5}\text{Nd}_{0.5}\text{NiO}_3$ in order (1) to clarify the character of the narrow-band electrons both above and below T_t , (2) to show that the dramatic effect of pressure is not due to an increase in t that broadens W_b , but is primarily due to a stiffening of the frequency ω_0 , and (3) to provide a signature that allows monitoring with transport measurements the variation with *P* of T_N as well as T_t .

Our experiments used ceramic samples of $LaNiO₃$, $PrNiO₃$, NdNiO₃, and $Sm_{0.5}Nd_{0.5}NiO₃$ that provide the chemical variation needed to cover the important evolution with *t* of T_t and T_N . All samples were synthesized under 600 bar oxygen pressure at 1080 °C, they were shown by x-ray diffraction to be single phase. The oxygen content of each was determined to be 3.00 ± 0.01 by thermogravimetric analysis in 50-50 H_2 -Ar atmosphere. The transport measurements were made under pressure in a Be-Cu self clamp.

1. LaNiO₃. Figure 1(a) shows the $\rho(T)$ and $\alpha(T)$ data for rhombohedral LaNiO₃ under pressures $P < 14$ kbar. Three features are noteworthy: (a) The $\rho(T)$ curves, which are similar to those reported by others, $13,14$ have a temperature dependence typical for a Fermi liquid, but they are too high and pressure sensitive for a conventional metal. (b) The lowtemperature phonon-drag enhancement, which has a maximum at $T_{\text{max}} \approx 70 \text{ K}$ in the oxide perovskites, is largely suppressed; but it is partially restored by pressure. (c) A

FIG. 1. The resistivity $\rho(T)$ and thermoelectric power $\alpha(T)$ under different hydrostatic pressures for (a) $LaNiO₃$, (b) $PrNiO₃$, $~(c)$ NdNiO₃, and $~(d)$ $Sm_{0.5}Nd_{0.5}NiO₃$.

 $d|(\alpha(300 \text{ K})/dP>0)$, where α is enhanced by 15% in 14 kbar pressure, indicates an anomalous increase in *m** with pressure. Features (b) and (c) have also been found for $CaVO₃$ and $LaCuO₃$. ^{15,16} Independently photoemission spectroscopy (PES) has provided direct evidence for coexistence of two electronic phases in the system $Sr_{1-x}Ca_xVO_3$ with a maximum in *m** at an intermediate value of *x* and a continuous transfer of spectral weight from Fermi-liquid to strongcorrelation states with increasing x .¹⁷ On the other hand, the unusual relation between bandwidth and effective mass, which is contrary to the prediction from a homogeneous model, could be used as evidence for heterogeneity. Pressure transfers spectral weight from strong correlation to Fermiliquid states. The unusual pressure dependence of thermoelectric power, shown in Fig. $1(a)$, therefore indicates that two electronic phases coexist in this ''metallic'' phase of LaNiO₃. The features (a) and (c) found for LaNiO₃ were also observed in the orthorhombic $LnNiO₃$ samples, Figs. 1(b) and $1(c)$; feature (b) could not be observed in the orthorhombic samples as the maximum pressure available to us was insufficient to suppress T_t completely. Therefore, we may conclude that the "metallic" phase above T_t in the orthorhombic perovskites also contains two electronic phases as a result of the lattice instability associated with a first-order Mott-Hubbard transition. Phase fluctuations in a singlevalent system would narrow the bandwidth of itinerant electron to give rise to the bandwidth

$$
W = W_b \exp(-\lambda \varepsilon_{sc} / \hbar \omega_O), \tag{3}
$$

where ε_{sc} is the stabilization energy for a cluster defined by cooperative oxygen displacements of period ω_0^{-1} and λ $\sim \varepsilon_{sc} / W_b$.

2. Pressure dependence of W_b . Figure 1(b) shows the $\rho(T)$ and $\alpha(T)$ data for orthorhombic PrNiO₃ under pressures P <15 kbar. At atmospheric pressure, the first-order insulator-metal transition at $T_N = T_t \approx 130$ K seen in the $\rho(T)$ curve is matched by a sharp increase at T_t in the magnitude $|\alpha(T)|$ of the thermoelectric power. Between 2.7 and 4.7 kbar, the low-temperature $(T \le 50 \text{ K})$ $\rho(T)$ curve changes from a semiconductive to a metallic temperature dependence; and with increasing pressure $P \ge 4.7$ kbar, the jump in $\rho(T)$ and $|\alpha(T)|$ at T_t decreases with T_t , disappearing above 13 kbar even though a weakly first-order transition is retained at $T_t \approx 80 \text{ K}$, Fig. 2. The remarkable change in $\rho(15 \text{ K})$ by six orders of magnitude is an intrinsic phenomenon; it cannot be attributed to a change in grain-boundary conduction under pressure as the $\rho(T)$ curve shows little change with pressure at temperatures $T>T_t$. These unusual data indicate that pressure increases dramatically the number and/or mobility of the charge carriers in the CDW/SDW phase over a limited pressure range $\Delta P \approx 10$ kbar.

Comparison of Figs. $1(a)$ and $3(a)$ shows that O-orthorhombic $PrNiO₃$ at 14.9 kbar has a lower resistivity than *R*-rhombohedral LaNi O_3 at a similar pressure. Moreover, $\rho(T)$ retains a significant residual value in LaNiO₃ whereas $\rho(T)$ for PrNiO₃ under 14.9 kbar extrapolates to a much lower residual value at $T=0$ K. In addition, a larger $|\alpha(300 \text{ K})|$ in PrNiO₃ than in LaNiO₃ increases with pressure. There is no indication of an approach under pressure to the

FIG. 2. Variations with pressure of T_t and the resistivity at 15 K for $PrNiO₃$.

FIG. 3. Comparisons of the resistivity $\rho(T)$ and thermoelectric power $\alpha(T)$ for two compounds with approximately the same T_t , one at atmospheric pressure and the other under hydrostatic pressure.

O-*R* phase boundary as would be expected from Fig. 2 of Ref. 5 if hydrostatic pressure simply increased *t*.

Figure 1(d) shows that $\alpha(T)$ increases on cooling through the interval $T_N < T < T_t$ in Sm_{0.5}Nd_{0.5}NiO₃; the magnitude of this interval changes little as T_N and T_t are lowered with increasing pressure, which again is contrary to what would be expected from Fig. 2 of Ref. 5 if hydrostatic pressure simply increased *t*.

We conclude, therefore, that pressures below 15 kbar have a relatively small influence on W_b , which means that, if T_t occurs at a critical bandwidth W_c , the principal contribution to the large $dT_t/dP \le 0$ is associated with a pressure dependence of ω_0 in Eq. (3). It follows that the remarkable change with pressure in the number and/or mobility of the charge carriers in the CDW/SDW phase is also associated with a pressure dependence of ω_0 .

3. Comparisons for same T_t with/without pressure. What determines T_t at atmospheric pressure appears to be the bandwidth *W*. The large isotope shift in T_t with no change in ϕ can, in principle, be accounted for with a *W* described by Eq. (3). Under pressure, the oxygen vibration frequency ω_0 would increase with a reduction of the $(Ni-O)$ equilibrium bond length. Although W_b appears to change little with pressure, it is narrowed by reducing the size of the $Ln³⁺$ ion. On the other hand, ω increases sensitively with pressure and may be relatively insensitive to the angle ϕ . Therefore, the application of pressure to a sample of narrower W_b to make T_t equal to that of a sample with larger W_b would give rise to quite different transport properties and T_N where these properties depend strongly on ω_0 . Figure 3 compares the physical properties of two samples with roughly the same T_t ; the one with the smaller Ln^{3+} ion is under pressure. The figure clearly demonstrates three features: (1) a remarkable difference in $\rho(T)$ below T_t , (2) a sharp difference in $\alpha(T)$ below T_t between the samples with $T_N = T_t$ and the one with T_N $, and (3) a change from a first-order transition at $T_N$$ T_t to a second-order transition at T_N and T_t where T_N and T_t are separated from one another.

Discussion. Neutron-diffraction data¹⁸ for PrNiO₃ and $NdNiO₃$ have shown that the $(Ni-O)$ bond length in the metallic phase is identical and temperature-independent in the two compositions; but on cooling through T_t , the (Ni-O) bond length increases discontinuously by 0.0035 Å, which decreases the Ni: e ⁻O:2 $p_σ$ overlap integral and therefore the covalent-mixing parameter λ_{σ} entering the bandwidth $W_b \approx \varepsilon_\sigma \lambda_\sigma^2 \cos \phi$ of Eq. (1). The data also show a decrease in the (180° $-\phi$) Ni-O-Ni bond angle with decreasing temperature, a discontinuous change of 0.5° occurring at T_t . Although W_b is clearly narrower in the CDW/SDW phase, the changes in $\cos \phi$ and (Ni-O) bond length are not large enough to signal a global change from itinerant to localized electronic behavior. In support of this conclusion, lowtemperature neutron-diffraction data⁶ have shown an unusual alternation of ferromagnetic and antiferromagnetic Ni-O-Ni interactions below T_N ; such a long-range ordering would stabilize only a modest increase in the volume of strongly correlated electrons and would therefore require a relatively small discontinuous increase in the mean lattice volume at T_t . In fact, the first-order character of the transition decreases as T_t increases as is made even more evident in Fig. $1(d)$. The change from a weakly first-order to a second-order transition at $T_t > T_N$ gives strong support that an orderdisorder transition occurs at T_t . We need finally to consider why T_N decreases with increasing angle ϕ and how the transport properties become so sensitive to pressure below T_t .

A localized spin configuration on the $Ni(III)$ would give a ferromagnetic Ni-O-Ni interaction via coupling to dynamic, cooperative Jahn-Teller deformations of the $NiO_{6/2}$ octahedra.¹⁹ The decrease of T_N with decreasing bandwidth would therefore appear to reflect itinerant-electron behavior with a transition from a SDW toward ferromagnetic order with band narrowing as occurs in the system $La_{1-x}Y_xTiO_3$.²⁰

Stabilization of the CDW introduces an energy discontinuity at the Fermi surface in the $[111]$ direction, but twodimensional conduction is still possible in the (111) planes. Therefore, we conclude that a change of six orders of magnitude in the low-temperature resistivity of $PrNiO₃$ with the application of 15 kbar pressure, Fig. 2, reflects primarily a change in the electron mobility. Formation of a CDW re-

quires a period $\omega_o^{-1} < \tau_h$ for the oxygen displacements that define it; and the time for an electron to tunnel to a neighboring Ni atom is, according to the uncertainty principle, $\tau_h \sim \hbar/W$. Therefore, stabilization of the CDW occurs at a critical ratio $W/\hbar \omega_0$ below which the electron mobility becomes activated. The electron mobility in the $T>T_t$ phase is not activated, so $\rho(T)$ has a metallic temperature dependence. In the CDW phase, pressure increases ω_0 and broadens *W* according to Eq. (3), which decreases both T_t and more dramatically the activation energy in the mobility. From Figs. $1(b)$ and 2, the activation energy vanishes below T_t under a pressure $P > 10$ kbar. The CDW appears to stabilize the ratio of the volumes of the strong-correlation and Fermi-liquid phases, preventing further transfer of spectral weight and ''melting'' under pressure in the pressure range studied. Nevertheless, pressure would decrease the energy gap at the Brillouin-zone boundary introduced by the translational symmetry of the CDW, so the change Δn in the density of charge carriers on cooling through T_t also decreases with pressure. The activation energy in the mobility vanishes before Δn as well as T_t , so a metallic temperature

- ¹ J. B. Goodenough, Prog. Solid State Chem. 5 , 145 (1971).
- ² J. B. Goodenough, N. F. Mott, M. Pouchard, G. Demazeau, and P. Hagenmuller, Mater. Res. Bull. 8, 647 (1973).
- ³ J. B. Goodenough and P. M. Raccah, J. Appl. Phys. **36**, 1031 $(1965).$
- ⁴P. Lacorre, J. B. Torrance, J. Pannetier, A. I. Nazzal, P. W. Wang, and T. C. Huang, J. Solid State Chem. 96, 225 (1991).
- ⁵ J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and Ch. Niedermayer, Phys. Rev. B 45, 8209 (1992).
- 6 J. L. García-Muñoz, P. Lacorre, and R. Cywinski, Phys. Rev. B **51**, 15 197 (1995).
- ⁷ J. B. Goodenough, J. Solid State Chem. **127**, 126 (1996).
- 8M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. **70**, 1039 $(1998).$
- 9X. Obradors, L. M. Paulius, M. B. Maple, J. B. Torrance, A. I. Nazzal, J. Fontcuberta, and X. Granados, Phys. Rev. B **47**, 12 353 (1993).
- ¹⁰P. C. Canfield, J. D. Thompson, S.-W. Cheong, and L. W. Rupp, Phys. Rev. B 47, 12 357 (1993).
- ¹¹M. Medarde, P. Lacorre, K. Conder, F. Fauth, and A. Furrer,

dependence of $\rho(T)$ is found below T_t where Δn remains finite.

In conclusion, a systematic measurement of the transport properties under pressure provides important insights about nickelates; (1) hydrostatic pressure changes the metalinsulator transition temperature T_t by strengthening the oxygen vibration frequency ω_0 instead of changing the tolerance factor t as previously thought, (2) the metal-insulator transition at T_t has been proven to be incompatible with a Mott-Hubbard transition but consistent with ordering of two phases, (3) the pressure dependence of the thermoelectric power in the normal state is similar to that of $CaVO₃$ in which the coexistence of metallic and Mott-insulator phases has been detected by PES, (4) the paramagnetic insulator phase shows a large positive thermoelectric power. A magnetic-susceptibility study 21 has provided further proof for conclusion (2) .

J. B. Goodenough and J.-S. Zhou thank the NSF and TC-SUH. B. Dabrowski thanks ONR/DARPA for financial support.

Phys. Rev. Lett. **80**, 2397 (1998).

- 12 T. Holstein, Annals of Physics 8, 325 (1959).
- 13K. Sreedhar, J. M. Honig, M. Darwin, M. McElfresh, P. M. Shand, J. Xu, B. C. Crooker, and J. Spalek, Phys. Rev. B **46**, 6382 (1992).
- 14X. Q. Xu, J. L. Peng, Z. Y. Li, H. L. Ju, and R. L. Greene, Phys. Rev. B 48, 1112 (1993).
- ¹⁵ J.-S. Zhou and J. B. Goodenough, Phys. Rev. B **54**, 13 393 $(1996).$
- ¹⁶ J.-S. Zhou and J. B. Goodenough, Phys. Rev. B **57**, R2017 $(1998).$
- ¹⁷ I. H. Inoue, I. Hase, Y. Aiura, A. Fujimori, Y. Harnyama, T. Muruyama, and Y. Nishihara, Phys. Rev. Lett. **74**, 2539 (1995).
- ¹⁸ J. L. García-Muñoz, J. Rodrigquez-Carvajal, P. Lacorre, and J. B. Torrance, Phys. Rev. B 46, 4414 (1992).
- ¹⁹ J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk, Phys. Rev. 124, 373 (1961).
- ²⁰Y. Tokura, J. Phys. Chem. Solids **53**, 1619 (1992).
- ²¹ J.-S. Zhou, J. B. Goodenough, B. Dabrowski, P. W. Klamut, and Z. Bukowski, Phys. Rev. Lett. (to be published).