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Generalized Wannier function method for photonic crystals
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Groupe d’Etude des Semiconducteurs, UMR 5650 CNRS, Universite´ de Montpellier II, CC074, Place Euge`ne Bataillon,

34095 Montpellier cedex 05, France
~Received 18 October 1999!

The concept of generalized Wannier functions, adopted from the electronic theory of solids, is used to build
a localized representation of electromagnetic waves in dielectric materials. For two-dimensional photonic
crystals, we demonstrate the existence of such a localized state basis, and we establish an efficient computa-
tional method, allowing a tight-binding-like parameter free modelization of any dielectric structure deviating
from periodicity. Numerical simulations of a T-shaped photonic crystal waveguide prove its ability to deal with
large-scale systems and complex structures.
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Over the past few years much effort has been devote
the study of the propagation of electromagnetic~EM! waves
in periodic dielectric structures. The possibility of creatin
under favorable circumstances, frequency ranges for wh
EM wave propagation is forbidden has attracted much th
retical and experimental attention.1–4 The study of localized
or extended defects in these photonic band-gap~PBG! mate-
rials is now becoming a field of growing activity owing t
the potential applications of these perturbed structures in
realization of high-quality waveguides or microcavities.5 The
next step will be the development of integrated photonic
vices which will require modelization techniques to de
with very large systems. From a theoretical point of view t
plane-wave method~PWM! has been largely used to calc
late the band structures and defect modes in photonic c
tals. Much less attention has been given to the possibility
an expansion of the EM wave field on localized functions
a similar way to the tight-binding~TB! description of the
electron states in solids. Since the approach uses small
of basis functions, the computational effort is smaller th
that required by methods based on plane waves. It then
lows one to consider complex systems with large unit c
where plane-wave methods come to their limits of appli
bility. However, the essence of this approach, and its e
ciency to modelize complex systems, relies on the existe
of localized basis states. Unlike the electron case wh
atomic orbitals localized on individual atoms constitute
natural basis, in the case of light propagating in a dielec
material only scattering extended states can be assoc
with the individual scattering centers. Thus the extension
the TB method to PBG materials appears not to be triv
We will contend ourselves here to its implementation in
two-dimensional~2D! case, where one can get rid of th
complications arising from the vectorial nature of the wa
field while keeping the basic features of the problem. In t
paper we demonstrate that a set of localized basis state
sociated with a periodic 2D photonic crystal exists and c
be constructed. We then establish an efficient computatio
procedure allowing large-scale simulations on complex P
structures.

Our work is rooted to the concept of generalized Wann
functions6 whose construction is performed in photonic cry
tals. This construction only requires a prior knowledge of
PRB 610163-1829/2000/61~7!/4381~4!/$15.00
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Bloch fields and frequencies of a periodic structure taken
a reference system. The calculation strategy goes as follo
in a first stage a TB empirical parametrization of the ba
structure of this reference system is performed. Toget
with the Bloch functions already determined, it then allow
the construction of the Wannier functions of the period
lattice.7–9 Any perturbation of the reference system can
characterized by calculating explicitly and without any ad
tional assumption all the relevant matrix elements in t
basis. The determination of the corresponding pertur
eigenmodes can then finally be obtained by employing
Green’s-function-based technique or a TB formalis
coupled with a supercell method which is more competit
for large-scale simulations.

Once the basis states are determined, this method can
with any dielectric structure within a ‘‘first-principles’
scheme. This approach differs fundamentally from the mix
TB-plane-wave empirical framework recently proposed
Lidorikis et al.10 for the treatment of 2D PBG structures wit
a high dielectric contrast. The homogeneous and locali
nature of the basis states used here avoids all the comp
tions arising from the coupling between localized and e
tended states. Furthermore, the nonempirical modelizatio
perturbations adopted here allows us to deal with a far wi
class of defects such as changes in the dielectric consta
some units, where an empirical scheme appears difficul
apply.

This photonic version of the TB method will now be pr
sented by studying a model system.11 It consists of a periodic
array of infinitely long dielectric rods whose vertical axes a
arrayed on a square lattice of lattice constantd. The rods
have a dielectric constant of 11.56, a radius of 0.2d, and are
embedded in vacuum. As in Refs. 10 and 11, we will lim
ourselves here to a study of the propagation of waves w
electric field parallel to the rod axis~TM waves!. This work-
ing model is sufficiently standard to ensure that no conc
tual nor numerical difficulties should be expected when de
ing with others different 2D problems.

Considering first the fully periodic structure, which
taken as the reference system, the scalar wave equa
obeyed by the electric field can be written as

~2¹2!En~k,r !5«p~r !
vn

2~k!

c2
En~k,r !, ~1!
4381 ©2000 The American Physical Society
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where«p(r ) stands for the dielectric function of the period
medium. A band indexn and a 2D vectork lying in the first
Brillouin zone have been used to label the band mo
En(k,r ) and their associated frequencyvn(k).

These band modes have to first be calculated by anab
initio method. With the PWM, 441 plane waves were am
sufficient to ensure a good convergence for the lo
frequency bands of interest and their associated Bloch fie
These latter are then orthonormalized on the 2D crystal
face as

E
S
En* ~k,r !«p~r !En8~k8,r !d2r5dnn8dk•k8 . ~2!

In the present work we are interested in modes wh
frequencies lie in the vicinity of the first gap, between t
first two bands. A convenient localized basis for their exp
sion is then obtained by constructing the Wannier functio
associated with a group of bands situated in this freque
range. These Wannier functions can be classified accor
to the irreducible representations of the square gr
(C4v).12 We have found that eight functions per lattice s
are sufficient to obtain a good description: two functio
with symmetryA1(s type), four functions with symmetryE
~two px types and twopy types!, one function with symmetry
B1(dx2-y2 type), and one function with symmetr
B2(dxy type). Since they are unitary transforms of the Blo
functions, the Wannier functions obey the orthonorma
condition

E
S
am* ~r2R!«p~r !am8~r2R8!d2r5dmm8dR•R8 , ~3!

where an indexm51,8 has been used to label the functio
centered at lattice siteR. A TB-like parametrization of the
bands can then be performed. Writing Eq.~1! in this basis, it
is found that the operatorQ52¹2 has to satisfy the follow-
ing eigenvalue equation:

(
m8

Qmm8~k!Um8n~k!5
vn

2~k!

c2
Umn~k!, ~4!

whereUmn(k) are the eigenvectors. Here

Qmm8~k!5(
R

eik•RE am* ~r !~2¹2!am8~r2R!d2r . ~5!

The matrix representation of this operator is obtained
using the standard Slater-Koster method. The symm
properties of the basis functions allow thek-dependent terms
Qmm8(k) to be expressed in terms of a reduced numbe
integrals. These are then considered as free parameters
procedure where the solutionsV of the determinantal 838
equation,

detuQmm8~k!2Vdmm8u50, ~6!

are fitted to the resultsvn
2(k)/c2 of the plane-wave calcula

tion. Taking into account only first-neighbor interactions, t
fit involves the determination of 26 independent paramet
The resulting band-structure scheme calculated along h
symmetry directions in the BZ is shown in Fig. 1, togeth
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with that obtained by the PWM. The agreement between
two calculations is quite good for the lowest-frequen
bands. Because of our limitation to first-neighbor intera
tions, the quality of the fit slightly decreases with increasi
frequency. However, it will be shown that this worsenin
does not seriously affect the determination of the def
modes in which we are interested. The basis functions
volved in this TB parametrization procedure can then be
fectively constructed by performing two successive unita
transformations on the Bloch waves already calculated
the PWM. Generalized Bloch functions are first defined
eachk in the BZ zone by taking linear combinations of th
Bloch functions as

Fm~k,r !5(
n

Umn* ~k!En~k,r !, ~7!

where the unitary 838 matrix Umn(k) is formed by the or-
thonormalized eigenvectors obtained in solving Eq.~6!. Then
the Wannier functions are obtained by Fourier transform
these generalized Bloch functionsFm(k,r ),

am~r2R!5
1

AN
(

k
e2 ik•RFm~k,r !, ~8!

whereN is the number of unit cells in the 2D periodic lattic
Symmetry considerations allow the summation to be
stricted to the irreducible wedge of the BZ. 67k vectors in
this reduced zone have been considered. An idea of the
calization of the resulting Wannier functions can be inferr
from Fig. 2, where we plot two functions with respectiv
symmetriesA1 and E. These plots are made in the~10! di-
rection, which is the direction of their slowest decrease
strong localization of these Wannier functions about th
origin, followed by small decaying oscillations around su
cessive lattice sites, can be observed. This rapid decay o
amplitudes beyond the first-neighbor site is coherent with
limitation to first-neighbor interactions in the parametrizati

FIG. 1. TM photonic band structure of a 2D square lattice~pe-
riod d! of dielectric rods~«511.6! with radius 0.2d. Solid lines
correspond to numerical results from the PWM, while circles c
respond to a TB fit. Only the lower-frequency region which is r
evant for the present study is shown.
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procedure, and gives a clear indication of the validity of t
TB-like approach for the description of the periodic stru
ture.

We next consider structures containing defects. Th
perturbed structures are characterized by the local devia
D«~r ! of the dielectric constant from its original period
value «p(r ) in the reference system. The wave equation
this case takes the following form:

H 2¹22
v2

c2
@«p~r !1D«~r !#J E~r !50. ~9!

Within the TB formalism the perturbation can be complete
characterized by constructing the matrix representation
D«~r ! in the Wannier function basis. This is greatly faci
tated by the short-range properties of these functions:
only non-negligible matrix elements are those which invo
functions centered in the close vicinity of the perturbed d
main. These are easily obtained by 2D numerical integrat

Equation~9! can then be solved by using the TB metho
coupled with either the Green’s function method~TBGF
method! or with the supercell approximation~TBSC approxi-
mation!. In the former case, the Green’s matrix associa
with the (2¹2) operator in the periodic structure can b
constructed from the solutions of Eq.~6!, while in the second
case only the TB representation of theQ operator previously
determined is needed. Both methods are used here to s
the two types of point defects obtained by reducing and
panding the initial radius of a single rod, respectively. The
two calculations will allow an appreciation of the validity o
the TB determination of the defect modes in the two char
teristic situations where these are extracted from the ba
lying above or below the gap. The specific values attribu
to the radius are respectively zero, corresponding to the
ation of a vacancy, and 0.3d. For both cases it was foun
that a 333 supercell suffices, in the TBSC approximation,
obtain results agreeing with those obtained with the TB
method. In the first case a single nondegenerateA1-type
monopole defect mode appears in the gap at a reduced
quencyvd/2pc50.390, while in the second case a doub
degenerate mode withE symmetry is found at 0.384. Bot

FIG. 2. Wannier functions of the square lattice withA1 ~a! and
E ~b! symmetries plotted along the~10! direction. The integer val-
ues ofx/d correspond to successive neighbors in this direction.
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values compare favorably with the PWM results, 0.380 a
0.374, respectively.11 It is to be noted that here only neare
neighbors have been taken into account in the TB calc
tions, both in periodic and perturbed structures. Inclusion
more distant interactions should improve the accuracy of
TBSC approximation which, however, appears at this st
to be quite competitive for further investigations of perturb
structures.

The potential usefulness of this approach for model
extended PBG structures involving microcavities a
waveguides will finally be assessed here by considering
specific case of a T-shaped PBG waveguide. This structu
created by removing rods in the periodic original 2D latti
~see Fig. 3!. The TBSC method allows Eq.~9! to be solved
for this specific configuration, obtaining the fieldEi(r ) asso-
ciated with the eigenfrequencyv i as

Ei~r !5(
mR

Cm
i ~R!am~r2R!. ~10!

Because of the localization of the Wannier functio
around their respective centers, a clear indication about
intensity variations of the wave field in the structure can th
be obtained by calculating and plotting

I i~R!5(
m

uCm
i ~R!u2 ~11!

FIG. 3. Two characteristic modes of a T-shaped waveguide.
dielectric rods are represented by open circles. The intensity of
electric field is plotted with gray circles whose diameter is prop
tional to the intensity~in arbitrary units!. The reduced frequencie
of the mode are 0.308 and 0.377 for the~a! and ~b! cases, respec
tively.
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for each siteR in the supercell. Figure 3 plots Ii(R) for two
characteristic modes. The first one at the reduced freque
v id/2pc50.308 constitutes a bound state whose elec
field is strongly localized at the junction of the thre
waveguides. The second one at 0.377 is confined inside
whole waveguide. It corresponds to a guided mode. The
istence of such a mode shows the ability of PBG wavegu
to guide light through cross junctions.

Such types of plot made for specific patterns of line d
fects in periodic structures may give useful informati
about their associated guiding properties for EM wave5

Due to the reduced number of basis functions involved~here
eight basis functions per lattice site! the TBSC method ap
pears to be appealing because of its ability to handle
tended structures with reasonable matrix sizes. For comp
son a PWM calculation made on the 1138 supercell
considered here would involve at least 104 plane waves,
since more than 100 plane waves per site~as is generally
accepted! are needed to obtain well-converged results. It is
be noted that, although this approach retains the simpli
and efficiency of the empirical TB method, no adjustab
parameter is involved in the calculation. Instead all the n
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essary matrix elements characterizing any perturbation
reference structure are explicitly calculated. Furthermore
short-range properties of the basis functions drastically
duce the effective number of those which have to be ca
lated. The difficulties related to the evaluation13 and the
transferability of the parameters in empirical versions of
TB method10 are then circumvented. The efficiency of such
localized representation of EM waves should become d
sive in numerical simulations on disordered or quasicrys
line structures to investigate their localization properties
light. Also, an extension of this approach to the treatmen
3D structures, with vector Wannier functions14 replacing the
scalar ones obtained here, appears feasible and promisi

As a conclusion we have shown that it is possible to c
culate explicitly a localized state basis using Wannier fu
tions in 2D photonic crystals and that a TB formalism bas
on these functions constitutes a very efficient tool in t
description of eigenmodes associated with structures de
ing from periodicity. This method offers a promising way
study large integrated photonic devices associating mic
cavities and waveguides.
For
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