Model of high- T_c superconductivity driven by the intrinsic Kondo-type interaction: Effective phonon scheme

Je Huan Koo*

Institute for Mathematical Sciences, Yonsei University, Seoul 120-749, Korea

Jong-Jean Kim

Department of Physics, Korea Advanced Institute of Science and Technology, 371-1 Kusong-dong, Yusung-ku, Taejon 305-701, Korea (Received 17 July 1998; revised manuscript received 9 February 1999)

We have investigated whether electron-hole composite quasiparticles in CuO_2 planes can drive the holedoped high- T_c superconductivity. Using this quasiparticle concept, we derive a Kondo-type interaction mediated by the effective Gell-Mann and Breuckner-type phonon. It is shown that this interaction opens a superconducting gap near the Fermi level. We explain the resistivities in the *a-b* plane and also along the *c* axis using the same concept of superexchange interactions. We have also found that the measured magnetic susceptibility and nuclear-spin relaxation rates can be explained using the present theoretical scheme in a consistent way.

I. INTRODUCTION

After the discovery of high- T_c superconductivity (HTSC) in the copper-oxide system of La-Ba-Cu-O by Bednorz and Müller,¹ many theoretical models have been proposed to explain this phenomenon: $s = \frac{3}{2}$ hole-composite model,^{2,3} ferromagnetic cluster theory,^{4,5} spin-fluctuations scheme,^{6–8} resonating valence bond view,^{9–11} excitonic picture,^{12–14} dipolon mechanism,^{15–17} etc.

Gap measurements¹⁸⁻²⁴ were reported to find the gap $2\Delta(0)/k_BT_c \approx 6 \sim 8$ in the plane parallel to the CuO₂ plane but almost equal to the BCS value^{25,26} of 3.5 in the direction perpendicular to the CuO₂ plane. These characteristics of gap anisotropy^{18,19,22–24} and nonzero $\Delta(T_c)$ values²³ in the HTSC cannot be explained satisfactorily by the BCS theory^{25,26} of the low-temperature superconductivity. Inelastic neutron-scattering (INS) experiments²⁷⁻³² suggest a pseudospin gap in the spin excitation spectrum, which also cannot be explained by the textbook theories. Resistivity experiments^{27,33,34} depicted the *a-b* plane resistance of CuO_2 planes to be proportional to temperature while the c-axis resistance in the direction perpendicular to the CuO₂ planes showing the temperature dependence of semiconductors. The INS results of Rossat-Mignod et al.²⁹ and Kasuya³⁵ show a temperature-independent peak at 41 meV that we want to assign as the effective phonon of Gell-Mann and Breucknertype elementary excitation.³⁶ We want to show this effective phonon as responsible for the Cooper pairing in HTSC. On the basis of the effective-phonon theory we attempted to calculate the *a-b* plane and *c*-axis resistivities, nuclear-spin relaxation rates, and magnetic susceptibility, etc.

II. QUASIPARTICLE EXCITATION

We consider a quasiparticle of Fermion-type as composed of an electron-hole pair exciton and a free hole as depicted in Fig. 1. For a triplet state of the core electron-hole part this quasiparticle of $s = \frac{3}{2}$ becomes a Fermion-type electron-hole composite similar to the model of Aharony and co-workers,^{2,3} Zhang and Rice,³⁷ and Emery and Reiter.³⁸ In our quasiparticle the core hole coupled with the lattice ion is responsible for the Gell-Mann and Breucker-type effective phonon of Fig. 2, the core electron for localized spin flips, and conducting holes and electrons for free carriers.

We now consider the $s = \frac{1}{2}$ electron-hole composite of Fig. 1.

$$H = \frac{p_1^2}{2m_e} + \frac{p_2^2}{2m_h} - \frac{e^2}{\tilde{\epsilon}_1 r_1} - \frac{e^2}{\tilde{\epsilon}_2 r_2} - \frac{e^2}{\tilde{\epsilon}_{12} |\mathbf{r}_2 - \mathbf{r}_1|}, \qquad (1)$$

$$H^{i} = \frac{p_{i}^{2}}{2m_{i}} - \frac{e^{2}}{\tilde{\epsilon}_{i}r_{i}},$$
(2)

where m_e and m_h are derived from different bands, and m_e is the mass of the core electron, that is, e_{Cu} the valence electron from the *d* orbitals of copper, and m_{h_c} is the mass of conducting hole, that is, h_c the conducting hole from the p orbitals of oxygen, and $h_{\rm Cu}$ represents the valence hole from the d orbital of copper. The dielectric constants are defined $1/\tilde{\boldsymbol{\epsilon}}_1 = 1/\boldsymbol{\epsilon}_1 + 1/\boldsymbol{\epsilon}_1^{\text{ph}}, \qquad 1/\tilde{\boldsymbol{\epsilon}}_2 = -(1/\boldsymbol{\epsilon}_2) + (1/\boldsymbol{\epsilon}_2^{\text{ph}}), \ 1/\tilde{\boldsymbol{\epsilon}}_{12}$ as = $(1/\epsilon_{12})$ + $(1/\epsilon_{12}^{\text{ph}})$, where ϵ_i is derived from the direct Coulomb interaction and $\epsilon_i^{\rm ph}$ from the indirect Coulomb interaction³⁹ mediated by the phonon where indirect one is the same as BCS-type electron-electron interaction mediated by the phonon except nongauge invariant coupling-constant product. We thus have $\epsilon_i \ge |\epsilon_i^{\rm ph}|$ due to the nongauge invariance of $\epsilon_i^{\rm ph}$ and a rapid fluctuation³⁹ of $\epsilon_i^{\rm ph}$ between positive and negative leads to the independence between e_{Cu} and h_{Cu} of Fig. 1 with negligible excitonic effect. Strong phonon drag effect also leads to a very large volume of $h_{\rm Cu}$ and thus $e_{\rm Cu}$ is not enough to cancel this but only screening with $m_{h_{Cu}}$ $\simeq 100 m_{e_{C_0}}$. This model resembles a Helium atom.⁴⁰ Since H^{i} corresponds to the hydrogen Hamiltonian the energy eigen-

4289

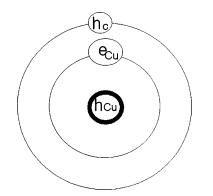


FIG. 1. The core hole h_{Cu} is from the intrinsic copper hole and the electron e_{Cu} from copper and the hole h_c is from a conducting hole in the O(2p) orbital, where the effective masses are given $m_{h_{Cu}} \gg m_{e_{Cu}}$.

values for the case of noninteracting h_c and e_{Cu} of Fig. 1 can be written as

$$E_{n_1,n_2}^0 = E_{n_1} + E_{n_2}$$

$$E_{n_1} = -13.6 \text{ eV}/(\tilde{\epsilon}_1^2 n_1^2)$$

$$E_{n_2} = -13.6 \text{ eV}/(\tilde{\epsilon}_2^2 n_2^2), \qquad (3)$$

where $\tilde{\epsilon}_1 < \tilde{\epsilon}_2$, $m_{e_{Cu}} \simeq m_{h_c}$, $m_{h_{Cu}} \gg m_{e_{Cu}}$, and $E^0_{n_1, n_2}$ represents the energy eigenvalue of noninteracting $e_{Cu} - h_c$.

In Eq. (1) the last term of electron-hole Coulomb interaction can be treated as a perturbation to the type-I quasiparticle of noninteracting h_c and e_{Cu} in Fig. 1. Given E_{11}^0 for

$$\phi_{100}(r) = \frac{2}{\sqrt{4\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0},$$

where a_0 is the Bohr radius, the perturbation ΔE_{11} can be calculated as

$$\Delta E_{11} \simeq -\int_{0}^{\infty} r_{2}^{2} dr_{2} \int d\Omega_{2} \int_{0}^{r_{2}} dr_{1} \int d\Omega_{1} r_{1}^{2}$$

$$\times \frac{1}{\tilde{\epsilon}_{12}^{2}} \frac{e^{2}}{|\mathbf{r}_{2} - \mathbf{r}_{1}|} |\phi_{100}(r)|^{4},$$

$$= -\frac{11}{8} \frac{13.6 \,\mathrm{eV}}{\tilde{\epsilon}_{12}^{2}}, \qquad (4)$$

so that

$$E_{11} = E_{11}^0 + \Delta E_{11} = -13.6 \,\mathrm{eV} \left(\frac{1}{\tilde{\epsilon}_1^2} + \frac{1}{\tilde{\epsilon}_2^2} + \frac{11}{8} \,\frac{1}{\tilde{\epsilon}_{12}^2} \right). \tag{5}$$

For the case of Fig. 1 this phonon-mediated interaction between hydrogenlike core electron hole and a conducting electron also makes the Fermion-type quasiparticle. The phonon may be softened at a temperature T_s much higher than the superconducting temperature T_c , where we expect the orthorhombic-tetragonal structural transition.⁴¹ From Eq. (3) we obtain

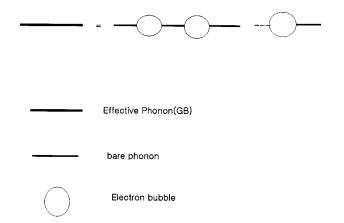


FIG. 2. Our elementary excitation is an effective phonon of Gell-Mann and Breuckner- (GB-) type (Ref. 36) which a bare phonon- $h_{\rm Cu}$ coupled state is called a plasmon-phonon coupled mode.

$$E_{n_1=1,n_2=\infty} \simeq -13.6 \,\mathrm{eV} \left(\frac{1}{\tilde{\epsilon}_1^2} + \frac{11}{8} \, \frac{1}{\tilde{\epsilon}_{12}^2} \right),$$
 (6)

and from

$$\phi_{200}(r) = \frac{2}{\sqrt{4\pi}} \left(\frac{1}{2a_0}\right)^{3/2} \left(1 - \frac{r}{2a_0}\right) e^{-r/2a_0}$$

the perturbation ΔE_{22} can be calculated as

$$\Delta E_{22} = -0.66 \frac{13.6 \,\mathrm{eV}}{\tilde{\epsilon}_{12}^2} \tag{7}$$

to give

$$E_{22} = -\frac{13.6 \,\mathrm{eV}}{4} \left(\frac{1}{\tilde{\epsilon}_1^2} + \frac{1}{\tilde{\epsilon}_2^2}\right) - 0.66 \frac{13.6 \,\mathrm{eV}}{\tilde{\epsilon}_{12}^2}.$$
 (8)

We can also obtain

$$E_{n_1=2,n_2=\infty} = -13.6 \,\mathrm{eV}\left(\frac{1}{4\,\tilde{\epsilon}_1^2}\right) - 0.66\frac{13.6 \,\mathrm{eV}}{\tilde{\epsilon}_{12}^2} \qquad (9)$$

and the energy levels of our quasiparticle in Fig. 1 can be represented as in Fig. 3.

III. GAP IN a-b PLANE

When the quasiparticle of Fig. 1 is created in the CuO₂ plane we may consider the *s*-*d* exchange spin-flip interaction⁴² of conduction spins with localized spins, where the conduction spin represents h_c of O(2*p*) and the localized spin e_{Cu} of Cu(3*d*) with spin-flip motion. The original Hamiltonian for the *s*-*d* exchange interaction is given by

$$H_{sd} = \sum_{k,\sigma} \varepsilon_{k\sigma} a_{k\sigma,\zeta}^{+} a_{k\sigma,\zeta}$$

$$+ \frac{1}{2} U_c \sum_{k\kappa\mu} \sum_{l\nu} a_{k+\kappa,\mu\zeta}^{+} a_{k,\mu\zeta} a_{l,\nu\zeta}^{+} a_{l+\kappa,\nu\zeta}$$

$$- \frac{1}{N} \sum_{i=1}^{N_0} \sum_{k,\kappa} J_{sd}(\kappa) \exp(i\kappa R_i)$$

$$\times [S_i^{\zeta}(a_{k,\uparrow\zeta}^{+} a_{k-\kappa,\uparrow\zeta} - a_{k,\downarrow\zeta}^{+} a_{k-\kappa,\downarrow\zeta})$$

$$+ S_i^{+} a_{k,\downarrow\zeta}^{+} a_{k-\kappa,\uparrow\zeta} + S_i^{-} a_{k,\uparrow\zeta}^{+} a_{k-\kappa,\downarrow\zeta}], \qquad (10)$$

where $a_{k\sigma,\zeta}^+$ is the creation operator of a conduction hole h_c with momentum $\hbar \mathbf{k}$, spin $\sigma = (\uparrow \text{ or } \downarrow)$, the quantization axis being in the direction of the ζ axis) and \mathbf{S}_i the localized spin at site \mathbf{R}_i , S_i^{ζ} its ζ component, $J_{sd}(\kappa)$ the Fourier component of the *s*-*d* or *p*-*d* exchange integral, U_c the Fourier component of the screened Coulomb interaction, *s* the magnitude of local spin, N_0 is the number of local spins, and *N* total number of spins. Using a canonical transformation and as a result to obtain an electron-electron interaction,⁴² the effective Hamiltonian can thus be written as

$$H = \sum_{k} \varepsilon_{k,\sigma} a_{k,\sigma}^{+} a_{k,\sigma} + \frac{2J_{sd}^{2}}{3N^{2}k_{B}T} \times N_{0}s(s+1) \sum_{k,k',q,\sigma} a_{k,\sigma}^{+} a_{k-q,-\sigma} a_{k',-\sigma}^{+} a_{k'+q,\sigma}.$$
(11)

For $T < T_M$ we have $s(s+1)/3k_BT_M \equiv s/g\mu_B \langle H_i \rangle$, where T_M represents the saturation temperature of spin flips, H_i the local field within local spins, g the electron Lande factor, and μ_B the Bohr magneton.

In the Hartree-Fock approximation we have

$$\langle a_{k,\sigma}^{+}a_{k-q,-\sigma}a_{k',-\sigma}^{+}a_{k'+q,\sigma}\rangle \sim -\langle a_{k,\sigma}^{+}a_{k,\sigma}\rangle a_{k-q,\sigma'}^{+}a_{k-q,\sigma'} -\langle a_{k,\sigma}^{+}a_{k+q,\sigma}\rangle a_{k,\sigma'}^{+}a_{k-q,\sigma'} .$$

In the *s*-*d* exchange integral we use the Pytte approximation⁴³ for the lattice ionic displacement

$$J_{sd}^{2} = J_{sd,0}^{2} + \sum \nabla J_{sd}^{2} \cdot d\mathbf{u} + \cdots \approx J_{sd,0}^{2} + \sum g_{sd}(b_{q} + b_{-q}^{+}),$$

$$d\mathbf{u} = \mathbf{u}(j) - \mathbf{u}(j+1),$$

$$\mathbf{u}(j) = \frac{1}{\sqrt{m^{*}N}} \sum_{\mathbf{q}} \mathbf{e}(\mathbf{q})e^{i\mathbf{q}\cdot\mathbf{R}_{j}}Q(\mathbf{q}),$$

$$Q(\mathbf{q}) = \frac{1}{\sqrt{2\omega_{0}}}(b_{q} + b_{-q}^{+}), \qquad (12)$$

where g_{sd} represents a coupling constant and b_q an annihilation operator for the Gell-Mann and Breuckner-type phonon³⁶ for copper ions, where

$$g_{sd}(q) = \frac{1}{\sqrt{2\omega_0}} \left[\frac{\mathbf{e}(q)}{\sqrt{m^*N}} \cdot \nabla J_{sd}^2 \right] (e^{i\mathbf{q}\cdot\mathbf{R}_j} - e^{i\mathbf{q}\cdot\mathbf{R}_{j+1}})$$

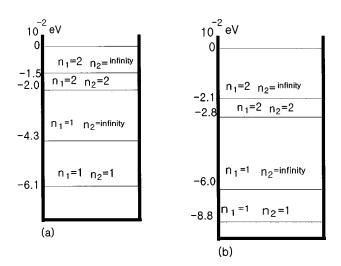


FIG. 3. Energy levels, (a) $\tilde{\varepsilon}_1 = 25$, $\tilde{\varepsilon}_2 = 27$, $\tilde{\varepsilon}_{12} = 30$; (b) $\tilde{\varepsilon}_1 = 20$, $\tilde{\varepsilon}_2 = 22$, $\tilde{\varepsilon}_{12} = 27$.

e is a polarization vector, m^* is the effective mass of copper ion, N is the number of lattice-ions, and ω_0 is the wave number of the phonon from copper ions and the order of g_{sd} is $O(g_{sd}) \sim O(J_{sd}/\sqrt{\omega_{\text{ph}}})$. The resultant Hamiltonian thus becomes

$$H_{\text{eff}} \approx \sum_{k} \varepsilon_{k} a_{k}^{+} a_{k} + \sum_{q} \hbar \omega_{q} b_{q}^{+} b_{q}$$

$$- \frac{2J_{sd,0}^{2} N_{0} s(s+1)}{3k_{B}T} \sum_{k,k'} \langle a_{k'}^{+} a_{k'} \rangle a_{k}^{+} a_{k}$$

$$+ \frac{2N_{0} s(s+1)}{3k_{B}T} \sum_{k,k',q} \langle a_{k'}^{+} a_{k'+q} \rangle g_{sd} a_{k}^{+} a_{k-q} (b_{q}$$

$$+ b_{-q}^{+}), \qquad (13)$$

where $\langle a_k^+ a_{k+q} \rangle = n(q)$ is the hole momentum distribution, ω_q is from the phonon of copper ions.

We can then apply the Haken's receipe⁴⁴ to transform the Hamiltonian to the weak-coupling BCS-type^{25,26} for the sake of an estimate:

$$\begin{split} \widetilde{H}_{sd}^{\text{BCS}} &= \sum_{k} \left(\varepsilon_{k} - \varepsilon_{sd} \right) a_{k}^{+} a_{k} + \sum_{k,k',q} \frac{1}{2} U_{c}(q) a_{k+q}^{+} a_{k} a_{k'}^{+} a_{k'+q} \\ &+ \sum_{k,k',q} \frac{|g_{sd}|^{2} \hbar \omega_{q}}{(\varepsilon_{k+q} - \varepsilon_{k})^{2} - (\hbar \omega_{q})^{2}} \\ &\times \left(\frac{2N_{0}s(s+1)}{3k_{B}T} \right)^{2} n(q)n(-q) \\ &\times a_{k+q}^{+} a_{k} a_{k'+q}^{+}, \end{split}$$
(14)

where U_c represents Coulomb interaction and

$$\varepsilon_{sd} = \frac{2J_{sd,0}^2 N_0 s(s+1)}{3k_B T} \sum_k \langle a_k^+ a_k \rangle.$$
(15)

This Hamiltonian is effective during the decoupling only if $\varepsilon_k - \varepsilon_{k+q} \simeq \varepsilon_{k-q} - \varepsilon_k$, $g_{sd}(q) \simeq g_{sd}(-q)$. For $T < T_M$ we can set $T = T_M$ and

TABLE I. We have a phenomenological parameter $\Gamma(T_c)$ due to the finiteness of $\Delta(T_c)$.

Materials	$T_c(\mathbf{K})$	ħω (K)	$N(0)V _{T_c}$	$N(0)V _{T=0}$	$\frac{\hbar\omega}{\Delta(T_c)}\Gamma(T_c)$	$\frac{2\Delta(0)}{k_BT_c}$
La oxide	37	500	0.30	0.51	2.9	7.7
Bi oxide	90	800	0.33	0.56	0.13	6.0

$$U_{sd} = \frac{2|g_{sd}|^2 \hbar \omega_q}{(\varepsilon_{k+q} - \varepsilon_k)^2 - (\hbar \omega_q)^2} \left(\frac{2N_0 s(s+1)}{3k_B T}\right)^2 n(q) n(-q).$$
(16)

The order of U_{sd} is

$$U_{sd} \sim \frac{J_{sd}^2}{\omega_{\rm ph}} \frac{1}{\omega_{\rm ph}} \left(\frac{100}{100}\right)^2 (0.1)^2 \sim 1 \quad \text{if } \frac{J_{sd}}{\omega_{\rm ph}} \sim 10$$

From the weak-coupling BCS formalism for the sake of an estimate the superconducting gap is expected at T_c given by

$$T_{c} = 1.14\hbar \omega \exp\left[1/\{N(\varepsilon_{F}^{sd})[U_{sd} + U_{c}]_{av}|_{T_{c}}\}\right] \times \left\{ \tanh\left(\frac{\hbar \omega}{\Delta(T_{c})}\Gamma(T_{c})\right) \right\}, \qquad (17)$$

 $\varepsilon_F^{sd} = \varepsilon_F - \varepsilon_{sd}$, and the suffix []_{av} represents average value. The order of Coulomb interaction U_c between the O(2p) conduction holes h_c of the Cooper pair in Fig. 1 from the values of Fig. 3 is

$$O(U_c) \simeq O\left(\frac{e^2}{2\epsilon_i r_{h_c - h_{Cu}}}\right)$$
$$\sim O\left(\frac{13.6 \text{ eV}}{\epsilon_i}\right) \leq O(1 \text{ eV}),$$
$$U_c \ll U_p \sim 3 \text{ eV},$$

where $r_{h_c-h_{Cu}}$ is the distance between h_c and h_{Cu} in Fig. 1 and ϵ_i is given from Eqs. (1)–(9), U_p is the on-site repulsion in *p* orbital. The largeness of ϵ_i is due to the sufficient screening of e_{Cu} to h_c in Fig. 1 as if h_c and e_{Cu} nearly stick together as a Kondo or *s*-*d* bound pair shown in Eqs. (10)– (13). It becomes

$$U_{sd}(q) + U_c(q) \equiv \frac{2 \pi e^2 N(\varepsilon_F^{sd})}{q \epsilon(0,q)},$$

where ϵ is the longitudinal permittivity. Although for Cu, metallic hydrogen the permittivity becomes $\epsilon > 0$ from Ginzburg's work,⁶⁴ in the case of O it may be $\epsilon(0,q \neq 0)$ <0 where the direct calculations^{65,66} will be needed. Since the pseudogap^{27–32,60} can make the superconducting

Since the pseudogap^{27–32,00} can make the superconducting gap at T_c finite (which will be discussed in our later paper) we have $\Delta(T_c) \neq 0$. The additional term of tanh to the BCS form can be derived as follows:

Using the BCS-like formalism, we find

$$k_B T_c \approx 1.14\hbar \,\omega \, \exp\left[\frac{-1}{N(0)V|_{T_c}} \tanh\left(\frac{\hbar \,\omega}{\Delta(T_c)} \,\Gamma(T_c)\right)\right],\tag{18}$$

$$2\Delta(0) = 2\hbar \,\omega/\sinh\left[\frac{1}{N(0)V|_{T=0}}\right],\tag{19}$$

where $V = |(U_{sd} + U_c)_{av}|$, $\Gamma(T_c)$ is a phenomenological parameter. Then,

$$\frac{2\Delta(0)}{k_B T_c} \approx 3.5 \exp\left[\frac{1}{N(0)V|_{T_c}} \left(\tanh\left(\frac{\hbar\omega}{\Delta(T_c)}\Gamma(T_c)\right) - \frac{V|_{T_c}}{V_{T=0}}\right) \right],\tag{20}$$

where the ratio is shown in the Table I.

IV. RESISTIVITY IN a-b PLANE

Kim's *s-d* scattering mechanism^{45–49} was extended successfully to a general system by Kondo.^{50,51} This Kondo-type spin scattering⁵⁰ can be shown to be valid also at high temperatures of the magnitude larger than a few kelvins. The main term of the spin scattering of conducting holes is

$$(J_{sd,0})^2 \sum_{\kappa} \frac{\left[1 - f(\varepsilon_{k-\kappa}^{sd})\right]}{\varepsilon_{k-\kappa}^{sd} - \varepsilon_k^{sd}},\tag{21}$$

where *f* represents the Fermi-Dirac distribution function and $\varepsilon_k^{sd} = \varepsilon_k - \varepsilon_{sd}$. At high temperatures of $T \gg T_{\text{Kondo}}$, we have

$$T_{\text{Kondo}} = \alpha W \exp[-N/(2|J_{sd,0}|N(\varepsilon_F^{sd}))] \sim 0 \text{ K},$$
$$1 - f(\varepsilon_{k-\kappa}^{sd}) \simeq 1 - f(\varepsilon_F^{sd}) - \frac{\partial f}{\partial \varepsilon} \Big|_{\varepsilon_F^{sd}} (\varepsilon_{k-\kappa}^{sd} - \varepsilon_F^{sd}),$$

where the second term becomes important at $\varepsilon_F^{sd} \neq \varepsilon_F$, α a constant related to $J_{sd,0}$ in the range of $0.1 \leq \alpha \leq 0.5$, *W* the conduction-band width, and αW corresponds to an effective bandwidth and $J_{sd,0}$ is smaller than a normal Kondo exchange interaction, J_{Kondo} in other materials. We thus have

$$\sum_{k} \frac{\left[1 - f(\varepsilon_{k-\kappa}^{sd})\right]}{\varepsilon_{k-\kappa}^{sd} - \varepsilon_{k}^{sd}} \simeq -N(\varepsilon_{F}^{sd}) \{1 - f(\varepsilon_{F}^{sd})\} \ln\left(\frac{k_{B}T}{\alpha W}\right) + \int_{k_{B}T}^{\alpha W} \frac{\partial f}{\partial \varepsilon}\Big|_{\varepsilon_{F}^{sd}} N(\varepsilon_{F}^{sd}) d\varepsilon, \qquad (22)$$

where $N(\varepsilon)$ is the density of states.

We can thus obtain from the Kondo-type formalism the resistance in the *a-b* plane of the high- T_c superconductors at temperatures higher than T_c as due to the spin scattering as follows:

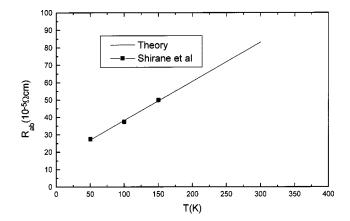


FIG. 4. The in-plane resistivity, R_{ab} from the experiment (Ref. 27) and our theory.

$$R(T) \approx N_0 R_0 \left[1 + \frac{4J_{sd,0}}{N} N(\varepsilon_F^{sd}) \{1 - f(\varepsilon_F^{sd})\} \ln\left(\frac{k_B T}{\alpha W}\right) + \frac{4J_{sd,0}}{N} N(\varepsilon_F^{sd}) f'(\varepsilon_F^{sd})(k_B T) \right].$$
(23)

At very high temperature of the order, ~ 100 K when $1 - f(\varepsilon_F^{sd}) \approx 0$ can be neglected and $f'(\varepsilon_F^{sd})$ is nearly flat and near to zero for high temperatures, we obtain

$$R(T) \simeq N_0 R_0 \left[1 + \frac{4J_{sd,0}}{N} N(\varepsilon_F^{sd}) f'(\varepsilon_F^{sd})(k_B T) \right], \quad (24)$$

with

$$N_0 R_0 = \frac{2 \pi N(\varepsilon_F^{sd}) m N_0'}{z e^2 \hbar} [(J_{sd,0})^2 s(s+1)], \qquad (25)$$

where *m* represents the effective mass of the 2p hole, N'_0 the total number of 3d electrons, and *z* the average number of the nearest 3d electrons. For $z=N_0$ we can obtain the *a-b* plane resistivity of Fig. 4 as fitted by Table II in agreement with experimental values.

V. c-AXIS RESISTIVITY

Experimental evidences are available^{52,53} for a close relation of the hole hopping along the *c* axis with oxygen atoms of different oxide planes. In our model oxygen, *O* of the CuO₂ planes and oxygens, \tilde{O} in other oxide planes are contributing to the *c*-axis resistivity through the superexchange interaction as shown in Fig. 5, for the overlap between O(2p) and the extended $\tilde{O}(3s)$ happens. For $\tilde{\varepsilon}_k - \tilde{\varepsilon}_q \simeq \varepsilon_k$ $-\varepsilon_q$ we have $\langle \tilde{a}_k^+ \tilde{a}_k \rangle = \tilde{f}(\tilde{\varepsilon}_k)$, where *a* refers to oxygens of CuO₂ and \tilde{a} to oxygens of the other oxide planes. The dominating factor from the superexchange interaction of Fig. 5 is

TABLE II. We choose $N(\varepsilon_F^{sd}) \sim 1/\text{eV}$ for La-Sr-Cu-O.

$\overline{N_0R_0}$	$N(\varepsilon_F^{sd})$	$J_{sd,0}$	$f'(\varepsilon_F^{sd})$
15.8	1/eV	-0.5 eV	-0.0071

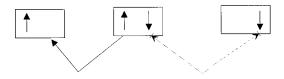


FIG. 5. The left and right orbitals of O(2p) in CuO_2 planes and the middle occupied orbital of O(3s) in other oxide layers.

$$\left[J_O^2 \sum_{q} \frac{\tilde{f}_q}{\tilde{\varepsilon}_k - \tilde{\varepsilon}_q}\right] \left[J_O^2 \sum_{q} \frac{1 - f_q}{\varepsilon_k - \varepsilon_q}\right], \tag{26}$$

where J_O represents the exchange interaction between a hole from O(2*p*) of CuO₂ plane and an electron from O(3*s*) of other oxide planes. Thus the Kondo formalism⁵⁰ of the superexchange interaction through the extended O(3*s*) orbitals of different oxide planes gives rise to the *c*-axis resistivity as

$$R_{c} = R_{\text{const}} \left[1 + f(\varepsilon_{F}) \frac{4J_{O}}{N} N(\varepsilon_{F}) \ln\left(\frac{k_{B}T}{\alpha W}\right) - f'(\varepsilon_{F}) \frac{4J_{O}}{N} N(\varepsilon_{F}) (k_{B}T) \right] \\ \times \left[1 + \left\{ 1 - f(\widetilde{\varepsilon}_{F}^{sd}) \right\} \frac{4J_{O}}{N} N(\widetilde{\varepsilon}_{F}^{sd}) \ln\left(\frac{k_{B}T}{\alpha W}\right) + f'(\widetilde{\varepsilon}_{F}^{sd}) \frac{4J_{O}}{N} N(\widetilde{\varepsilon}_{F}^{sd}) k_{B}T \right] + R'_{\text{const}}, \qquad (27)$$

where $R_{\text{const}} = N_0 R'_0 (J_O / Nk_B T_c)^{2\frac{3}{4}}$, $R'_0 = R_0 (J_{sd,0} \rightarrow J_O)$, $\tilde{\varepsilon}_F^{sd} = \varepsilon_F - \varepsilon_{sd}^c = \varepsilon_F^{sd} (J_{sd,0} \rightarrow J_O)$, R'_{const} another constant term from nonsuperexchange parts.

We define

$$\Lambda^{c}(T) \equiv \left(\frac{J_{O}}{Nk_{B}T_{c}}\right)^{2} \frac{3}{4} \left[1 + f(\varepsilon_{F}) \frac{4J_{O}}{N} N(\varepsilon_{F}) \ln\left(\frac{k_{B}T}{\alpha W}\right) - f'(\varepsilon_{F}) \frac{4J_{O}}{N} N(\varepsilon_{F}) k_{B}T\right].$$
(28)

 R_c has three type behaviors in agreement with experiments according to αW , the overlap between O(2*p*) and O(3*s*). When αW is sufficiently large relative to $k_B T$, we

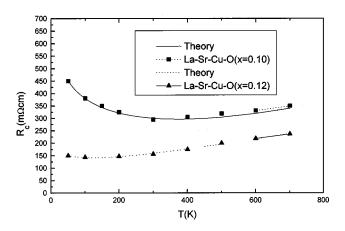


FIG. 6. The resistivity of the *c* axis, R_c versus temperature for $La_{2-x}Sr_xCuO_4$ materials (Ref. 54) where the special notation from experiment.

 $\chi_{s}^{\prime}/\mu^{2}{}_{B}N(0)(10^{-1})$

5 0

0

50

100

150 200

TABLE III. We choose the parameters where $J_0 \sim -0.5 \text{ eV}$, $N(\varepsilon_F) \sim 1/\text{eV}$, and $f(\varepsilon_F) = 0.6$.

Materials	$R_{\rm const}$	$R'_{\rm const}$	$log(\alpha W)$	$f'(\boldsymbol{\varepsilon}_F^{sd})$	$f'(\boldsymbol{\varepsilon}_F)$
La-Sr-Cu-O $(x=0.12)$	13	193	8.2	-3.0×10^{-2}	-1.0×10^{-3}
La-Sr-Cu-O $(x=0.10)$	57	679	8.0	-4.5×10^{-2}	-3.8×10^{-4}

can neglect $\ln(k_B T/\alpha W)$ for $f(\varepsilon_F)$ is very small relative to $f'(\varepsilon_F)$ so to be $R_c \propto (1 + aT + b \log T)$. When αW is extremely large the resistivity becomes $R_c \propto (1 + aT)$ because of $f(\tilde{\varepsilon}_F^{sd}) \approx 1$, where *a* and *b* are constants. Our theoretical values are in good agreement with the experimental values of Zha *et al.*⁵⁴ as can be seen from Fig. 6 and Table III.

With respect to this superexchange interaction along the c axis in the superconducting state, the energies for 2p orbitals in the copper-oxide planes and 3s orbitals in the non-copper-oxide planes are given as

$$E_{3s}(\uparrow\downarrow) = E_0 + 2\epsilon_s,$$

$$E_{2p}(\uparrow\uparrow) = E_0 + 2\epsilon_p - \frac{1}{4}J_O,$$

$$E_{2p}(\uparrow\downarrow) = E_0 + 2\epsilon_p + \frac{1}{4}J_O.$$
(29)

The superexchange interaction of Fig. 5 through (3s) orbitals of the non-copper-oxide planes is given by

$$J_{O} = \left(\frac{2t_{0}^{2}}{\epsilon_{s}}\right)^{2} \left(-\frac{1}{\epsilon_{s}} + \frac{2}{\epsilon_{p} + U_{p}}\right), \tag{30}$$

where t_0 represents the amplitude of hybridization between 2p and 3s orbitals, and U_p the on-site repulsion in 2p orbitals. If we have $\epsilon_s - \epsilon_p \leq U_p \leq 2\epsilon_s - \epsilon_p$ and a temporary triplet pair of 2p orbitals, the energy difference between 2p and 3sorbitals should match the onsite repulsion U_p , that is, $2\epsilon_s$ $-\epsilon_p = U_p$, in order to make free hopping between 2p and 3s orbitals in the superconducting state. This condition of J_{O} amounts to the superexchange vacancy in the oxide plane corresponding to the Fermi vacancy.55 We expect then the *c*-axis holes to be superconductive through these vacancies over the barriers. The superconducting hole pairs from O(2p) in CuO₂ planes will form two temporary triplet pairs in conjunction with the nonmagnetic electron pairs of O(3s)in the non-copper-oxide planes, where one pair gets an energy gain by $\frac{1}{4} J_O$ and the other pair with an energy loss of $-\frac{1}{4}J_0$. This mechanism of the *c*-axis superconductivity is equivalent to the violation and recovery of Pauli principle.56

In the *c*-axis resistivity T_c corresponds to the saturation temperature of spin flips, and the global structure of the *c*-axis formalism follows the BCS theory.^{25,26} With appropriate substitutions of J_{sd} by J_{sd}^c , g_{sd} by g_{sd}^c , ε_{sd} by ε_{sd}^c , and U_{sd} by U_{sd}^c , we have

$$(J_{sd\,0}^c)^2 = J_0^2 \Lambda^c(T), \tag{31}$$

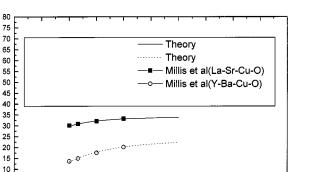


FIG. 7. Spin susceptibilities obtained from the experiment (Ref. 60) and fitted with our theoretical model. The upper graph is for $La_{1.86}Sr_{0.14}CuO_4$ and the lower one is for $YBa_2Cu_3O_{6.6}$, where the diamagnetic correction is added and special notations from experiments.

250

T(K)

$$U_{sd}^{c} = \frac{2|g_{cd}^{c}|^{2}\hbar\omega_{q}}{(\varepsilon_{k+q} - \varepsilon_{k})^{2} - (\hbar\omega_{q})^{2}} \times \left(\frac{2N_{0}s(s+1)}{3k_{B}T}\right)^{2}n(q)n(-q), \qquad (32)$$

350 400

300

$$\varepsilon_{sd}^{c} = \frac{2(J_{sd,0}^{c})^2 N_0 s(s+1)}{3k_B T} \sum_{k} \langle a_k^+ a_k \rangle, \qquad (33)$$

and T_c^{c-axis} is given as

$$T_{c}^{c-\operatorname{axis}} = 1.14\hbar \,\omega \exp\left(\frac{1}{N(\varepsilon_{F} - \varepsilon_{sd}^{c})(U_{sd}^{c} + U_{c})_{\operatorname{av}}|_{T_{c}^{c-\operatorname{axis}}}}\right).$$
(34)

VI. MAGNETIC SUSCEPTIBILITY

Considering only Coulomb interactions the magnetic susceptibility becomes⁴⁶

$$(\chi_{zz})_{\text{bare}} = 2\mu_B^2 \frac{F(q,\omega)}{1 - [\tilde{V}_c(q)]F(q,\omega)},$$
(35)

where $F(q,\omega) = \sum_{k} [f(\varepsilon_{k}) - f(\varepsilon_{k+q})]/(\varepsilon_{k+q} - \varepsilon_{k} - \hbar \omega)$ is the Lindhard function, $-\tilde{V}_{c}(q)$ the exchange part of Coulomb interaction. If we denote the exchange part of U_{sd} as $-\tilde{V}_{sd}(q)$ we can write the resultant magnetic susceptibility above T_{c} for HTSC as

$$\chi_{zz} = 2\mu_{\beta}^{2} \frac{F^{sd}(q,\omega)}{1 - [\tilde{V}_{c}(q) + \tilde{V}_{sd}(q)]F^{sd}(q,\omega)}, \qquad (36)$$

where the modified Lindhard function is given by $F^{sd}(q,w) = \sum_k [f(\varepsilon_k^{sd}) - f(\varepsilon_{k+q}^{sd})]/(\varepsilon_{k+q}^{sd} - \varepsilon_k^{sd} - \hbar\omega), \quad \varepsilon_k^{sd} = \varepsilon_k - \varepsilon_{sd}.$ The susceptibility can be put into a simple form as

$$\chi_{zz} = 2\mu_B^2 \frac{N(0)}{1 - [\tilde{V}_c(q) + \tilde{V}_{sd}(q)]},$$
(37)

500

450

TABLE IV. We assume $F_{sd}(q,0) \simeq N(\varepsilon_F) \simeq 0.5$ states/eV.

Materials	$1 - V_c(q)$	$-V_{sd}(q) \times T^2(K^2)$
La _{1.86} Sr _{0.14} CuO ₄	0.29	450
YBa ₂ Cu ₃ O _{6.6}	0.41	3320

where $\overline{V}_{sd}(q) = \widetilde{V}_{sd}(q)N(0)$, $N(0) \simeq F_{sd}(q,0)$. Using $\overline{V}_{sd}(q) \propto 1/T^2$ and $N(0) \simeq N(\varepsilon_F)$ we obtain Fig. 7 in agreement with experimental results with parameters given in Table IV.

VII. NUCLEAR-SPIN-RELAXATION RATES

The spin-relaxation rate of Cu from direct *s*-*d* exchange and indirect superexchange interactions is given by 5^{77}

$$(T_1)^{-1} = (T_1)_D^{-2} + (T_1)_{ID}^{-1},$$
 (38)

where the Kondo-type spin-relaxation rate $(T_1)_D^{-1}$ is given by

$$(T_1)_D^{-1} = (T_1)_{\text{Korringa}}^{-1} \left[1 + \frac{4J_{sd,0}}{N} f(\varepsilon_F^{sd}) N(\varepsilon_F^{sd}) \log\left(\frac{k_B T}{\alpha W}\right) - \frac{4J_{sd,0}}{N} f'(\varepsilon_F^{sd}) N(\varepsilon_F^{sd}) k_B T \right]$$
(39)

and

$$(T_1)_{\text{Korringa}}^{-1} = \frac{4\pi}{\hbar} (J_{sd,0})^2 N^2 (\varepsilon_F^{sd}) k_B T.$$
 (40)

Following Emery and Reiter⁵⁷ the superexchange interaction through O sites occupied by holes doubly is given by

$$J_{sd}' = -\left(\frac{2t_0^2}{V}\right)^2 \frac{2}{2\varepsilon} + \left(\frac{2t_0^2}{V}\right)^2 \frac{1}{U_d},$$
 (41)

where t_0 represents the hopping integral between Cu and O, V the interaction between copper-site electrons and oxygensite holes, U_d the on-site repulsion at copper sites, and ε the energy difference between the copper-site electron and oxygen-site hole. We can put $J'_{sd,d} = (2t_0^2/V)^2(1/U_d)$ to obtain⁵⁷ $J'_{sd,d} \approx 0.12$ eV. The corresponding spin-relaxation rate from the superexchange interaction is given by

$$(T_{1})_{ID}^{-1} = \left[\left| \frac{4\pi}{\hbar} (J_{sd,d}')^{2} \frac{N^{2}(0)}{N^{2}} k_{B}T - \frac{4\pi}{\hbar} (J_{sd,d}')^{2} \frac{N^{2}(0)}{N^{2}} 2 U_{d} \int_{\varepsilon_{F}}^{\infty} k_{B}T \times \frac{f(\varepsilon)[1-f(\varepsilon)]}{\varepsilon - \varepsilon_{F}} d\varepsilon + \frac{4\pi}{\hbar} (J_{sd,d}')^{2} \frac{N^{2}(0)}{N^{2}} \frac{U_{d}^{2}}{k_{B}T} \int_{\varepsilon_{F}}^{\infty} k_{F} \gamma U_{d} \times \frac{f(\varepsilon)[1-f(\varepsilon)]k_{B}T}{(\varepsilon - \varepsilon_{F})^{2}} d\varepsilon \right| \right].$$
(42)

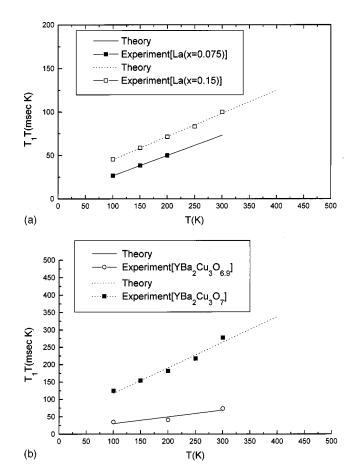


FIG. 8. Spin-relaxation rates obtained from experiments (Refs. 59 and 60) and fitted with our theoretical model. The graph of a line form is for our theoretical model. (a) Graph is for La-Sr-Cu-O; (b) The other one is for Y-Ba-Cu-O.

We can use
$$\int_{1}^{\infty} (e^x dx) / [x(e^x+1)^2] = 0.15$$
, $\gamma = |f'(\varepsilon_F)/f(\varepsilon_F)|k_BT$, and

$$\int_{\frac{\gamma U_d}{k_p T}}^{\infty} \frac{e^x dx}{x^2 (e^x + 1)^2} \equiv \beta(U_d),$$

where the lower limit of the integral comes from the higherorder expansion of the integrand near Fermi energy, to obtain the resultant spin-relaxation rate above T_c as follows:

$$[T_1T]^{-1} \approx \frac{4\pi}{\hbar} (J'_{sd,d})^2 \frac{N^2(0)}{N^2} (0.3U_d) \frac{1}{T + T_{cw}} - \frac{4\pi}{\hbar} (J'_{sd,d})^2 \frac{N^2(0)}{N^2} k_B, \qquad (43)$$

where the order of magnitude is estimated to give $O(U_d) \approx O(10^2)O(k_BT)$ and $O[(T_1)_{ID}^{-1}] \sim O(10)O[(T_1)_D^{-1}]$. The Curie-Weiss-like temperature is given by

TABLE V. The parameters are obtained from fitting values.

Materials	$J'_{sd,d}(eV)$	N(0) (states/eV)	$U_d(eV)$	$T_{\rm CW}({\rm K})$	Ν
La _{1.85}	0.12	0.22	7.2	69	10^{5} 10^{5}
La _{1.85} Y-O ₇	0.12	0.22	2.6		69 59

$$T_{\rm CW} = \frac{\beta(U_d)}{0.3} \frac{U_d}{k_B} \ll T_c \,. \tag{44}$$

Figure 8 and Table V show a good agreement between theory and experiment. Below the onset temperature of pseudospin gap, T_{PG} the renormalized spin-relaxation rate is given by⁵⁸

$$[TT_{1}]^{-1} \approx \frac{4\pi}{\hbar} (J'_{sd,d})^{2} \frac{N^{2}(0)}{N^{2}} (0.3U_{d})$$
$$\times \frac{1}{T_{\rm PG} + T_{\rm CW}} \frac{I(T,\omega)}{I(T_{\rm PG},\omega)}, \tag{45}$$

where

$$I(T,\omega) = 2 \int_{\Delta_{\rm PG}}^{\infty} dE \frac{\left[E(E+\omega) + \Delta_{\rm PG}^2\right] \left(-\frac{\partial f}{\partial E}\right)}{\left(E^2 - \Delta_{\rm PG}^2\right)^{1/2} \left[(E+\omega)^2 - \Delta_{\rm PG}^2\right]^{1/2}},\tag{46}$$

and ω represents an infinitesimal energy and Δ_{PG} is the pseudospin gap. The spin-relaxation rate below T_c has no Hebel-Slichter peak due to finiteness of $\Delta_{PG}(T_c)$.²³

VIII. CONCLUSION

We have constructed a theoretical scheme for high- T_c superconductivity based on the electron-hole composite quasiparticle concept. Using this concept we have investigated the in-plane resistivity R_{ab} . The measured *T*-linear contribution is satisfactorily explained by the Kondo-type *s*-*d* spin scatterings as shown in Fig. 4. We have also shown that the resistivity along the *c* axis, R_c , is dominated by the super-exchange interaction between O(2*p*) in copper planes and O(3*s*) in non-copper-oxide planes. As shown in Fig. 6, according to the doping rates R_c shows three type behaviors in accordance with experiments. The magnetic susceptibility

- *Present address: Physics Department, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-ku, Seoul 130-701, Korea. Electronic address: djhkoo@hitel.net
- ¹J. G. Bednorz and K. A. Müller, Z. Phys. B: Condens. Matter 64, 189 (1986).
- ²R. J. Birgeneau, M. A. Kastner, and A. Aharony, Z. Phys. B: Condens. Matter **71**, 57 (1988).
- ³A. Aharony, R. J. Birgeneau, A. Coniglio, M. A. Kastner, and H. E. Stanley, Phys. Rev. Lett. **60**, 1330 (1988).
- ⁴V. Hizhnyakov and E. Sigmund, Physica C 156, 655 (1988).
- ⁵G. Seibold, E. Sigmund, and V. Hizhnyakov, Phys. Rev. B **48**, 7537 (1993).
- ⁶P. Monthoux and D. Pines, Phys. Rev. B 47, 6069 (1993).
- ⁷P. Monthoux, J. Phys. Chem. Solids **54**, 1093 (1993).
- ⁸P. Monthoux and D. Pines, Phys. Rev. B **49**, 4261 (1994).
- ⁹P. W. Anderson, Science **235**, 1196 (1987).
- ¹⁰G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Commun. 63, 973 (1987).
- ¹¹B. L. Altshuler and L. B. Ioffe, Solid State Commun. **82**, 253 (1992).
- ¹²C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State Commun. **62**, 681 (1987).

and nuclear-spin-relaxation rates $[T_1T]^{-1}$ are also explained by the same concept of s-d interaction. The transition temperature T_c in *a-b* planes is determined by the Kondo-type s-d scatterings U_{sd} . We can predict by our model the anomaly from nonsuperconducting electrons near Kondo temperature, $T_{\text{Kondo}} \sim 0$ K, which will be published elsewhere in more details. U_{sd} is the interaction from local spin flippings mediated by Gell-Mann and Breuckner-type phonons (GB-phonons). In this interaction GB-phonons play a role of antiferromagnetic attractor. It means that for a singlet Cooper pair, a hole of a spin-up interacts with the localized spins with spin-down and the other hole of a spindown interacts with the local spins with spin-up. As shown in Fig. 1, the copper ion is bound up with one core hole at low temperatures below T_c , for intermediately positioned electrons of these quasiparticles seldom overlap with each other. At high temperatures above T_c the copper ion becomes coupled with two core holes of a singlet, which are from overlapped quasiparticles. This is similar to a reverse case of the spin-Peierls transition⁴³ without lattice instability. The clue of this phenomenon is that the wave number of copper phonon above T_c is $1/\sqrt{2}$ times smaller than that below T_c because of the change of effective mass of core holes coupled to copper ions as shown in Fig. 2. The change of copper phonons is observed in Raman experiments.⁶¹⁻⁶³ Because the gap is finite at T_c , T_c is modified by tanh term in BCS formulation as shown above. The transition temperature T_c^{c-axis} along the c axis is completely governed by superexchange interaction between O(2p) in copper planes and O(3s) in non-copper-oxide planes, U_{sd}^c totally different from the properties in *a*-*b* planes.

ACKNOWLEDGMENT

We are greatly indebted to the late Professor Duk Joo Kim and also to Professor Chul Koo Kim.

- ¹³C. M. Varma, S. Schmitt-Rink, and E. Abrahams, in *Theory of High Temperature Superconductivity*, edited by J. W. Halley (Addison-Wesley, New York, 1988), pp. 211–225.
- ¹⁴A. J. Freeman, J. Yu, S. Massidda, and D. D. Koelling, Physica B 148, 212 (1987).
- ¹⁵R. R. Sharma, Phys. Rev. B 54, 10 192 (1996).
- ¹⁶R. R. Sharma and H. Lee, J. Appl. Phys. **66**, 3723 (1989).
- ¹⁷H. Lee and R. R. Sharma, Phys. Rev. B **43**, 7756 (1991).
- ¹⁸R. T. Collins, Z. Schlesinger, F. Holtzberg and C. Feild, Phys. Rev. Lett. **63**, 422 (1989).
- ¹⁹Z. Schlesinger, R. T. Collins, F. Holtzberg, C. Feild, G. Koren, and A. Gupta, Phys. Rev. B **41**, 11 237 (1990).
- ²⁰X. K. Chen, J. C. Irwin, H. J. Trodahl, T. Kimura, and K. Kishio, Phys. Rev. Lett. **73**, 3290 (1994).
- ²¹Z. Schlesinger, R. T. Collins, F. Holtzberg, C. Feild, S. H. Blanton, U. Welp, G. W. Crabtree, Y. Fang, and J. Z. Liu, Phys. Rev. Lett. **65**, 801 (1990).
- ²²L. Buschmann, M. Boekholt, and G. Güntherodt, Physica C 203, 68 (1992).
- ²³M. Boekholt, M. Hoffmann, and G. Güntherodt, Physica C 175, 127 (1991).
- ²⁴G. Briceño and A. Zettl, Solid State Commun. **70**, 1055 (1989).

- ²⁵J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
- ²⁶J. R. Schrieffer, *Theory of Superconductivity* (Benjamin, New York, 1964).
- ²⁷G. Shirane, R. J. Birgeneau, Y. Endoh, P. Gehring, M. A. Kastner, K. Kitazawa, H. Kojima, I. Tanaka, T. R. Thurston, and K. Yamada, Phys. Rev. Lett. **63**, 330 (1989).
- ²⁸T. E. Mason, G. Aeppli, and H. A. Mook, Phys. Rev. Lett. 68, 1414 (1992).
- ²⁹J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J. Y. Henry, and G. Lapertot, Physica C 185-189, 86 (1991).
- ³⁰J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Burlet, J. Y. Henry, and G. Lapertot, Physica C 169, 58 (1991).
- ³¹J. Rossat-Mignod, L. P. Regnault, P. Bourges, P. Burlet, C. Vettier, and J. Y. Henry, Physica C **194-196**, 2131 (1994).
- ³²B. J. Sternlieb, G. Shirane, J. M. Tranquada, M. Sato, and S. Shamato, Phys. Rev. B 47, 5320 (1993).
- ³³S. Martin, A. T. Fiory, R. M. Fleming, G. P. Espinosa, and A. S. Cooper, Appl. Phys. Lett. **54**, 72 (1989).
- ³⁴Y. Nakamura and S. Uchida, Phys. Rev. B 47, 8369 (1993).
- ³⁵T. Kasuya, Physica C **224**, 191 (1994).
- ³⁶Methods of Quantum Field Theory In Statistical Physics, edited by A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski (Dover, New York, 1975), pp. 191–195.
- ³⁷F. C. Zhang and T. M. Rice, Phys. Rev. B **37**, 3759 (1988).
- ³⁸V. J. Emery and G. Reiter, Phys. Rev. B **38**, 11 938 (1988).
- ³⁹J. H. Koo, Ph.D. thesis, Korea Advanced Institute of Science and Technology (KAIST), 1994.
- ⁴⁰S. Gasiorowicz, Quantum Physics (Wiley, New York, 1974).
- ⁴¹ A. P. Litvinchuk, C. Thomsen, and M. Cardona, Solid State Commun. 83, 343 (1992).
- ⁴²D. J. Kim, Phys. Rev. **149**, 434 (1966).
- ⁴³E. Pytte, Phys. Rev. B **10**, 4637 (1974).
- ⁴⁴H. Haken, *Quantum Field Theory of Solids* (North-Holland, New

York, 1976), pp. 290-296.

- ⁴⁵D. J. Kim, Bussei Kenkyu (Japan) 2, 49 (1960).
- ⁴⁶D. J. Kim, *The Many Body Theory of Metallic Electrons* (Mineum, Seoul, 1986) (in Korean).
- ⁴⁷D. J. Kim (unpublished).
- ⁴⁸D. J. Kim (private communication).
- ⁴⁹D. J. Kim, Phys. Rep. **171**, 129 (1988).
- ⁵⁰J. Kondo, Solid State Phys. **23**, 184 (1969).
- ⁵¹A. J. Heeger, Solid State Phys. 23, 284 (1969).
- ⁵²P. Nyhus, M. A. Karlow, S. L. Cooper, B. W. Veal, and A. P. Paulikas, Phys. Rev. B **50**, 13 898 (1994).
- ⁵³J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Crabtree, H. Claus, and W. K. Kwok, Phys. Rev. B **41**, 1863 (1990).
- ⁵⁴Y. Zha, S. L. Cooper, and D. Pines, Phys. Rev. B 53, 8253 (1996).
- ⁵⁵C. M. Hurd, *Electrons in Metals* (Wiley, New York, 1975), p. 82.
- ⁵⁶A. Kampf and J. R. Schrieffer, Phys. Rev. B **41**, 6399 (1990).
- ⁵⁷V. J. Emery and G. Reiter, Phys. Rev. B **38**, 4547 (1988).
- ⁵⁸L. C. Hebel, Phys. Rev. **116**, 79 (1959).
- ⁵⁹Y. Kitaoka, K. Ishida, S. Ohsugi, K. Fujiwara, and K. Asayama, Physica C 185-189, 98 (1991).
- ⁶⁰A. J. Millis and H. Monien, Phys. Rev. Lett. **70**, 2810 (1993).
- ⁶¹M. Kakihana, M. Osada, M. Käll, L. Börjesson, H. Mazaki, H. Yasuoka, M. Yashima, and M. Yoshimura, Phys. Rev. B 53, 11 796 (1996).
- ⁶²O. V. Misochko, K. Kuroda, and N. Koshizuka, Phys. Rev. B 56, 9116 (1997).
- ⁶³K. F. McCarty, J. Z. Liu, R. N. Shelton, and H. B. Radousky, Phys. Rev. B 42, 9973 (1990).
- ⁶⁴V. Ginzburg, Contemp. Phys. 33, 15 (1992).
- ⁶⁵O. V. Dolgov, D. A. Kirzhnits and E. G. Maksimov, Rev. Mod. Phys. **53**, 81 (1981).
- ⁶⁶O. V. Dolgov and E. G. Maksimov, Usp. Fiz. Nauk **138**, 95 (1982) [Sov. Phys. Usp. **25**, 688 (1982)].