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Dynamic autocorrelationŝSi
a(t)Si

a& (a5x,z) of an isolated impurity spin in aS5
1
2 XX chain are calcu-

lated. The impurity spin, defined by a local change in the nearest-neighbor coupling, is either in the bulk or at
the boundary of the open-ended chain. The exact numerical calculation of the correlations employs the Jordan-
Wigner mapping from spin operators to Fermi operators; the effects of finite system size can be eliminated.
Two distinct temperature regimes are observed in the long-time asymptotic behavior of the bulk correlations.
At T50 only power laws are present. At highT thex correlation decays exponentially~except at short times!,
while thez correlation still shows an asymptotic power law~different from the one atT50) after an interme-
diate exponential phase. The boundary impurity correlations ultimately follow power laws at allT, with
intermediate exponential phases at highT. The power laws for thez correlation and the boundary correlations
can be derived from the impurity-induced changes in the properties of the Jordan-Wigner fermion states.
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I. INTRODUCTION

The S5 1
2 XX chain1,2

H52 (
i 51

N21

Ji~Si
xSi 11

x 1Si
ySi 11

y !, ~1.1!

is one of the simplest quantum many-body systems conc
able, as many of its properties can be derived from thos
noninteracting lattice fermions. Its equilibrium spin pair co
relation functions

^Si
a~ t !Sj

a&5
Tr e2bHeitHSi

ae2 i tHSj
a

Tr e2bH
,a5x,z ~1.2!

have been the objects of intense research efforts ove
extended period.3–21 Only a few explicit analytic results ar
available, but several existing asymptotic results for la
distancesu i 2 j u or long timest have been corroborated b
numerical calculations.

For XX chains with homogeneous nearest-neighbor c
pling (Ji[J) only three different types of asymptotic long
time behavior have been observed to date: Gaussian, e
nential, and power law ~often with superimposed
oscillations!. It is interesting to speculate whether nonun
form or random couplings might induce additional types
asymptotic behavior.

In the present paper we study the changes in autocor
tion functionŝ Si

a(t)Si
a& induced by a single impurity spin in

an otherwise homogeneous chain. The impurity spin is
cated either at the boundary of the system,

J15J8, Ji[J51 for i>2 ~1.3!

or in the bulk,

JN/2215JN/25J8, Ji[J51 for all other i . ~1.4!
PRB 610163-1829/2000/61~6!/4026~7!/$15.00
v-
of

an

e

-

o-

f

la-

-

Equilibrium and nonequilibrium dynamics of the boun
ary impurity were studied early on by Tjon.5 In the weak-
coupling limit (J8→0), Tjon obtained exponential behavio
of the impurity spin autocorrelation functions. Our resu
~see Sec. IV! show that for finite impurity couplingJ8, ex-
ponential behavior occurs only in an intermediate time
gime, whereas the ultimate long-time behavior is a pow
law.

Besides their obvious relevance in low-dimensional m
netism, impurities in spin-12 chains are also of interest i
quantum dynamics, where two-level systems coupled
‘‘baths’’ serve as models for quantum systems in dissipat
environments.22–24 The most popular model23 in this field is
the spin-boson model, consisting of a single spin-1

2 coupled
to a ~quasi-! continuum of noninteracting oscillators with
given spectral density. In a recent study25 the oscillator bath
was replaced with a bath of noninteracting spins1

2. The
changes in dynamic behavior which were observed as a
sult of this replacement suggest further exploration of diff
ent kinds of baths. The system studied here can be con
ered a two-level system~the impurity spin! coupled to a bath
of interacting two-level systems~the remainder of theXX
chain!. An interesting feature of this system is the fact th
while the z component of the total spin is conserved, thex
component is not. Thus differences are to be expected
tween the relaxation of thex andz components of the impu
rity spin.

The plan of the paper is as follows: In Sec. II we discu
the method used to calculate the dynamic correlation fu
tions numerically. In Sec. III we present results for spin a
tocorrelation functions of a bulk impurity spin~and also of
its neighbors! for both zero and finiteT. In Sec. IV we dis-
cuss boundary impurity autocorrelation functions. Section
summarizes our findings.

II. METHOD

The open-endedN-site spin-12 XX chain described by the
Hamiltonian~1.1! can be mapped to a Hamiltonian of no
interacting fermions,
4026 ©2000 The American Physical Society
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H̃52
1

2 (
i 51

N21

Ji~ci
†ci 111ci 11

† ci ! ~2.1!

by means of the Jordan-Wigner transformation1,2 between
spin and fermion operators:

Si
z5ci

†ci2
1

2
, ~2.2!

Si
15~21!(

k51

i 21

ck
†ckci

†5)
k51

i 21

~122ck
†ck!ci

† . ~2.3!

In the homogeneous caseJi[J, the one-particle energy ei
genvalues are

«k52J cosk, k5
np

N11
, n51, . . . ,N, ~2.4!

and the eigenvectors are sinusoidal functions of the site
dex i. For generalJi neither eigenvalues nor eigenvectors a
available analytically, however, both are easily obtain
from the solution of a tridiagonal eigenvalue problem w
standard numerical procedures.26

The spin correlation functions~1.2! are mapped to fer-
mion correlation functions, with crucial differences betwe
the casesa5z and a5x. ^Si

z(t)Sj
z& maps to a density-

density correlation function involving four Fermi operator
Due to the string of signs in Eq.~2.3!, however,^Si

x(t)Sj
x&

maps to amany-particlecorrelation function involving 2(i
1 j 21) Fermi operators. Wick’s theorem can be applied
expand^Si

x(t)Sj
x& in products of elementary fermion expe

tation values. That expansion can be most compactly
pressed as a Pfaffian27 whose elements are sums involvin
the one-particle eigenvalues and eigenvectors.

In order to obtain results valid in the thermodynamic lim
N→`, finite-size effects must be identified and eliminate
As finite-size effects are known21 to be caused by reflection
of propagating excitations from the boundaries of the syst
the maximum fermion group velocity@see Eq. 2.4!# can be
used to estimate the time range over which a given s
correlation function~1.2! can be expected to be free of finite
size effects. That estimate can then be verified by exp
numerical calculation of equivalent correlation functions
system sizesN0 and, say, 2N0.

The one-fermion eigenvalue problem for the sing
impurity chain ~1.3! or ~1.4! ~Ref. 28! may be solved ana
lytically. The nature of the solution depends on the value
J8. For J8 below a critical valueJc all states are extende
and the continuous energy spectrum is given by«k Eq. ~2.4!
with J8-dependentk values. ForJ8.Jc a pair of exponen-
tially localized impurity states with energies6«0 , u«0u.1,
emerge from the continuum. The critical coupling strength
Jc51 for the bulk impurity andJc5A2 for the boundary
impurity. Below, we occasionally refer to properties of t
analytic solution in order to explain the long-time asympto
behavior observed in the numerical results.
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III. BULK IMPURITY

A. TÄ0

The long-time asymptotic behavior of theT50 bulk im-
purity spin x autocorrelation functions is difficult to obtai
due to a combination of two reasons. First, this correlation
the computationally most demanding one, as large Pfaffi
have to be evaluated. Second, it is also the correlation fu
tion displaying finite-size effects at the earliest times. T
may be related to its particularly slow long-time asympto
decay law11,14,15

^Si
x~ t !Si 1n

x &;~n22J2t2!21/4 for T50 ~3.1!

in the homogeneous caseJi[J. It should be noted that the
right-hand side of Eq.~3.1! is the leading term of an
asymptotic expansion; its character changes from purely
~for J2t2,n2) to complex ~for J2t2.n2). More explicit
forms are Eq.~1.23! in Ref. 11 and Eqs.~59!, ~61! in Ref. 15.

We have calculated̂SN/2
x (t)SN/2

x & for impurity coupling
constants 0.1<J8<4. In all cases the asymptotic decay
the correlation function was consistent with thet21/2 law Eq.
~3.1!. With growing J8u^SN/2

x (t)SN/2
x &u develops oscillations

of rather well-defined frequency and growing amplitude,
shown in the inset of Fig. 1. The frequency of the oscillatio
for J8.1 is proportional to the energy

u«0u5
J82

A2J8221
~J8.1! ~3.2!

of the localized impurity state. On the whole, the long-tim
asymptotic behavior of the impurity spinx autocorrelation at
T50 is not fundamentally changed by varying the value
J8.

FIG. 1. Bulk impurity spin x autocorrelation function
u^SN/2

x (t)SN/2
x &u at T50. Main plot: N5512, impurity couplingJ8

,1. The heavy solid lines~top to bottom! correspond toJ850.1,
0.15, 0.2, 0.4, 0.6, and 0.8. The dashed straight line is thet21/2

power law~3.1!. The thin solid lines areN5256 data demonstrating
the influence of the system size. Inset:N5128, J8.1. Shown are
data forJ851 ~heavy solid line!, J851.2 ~dashed curve!, and J8
51.4 ~thin solid line!. The dashed straight line is again thet21/2

power law~3.1!.
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The impurity spinz autocorrelation, in contrast, chang
significantly whenJ8 is varied, as shown in Fig. 2. For sma
J8 u^SN/2

z (t)SN/2
z &u displays a monotonic decay. Roughly

J850.5 oscillations~of well-defined andJ8-independent fre-
quency! begin to develop. For allJ8,1 the correlation func-
tion follows an asymptotict22 law. The J851 correlation
shows thet21 law well known3,4,16 for the homogeneous
case. As soon asJ8 is further increased, the behavior chang
again and the absolute value of the correlation function te
to a constant nonzero value for large times.

The changes in the asymptotics ofu^SN/2
z (t)SN/2

z &u can be
understood from the analytic solution mentioned in Sec.
The Jordan-Wigner transformation yields, after a few sim
steps

^Si
z~ t !Si

z&5S (
n

u^ i un&u2ei«nt f ~«n! D 2

1S (
n

u^ i un&u2f ~«n! D 2

2(
n

u^ i un&u2f ~«n!1
1

4
. ~3.3!

Here un& is a one-fermion eigenstate ofH̃ Eq. ~2.1! with
energy«n and f (x)5@exp(bx)11#21 is the Fermi function.
For J8.Jc51 the presence of a localized impurity state w
large u^ i un&u2 and with «n outside the continuum yields
harmonically oscillating nondecaying contribution
^Si

z(t)Si
z&. Similar contributions are contained in every el

ment of the Pfaffian for̂Si
x(t)Si

x&, but not in that correlation
itself ~see Fig. 1, inset!. The reason probably is a cancellatio
of terms due to the multiplications and additions inheren
the definition of the Pfaffian. The time scale introduced
the discrete energy value~3.2! is reflected in the oscillations
of u^SN/2

x (t)SN/2
x &u ~Fig. 1, inset!. Similar behavior is found

for T.0 and will be discussed in the next subsection.

FIG. 2. Main plot: Bulk impurity spinz autocorrelation function
u^SN/2

z (t)SN/2
z &u (N51024) at T50, for impurity couplings

J851, 0.99, 0.8 ~solid lines, top to bottom!; J850.6, 0.4, 0.2
~long-dashed lines, bottom to top!. The thin straight lines show the
power laws t21 and t22. Inset: same as main plot, fo
J851, 1.2, 1.4, 2,4~bottom to top!.
s
ds

I.
e

n
y

For J8<1 the time-dependent term in Eq.~3.3! is propor-
tional to

S E
21

1

d«~12«2!2 1/2ei«t f ~«!u^ i u«&u2D 2

, ~3.4!

where^ i u«& corresponds tôi un& in Eq. ~3.3! and the inverse
square root factor is the one-particle density of states of
dispersion~2.4! ~which still describes the energy eigenva
ues, only with slightly displacedk values forJ8Þ1). For
J851, u^ i u«&u2 does not depend on«, the inverse square-roo
singularities at the band edges«→61 lead to a t21/2

asymptotic behavior of the integral, and to at21 behavior of
^Si

z(t)Si
z&. ForJ8,1 the amplitude of the one-particle eige

state with energy« at the impurity site is

u^ i u«&u25FJ821
~12J82!2

J82

«2

12«2G21

~3.5!

~apart from weakly«-dependent normalization factors!. This
changes the band-edge singularities in Eq.~3.4! from (1
2«2)21/2 to (12«2)1/2, so that the integral contains at23/2

term. Consequently,̂Si
z(t)Si

z& contains at23 term which
dominates forT.0 ~see next subsection!. At T50, how-
ever, the leading term is proportional tot22 due to the dis-
continuity of the Fermi function in Eq.~3.4!.

We have also studied thex andz autocorrelations of near
est and next-nearest neighbors of the impurity spini 5N/2.
For weak impurity coupling (J8&0.2) thex correlation func-
tions of spinsi 5N/211 andi 5N/212 show weak oscilla-
tions superimposed on at21/2 decay masked by strong finite
size effects. Thez correlations~for J8,1) show stronger
oscillations. Their decay looks roughly like a power law wi
an exponent between22 and23.

B. TÌ0

Whereas atT50 only power-law decay is observed, e
ponential decay29 becomes possible at finiteT. Figure 3
showsx and z impurity spin autocorrelations atJ850.3 for
several decades inT. There are two well-defined temperatu
regimes with a crossover between them. Within each reg
the correlation functions do not change qualitatively: no
that several of the curves in Fig. 3 coincide. Thex autocor-
relation in the high-T regime shows exponential decay whic
persists over the entire time range during which the the
sults are free of finite-size effects. Thez autocorrelation de-
cays exponentially at first and later crosses over to thet23

law derived above, with superimposed oscillations which
absent in the low-temperature regime. The appearance o
cillations ~if only of small amplitude! in ^Si

z(t)Si
z& at highT

is reminiscent of the phenomena recently reported25 for a
two-level system coupled to a spin bath. In that system
persistence of oscillations up to infiniteT could be observed

Figure 4 showsu^SN/2
x (t)SN/2

x &u at T5105 for impurity
coupling 0.1<J8<1 in aN5128 chain. As autocorrelation
at T5` are real even power series int, all curves start with
zero slope att50, but then~with the exception ofJ851)
bend over to a nearly perfect exponential decay. The in
shows the decay rate of that exponential decay as fitted to
data in the main plot. Also shown is the decay rate de
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mined from data forT51, and forJ8.1. Differences be-
tween T51 and T5` are to be expected and are inde
visible in the behavior of the decay rate close toJ851: For
finite T the x autocorrelation function of a homogeneo
chainJi[1 is known20,21to decay exponentially with a finite
T-dependent decay rate, whereas for infiniteT the decay is

FIG. 3. Crossover between the regimes of high tempera
~lower set of curves! and low temperature~upper set of curves!.
Main plot: Impurity spin-autocorrelation functionu^SN/2

z (t)SN/2
z &u

(N5256) with impurity coupling J850.3 for temperaturesT
5106, 104, 102, 100, 1021, 1022, 1023, 1024, 1025, and 1026

~bottom to top!. The curves forT51021 and 1022 are long-dashed
all others are solid. Note that several curves coincide on the sca
the figure. Inset: same as the main plot, foru^SN/2

x (t)SN/2
x &u (N

5128); time range is 0,t,100.

FIG. 4. Exponential decay of the bulk impurity spinx autocor-
relation function at high temperature. Main plot:u^SN/2

x (t)SN/2
x &u

(N5128) at T5105 for impurity couplings J8
50.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1~top to
bottom!. Inset: Exponential decay rates determined from the d
shown in the main plot, and from analogous data forJ8.1 and for
T51. The circles areT5105 data, the crosses areT51 data. Note
the pronounced differences nearJ851, where the infinite-T decay
rate diverges.
Gaussian.8,9,18 The Gaussian decay corresponds to a div
gence of the exponential decay rate which is obvious in
inset of Fig. 4.

For J8.1 u^SN/2
x (t)SN/2

x &u is no longer~almost! purely ex-
ponential, but develops considerable oscillations. The ex
nential decay rate grows withT, but decreases asJ8 grows,
as shown in the inset of Fig. 4. As in theT50 case the
frequency of the oscillations is proportional to«0 Eq. ~3.2!.

In order to obtain a quantitative measure of the precis
to which the decay ofu^SN/2

x (t)SN/2
x &u at T5105 follows an

exponential, we fitted an exponential lawaexp(2bt) to the
numerical data for 0,t,100 and calculated the quantity

p~ t !ª
u^SN/2

x ~ t !SN/2
x &u

aexp~2bt!
, ~3.6!

which should equal unity for a purely exponential decay.
For J8<0.4, p(t) is shown in Fig. 5. Note that the sca

of the figure extends only to a maximum deviation of 1
from purely exponential decay. The general slope in the d
is a natural consequence of the intrinsically nonexponen
behavior of the correlation function for smallt which was
mentioned above. The data forJ8<0.2 follow the purely
exponential fit to a precision of better than two parts in tho
sand fort>10. This rules out the stretched-exponential b
havior reported30 for J8<0.2 at T5` in an approximate
study based on extrapolation of truncated continued-frac
expansions. Figure 5 also reveals the presence of tiny o
lations which are invisible on the scale of Fig. 4. The fr
quency of these oscillations is independent ofJ8, in contrast
to the stronger oscillations forJ8.1 already mentioned
above.

The main differences betweenx andz spin autocorrelation
functions were already shown in Fig. 3. Some more detail
the behavior ofu^SN/2

z (t)SN/2
z &u is presented in Fig. 6. The

main plot shows the crossover between the exponential
t23 ~with superimposed oscillations! regimes for three smal
J8 values. With growingJ8 the exponential decay rate grow

re

of

ta

FIG. 5. Precision of the exponential decay of the hig
temperature bulk impurity spin correlation function. Shown is t
precision functionp(t) Eq. ~3.6! for the data forJ8<0.4 from the
main plot of Fig. 4.
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4030 PRB 61JOACHIM STOLZE AND MICHAEL VOGEL
and the exponential regime shortens in such a way that in
exponential regimeu^SN/2

z (t)SN/2
z &u is a decreasing function

of J8 whereas in the power-law regime it is an increas
function ofJ8. We have deliberately chosen a very long tim
window in order to illustrate how finite-size effects manife
themselves~for t*230). In the inset of Fig. 6 we demon
strate the asymptotic power-law behavior for larger values
J8. The dots represent the maxima ofu^SN/2

z (t)SN/2
z &u, which

follow the t23 ~for J8,1) andt21 ~for J851) laws already
discussed. ForJ8.1 the behavior changes to a ‘‘consta
with oscillations’’ type of asymptotics, similar to theT50
situation shown in the inset of Fig. 2. ForT.0, however, the
amplitude of the oscillations is considerably larger than
T50.

The high-temperature spin autocorrelations of the nea
and next-nearest neighbors to the impurity~for J8<1) do not
show any particularly surprising features. Thez correlations
do not show exponential decay in the beginning. Instead t
oscillate and the maxima of the oscillations display the
miliar t23 ~for J8,1) andt21 ~for J851) laws. Thex au-
tocorrelations interpolate smoothly between two known li
iting cases. AtJ851 the x autocorrelation of the spini
5N/211 of course is a Gaussian as that of any other b
spin. At J850, however,i 5N/211 is the first spin in a
semi-infinite homogeneous chain, whoseT5` autocorrela-
tion function is19 a combination of Bessel functions with a
asymptotict23/2 decay. Upon reducingJ8 from 1 to 0, the
development of the characteristic Bessel function oscillati
~with zeros hardly depending onJ8) can be nicely observed
Similarly the time range during which the correlation fun
tion follows the expectedt23/2 decay grows asJ8 dimin-
ishes. Thex autocorrelation ofi 5N/212 behaves quite
similarly, but only a small number of oscillations is visib

FIG. 6. Initially exponential and asymptotic power-law decay
the bulk impurityz spin autocorrelation function at high temper
ture. Main plot: u^SN/2

z (t)SN/2
z &u (N5256) at T5105 for impurity

couplingsJ850.15, 0.2, and 0.3~top to bottom!. Note how the
exponential regime gets shorter asJ8 grows. The features in the
lower right corner are finite-size effects. Inset: Maxima
u^SN/2

z (t)SN/2
z &u for J851, 0.9, 0.8, 0.7, and 0.6~top to bottom!

and T>20. The dashed straight lines represent thet21 and t23

power laws.
he

t

f

r
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y
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~in a linear plot! because of the fast (t29/2) asymptotic decay
of the known19 J850 Bessel function expression.

IV. BOUNDARY IMPURITY

The boundary impurity is defined by Eq.~1.3!. Similarly
to the case of the bulk impurity discussed in the previo
section, the boundary correlation functions show a lo
temperature regime and a high-temperature regime, and
restrict our discussion to the valuesT50 andT51 which
represent these two regimes.

It suffices to discuss the impurity spinx autocorrelation
function ^S1

x(t)S1
x&, because

2^S1
x~ t !S1

x&5(
n

u^1un&u2ei«nt f ~«n!, ~4.1!

that is, the square root of the time-dependent part
^S1

z(t)S1
z& @see Eq.~3.3!#. The presence of an isolated impu

rity state forJ8.Jc5A2 ~compare Sec. II! should be visible
in the dynamic correlation functions. In fact, the asympto
behavior of̂ S1

x(t)S1
x& displays a crossover similar to the on

shown in the inset of Fig. 2: for allT the long-time behavior
is a power law forJ8,A2 and a constant forJ8.A2, with
additional oscillations in both regimes.

Figure 7 showsu^S1
x(t)S1

x&u for impurity couplingJ8<1.
For T51 we observe an initially exponential decay followe
by a power law. The exponential decay rate grows withJ8.
The duration of the initial exponential phase decreases w
growing J8 in such a way that in the subsequent power-l
regime the correlation function is an increasing function
J8. This behavior is@not unexpectedly, compare Eq.~4.1!#
similar to that of the bulk impurityz autocorrelation dis-
cussed in Sec. III B, however, the asymptotic power law i
different one, namely thet23/2 law known for the boundary

f FIG. 7. Boundary spinx autocorrelation functionu^S1
x(t)S1

x&u.
Main plot: High-temperature regime,T51, N5512, and impurity
couplingJ851, 0.8, 0.6, 0.4, 0.2, and 0.1~left to right, according to
the point where the curves enter the figure at the upper bound!.
The dashed line shows thet23/2 law. Inset: Low-temperature re
gime,T50, N51024, andJ851, 0.7, 0.5, and 0.1~bottom to top!.
The dashed line shows thet21 law.
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spin19 of the homogeneous semi-infinite chain at infiniteT,
and for a range of boundary spins21 of the same system a
finite T.

At this point, the early analytical study by Tjon5 should be
mentioned. In the limit of sufficiently smallJ8 Tjon found an
asymptotically exponential decay;e2t/t for ^S1

x(t)S1
x&, with

decay ratet215 1
2 J82. Indeed, our numerical data show th

during the exponential regime mentioned above, the de
rate is quite precisely equal to12 J82 for J8&0.2, and a bit
larger for largerJ8. However, we also observe numerical
~and explain analytically, see below! a crossover from expo
nential to power-law behavior. The duration of the expon
tial regime grows (;J822) asJ8 becomes weak and thus ou
numerical results for arbitraryJ8 connect smoothly to Tjon’s
analytical result restricted to the weak-coupling limit.

The inset of Fig. 7 showsu^S1
x(t)S1

x&u for T50 and J8
,1. After a very slow initial decay~slower for smallerJ8)
the curves eventually all bend over to show at21 asymptotic
decay developing some oscillations asJ8 approaches unity
The t21 decay atT50 is again a well-known feature10 of the
homogeneous semi-infinite chain.

The asymptotic power laws may be understood from
properties of the analytic solution of the boundary impur
~one-particle! problem, along the lines of the discussion
Sec. III A. According to Eq.~4.1!, u^S1

x(t)S1
x&u for J8,A2 is

given by an integral analogous to the one in Eq.~3.4!. The
analytic solution shows that the wave function factor in t
integral, ^1u«&;sink, where «52cosk. This leads to a
band-edge singularity;(12«)1/2 in the integrand, and a
t23/2 asymptotic behavior of the integral. AtT50 the t23/2

contribution is dominated by thet21 contribution from the
discontinuity of the Fermi function.

V. SUMMARY AND CONCLUSIONS

The dynamic spin correlation functions associated w
isolated impurities in aS5 1

2 XX chain show a rich behavio
depending on the temperature, the impurity coupling stren
J8, the spin component (a5x,z) under consideration, an
on the position of the impurity spin in the chain. Regimes
low and highT, with qualitatively different behavior of the
correlations may be distinguished. We have summarized
asymptotic behavior of the bulkx andz spin autocorrelations
ay

-

e

h

th

f

he

in these twoT regimes in Table I. The basic features of th
boundary correlations may also be obtained from Table I
observing that~i! the z autocorrelation does not change fu
damentally between bulk and boundary and~ii ! at the bound-
ary thex autocorrelation behaves as the square root of thz
autocorrelation.

As mentioned in the Introduction, the present model m
be interpreted as a single two-level system in contact wit
large bath. The influence of the nature of the bath degree
freedom on the type of decay of the two-level system w
addressed recently25 for a spin bath constructed in a way t
resemble closely the standard23 harmonic oscillator bath. The
following results were found. AtT50 the spin bath leads to
damped oscillations in the two-level system, as does the
cillator bath. However, at highT, the oscillations vanish for
the oscillator bath but persist for the spin bath.

Without going into any detailed comparison between
spin bath employed in Ref. 25 and theXX chain studied
here, we would like to point out the existence of simil
oscillation phenomena at highT in the present system. Fig
ure 3 ~main plot! shows how the bulk impurity spinz auto-
correlation function develops oscillations as temperaturein-
creases. Whether these oscillations can be unambiguou
assigned to either the impurity or the bath, and what happ
for systems interpolating between the present one and th
Ref. 25, remains to be seen in further studies.
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TABLE I. Asymptotic decay of the bulkx andz autocorrelation
functions. Additional oscillations of varying strength are presen
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