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Impurity spin relaxation in S=3 XX chains

Joachim Stolze and Michael Vogel
Institut fur Physik, Universita Dortmund, D-44221 Dortmund, Germany
(Received 20 May 1999; revised manuscript received 13 August)1999

Dynamic autocorrelation§S{(t)S/") (a=x,z) of an isolated impurity spin in %= XX chain are calcu-
lated. The impurity spin, defined by a local change in the nearest-neighbor coupling, is either in the bulk or at
the boundary of the open-ended chain. The exact numerical calculation of the correlations employs the Jordan-
Wigner mapping from spin operators to Fermi operators; the effects of finite system size can be eliminated.
Two distinct temperature regimes are observed in the long-time asymptotic behavior of the bulk correlations.
At T=0 only power laws are present. At highthe x correlation decays exponentiallgxcept at short timgs
while thez correlation still shows an asymptotic power léalifferent from the one af =0) after an interme-
diate exponential phase. The boundary impurity correlations ultimately follow power laws & walith
intermediate exponential phases at higlThe power laws for the correlation and the boundary correlations
can be derived from the impurity-induced changes in the properties of the Jordan-Wigner fermion states.

I. INTRODUCTION Equilibrium and nonequilibrium dynamics of the bound-
ary impurity were studied early on by Tjonin the weak-
The S= 3 XX chain'? coupling limit (J’—0), Tjon obtained exponential behavior
of the impurity spin autocorrelation functions. Our results
N-1 (see Sec. IY show that for finite impurity couplind’, ex-
H=— >, Ji(S'SL,+99. ), (1.1)  ponential behavior occurs only in an intermediate time re-
i=1 gime, whereas the ultimate long-time behavior is a power
law.
is one of the simplest quantum many-body systems conceiv- Besides their obvious relevance in low-dimensional mag-
able, as many of its properties can be derived from those dfetism, impurities in spif- chains are also of interest in
noninteracting lattice fermions. Its equilibrium spin pair cor- quantum dynamics, where two-level systems coupled to

relation functions “baths” serve as models for quantum systems in dissipative
environment$2-2* The most popular mod&in this field is
Tr efﬁHeitHsﬁaefitHSja the spin-boson model, consisting of a single.s%)imupltlad
(S (1) S = — ,a=X,z (1.2  to a(quasi) continuum of noninteracting oscillators with a
Tre ™ ? given spectral density. In a recent stétihe oscillator bath

i i was replaced with a bath of noninteracting spisThe
have been the OZEJeCtS of intense research efforts over ahanges in dynamic behavior which were observed as a re-
extended period-** Only a few explicit analytic results are syt of this replacement suggest further exploration of differ-
available, but several existing asymptotic results for largent kinds of baths. The system studied here can be consid-
distancedi —j| or long timest have been corroborated by ered a two-level systertthe impurity spin coupled to a bath
numerical calculations. of interacting two-level systemgthe remainder of thexX

For XX chains with homogeneous nearest-neighbor couehain. An interesting feature of this system is the fact that
pling (J;=J) only three different types of asymptotic long- while the z component of the total spin is conserved, the
time behavior have been observed to date: Gaussian, expeemponent is not. Thus differences are to be expected be-
nential, and power law (often with superimposed tween the relaxation of theandz components of the impu-
oscillations. It is interesting to speculate whether nonuni- fity spin. ) .
form or random couplings might induce additional types of ~The plan of the paper is as follows: In Sec. Il we discuss
asymptotic behavior. the method used to calculate the dynamic correlation func-

In the present paper we study the changes in autocorreldions numerically. In Sec. Ill we present results for spin au-

tion functions(S*(t)S®) induced by a single impurity spin in tocorrelation functions of a bulk impurity spif@and also of

an otheise Romogeneous crain. The mputy spn s of= (SN0 D00 0 e T See e 0
cated either at the boundary of the system, y impurity '

summarizes our findings.
or in the bulk, The open-endedl-site spin3 XX chain described by the
Hamiltonian(1.1) can be mapped to a Hamiltonian of non-
Inp—1=Inp=d", J;=J=1 forallotheri. (1.4 interacting fermions,
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N—-1
A=-3 2 J(cleiatclie) 2.
by means of the Jordan-Wigner transformatidmetween ]
spin and fermion operators:
A
z T 1 U)E
S=cici— 3. (2.2 £
(DE
v
1 i-1
.
s =(-12 % =] (1-2cfcocl. (2.3 ]
k=1
In the homogeneous case=J, the one-particle energy ei- 10 100
genvalues are t

FIG. 1. Bulk impurity spin x autocorrelation function
v (SN2t SN2 at T=0. Main plot: N=512, impurity couplingd’
N+1' v=1... N, 24 1 The heavy solid linegtop to bottom correspond tal’ =0.1,
0.15, 0.2, 0.4, 0.6, and 0.8. The dashed straight line isttH&

. . . . . power law(3.1). The thin solid lines ar&l=256 data demonstrating
and the eigenvectors are sinusoidal functions of the site inge influence of the system size. Inshit=128, J'>1. Shown are

dexi. For generall; neither eigenvalues nor eigenvectors aregata ford’ =1 (heavy solid ling, J'=1.2 (dashed curve and J’
available analytically, however, both are easily obtained=1 4 (thin solid line. The dashed straight line is again ttie"?
from the solution of a tridiagonal eigenvalue problem with power law(3.1).
standard numerical procedur®s.

The spin correlation functionél.2) are mapped to fer- ll. BULK IMPURITY
mion correlation functions, with crucial differences between
the casesa=z and a=x. (S(t)S;) maps to a density-
density correlation function involving four Fermi operators. ~ The long-time asymptotic behavior of tie=0 bulk im--
Due to the string of signs in Eq2.3), however,(Sf‘(t)SJX) purity spinx agtoc_orrelatlon functions is dlfflgult to obt_am_
maps to amany-particlecorrelation function involving 2i(  due to a combination of two reasons. First, this correlation is
+j—1) Fermi operators. Wick’s theorem can be applied tothe computationally most demanding one, as large Pfaffians
expand(SIX(t)SjX) in products of elementary fermion expec- have to be evaluated. Second, it is also the correlation func-

tation values. That expansion can be most compactly exion displaying finite-size effects at the earliest times. This
pressed as a Pfaffidhwhose elements are sums involving may be related to its particularly slow long-time asymptotic

the one-particle eigenvalues and eigenvectors. decay law" 412
In order to obtain results valid in the thermodynamic limit XX\ (n2_ 12+2\—1/4 —
N— oo, finite-size effects must be identified and eliminated. (S(OSp)~(n"= %) for T=0 (3.1
As finite-size effects are knowhto be caused by reflections in the homogeneous case=J. It should be noted that the
of propagating excitations from the boundaries of the systenright-hand side of Eq.3.1) is the leading term of an
the maximum fermion group velocifysee Eq. 2] can be asymptotic expansion; its character changes from purely real
used to estimate the time range over which a given spirtfor J’t?><n?) to complex (for J?t>>n?). More explicit
correlation functior(1.2) can be expected to be free of finite- forms are Eq(1.23 in Ref. 11 and Eq959), (61) in Ref. 15.
size effects. That estimate can then be verified by explicit We have calculatedSy,(t) Sy, for impurity coupling
numerical calculation of equivalent correlation functions forconstants 0.4J'<4. In all cases the asymptotic decay of
system sized\, and, say, X,. the correlation function was consistent with the’? law Eq.
The one-fermion eigenvalue problem for the single-(3.1). With growing J’|(Sf,(t)Sy»)| develops oscillations
impurity chain(1.3) or (1.4) (Ref. 2§ may be solved ana- of rather well-defined frequency and growing amplitude, as

lytically. The nature of the solution depends on the value ofshown in the inset of Fig. 1. The frequency of the oscillations
J'. ForJ’ below a critical value. all states are extended for J'>1 is proportional to the energy

and the continuous energy spectrum is giverep¥q. (2.4)

g=—Jcosk, k=

A. T=0

with J’-dependenk values. Forl’>J. a pair of exponen- J'2 ,
tially localized impurity states with energieseg, |eqo|>1, leol = 271 (J'>1) (3.2

emerge from the continuum. The critical coupling strength is

J.=1 for the bulk impurity andJ,= 2 for the boundary of the localized impurity state. On the whole, the long-time
impurity. Below, we occasionally refer to properties of the asymptotic behavior of the impurity spinautocorrelation at
analytic solution in order to explain the long-time asymptoticT=0 is not fundamentally changed by varying the value of
behavior observed in the numerical results. J'.
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10" . r ForJ’'<1 the time-dependent term in EQ.3) is propor-
tional to

2
Ul de(1—&2)~ Y2t (g)|(i]e)|?] | (3.9
-1

where(i|e) corresponds tgi|v) in Eq. (3.3 and the inverse
square root factor is the one-particle density of states of the
dispersion(2.4) (which still describes the energy eigenval-
ues, only with slightly displaced values forJ’#+1). For
J'=1, [(i|e)|? does not depend ax the inverse square-root
singularities at the band edges—=*1 lead to at *?
asymptotic behavior of the integral, and to @ behavior of
(Sf(t)S). ForJd’' <1 the amplitude of the one-particle eigen-
state with energy at the impurity site is

10° 10" 10°

(1_J/2)2 &2 -1

i 2_ 12
e =[J'“+
|< | >| J/2 1 82

(3.5

FIG. 2. Main plot: Bulk impurity spirz autocorrelation function
(SRSl (N=1024) at T=0, for impurity couplings
J'=1, 0.99, 0.8(solid lines, top to bottom J'=0.6, 0.4, 0.2

a2\ =12 _a2\12 ; et 32
(long-dashed lines, bottom to tpprhe thin straight lines show the &%) to (1~ I) ’ZSO t?at the Irltegra[gontalnstﬁ. h
power laws t™! and t~2. Inset: same as main plot, for term. Consequently(S{(t)S) contains at™* term whic

J'=1, 1.2, 1.4, 2,4bottom to top. dominates forT>0 (see next subsectipnAt T=0, how-
ever, the leading term is proportional to? due to the dis-
continuity of the Fermi function in Eq.3.4).

We have also studied theandz autocorrelations of near-
est and next-nearest neighbors of the impurity SpilN/2.
For weak impurity couplingJ’ <0.2) thex correlation func-
tions of spins =N/2+1 a?/czii =N/2+2 show weak oscilla-

! ey . ) tions superimposed onta ~'< decay masked by strong finite-
gﬁgvxtgll?r\::jnlsv?/yvn\:gltloﬂﬁowr?‘mb-fr:reghe r%o(r:rg)é;e(aligg:s size_ effects. Thg correlations(for J’<_1) show stronger
case. As soon aF is further increased, the behavior Chan(‘:]esoscnlatlons. Their decay looks roughly like a power law with
again and the absolute value of the correlation function tend‘rém exponent between 2 and - 3.
to a constant nonzero value for large times.

(apart from weakly-dependent normalization factorg his
changes the band-edge singularities in Eg4) from (1

The impurity spinz autocorrelation, in contrast, changes
significantly whend’ is varied, as shown in Fig. 2. For small
J [{SX(1)S{/2)| displays a monotonic decay. Roughly at
J’=0.5 oscillationgof well-defined andl’-independent fre-
guency begin to develop. For all’ <1 the correlation func-

The changes in the asymptotics|6085,,(t)St,)| can be B.T>0
understood from the analytic solution mentioned in Sec. Il. Whereas aff =0 only power-law decay is observed, ex-
The Jordan-Wigner transformation yields, after a few simpleponential decay becomes possible at finit€. Figure 3
steps showsx and z impurity spin autocorrelations &t =0.3 for

several decades ih There are two well-defined temperature
2 regimes with a crossover between them. Within each regime
> |<i|v>|2f(sy)) the correlation functions do not change qualitatively: note
v that several of the curves in Fig. 3 coincide. Thautocor-
1 relation in the hight regime shows exponential decay which
> [i|v)|?f(e,) +~. (3.3)  persists over the entire time range during which the the re-
~ 4 N .
sults are free of finite-size effects. Theutocorrelation de-
~ cays exponentially at first and later crosses over totthie
Here |v) is a one-fermion eigenstate &f Eq. (2.1) with  |aw derived above, with superimposed oscillations which are
energye, and f(x)=[exp(8x)+1] ! is the Fermi function. absent in the low-temperature regime. The appearance of os-
ForJ’'>J.=1 the presence of a localized impurity state with cillations (if only of small amplitude in (S*(t)S?) at highT
large |(i| »)|* and with &, outside the continuum yields a is reminiscent of the phenomena recently repdftddr a
harmonically ~oscillating nondecaying contribution to two-level system coupled to a spin bath. In that system, a
(Sf(1)Sf). Similar contributions are contained in every ele- persistence of oscillations up to infinifecould be observed.
ment of the Pfaffian fo{S'(t)S), but not in that correlation Figure 4 shows|(Sy»(t)S\»)| at T=10° for impurity
itself (see Fig. 1, inset The reason probably is a cancellation coupling 0.. J’'<1 in aN=128 chain. As autocorrelations
of terms due to the multiplications and additions inherent inat T=c are real even power seriestinall curves start with
the definition of the Pfaffian. The time scale introduced byzero slope at=0, but then(with the exception of)’=1)
the discrete energy valu@.2) is reflected in the oscillations bend over to a nearly perfect exponential decay. The inset
of |[{(S\2(t)Sn2| (Fig. 1, inset. Similar behavior is found shows the decay rate of that exponential decay as fitted to the
for T>0 and will be discussed in the next subsection. data in the main plot. Also shown is the decay rate deter-

2

(SOS)=| 2 KillPe!(e,) | +
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FIG. 3. Crossover between the regimes of high temperature FIG. 5. Precision of the exponential decay of the high-
(lower set of curvesand low temperaturéupper set of curvgs  temperature bulk impurity spin correlation function. Shown is the
Main plot: Impurity spin-autocorrelation functiof{S{»(t) Sk precision functionp(t) Eg. (3.6) for the data ford’ <0.4 from the
(N=256) with impurity couplingJ’'=0.3 for temperaturest main plot of Fig. 4.
=10°, 104, 1%, 1P, 10°%, 1072, 1073, 1074, 1075, and 10°
(bottom to top. The curves fof=10"" and 10°* are long-dashed, ~Gaussiar$:>!® The Gaussian decay corresponds to a diver-
all others are solid. Note that several curves coincide on the scale gfence of the exponential decay rate which is obvious in the
the figure. Inset: same as the main plot, f08\,(t)S{\2)| (N inset of Fig. 4.
=128); time range is &t<100. ForJd'>1 [(SX,(t)S\»)| is no longer(almos) purely ex-
ponential, but develops considerable oscillations. The expo-
nential decay rate grows with, but decreases ak grows,
as shown in the inset of Fig. 4. As in the=0 case the
frequency of the oscillations is proportional ¢g Eq. (3.2).

In order to obtain a quantitative measure of the precision
to which the decay of(Sy,(t)Sy)»)| at T=10° follows an
exponential, we fitted an exponential laaexp(—bt) to the
r T ' ' numerical data for t<<100 and calculated the quantity

¢ (SN (D)S)
p(t):= aexp(—bt)

mined from data forT=1, and forJ’'>1. Differences be-
tweenT=1 and T=c are to be expected and are indeed
visible in the behavior of the decay rate closelte=1: For
finite T the x autocorrelation function of a homogeneous
chainJ;=1 is knowrf®?*to decay exponentially with a finite
T-dependent decay rate, whereas for infiritthe decay is

(3.6

which should equal unity for a purely exponential decay.
ForJ'=<0.4, p(t) is shown in Fig. 5. Note that the scale
of the figure extends only to a maximum deviation of 1%
T from purely exponential decay. The general slope in the data
is a natural consequence of the intrinsically nhonexponential
behavior of the correlation function for smallwhich was
mentioned above. The data fdf<0.2 follow the purely

o ¢ exponential fit to a precision of better than two parts in thou-
sand fort=10. This rules out the stretched-exponential be-
havior reportetf for J'’<0.2 at T= in an approximate

0 J\- 2 3 4\ study based on extrapolation of truncated continued-fraction

80 100 expansions. Figure 5 also reveals the presence of tiny oscil-

lations which are invisible on the scale of Fig. 4. The fre-
quency of these oscillations is independeng afin contrast

I , )
relation function at high temperature. Main plOtS,(t) S| tob the stronger oscillations fod’>1 already mentioned
(N=128) at T=10° for impurity couplings J’ above. L . .
=01, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, andtdb to The main differences betwegxrandzspm autocorrelanon
bottom). Inset: Exponential decay rates determined from the datdunctions were already shown in Fig. 3. Some more detail on

shown in the main plot, and from analogous dataXor 1 and for  the behavior ofl(S{,(t)S»)| is presented in Fig. 6. The
T=1. The circles ar@ = 10° data, the crosses afe=1 data. Note ~main plot shows the crossover between the exponential and

the pronounced differences nelr=1, where the infinitéF decay  t~ > (with superimposed oscillationsegimes for three smalll
rate diverges. J’ values. With growingl’ the exponential decay rate grows

FIG. 4. Exponential decay of the bulk impurity spirautocor-
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FIG. 6. Initially exponential and asymptotic power-law decay of |5, 7. Boundary spirk autocorrelation function(S(t)SY)|.
the bulk impurityz spin autocorrelation function at high tempera- pain plot: High-temperature regim@=1, N=512, and impurity
ture. Main plot: [{S{(t) Sk | (N=256) atT=10° for impurity couplingd'=1, 0.8, 0.6, 0.4, 0.2, and O(left to right, according to
couplingsJ’=0.15, 0.2, and 0.3top to bottom. Note how the  the point where the curves enter the figure at the upper boundary
exponential regime gets shorter &s grows. The features in the The dashed line shows the 32 law. Inset: Low-temperature re-

Iovvzer rigzht corner, are finite-size effects. Inset: Maxima of gime T=0, N=1024, and)’ =1, 0.7, 0.5, and 0.lbottom to top.
[{Ski2(t)Si2)| for 37=1, 0.9, 0.8, 0.7, and 0.60p to bottom  The dashed line shows the® law.
and T=20. The dashed straight lines represent thé andt~3

power laws. (in a linear ploi because of the fast {%?) asymptotic decay

of the knowrt® J’ =0 Bessel function expression.

and the exponential regime shortens in such a way that in the
exponential regime(S{,(t)Sf,)| is a decreasing function IV. BOUNDARY IMPURITY
of J’ whereas in the power-law regime it is an increasing
function ofJ’. We have deliberately chosen a very long time ~ The boundary impurity is defined by E(L.3). Similarly
window in order to illustrate how finite-size effects manifestto the case of the bulk impurity discussed in the previous
themselvegfor t=230). In the inset of Fig. 6 we demon- section, the boundary correlation functions show a low-
strate the asymptotic power-law behavior for larger values ofémperature regime and a high-temperature regime, and we
J'. The dots represent the maxima|68%,(t)S%,)|, which ~ restrict our discussion to the valuds=0 andT=1 which
follow the t =3 (for ’<1) andt ! (for J'=1) laws already fepresent these two regimes. _ _
discussed. Fod’>1 the behavior changes to a “constant It gufﬁces to discuss the impurity spinautocorrelation
with oscillations” type of asymptotics, similar to tie=0  function(S;(t)S}), because
situation shown in the inset of Fig. 2. For>0, however, the
jall_r:p())htude of the oscillations is considerably larger than for 2<S’{(t)S§>=§V: (1] v)|2e® (e ), (4.1)

The high-temperature spin autocorrelations of the nearest )
and next-nearest neighbors to the impuffor J’<1) do not thzit |s,Z the square root of the tlme—dept_andent part of
show any particularly surprising features. Theorrelations <_Sl(t)81> [see Eq(3.3]. The presence of an isolated impu-
do not show exponential decay in the beginning. Instead theyjity state forJ’>J.= V2 (compare Sec. Jishould be visible
oscillate and the maxima of the oscillations display the fadn the dynamic correlation functions. In fact, the asymptotic
miliar t =3 (for J’<1) andt™? (for J’=1) laws. Thex au-  behavior of( Si(t)S}) displays a crossover similar to the one
tocorrelations interpolate smoothly between two known lim-shown in the inset of Fig. 2: for all the long-time behavior
iting cases. AtJ'=1 the x autocorrelation of the spim is a power law ford’ <2 and a constant fa}’ > /2, with
=N/2+1 of course is a Gaussian as that of any other bulkadditional oscillations in both regimes.
spin. At J’=0, however,i=N/2+1 is the first spin in a Figure 7 shows(S;(t)S})| for impurity couplingd’'<1.
semi-infinite homogeneous chain, whoBe « autocorrela- For T=1 we observe an initially exponential decay followed
tion function ig® a combination of Bessel functions with an by a power law. The exponential decay rate grows wlith
asymptotict ~”? decay. Upon reducing’ from 1 to 0, the The duration of the initial exponential phase decreases with
development of the characteristic Bessel function oscillationgrowing J’ in such a way that in the subsequent power-law
(with zeros hardly depending aH) can be nicely observed. regime the correlation function is an increasing function of
Similarly the time range during which the correlation func- J’. This behavior ignot unexpectedly, compare E@.1)]
tion follows the expected *? decay grows as)’ dimin-  similar to that of the bulk impurityz autocorrelation dis-
ishes. Thex autocorrelation ofi=N/2+2 behaves quite cussed in Sec. lll B, however, the asymptotic power law is a
similarly, but only a small number of oscillations is visible different one, namely the~*? law known for the boundary
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spin19 of the homogeneous semi-infinite chain at infinltie TABLE I. Asymptotic decay of the bulk andz autocorrelation
and for a range of boundary sp%ﬁg)f the same system at functions. Additional oscillations of varying strength are present in
finite T. all cases.

At this point, the early analytical study by Tjdshould be :
mentioned. In the limit of sufficiently small' Tjon found an Low T High T
asymptotically exponential decaye™ V" for (S{(t)S}), with X {12 et
decay rater *=3J'?. Indeed, our numerical data show that , 3/ 1 {2 {3
during the exponential regime mentioned above, the decay (after initial &)

rate is quite precisely equal thd’? for J'<0.2, and a bit 73>1 {0 {0
larger for largerd’. However, we also observe numerically
(and explain analytically, see belpa crossover from expo-

nential to power-law behavior. The duration of the exponen- . . .
tial regime grows €J’~2) asJ’ becomes weak and thus our N these twoT regimes in Table I. The basic features of the

numerical results for arbitrary’ connect smoothly to Tjon's 2oundary correlations may also be obtained from Table | by

analytical result restricted to the weak-coupling limit. observing thati) the z autocorrelation does not change fun-
The inset of Fig. 7 showHS(t)SY)| for T=0 andJ’ damentally between bulk and boundary dinglat the bound-

<1. After a very slow initial decayslower for smaller’) &Y thex autocorrelation behaves as the square root ofzthe

the curves eventually all bend over to show & asymptotic ~ @utocorrelation.

decay developing some oscillations Hsapproaches unity. ~ AS mentioned in the Introduction, the present model may
Thet ! decay aff =0 is again a well-known featul®of the ~ be interpreted as a single two-level system in contact with a
homogeneous semi-infinite chain. large bath. The influence of the nature of the bath degrees of

The asymptotic power laws may be understood from thdreedom on the type of decay of the two-level system was
properties of the analytic solution of the boundary impurityaddressed recenffyfor a spin bath constructed in a way to
(one-particle problem, along the lines of the discussion in resemble closely the stand&ftharmonic oscillator bath. The
Sec. lll A. According to Eq(4.2), [(S5(t)S})| for J'<\2is following results were found. AT=0 the spin bath leads to
given by an integral analogous to the one in E2j4). The damped oscillations in the two-level system, as does the os-
analytic solution shows that the wave function factor in thecillator bath. However, at higfi, the oscillations vanish for
integral, (1|¢)~sink, where ¢=—cosk. This leads to a the oscillator bath but persist for the spin bath.
band-edge singularity-(1—¢)¥2 in the integrand, and a Without going into any detailed comparison between the
t~32 asymptotic behavior of the integral. At=0 thet=%2  spin bath employed in Ref. 25 and teX chain studied
contribution is dominated by the * contribution from the here, we would like to point out the existence of similar
discontinuity of the Fermi function. oscillation phenomena at highin the present system. Fig-

ure 3(main plod shows how the bulk impurity spinm auto-
correlation function develops oscillations as temperaiie

V. SUMMARY AND CONCLUSIONS creases Whether these oscillations can be unambiguously
assigned to either the impurity or the bath, and what happens

_The dynamic spin correlation functions associated Withfor systems interpolating between the present one and that of

depending on the temperature, the impurity coupling strength

J’, the spin componenta(=x,z) under consideration, and

on the position of the impurity spin in the chain. Regimes of ACKNOWLEDGMENTS

low and highT, with qualitatively different behavior of the

correlations may be distinguished. We have summarized the We are grateful to Professor Gerhard IMu (University
asymptotic behavior of the bulkandz spin autocorrelations of Rhode Islangifor helpful comments and suggestions.
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