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Dynamic theory of deformable solids with quasiparticle excitations in the presence
of electromagnetic fields
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A full self-consistent set of equations is deduced to describe the kinetics and dynamics of charged quasi-
particles~electrons, holes, etc.! with arbitrary dispersion law in crystalline solids subjected to time-varying
deformations. The set proposed unifies the nonlinear elasticity theory equation, a Boltzmann kinetic equation
for quasiparticle excitations, and Maxwell’s equations supplemented by the constitute relations. The kinetic
equation used is valid for the whole Brillouin zone. It is compatible with the requirement for periodicity ink
space and contains an essential new term compared to the traditional form of the Boltzmann equation. The
theory is exact in the frame of the quasiparticle approach and can be applied to metals and semiconductors, as
well as to other crystalline solids including quantum crystals and low-dimensional lattice structures. Instructive
examples concerning the form of the Fokker-Plank equation as well as the pinning of effective magnetic
induction lines in deformable metals are considered.
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I. INTRODUCTION

There are two fundamental problems when dealing w
quasiparticles in crystalline structures. The first one is rela
to the fact that the quasimomentumk and the dispersion law
«(k) of a quasiparticle are well defined only in an ide
periodic lattice. In such a lattice the dispersion law and
other physical quantities are periodic functions in the rec
rocal space (k space!. However, in any real system the cry
tal lattice is deformed~e.g., by impurities, elastic deforma
tions, external fields, etc.!. The most complicated problem
concern the quasiparticle dynamics in a time-varying
formed crystal lattice. In an exact description all physic
characteristics of a quasiparticle have to be periodic fu
tions of the quasimomentum with periods which are fun
tions of the coordinates and the time. This leads to a dep
dence of the Brillouin zone boundaries not only on t
deformation at a given instant, but also on the local latt
velocity.1,2

As for the stationary~or quasistationary! case, this diffi-
culty has usually been passed over by introducing a lo
dispersion law«(k,uik) and further expansion in powers o
the small deformation tensor componentsuik :

«~k,uik!5«0~k!1l ik~k!uik , ~1!

wherel ik are the deformation potential components,

uik~r !5
1

2 S ]ui

]xk
1

]xi

]xk
D , ~2!

andu is the deformation vector. Such an approach~known as
the local lattice approach! is based on the assumption that t
deformations are small and smooth functions of position
time and possesses all shortcomings of any linearized the
In addition, the Boltzmann transport equation becomes
compatible with the requirement of periodicity. To avoid a
misunderstandings, note that Eqs.~1! and ~2! are written in
the comoving frame.
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The second problem is related to the fact that the cry
lattice plays the role of a privileged coordinate frame and
Galilean transformations for quasiparticle characteristics
ist. The lack of transformation laws for such quantities as
energy, Hamiltonian, and quasimomentum means, in f
that there is no consistent quasiparticle mechanics. The m
fundamental quantity, the dispersion law, is known in a c
moving frame attached to the lattice and this frame is e
not inertial at time-varying deformations. On the other ha
all fundamental physical equations, such as conserva
laws, variational principles, kinetic equations, etc., take pla
in the laboratory frame (L system!. However, the concept o
the dispersion law does not exist in theL system. Hence, in
principle, even if the mechanics equations for a quasipart
were known in theC system, they remain unknown in theL
system.

These problems are as old as the quasiparticle appro
itself. They are well known, for example, in the theory
metals.3–6 Many attempts have been made to derive a co
plete system of dynamic equations, consisting of equati
from the theory of elasticity, the Boltzmann kinetic equati
for the electron gas, and Maxwell’s equations~cf. Refs. 7
and 8 and references cited therein!.

The attempts to deduce the equations of motion for a q
siparticle in anL system can be divided into two group
corresponding to the twofold role of the dispersion law.
the comoving frame it coincides with both the energy a
Hamiltonian. Therefore transformations typical of the ener
and Hamilton function have been proved.

When considering«(k,uik) as the Hamiltonian a transfor
mation by a substitutional function of the form

F̃~r 8,p,t !5@r 81u~r 8,t !#p ~3!

has been used and the following relations have been obta
~see, e.g., Refs. 7 and 8!:

k5p1
]

]r 8
~up!, H̃~p,r ,t !5 «̃~k,r 8,t !1u̇p,
4000 ©2000 The American Physical Society
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wherer5r 81u are the coordinates in theL system andp is
supposed to be the corresponding quasimomentum. H
ever, F̃ does not depend on the bare massm of the quasi-
particle and therefore does not take into account any ine
effects~e.g., the Stewart-Tolman effect in metals, centrifug
forces in rotating bodies, etc.!.

If «(k,uik) is considered as quasiparticle energy, then
Galilean transformation applies as a consequence of the
quirement that the energy density*«d3k ~as a macroscopic
quantity! obey Galilean transformations. This yields

Ẽ5«0~k!1l ik~k!uik1mu̇
]«0

]k
. ~4!

It has been shown by many authors that such a trans
mation is incompatible with the Boltzmann equation. Tha
why some artificial ways have been used, the most succ
ful being that of Landau~cf. the footnote in Ref. 7!. He has
suggested that~in order to take into account the noninerti
properties of the lattice frame! one has first to add to th
dispersion law~1! the term2mu̇ ]«/]k, setting

«~k,uik!5«0~k!1l ik~k!uik2mu̇
]«

]k
, ~5!

and then to apply the transformation by the substitutio
function ~3!. The result is

H̃~p,r ,t !5«0~k!1l ik~k!uik1S p2m
]«

]k D u̇. ~6!

This procedure has been used in most recent works. H
ever, it cannot be well grounded due to its internal incons
tency. In fact, if we consider the expression~5! as energy and
take a constant velocityu̇, then we come to the wrong con
clusion, that the energy in an inertial frame could depend
the frame velocity. The same confusion follows for the e
ergy density which must strictly obey the Galilean princip
Note that we may not consider Eq.~3! as a Hamiltonian,
because the Hamilton function in aC system coincides with
the dispersion law in accordance with the Hamilton equat
ṙ 85v5]«/]k.

These shortcomings have been removed in our prev
works1,2,9 ~see also Refs. 10 and 11! where transformations
to replace the Galilean ones have been deduced and the
siparticle mechanics equations in Hamiltonian form ha
been presented. This enabled us to derive a Boltzmann
kinetic equation valid in the whole Brillouin zone. We hav
deduced a self-consistent set of equations for electron
metals, taking into account some special features of the p
lem as the quasineutrality condition and neglecting the
placement current in Maxwell’s equations. The magne
permeabilitym has also been taken to be constant (m51).
These approximations were good enough to develop
electron plasma hydrodynamics in crystalline metals as w
as to consider magnetohydrodynamic effects.12

The problem is more complicated in bad conductors a
semiconductors, as well as at higher frequencies, when
displacement current cannot be neglected, the quasineutr
condition does not hold, ande and m are functions of the
deformation. We give in this work the solution of this ge
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eral case. The only assumption is that the constitute relat
are linear, i.e.,Di5 ê ikEk , Bi5m̂ ikHk .

In the present work we shall consider electrons, having
mind that the theory is valid for arbitrary quasiparticles. W
suppose for simplicity that the crystal considered is isotro
in its undeformed state. This means thate andm are taken as
scalars, but their derivatives with respect to coordinates
matrices and depend on the lattice symmetry. It is easy
generalize all the results for the case wheree and m are
tensors of the second rank. No essentially new results sh
be obtained for this case, but the corresponding relations
more cumbersome.

Finally, we would like to note that the problem consider
is related to some old questions about the electromagn
forces acting to the body, some specific features of elec
dynamics in moving media, the form of the electromagne
stress tensor in condensed matter, the role of momentum
quasimomentum, etc. Since we derive the full set of dyna
ics equations, all the forces are taken into account in a s
consistent way.

The paper is organized in the following way. In Sec.
we introduce the variables~discrete coordinates and invaria
quasimomentum!, write evolution equations for lattice vec
tors in real and reciprocal spaces, and express metrical
sors, deformation tensor, etc., in the new notation. In Sec
we reproduce briefly some of our previous results on
Hamilton equations and Boltzmann equation we need for
work. In Sec. IV, we deduce the full set of equations whi
describes the behavior of quasiparticles in deformable so
in electromagnetic fields. In Sec. V two simple applicatio
are considered which cannot be done in the frame of pr
ous theories.

II. NOTATION

Following our previous works1,2 ~see also Refs. 10,11 an
9! we consider a lattice with primitive vectorsaa , a
51,2,3, and introduce discrete coordinatesNa as the num-
ber of steps~each being equal toaa) in the lattice from the
origin to a given point. In this notation the differential coo
dinatesdr which are considered as physically infinitesim
~i.e., large compared to the lattice constants but small co
pared to any macroscopic distance of interest! can be written
in the form

dr5aadNa1u̇dt

or

dNa5aadr2aau̇dt,

whereaa are the reciprocal lattice vectors which satisfy t
relations

aaab5da
b , aa iak

a5d ik . ~7!

It is seen from the above equations that

aa5¹Na, aa5
]r

]Na
, u̇52aaṄa. ~8!
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4002 PRB 61DIMITAR I. PUSHKAROV
The time-evolution equations for the vectorsaa andaa can
be deduced from plain geometrical considerations~Appendix
A! and written as follows:1

ȧa1~ u̇¹!aa2~aa¹!u̇50, ~9!

ȧa1¹~aau̇!50. ~10!

In the notation used the metrical tensors in real and re
rocal space are, respectively,

gab5aaab , gab5aaab. ~11!

Then the lattice cell volume equalsg1/2, whereg5detgab .
The relations between the components of the metrical

sors and the deformation tensoruik follow from the expres-
sion for the interval:

ds25gabdNadNb. ~12!

The squared interval between the same points in the u
formed crystal is

ds0
25g° abdNadNb.

~Symbols with circles correspond to the undeformed
tice.! Hence

ds22ds0
252wabdNadNb, ~13!

where

wab5
1

2
~gab2g° ab! ~14!

plays the role of the deformation tensor in our notation. T
invariance of the interval yields

wabdNadNb5wikdxidxk. ~15!

Taking into account relations~7! and ~8! one obtains

wik5wabai
aak

b . ~16!

In order to obtain the componentsuik of the tensor of small
deformations~2! as well as to find the relation between th
deformation vectoru5r2r0 and the discrete coordinatesNa

introduced, let us note that the quantities]ui /]xk obviously
coincide with the matrix elementsa ik which describe the
coordinate transformations

xi5x° i1a ikx°k ~17!

and, consequently, the lattice vector transformations

ab i5a° b i1a ika° bk . ~18!

If the deformations are small, then

aa5a°a1daa , ab5a°b1dab. ~19!

Multiplying these two equations and taking into accou
relations~7! and ~17! yields in a linear approximation with
respect todab

dag i52~a° b idak
b!a° gk5a ika° gk . ~20!
-

n-

e-

-

e

t

On the other hand, the change of the discrete coordin
owing to the deformation can be written in the form

Na5N0
a2wa, ~21!

where wa is the deviation from the valueN0
a in the ideal

undeformed lattice. Taking into account Eq.~8! one obtains

aa5¹Na5a°a2¹wa ~22!

and, hence,

dai
a52

]wa

]xi
. ~23!

It follows from Eqs.~20! and ~23! that

]ui

]xk
5a ik5a° a i

]wa

]xk
5

]a° a iw
a

]xk
~24!

and therefore the deformation vectoru and the deformation
tensoruik in this linear case are related to their discrete c

ordinate analogies, wa and w° ab5 1
2 (]wa /]Nb

1]wb /]Na), in the following way:

u5a°awa, uik5w° aba° i
aa° k

b , ~25!

wherewa5g° abwb are the covariant components ofw.
In the same way one can obtain the full deformation te

sor components:10

wab5
1

2 S a°a

]u

]Nb
1a°b

]u

]Na
1

]u

]Na

]u

]NbD . ~26!

III. DYNAMICS AND KINETICS OF QUASIPARTICLES

The starting point when deriving Hamilton equations f
quasiparticles is that in the comoving frame (C system! the
dispersion law«(k,gab) coincides with both the Hamil-
tonian and energy. Hence, the equations of motion in thC
system can be written in the form

ṙ 85
]«

]k
, k̇52

]«

]r 8
. ~27!

We have to determine HamiltonianH(p,r ,t) as a function
of the coordinatesr and quasimomentump in the L system
in a way to have canonical equations

ṙ5
]H

]p
, ṗ52

]H

]r
. ~28!

According to the general theory of Hamilton mechanic
the Hamiltonian and the momentum can be obtained as
rivatives of the actionS(r ,t) with respect to the timet and
the coordinatesr . Equations~27! show that the variablesk
andr 8 are canonically conjugate. However, if one consid
r 8 as a continuous variable, then the corresponding quan
k has to be considered as momentum. Quasimomentum
to be conjugate to some discrete coordinate. Such coo
natesN ~with componentsNa) were introduced in Sec. II
Hence, we are able to take the actionS(N,t) as a function of
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PRB 61 4003DYNAMIC THEORY OF DEFORMABLE SOLIDS WITH . . .
these coordinates and the time. Then we can determin
HamiltonianH(k,N,t) and a new quasimomentumk as fol-
lows:

H~k,N,t !52S ]S

]t D
N

, ka5S ]S

]NaD
t

. ~29!

We call k the invariant quasimomentum, because all physi-
cal quantities, written as functions ofk, are periodic with a
constant period 2p ~not 2paa).

Let us consider the local dispersion law«(k,gab) as a
function of the invariant quasimomentum and the metri
tensorgab. Since it coincides with the Hamiltonian, one h

«~k,gab,t !52S ]S

]t D
N

, ka5S ]S

]NaD
t

. ~30!

Now let us consider a real electron which is performing
quasiclassical motion. Its wave function in the new variab
has the form

c~N,t !;expH i

\
S0~N,t !J , ~31!

whereS0(N,t) is the classical action. The transformation la
for the action follows from the transformation properties
the phase of the wave function under Galile
transformations:13

S5S01mu̇r2
mu̇2

2
t, ~32!

wherem is the mass of a free particle.
The Hamiltonian and the quasimomentum in the labo

tory frame can now be obtained as follows:2

p5S ]S

]r D
t

5aaka1mu̇, ~33!

H~p,r ,t !52S ]S

]t D
r

5«1pu̇2
mu̇2

2
, ~34!

where «5«„aa(p2mu̇),gab
… is a periodic function ofp

with periods 2p\aa determined by the reciprocal lattice ve
tors corresponding to the deformed local lattice. This is
reason to callp the quasimomentum of the quasiparticle
the L system.

It follows from Eq. ~33! that

ka5aa~p2mu̇!5kaa . ~35!

Hence, the invariant quasimomentum components are e
to the scalar product of the usual quasimomentumk in theC
system and the primitive vectors of the locally deform
lattice.

The energyE of a quasiparticle in theL system obeys the
Galilean law

E5
mu̇2

2
1mu̇

]«

]p
1«5

mu̇2

2
1p0u̇1«, ~36!
a

l

s

f

-

e

al

where p05m]«/]p is the average momentum~the mass
flow! in the C system.

Equations~33!–~36! replace the Galilean transformation
which are not valid for quasiparticles because of the pr
leged role of the crystal lattice frame.

We are able now to write the Boltzmann equation

] f

]t
1

] f

]r

]H

]p
2

] f

]p S ]H

]r
2FD5 Î f . ~37!

whereÎ is the collision operator. Note that this equation b
comes well defined for quasiparticles only after obtaining
Hamiltonian and the Hamilton equations.

It has been shown in Ref. 2 that this equation is comp
ible with the requirement of periodicity. This can be se
also from its form if f (k,r ,t) is taken as a function of the
invariant quasimomentumk and the quantitiesp andH are
substituted from Eqs.~33! and ~34!. This yields

d f

dt
1aa

]«

]ka
S ] f

]r D
k

2aa

] f

]ka
H m

du̇

dt
1S ]«

]r D
k

2m
]«

]kb
ab3curl u̇2FJ 5 Î f , ~38!

whered/dt5]/]t1(u̇¹) and all quantities are differentiate
with respect to the coordinates and the time at constantk.

The termmdu̇/dt takes into account noninertial prope
ties of the local frame. This is the term which is responsi
for the Stewart-Tolman effect in metals.

The term

m
]«

]kb
ab3curl u̇ ~39!

is of anessentially new kindand cannot be obtained in linea
theories. It is proportional to the bare massm and, hence, is
also responsible for noninertial effects.

The Lorentz force in our notation has the form

F52eE2
e

c

]«

]ka
aa3B2

e

c
u̇3B, ~40!

where E and B are the strengths of the electric field an
magnetic induction, respectively. Substituting Eq.~40! into
Eq. ~38! yields the transport equation for charged quasip
ticles with a charge2e (e.0):

d f

dt
1aaS ] f

]r D
k

]«

]ka
2aa

] f

]ka
H S ]«

]r D
k

1eẼ1
e

c

]«

]kb
ab3B̃J

5 Î f , ~41!

where

eẼ5eE1
e

c
u̇3B1m

du̇

dt
, B̃5B2

mc

e
curl u̇. ~42!

The first expression in Eqs.~42! consists of two parts —
the electrical forceeE8, where E85E1(1/c)u̇3B is the
field in the comoving frame, and the inertial forcemdu̇/dt.
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The second relation in Eqs.~42! can also be written in the
form B̃5curl@A2(c/e)mu̇#, whereA is the vector potentia
in an agreement with the well-known rule of replacement
the particle momentum in a magnetic fieldP→P2(e/c)A
where nowP5mu̇.

Taking into account that

m
du̇

dt
5mü1m~ u̇¹!u̇5mü1¹

mu̇2

2
2mu̇3curl u̇,

one can write the Boltzmann equation~41! in the form

] f

]t
1S u̇1aa

]«

]ka
D ~“ f !k2aa

] f

]ka
H @“~«1mu̇2/2!#k1eE

1
e

c S u̇1
]«

]kb
abD3B̃1müJ 5 Î f ,

where the derivatives with respect tor are taken at constan
k. The quantityV5u̇1(]«/]kb)ab is the velocity of the
quasiparticle in the laboratory frame and, therefore,

E1
1

c S u̇1
]«

]kb
abD3B

is the electric field in the quasiparticle frame. The effect
magnetic fieldB̃, however, is changed by the inertial ter
(mc/e)curl u̇.

We shall use also another form of the transport equat
The reason is that further on we need to integrate so
physical quantities over the Brillouin zone and take integr
by parts as well as differentiate with respect to the coo
nates and the time. However, the Brillouin zone bounda
are functions not only of the deformation at a given insta
but also of the local lattice velocity. The integration over t
Brillouin zone does not commutate with the differentiati
with respect to the time and the coordinates. As a result s
fluxes appear through the zone boundaries. This effec
important for nonequilibrium systems and open Fermi s
faces as well as for other cases when the partition functio
its derivatives do not vanish on the zone boundaries. T
inconvenience can be passed over by introducing a renor
ized partition function

w~k,r ,t !5 f /Ag. ~43!

The Boltzmann kinetic equation forw(k,r ,t) has the form

ẇ1divH S u̇1aa

]«

]ka
DwJ 2aa

]

]ka
wH ¹S «1

mu̇2

2
D

2mS u̇1
]«

]kb
abD3curl u̇1mü2FJ 5 Îw, ~44!

whereF is the acting force~say, Lorentz force!. It is worth
noting that the sum«1mu̇2/2 in Eqs.~41! and~44! is not the
quasiparticle energyE. Eq. ~36!, in the L system. It can be
expressed in terms of the energy or Hamiltonian. Relati
~33!–~36! yield
f

n.
e
s
i-
s

t,

e
is
-
or
is
al-

s

«1
mu̇2

2
5E2p0u̇5H2ku̇,

wherep05maa]«/]ka is the average momentum in theC
system andk is the corresponding quasimomentum.

The differentiation in Eq.~44! with respect tot and r is
carried out at constantk and hence commutates with*d3k.
Results obtained by such a procedure can easily be rewr
in the previously adopted variables by the following subs
tutions:

aa

]

]ka
↔ ]

]k
↔ ]

]p
,

^ f •••&[E d3p

~2p\!3
f ~p,r ,t !•••5

1

Ag
E d3k

~2p\!3
f ~p,r ,t !•••

5E d3k

~2p\!3
w~k,r ,t !•••[^^w•••&&, ~45!

E d3r •••5E d3Nag1/2
••• . ~46!

IV. CONSERVATION LAWS AND DYNAMICS
EQUATIONS

In order to avoid cumbersome expressions we shall m
our consideration in three steps. First we write the conse
tion laws and consider the problem in a general form with
taking into account the explicit form of Maxwell’s equation
and electromagnetic forces. Then we consider Maxwe
equations and constitute relations for moving media and
nally we combine the results and obtain the full se
consistent set of equations.

We start with the conservation laws.
The continuity equation for quasiparticles is

mṅ1div j050, ~47!

where

n5^^w&&5^ f &, j05mK ]H

]p
f L 5mK ]«

]p
f L 1mnu̇.

~48!

This equation follows directly from the Boltzman
equation.1

The total mass current is

J05ru̇1 j08 , ~49!

where

j085mK ]«

]p
f L ~50!

is the quasiparticle mass current with respect to the lat
andr5r01mn is the full mass density written as a sum
the lattice mass densityr0 and the quasiparticle mass de
sity.

The quantitiesr andJ0 satisfy the mass continuity equa
tion
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ṙ1div J050. ~51!

The full momentumJ is a sum ofJ0 and the field momentum
g:

J5J01g. ~52!

Note that in this casethe full momentum does not coincid
with the mass flow.

Our aim is to determine momentum and energy fluxesP ik
and Q in such a way as to satisfy the continuity equati
~51!, the momentum conservation law

J̇i1¹kP ik50, ~53!

and the energy conservation law

Ė1div Q50. ~54!

The energy in theL system is given by the expression

E5
1

2
r0u̇21E0~gab!1^^Ew&&1W, ~55!

whereE0(gab) is the strain energy in theC system, andW is
the field energy.

The time derivative of the energy, Eq.~55!, is then

Ė5ru̇ü1
1

2
ṙu̇21

]

]t
^^«w&&1müaaK K w

]«

]ka
L L 1Ė0

1mu̇ȧaK K w
]«

]ka
L L 1mu̇aaK K w

]«̇

]ka
L L

1mu̇aaK K ẇ
]«

]ka
L L 1Ẇ. ~56!

The time derivative of the elastic energyE0(gab) can be
taken in the following way:

Ė05
]E0

]gab
ġab52sabȧi

aai
b , ~57!

where

sab522
]E0

]gab
. ~58!

Substitutingȧi
a from the evolution equation~10! in Eq. ~57!

yields

Ė05sabai
bS ]ai

a

]xk
u̇k1ak

a ]u̇k

]xi
D . ~59!

On the other hand,

¹kE05
]E0

]gab
¹gab52sabai

b
]ai

a

]xk
. ~60!

It follows from Eqs.~59! and ~60! that

Ė05sabai
aak

b]u̇i

]xk
2u̇¹E0 . ~61!
The time derivative of the full momentum, Eq.~52!, gives

052 J̇1 ṙu̇1rü1mȧaK K ]«

]ka
w L L 1maaK K ]«

]ka
ẇ L L

1maaK K ]«̇

]ka
wL L 1ġ. ~62!

Multiplying Eq. ~62! by 2u̇ and adding the result to th
right-hand side of Eq.~56! yields

Ė5u̇J̇2
1

2
ṙu̇21sabai

aak
b]u̇i

]xk
2müaaK K w

]«

]ka
L L 2u̇¹E0

1Ẇ2u̇ġ1
]

]t
^^«w&&. ~63!

The last term is considered in Appendix B. Substituti
the time derivativesJ̇ and ṙ by means of Eqs.~53! and~51!
one obtains after cumbersome calculations

Ė1¹kH 1

2
ru̇2u̇k1u̇i~P ik2ru̇i u̇k1E0d ik1^^« f &&d ik!

2
1

2
mu̇2K ]«

]pk
f L 1 K «

]e

]pk
f L J

5
]u̇i

]xk
$P ik2ru̇i u̇k1s ik2^l ik f &1E0d ik2u̇i j 0i2u̇kj 0i%

1^« Î f &1 K F
]«

]p
f L 1Ẇ2u̇ġ, ~64!

where

l ik52
]«

]gab
ai

aak
b , s ik522

]E0

]gab
ai

aak
b . ~65!

The last three terms in Eq.~64! describe the change of th
field energy and field momentum and the effect of exter
forces. They depend on the concrete type of interaction.

If there are no external fields, then the last three term
Eq. ~64! should be omitted and the energy and moment
fluxes are

Qi5Eu̇i1 K «
]H

]pi
f L 2

1

2
u̇2Ji1P iku̇k , ~66!

P ik52~s ik1E0d ik!1ru̇i u̇k1^l ik f &2mK f
]«

]pi

]«

]pk
L

1mK f
]H

]pi

]H

]pk
L . ~67!

The momentum flux tensor consists of two partsLik and
Pik , which correspond to the contributions of the lattice a
quasiparticles, respectively:

Lik52~s ik1E0d ik!1r0u̇i u̇k , ~68!
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Pik5^l ik
0 f &1mK f

]H

]pi

]H

]pk
L , ~69!

where

^l ik
0 f &5^l ik f &2mK f

]«

]pi

]«

]pk
L

is the quasiparticle momentum flux tensor in the system
center of mass whilêl ik f & corresponds to the comovin
frame. It can be shown~Appendix C! that the sums ik
1E0d ik corresponds~but coincides in linear approximatio
only! to the stress tensor of the linear elasticity theory a
turns into pressure for isotropic media.

Finally, the equation of the elasticity theory for an elas
crystalline body with quasiparticle excitations in the abse
of external fields takes the form

]

]t
~ru̇i !52

]P ik

]xk
2

] j 0i

]t
. ~70!

The last term on the right-hand side describes the fo
which appears when varying the quasiparticle mass cur
with respect to the lattice.

Let us now consider the effect of the electromagne
field. Maxwell’s equations are

curlE52
1

c

]B

]t
, curlH5

4p

c
je1

1

c

]D

]t
, ~71!

div D54pq, div B50, ~72!

where je5 je81qu̇, q5q02en is the charge density (q0 be-
ing the lattice charge!, and

je852
e

m
j08 , e.0, ~73!

is the electron current density in the comoving frame.
We have now to take into account the field terms in E

~64! containing the densities of the field energyW, the field
momentumg, and the Lorentz forceF.

Before going on we would like to mention that the extr
neous charges have to be considered as a separate sy
They are not accounted for in the Boltzmann equation
well as in the Lorentz force~40!. Therefore, one needs som
additional equations. In metals, this additional equation is
quasineutrality condition2 q05en. This is a good approxi-
mation also for semiconductors at low frequencies. The
havior of the systems of electrons and other charges in
crystal depends on the problem considered. This is not
aim of our work. The presence of extraneous charges ma
the whole system open and conservation laws~47!–~55! do
not present a full system. One has to take into account b
the mechanical work and that of the induced forces. If
only current carriers are electrons, then one has to puq
50. However, in order to keep the general form of Ma
well’s equations we shall compensate the miss
contribution14 to the time derivative of the field energy by
term ẇ52u̇@qE1(1/c) j e3B#.

Therefore, the full field contribution is
f

d

e

e
nt

c

.

tem.
s

e

e-
e
e
es

th
e

g

Ẇf5 K F
]«

]p
f L 1Ẇ2u̇ġ1ẇ. ~74!

Maxwell’s equations~71! and ~72! are written in theL
system. They have to be supplemented by constitute r
tions. However, one has to keep in mind that these relati
have their known simple form only in the comoving fram
In that frame one has

D85eE8, B85mH8, ~75!

where

D85D1
1

c
v3H, E85E1

1

c
v3B, ~76!

B85B2
1

c
v3E, H85H2

1

c
v3D, ~77!

andv5u̇ is introduced for convenience.
It is easy to see that

vD5vD85evE85evE, vB5vB85mvH85mvH.
~78!

Relations~75!–~78! are exact although Eqs.~76! and~77!
coincide to the letter to the field transformations with
accuracy tov/c.16

When taking the time derivative of the field energyẆ in
Eq. ~74! one has to keep in mind that the permeabilitiesm
and e in a nonstationary deformed media are functions
space and time. For example, the variation of the electr
part of the field energy in the lattice frame is

dWE85
1

4p
E8dD85

1

4p
$E82de1eE8dE8%5

E82

8p
de1d

eE2

8p
.

Therefore, the full variation ofW in time can be written in
the form

Ẇ5
1

4p
~EḊ1HḂ!

5
1

4p S E82
v

c
3BD S Ḋ82

v

c
3ḢD

1
1

4p S H81
v

c
3DD S Ḃ82

v

c
3ĖD

5
]

]t

eE821mH82

8p
1

E82

8p
ė1

H82

8p
ṁ1v~ ġ1Ġ!

1
]

]t

e~v3E8!21m~v3H8!2

8pc2
1

~v3E8!2

8pc2
ė

1
~v3H8!2

8pc2
ṁ10~v3/c3!, ~79!

where

g5
E3H

4pc
, G5

D3B

4pc
. ~80!
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From here on we shall restrict our consideration within
accuracy tov/c @neglecting termsO(v2/c2)#. Then

Ẇ2vġ5
]

]t

eE821mH82

8p
1

E82

8p
ė1

H82

8p
ṁ1vĠ. ~81!

The quantitiese andm are functions of the metrical tenso
gab. So their time derivativesė and ṁ can be treated in the
same way as the derivative ofE0 @cf. Eqs.~57!–~61!#. This
yields

ė52e ik

]v i

]xk
2v¹e, ṁ52m ik

]v i

]xk
2v¹m, ~82!

where

e ik52
]e

]gab
ai

aak
b , m ik52

]m

]gab
ai

aak
b . ~83!

Substituting Eqs.~82! and ~83! into Eq. ~81! and making
use of the Poynting theorem one obtains

Ẇ2vġ52div S82 je8E82S E82

8p
e ik1

H82

8p
m ikD ]v i

]xk

2vS E82

8p
¹e1

H82

8p
¹m D 1vĠ. ~84!

Neglecting terms of the orderO(v2/c2) in Eq. ~79! means
that one can replaceĠ by Ġ8. The time derivativeĠ8 can be
transformed using Maxwell’s equations in the comovi
frame. This yields

vĠ852vS qE81
1

c
je83B8D1v i¹kt ik8

1vS E82

8p
¹e1

H82

8p
¹m D , ~85!

where

t ik8 5
e

4p
S Ei8Ek82

E82

2
d ikD 1

m

4p
S Hi8Hk82

H82

2
d ikD ~86!

is Maxwell’s stress tensor in the comoving frame. It is ea
to show using Eqs.~76!–~78! that

vS qE81
1

c
je83B8D5vS qE1

1

c
je3BD5 j eE2 j e8E8.

The term which contains Lorentz force in Eq.~74! can be
calculated by means of Eq.~40!:
n

y

K F
]«

]p
f L 5EK 2e

]«

]p
f L 2

e

c
BK ]«

]p
3

]«

]p
f L

1
1

c
u̇3BK 2e

]«

]p
f L

5 je8S E1
u̇

c
3BD 5 je8E8. ~87!

The same term, but with a negative sign exists also in
~84!. Therefore, the total work related to the Lorentz for
~the mechanical one and that of the electromotive forc!
equals zero as it should. The terms related to the extrane
charges cancel for the same reason. Finally,

Ẇf52div S81¹kv i t ik8 2Tik8
]v i

]xk
, ~88!

where

Tik8 5
1

4p
H eEi8Ek81

E82

2
~e ik2ed ik!

1mHi8Hk81
H82

2
~m ik2md ik!J . ~89!

Hence, one has to add the term

Qi
f5Si82vkt ik8 5Si2v iW ~90!

to the energy flux density in Eq.~66!, as well as the term
2Tik8 to the momentum flux tensorP ik in Eq. ~67!.

The elasticity theory equation takes then the form

]

]t
~ru̇i !52

]Lik

]xk
2

]Pik

]xk
1

]Tik8

]xk
1

m

e

] j ei8

]t
2

]gi

]t
. ~91!

The current and the electromagnetic stress tensorT̂8 are
written in the lattice frame. Note that the term with the ele
trical current represents, in fact, the electron mass flow~the
momentum, associated with the current!. That part of the
electron mass current, which moves together with the latt
is included inr on the left-hand side of the equation. Th
electromagnetic momentum flux tensor in theL system has
the form

Tik5
1

4p
~eEiEk1mHiHk!1~e ik2ed ik!

E2

8p

1~m ik2md ik!
H2

8p
1v iGk1vkGi2v igk2vkgi .

~92!

Obviously, for small velocities one can replaceTik8 by the
corresponding tensorTik in the L system.

If electrons in a good conductor~metal! are considered,
then the quasineutrality condition holds and the displacem
current as well as the field momentag andG have to be put
to zero. Actually, the two terms on the right-hand side
Ampére’s law can be considered as expansion with respec
the electric field frequency:
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j1
1

4p

]D

]t
'sE1

ve

4p
E.

In metalss@ve/(4p), and the displacement current can
neglected. As a result, one has

Tik
metal5

m

4p
HiHk1~m ik2md ik!

H2

8p
. ~93!

This tensor contains an additional term (H82/8p)m ik com-
pared to our previous works,2,10–12 in which the magnetic
permeability has been taken constant. As shown in Appen
C in the case of a noncrystalline body~e.g., fluid! the quan-
tities m ik ande ik have to be replaced by (r ]m/]r)Td ik and
(r ]e/]r)Td ik , correspondingly~compare Ref. 15, Sec. 56!.

V. PARTICULAR CASES

Let us consider some simple cases in order to show
influence of the new terms in Boltzmann equation as wel
to compare our results with those obtained in linear appro
mations.

Having in mind applications to transport phenomena
transform the Boltzmann equation~41!, substituting the par-
tition function as a sumf 5 f 01 f 1 where f 0(«2z) (z being
the chemical potential! corresponds to a local equilibrium
and f 1 is the nonequilibrium part. We assume for simplici
T5const. Then the time derivative off 0 is

] f 0

]t
5

] f 0

]«
~ «̇2 ż !. ~94!

The derivative«̇ is calculated in Appendix B and has th
form

«̇52l ik

]u̇i

]xk
2u̇~“«!k ,

wherel ik5labai
aak

b . In the same way

ż52z ik

]u̇i

]xk
2u̇“z, z ik5

]z

]gab
ai

aak
b ,

¹ f 05
] f 0

]«
¹~«2z!,

] f 0

]ka
5

] f 0

]«

]«

]ka
.

The transport equation takes, therefore, the form

ḟ 11V•¹ f 12aa

] f 1

]ka
H ~¹«!k1eE1

e

c
V3B̃1mü1¹

mu̇2

2 J
5 Î f 11

] f 0

]«
H L ik

]u̇k

]xi
1vqJ , ~95!

whereL ik5l ik2z ik , V5u̇1v, v5aa]«/]ka , and

q5eE1
e

c
u̇3B̃1mü1¹S z1

mu̇2

2
D . ~96!
ix

e
s
i-

e

As long asf 1 is not supposed to be small the transport eq
tion ~95! is equivalent to Eq.~41!. For a small deviation from
equilibrium one has to replacef 0(«2z)→ f 0(«02z0),
]«/]ka→]«0 /]ka .

Equation~95! can be considered as a generalization of
linearized transport equation used when considering the e
tromagnetic generation of sound~cf., e.g., Refs. 7 and 17!.

A. Rotating bodies: Fokker-Plank equation

Let us consider, first, the diffusion in a rotating bod
Having the diffusion coefficient one can find the mobili
and conductivity by means of the Einstein relation. We
sume that quasiparticles obey Boltzmann statistics withf 0
;e(z2«)/T and take the collision integral in the Fokker-Plan
approximation.18 In our notation it has the form

Î f 5
]

]ka
S f 0

Bab

T

]x

]kb
D , ~97!

where f 5 f 0(11x/T), f 15 f 0x/T5(2] f 0 /]«)x, andBab
is the diffusion coefficient ink space. We assume, for sim
plicity, that Bab is a function of temperature only. If the
body rotates with a constant velocityv, then curlu̇52v. To
obtain the diffusion coefficient one needs only the odd p
of x under the inversionka→2ka . The corresponding
transport equation~for smallx but not small velocities! takes
then the form

ẋ2
]«

]ka
aa¹z5

]«

]ka

]x

]kb
S 1

T
Bab12mv~aa3ab! D .

~98!

It is seen, therefore, that the new inertial term

m
]«

]ka
aa3curl u̇52m

]«

]ka
aa3v

is directly added to the diffusion coefficient ink space. The
diffusion coefficient in real space can be obtained from
relation

mT2Dab
215Bab12mTv~aa3ab!, Dik5aa iDababk .

If, for simplicity, Bab5B0dab whereB0;Tn and v is di-
rected along thez axis, then the diffusion coefficient compo
nents are

Dxx5Dyy;
bTn

b2T2n221v2
, Dzz;T2n

~whereb5const). This means that at large enough frequ
ciesv the diffusion in thexy plane can change its temper
ture dependence fromD;T2n to D;Tn22. The uniform
rotation of a metal cannot give a significant effect~the fre-
quencyv has to be of the order of the cyclotron frequen
V5eB/me f fc). However, the termmv3curl u̇ may come
also from the transverse sound waves with high enough
quencies. The effect of rotating is observable for delocaliz
vacancies~vacancions!,19 wheren59. Therefore, in a rotat-
ing quantum crystal diffusion can decrease along thez axis
with increasing temperature and increase in a radial dir
tion.
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B. Pinning of magnetic lines in metals: Magnetoacoustic
effects

The magnetic fieldB enters in the transport equation on
in a combinationB̃5B2(mc/e)curl u̇. As a result, the cur-
rent density in a deformed metal takes the form2

j5ŝ~B̃!H E1
1

c
u̇3B̃1

1

e
¹S z1

mu̇2

2
D 1müJ , ~99!

whereŝ is the conductivity tensor of a uniformly deforme
immobile metal as a function of magnetic field. Let us su
stitute this expression in Maxwell’s equation~71! and ne-
glect the displacement current@cf. the text before Eq.~93!#:

curlH5
4p

c
sH E1

1

c
u̇3B̃1müJ . ~100!

Applying the curl operator to both sides of this equation a
substituting curlE from Eq. ~71! yields

Ḃ5curl~ u̇3B̃!1
mc

e
curl ü2

c2

4ps
curl curlH. ~101!

The left-hand side of this equation is of the order ofvmH,
while the last term on the right-hand side is of the order

c2k2

4ps
H'v

v

4ps
H!vH.

Hence, the last term in Eq.~101! must be neglected and Eq
~101! takes the form

Ḃ̃5curl u̇3B̃. ~102!

Let us consider the mass continuity equation

ṙ1div ~ru̇!50, ~103!

wherer is the full mass density of ions and electrons. W
introduce now the effective magnetic fieldBe f f5B̃/r. It is
easy to see that Eqs.~102! and ~103! yield the following
equation forBe f f:

Ḃe f f1~ u̇•¹!Be f f2~Be f f
•¹!u̇50. ~104!

This equation coincides with the evolution equation~9! for
the lattice vectorsaa . Therefore, if the effective magneti
field vector lines in a given instant are along theaa lines,
they will move together with them all the time~pinned!. The
situation is similar to the pinning of magnetic fieldH/r in
plasma~see Ref. 15!. It is worth noting that Eq.~104! does
not depend on the properties of the magnetic permeab
and its dependence on deformations. Equation~104! shows a
new kind of magnetoacoustic interaction. This effect co
cerns transverse sound waves only. Other magnetoaco
effects are described by Eq.~96! and elasticity theory equa
tion ~91!.

VI. CONCLUSION

In this work we have considered the dynamics and kin
ics of charged quasiparticles with arbitrary dispersion re
tions in deformable crystalline structures. We have cho
-

d

ty

-
tic

t-
-
n

the most general case of time-varying deformations when
quasimomentum is not a good quantum number and en
does not coincide to the Hamiltonian. We have derived a
self-consistent set of equations which consists of the non
ear elasticity theory equation~91!, the Boltzmann equation
~41! or ~44!, and Maxwell’s equations supplemented by co
stitute relations. The Boltzmann kinetic equation~41! is valid
for the whole Brillouin zone and contains a new term resp
sible for some inertial effects. The elasticity theory equat
is derived from the conservation laws written in the mo
general form. The only approximation is that the electrom
netic field transformations are taken with an accuracy
O(v2/c2). Any higher accuracy for the solid-state theo
now would be pointless. In such a way the theory presen
is exact in the frame of the quasiparticle approach. It can
used for any material~metal, semiconductor, quantum cry
tal, low-dimensional structures, etc.! with linear relations be-
tween electromagnetic fields. It is easy to write the cor
sponding set of equations for more than one type
quasiparticles~e.g., electrons and holes!.

In the case of electrons in metals the results obtained
well to those of our previous works.2,10
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APPENDIX A

The evolution equation~9! for the primitive vectorsaa
can be deduced from the following considerations~we shall
omit the subscripta for convenience!. The lattice vector
a(r ,t) at instantt is defined by the two lattice sitesr1(t) and
r2(t): a5r22r1. After a time intervaldt the lattice vector
changes toa8(r 8,t1dt)5r282r18 . The new positions of the
lattice sites are obviouslyr185r11v(r1)dt and r285r2

1v(r2)dt, where the velocity of the lattice siter in the mo-
mentt is denoted byv(r )5u̇(r ). It follows from the last two
equations that

a82a5@v~r2!2v~r1!#dt.

Taking into account thatv(r2)5v(r11a)5v(r1)1(a¹)v
anda85a(r1vdt,t1dt)5a1@ ȧ1(v¹)a#dt one obtains

ȧ1~v¹!a2~a¹!v50. ~A1!

This equation coincides with Eq.~9! in Sec. II. It conserves
automatically the lattice vectors lines. In fact, thea-vector
line conservation condition consists in collinearity ofa and
the left-hand side Eq.~A1!,20 i.e., in

@ ȧ1~v¹!a2~a¹!v#3a50. ~A2!

Hence, Eq.~A1! describes deformations which do not bre
or cross crystalline lines with equala. This means that in a
crystal lattice free of dislocations the three functionsNa(r ,t)
are single valued, and Eq.~A1! describes completely the
evolution of the lattice configuration.
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The evolution equation for the reciprocal lattice vecto
aa can be obtained from Eq.~A1! and the relation

aa5
]Na

]r
. ~A3!

The latter follows directly from the expression for the phy
cally infinitesimal differential coordinates at a given insta
dr5aadNa and relations~7!. Multiplying Eq. ~A1! by ak

a

yields

ak
aȧa i1ak

a~ u̇¹!aa i2ak
aaas¹su̇i50. ~A4!

Taking into account relations~7! one has

aa i„ȧk
a1~ u̇¹!ak

a
…1¹ku̇i50. ~A5!

Multiplying this equation withai
b yields

ȧa1¹~aau̇!50. ~A6!

In obtaining Eq. ~A6! we have taken into account tha
¹ iak

a2¹kai
a50 as a consequence of Eq.~A3!.

Substituting Eq.~A3! into Eq. ~A6! gives

¹~Ṅa1aau̇!50

and, hence,

u̇52aaṄa, Ṅa52u̇aa. ~A7!

It follows from Eqs.~A3! and ~A7! that

dNa5
]Na

]r
dr1

]Na

]t
dt5aadr2aau̇dt. ~A8!

This expression coincides with that given in Sec. II. It can
written also in the form used in the text:

dr5aadNa1u̇dt.

APPENDIX B

To obtain the time derivative of the quasiparticle ener
density one can use the transport equation~44! for w(k,r ,t).
Since the fluxes through the Brillouin zone boundaries in t
notation equal zero, it can be written in its integrated by pa
form

ẇ1divH S u̇1aa

]e

]ka
DwJ

1aaH ¹e1m
du̇

dt
2m

]e

]kb
ab3curl u̇2FJ w

]

]ka
5 Îw.

~B1!

We have to transform the expression

]

]t
^e f &5^^ėw&&1^^eẇ&&. ~B2!

As the derivative with respect tot is taken at constantk one
can use the same procedure, as when obtaining Eq.~61!. This
yields
t

e

y

s
ts

ė5S ]e

]t D
k

5
1

2
labġab52labai

aak
b]u̇i

]xk
2u̇~¹e!k ,

~B3!

where

lab52
]e

]gab
5lba . ~B4!

Multiplying Eq. ~B3! by w and Eq.~B1! by e one obtains
after substituting into Eq.~B2!

]

]t
^e f &5^^e Îw&&2divS u̇^^ew&&1aabK K e

]e

]ka
w L L D

1aaK K F
]e

]ka
w L L 2müaaK K ]e

]ka
w L L

2
]ui

]xk
S mu̇kaa i K K ]e

]ka
w L L 1ai

aak
b^^labw&& D

5^e Î f &2divS u̇^e f &1 K e
]e

]p
f L D1 K F

]e

]p
f L

2müK ]e

]p
f L 2

]u̇i

]xk
S mu̇kK ]e

]pi
f L 1ai

aak
b^lab f & D ,

where the rules~45! are used to replace the double brack
by single ones. This expression is used when obtaining
~64!.

We would like here to point out how easily this formu
has been obtained. For comparison, the expression w
corresponds to Eq.~B3! in variablesp,r ,t has the form

S ]e

]t D
p

52labai
aak

b ]u̇i

]xk
2mü

]e

]p
2u̇~¹e!p

1S pi

]e

]pk
2mükD ]u̇i

]xk
.

This expression is both cumbersome and nonperiod
which creates additional difficulties.

APPENDIX C

The lattice contributionLik to the momentum flux density
tensorP ik is given by Eq.~68!. The term in the brackets ca
be written in the form

s ik1E0d ik5~sab1E0gab!ai
aak

b , ~C1!

whereE0(gab) is the strain energy per unit volume.
In an isotropic medium the dependence ofE0 on gab is

reduced to a dependence ong5detgab :

sab522
]E0

]g

]g

]gab
.

By the well-known formula

dg52ggabdgab,
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one obtains easily

sab52g
]E0

]g
aa lab l

and, hence,

s ik52g
]E0

]g
aa lab lai

aak
b52g

]E0

]g
d ik . ~C2!

Taking into account thatg is the squared volume of a un
cell (g5V2) and thatV51/r one obtains

s ik52r
]E0

]r
d ik . ~C3!

Hence, it is seen, that in an isotropic case,

2ai
aak

b ]

]gab
→ d ikr

]

]r
. ~C4!

Let now Ẽ0 ands be the internal energy and entropy p
unit mass (Ẽ05E0V). Making use of the thermodynami
relation
B

t

dẼ05Tds2PdV1mdN, ~C5!

one can define the pressureP as

P52S ]Ẽ0

]V
D

s,N

52S ]E0V

]V D
s,N

52E01rS ]E0

]r D
s,N

.

~C6!

It follows from Eqs. ~C3! and ~C6! that in an isotropic
medium

s ik1E0d ik52Pd ik . ~C7!

It is supposed in our consideration that the only contrib
tion to the entropy is due to quasiparticles and this contrib
tion comes from the transport equation. Therefore, the
rivatives of E0 with respect to the metrical tenso
componentsgab are assumed as taken at constant entrop

An alternative approach can be based on the free ene
thermodynamic potential per unit volumeF(T,P,N). In that
case one obtains

2P5F2rS ]F

]r D
T

. ~C8!
i

s
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