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A full self-consistent set of equations is deduced to describe the kinetics and dynamics of charged quasi-
particles(electrons, holes, efcwith arbitrary dispersion law in crystalline solids subjected to time-varying
deformations. The set proposed unifies the nonlinear elasticity theory equation, a Boltzmann kinetic equation
for quasiparticle excitations, and Maxwell's equations supplemented by the constitute relations. The kinetic
equation used is valid for the whole Brillouin zone. It is compatible with the requirement for periodidity in
space and contains an essential new term compared to the traditional form of the Boltzmann equation. The
theory is exact in the frame of the quasiparticle approach and can be applied to metals and semiconductors, as
well as to other crystalline solids including quantum crystals and low-dimensional lattice structures. Instructive
examples concerning the form of the Fokker-Plank equation as well as the pinning of effective magnetic
induction lines in deformable metals are considered.

I. INTRODUCTION The second problem is related to the fact that the crystal
lattice plays the role of a privileged coordinate frame and no
There are two fundamental problems when dealing withGalilean transformations for quasiparticle characteristics ex-
quasiparticles in crystalline structures. The first one is relateést. The lack of transformation laws for such quantities as the
to the fact that the quasimomentuarand the dispersion law energy, Hamiltonian, and quasimomentum means, in fact,
e(k) of a quasiparticle are well defined only in an ideal that there is no consistent quasiparticle mechanics. The most
periodic lattice. In such a lattice the dispersion law and alffundamental quantity, the dispersion law, is known in a co-
other physical quantities are periodic functions in the recip-moving frame attached to the lattice and this frame is even
rocal spaceK space. However, in any real system the crys- not inertial at time-varying deformations. On the other hand,
tal lattice is deformede.g., by impurities, elastic deforma- all fundamental physical equations, such as conservation
tions, external fields, etc. The most complicated problems laws, variational principles, kinetic equations, etc., take place
concern the quasiparticle dynamics in a time-varying dein the laboratory framel( system. However, the concept of
formed crystal lattice. In an exact description all physicalthe dispersion law does not exist in thesystem. Hence, in
characteristics of a quasiparticle have to be periodic funcprinciple, even if the mechanics equations for a quasiparticle
tions of the quasimomentum with periods which are func-were known in theC system, they remain unknown in the
tions of the coordinates and the time. This leads to a depersystem.
dence of the Brillouin zone boundaries not only on the These problems are as old as the quasiparticle approach
deformation at a given instant, but also on the local latticatself. They are well known, for example, in the theory of
velocity 12 metals®~® Many attempts have been made to derive a com-
As for the stationaryor quasistationagycase, this diffi-  plete system of dynamic equations, consisting of equations
culty has usually been passed over by introducing a localrom the theory of elasticity, the Boltzmann kinetic equation
dispersion lawe (k,u;) and further expansion in powers of for the electron gas, and Maxwell's equatioft$. Refs. 7

the small deformation tensor componeng: and 8 and references cited thepein

The attempts to deduce the equations of motion for a qua-

(K, Uji) = &o(K) + N (K) Ujic (1)  siparticle in anL system can be divided into two groups
corresponding to the twofold role of the dispersion law. In

where\;, are the deformation potential components, the comoving frame it coincides with both the energy and
Hamiltonian. Therefore transformations typical of the energy

1/du; 9x and Hamilton function have been proved.
Uik(r)= 5((9_)(k+(9_xk ' 2) When considering (k,u;) as the Hamiltonian a transfor-

mation by a substitutional function of the form
andu is the deformation vector. Such an approéafown as ~
the local lattice approaglis based on the assumption that the O(r',p,t)=[r"+u(r',t)]p 3

deformations are small and smooth functions of position an . . .
P (gjas been used and the following relations have been obtained

time and possesses all shortcomings of any linearized theor see, e.q., Refs. 7 and:8

In addition, the Boltzmann transport equation becomes in-
compatible with the requirement of periodicity. To avoid any 3
misunderstandings, note that Eq4$) and (2) are written in k=p+—_(up), H(p,r,t)=2(k,r',t)+up,
the comoving frame. ar’
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wherer=r'+u are the coordinates in tHesystem ang is  eral case. The only assumption is that the constitute relations
supposed to be the corresponding quasimomentum. Hovgre finear, i.e.D;= €Ey, B;= i Hy-

ever,® does not depend on the bare mas®f the quasi- In the present work we shall consider electrons, having in
particle and therefore does not take into account any inertiahind that the theory is valid for arbitrary quasipatrticles. We
effects(e.g., the Stewart-Tolman effect in metals, centrifugalsuppose for simplicity that the crystal considered is isotropic
forces in rotating bodies, ejc. in its undeformed state. This means thatndu are taken as

If e(k,u;,) is considered as quasiparticle energy, then thescalars, but their derivatives with respect to coordinates are
Galilean transformation applies as a consequence of the reaatrices and depend on the lattice symmetry. It is easy to
quirement that the energy densifgd®k (as a macroscopic generalize all the results for the case wherand u are

quantity) obey Galilean transformations. This yields tensors of the second rank. No essentially new results should
be obtained for this case, but the corresponding relations are
~ -dgg more cumbersome.
£=eo(k)+Ni(k)uiy+ MUK ) Finally, we would like to note that the problem considered

is related to some old questions about the electromagnetic
It has been shown by many authors that such a transfoforces acting to the body, some specific features of electro-
mation is incompatible with the Boltzmann equation. That isdynamics in moving media, the form of the electromagnetic
why some artificial ways have been used, the most successtress tensor in condensed matter, the role of momentum and
ful being that of Landaycf. the footnote in Ref. 7 He has  quasimomentum, etc. Since we derive the full set of dynam-
suggested thatin order to take into account the noninertial ics equations, all the forces are taken into account in a self-
properties of the lattice frameone has first to add to the consistent way.
dispersion law(1) the term—mu de/ dk, setting The paper is organized in the following way. In Sec. Il.
we introduce the variablgsliscrete coordinates and invariant
guasimomentum write evolution equations for lattice vec-
tors in real and reciprocal spaces, and express metrical ten-
sors, deformation tensor, etc., in the new notation. In Sec. Il
and then to apply the transformation by the substitutionalye reproduce briefly some of our previous results on the
function (3). The result is Hamilton equations and Boltzmann equation we need for this
work. In Sec. IV, we deduce the full set of equations which
U. (6) describes the behavior of quasiparticles in deformable solids
in electromagnetic fields. In Sec. V two simple applications

] ) are considered which cannot be done in the frame of previ-
This procedure has been used in most recent works. Howss theories.

ever, it cannot be well grounded due to its internal inconsis-
tency. In fact, if we consider the expressi@) as energy and

take a constant velocity, then we come to the wrong con-
clusion, that the energy in an inertial frame could depend on Following our previous works’ (see also Refs. 10,11 and
the frame velocity. The same confusion follows for the en-9) we consider a lattice with primitive vectora,, «
ergy density which must strictly obey the Galilean principle.=1,2,3, and introduce discrete coordinal¢% as the num-
Note that we may not consider E(B) as a Hamiltonian, ber of stepgeach being equal ta,) in the lattice from the
because the Hamilton function inGsystem coincides with  origin to a given point. In this notation the differential coor-
the dispersion law in accordance with the Hamilton equationdinatesdr which are considered as physically infinitesimal
r'=v=2agel kK. (i.e., large compared to the lattice constants but small com-

These shortcomings have been removed in our previougared to any macroscopic distance of intereah be written
works-?? (see also Refs. 10 and Jlivhere transformations in the form
to replace the Galilean ones have been deduced and the qua-
siparticle mechanics equations in Hamiltonian form have dr=aadN“+Udt
been presented. This enabled us to derive a Boltzmann-like
kinetic equation valid in the whole Brillouin zone. We have or
deduced a self-consistent set of equations for electrons in
metals, taking into account some special features of the prob- dN“=a%dr — a®udt,
lem as the quasineutrality condition and neglecting the dis-
placement current in Maxwell’'s equations. The magnetiovherea® are the reciprocal lattice vectors which satisfy the
permeabilityu has also been taken to be constaat(1). relations
These approximations were good enough to develop the
electron plasma hydrodynamics in crystalline metals as well a,a’=6%, ajal=édy. (7
as to consider magnetohydrodynamic effééts.

The problem is more complicated in bad conductors and |t js seen from the above equations that
semiconductors, as well as at higher frequencies, when the
displacement current cannot be neglected, the quasineutrality

" i ar . )

condition does not hold, and and w are functions of the a*=VN¢, a,= . u=-a,N®, (8)
deformation. We give in this work the solution of this gen- IN?

8(k!uik):So(k)"')\ik(k)uik_muz_iy )

de

ak

F'(P,r,t)zso(k)+?\ik(k)uik+(P_m

II. NOTATION
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The time-evolution equations for the vect@s anda®“ can On the other hand, the change of the discrete coordinates
be deduced from plain geometrical consideratigfgpendix  owing to the deformation can be written in the form
A) and written as follows:

N¢=Ng—w*, (21
2+ (UV)3,~ (3, V)u=0, ©) wherew® is the deviation from the valudly in the ideal
. : undeformed lattice. Taking into account one obtains
a*+V(a“u)=0. (10 g H8)
In the notation used the metrical tensors in real and recip- a*=VN*=a'—Vw" (22
rocal space are, respectively, and, hence,
Jup= 485, gaB: a%af. (11 sa IWe -
. a'=— .
Then the lattice cell volume equais’™®, whereg=detg,,. ' X (23)

The relations between the components of the metrical tenl—t follows from Egs.(20) and (23) that
sors and the deformation tensagy, follow from the expres- '

sion for the interval: au . awe ﬁaaiW“ y
ds?=g,zdN“dN”. (12) ax kT Bai g T T @49

The squared interval between the same points in the undand therefore the deformation vectorand the deformation

formed crystal is tensoru;, in this linear case are related to their discrete co-

ordinate  analogies, w®  and \7va,3=%(awa/o"Nﬁ

ds5=0.sdN“dN~. +aw,/aN%), in the following way:

(Symbols with circles correspond to the undeformed lat- °o o 0,05

tice) Hence u=a,W%  Uix=W,pa; ay, (29

dsz—ds§:2w dN*dN? (13) wherewazaaﬁwﬁ are the covariant components wf

“h In the same way one can obtain the full deformation ten-
where sor component’
1
_ ° 1/ du o du Ju du
Wap=75(9ap~ Yap) (14 Wop=> | Bg——st8g—+———|.  (26)
2\ TTgNP P gNe 9N gNP

plays the role of the deformation tensor in our notation. The
invariance of the interval yields lll. DYNAMICS AND KINETICS OF QUASIPARTICLES

W, gdN“dNF=w; dx'dx . (15) The starting point when deriving Hamilton equations for
Taking into account relation&) and (8) one obtains quasiparticles is that in the comoving fram@ gystem the

dispersion lawe(k,g*?) coincides with both the Hamil-
Wi =W, gafaf . (16)  tonian and energy. Hence, the equations of motion inGhe

. system can be written in the form
In order to obtain the components, of the tensor of small
deformations(2) as well as to find the relation between the C oe _ Je
deformation vectou=r—r, and the discrete coordinath r'= K k=— —. (27)
introduced, let us note that the quantitias / 9x, obviously or

coincide with the matrix elementa;, which describe the

coordinate transformations We have to determine Hamiltoniah(p,r,t) as a function

of the coordinates and quasimomenturp in the L system

Xi=;<i+ aik;k 17) in a way to have canonical equations
and, consequently, the lattice vector transformations P ﬁ p=— ﬁ 28)
. . ap’ ar’
aBi:aBi+aikaBk. (18) i . .
According to the general theory of Hamilton mechanics,
If the deformations are small, then the Hamiltonian and the momentum can be obtained as de-
R o rivatives of the actior5(r,t) with respect to the time¢ and
a,=a,+da,, af=af+sal. (19 the coordinates. Equations(27) show that the variablek

o . o andr’ are canonically conjugate. However, if one considers
Multiplying these two equations and taking into account,s 45 5 continuous variable, then the corresponding quantity
relations(7) and (17) yields in a linear approximation with  pas tg be considered as momentum. Quasimomentum has
respect toda’ to be conjugate to some discrete coordinate. Such coordi-
o o o natesN (with componentdN“®) were introduced in Sec. Il
da,;=—(ag6ag)a = ayd k. (200 Hence, we are able to take the actiB(N,t) as a function of
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these coordinates and the time. Then we can determine ehere po=mde/dp is the average momenturfihe mass

HamiltonianH (#,N,t) and a new quasimomentumas fol-  flow) in the C system.

lows: Equations33)—(36) replace the Galilean transformations,
which are not valid for quasiparticles because of the privi-
leged role of the crystal lattice frame.

(29 We are able now to write the Boltzmann equation

aS
IN®

L

at

(as
H(r,N,t)=—

H
N t

af of ogH  of [oH

W—F)=Tf. (37

We call x the invariant quasimomentunbecause all physi- —
cal quantities, written as functions &f are periodic with a gt dr op dp

constant period # (not 27a"). wherel is the collision operator. Note that this equation be-

. . : B
funlz:?itogSo;:ct)lr:zI(ijrf\:;rri]aeniocﬁggi%?rzselr?& rlnae/grr:dg thé ?nse?ricalcomes well defined for quasiparticles only after obtaining the
q Hamiltonian and the Hamilton equations.

af Qi i i ; ; i
tensorg®”. Since it coincides with the Hamiltonian, one has ™ .\ -\ cany shown in Ref. 2 that this equation is compat-

S ible with the requirement of periodicity. This can be seen
_ (30)  @also from its form iff(sr,t) is taken as a function of the
IN*/, invariant quasimomentumne and the quantitiep andH are

substituted from Eq9:33) and(34). This yields
Now let us consider a real electron which is performing a

quasiclassical motion. Its wave function in the new variables df de [ of of du (e
has the form dt A Ko\ OF) @ m dt ar ) .

aS
8(K!gaﬁ1t):_ E Ko=

1
N

0K,

i
¢(N,t)~exp{%so(N,t)]a (3Y) I8 ] it (39)

—m-—agxcurl u—F
B
whereSy(N,t) is the classical action. The transformation law .
for the action follows from the transformation properties of whered/dt=d/4t+ (uV) and all quantities are differentiated
the phase of the wave function under Galileanwith respect to the coordinates and the time at constant

. 3 - . . N
transformations: The termmdu/dt takes into account noninertial proper-

-, ties of the local frame. This is the term which is responsible
u

: m for the Stewart-Tolman effect in metals.
S—So+mur—7t, (32 The term
wherem is the mass of a free particle. de .
The Hamiltonian and the quasimomentum in the labora- mﬁaﬁx curlu (39
tory frame can now be obtained as follots: A

is of anessentially new kindnd cannot be obtained in linear

[9S) - theories. It is proportional to the bare mamsind, hence, is
p=|-p| =a%k.+mu, (33 also responsible for noninertial effects.
! The Lorentz force in our notation has the form
{98 . mu2 e (98 e
H(p,r,t)=—<—) =g+pu——rs—, (39 — _eE— - —a XB— —uX
i), 2 F eE c ox. a,xB Cu B, (40

where e =¢(a,(p—mu),g*?) is a periodic function ofp where E and B are the strengths of the electric field and
with periods 27%a® determined by the reciprocal lattice vec- Magnetic induction, respectively. Substituting £40) into
tors corresponding to the deformed local lattice. This is theEd- (38) yields the transport equation for charged quasipar-
reason to calp the quasimomentum of the quasiparticle in ticles with a charge-e (e>0):

the L system df f f
It follows from Eq. (33) that ~—_ta J a_e_a (9_ 07_8
“ Ik,  “dKrgy|\ or

+ —
dt or

+ E+e oe xB
eE+-—a
C(?K'B B

. K
k,=a,(p—mu)=Kka,. (35 R
=1f, (47
Hence, the invariant quasimomentum components are equal
to the scalar product of the usual quasimomenkuimtheC ~ Where
system and the primitive vectors of the locally deformed

lattce. E—eE+ ><B+m@ B=B- —curlu. (42
The energy¢ of a quasiparticle in thé system obeys the eE=ekT dt’ B e UMt
Galilean law

. _ The first expression in Eq$42) consists of two parts —
mu? .de mu? the electrical forceeE’, where E'=E+(1/c)uxB is the

&= T MUy TeT T Thoute, B8 field in the comoving frame, and the inertial foroedu/dt.
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The second relation in Eq$42) can also be written in the mu2 _ _

form B=cur[ A— (c/e)mu], whereA is the vector potential et o~ E=pou=H—ku,

in an agreement with the well-known rule of replacement of

the particle momentum in a magnetic figRl—~P—(e/c)A  Wherepy,=ma,de/dk, is the average momentum in ti@

where nowP=mu. system and is the corresponding quasimomentum.
Taking into account that The differentiation in Eq(44) with respect tat andr is
carried out at constant and hence commutates wiflu®«.
‘2 Results obtained by such a procedure can easily be rewritten
u . .. . _mu . . . ) : . )
M——=mu+m(uV)u=mu+V—— —muXcurlu, in the previously adopted variables by the following substi-
dt 2 tutions:
one can write the Boltzmann equatiofil) in the form P 9 9
Bagr, Tk " ap
A P P L. TN @ P
E+ u+aa(9Ka (VF), aaa—Ka [V(et+mus/2)],.t+e 4 L P
<f . >Ej ——f(p,r,t)---= —J ——f(p,r,t)---
el. de O 27h)3 2mh)®
+—|u+—agz| XB+mu=If, (2m#) Vo (2mh)
C aKB 3
where the derivatives with respect itare taken at constant :J’ (Zwﬁ)s‘P("’r’t)' =), (49
k. The quantityV=L|+(88/r9KB)aB is the velocity of the
guasiparticle in the laboratory frame and, therefore,
f dr-..= f d®Neg'2. (46)
1/. €
E+-|ut+—az|XB
c dKg IV. CONSERVATION LAWS AND DYNAMICS

. - . . . . EQUATIONS
is the electric field in the quasiparticle frame. The effective Q

magnetic fieldB, however, is changed by the inertial term  In order to avoid cumbersome expressions we shall make
(mde)curli our consideration in three steps. First we write the conserva-

We shall use also another form of the transport equationt.'on laws and consider the problem in a general form without

The reason is that further on we need to integrate somfeakmg into account _the explicit form of Maxwe]l’s equations
physical quantities over the Brillouin zone and take integralsand e_IectromagneUc. forces. Then we CO!"S'der Maxwell_s
by parts as well as differentiate with respect to the coordieauations and constitute relations for moving media and fi-

nates and the time. However, the Brillouin zone boundariega”y. we combine the:' results and obtain the full self-
are functions not only of the deformation at a given instalnt,cons'stent set of equations. .

but also of the local lattice velocity. The integration over the We start .W't.h the conservation Ia_ws. . .

Brillouin zone does not commutate with the differentiation The continuity equation for quasiparticles is
with respect to the time and the coordinates. As a result some
fluxes appear through the zone boundaries. This effect is
important for nonequilibrium systems and open Fermi surywhere

faces as well as for other cases when the partition function or

mn+divj,=0, (47)

its derivatives do not vanish on the zone boundaries. This B it o 6)— ﬁsf .
inconvenience can be passed over by introducing a renormal- n=(e)=(f), Jo=m ap | m ap +mnu.
ized partition function (48)

This equation follows directly from the Boltzmann
equation
The total mass current is

o(k,r,t)=f/\/g. (43)

The Boltzmann kinetic equation f@r(#,r,t) has the form

L Jo=pu+io, (49)
. . . de J mu
@+div u+a”a;<a>"o _a“axa‘P[V e+ T) where
o ). j0=m<a—8f> (50
—m(u+ a—Kﬂaﬁ ><cur|u+mu—F]:|<p, (44 ap

is the quasiparticle mass current with respect to the lattice
whereF is the acting forcgsay, Lorentz forcg It is worth  andp=p,+mnis the full mass density written as a sum of
noting that the sure + mu?/2 in Eqgs.(41) and(44) is not the  the lattice mass density, and the quasiparticle mass den-
quasiparticle energy. Eq. (36), in theL system. It can be sity.
expressed in terms of the energy or Hamiltonian. Relations The quantitiep andJ, satisfy the mass continuity equa-
(33)—(36) yield tion
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p+divJy=0. (51)

The full momentumJ is a sum of], and the field momentum

0.

Note that in this cas¢éhe full momentum does not coincide

with the mass flow
Our aim is to determine momentum and energy fludgs

DYNAMIC THEORY OF DEFORMABLE SOLIDS WITH . ..
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The time derivative of the full momentum, E(2), gives
0= — It il ol ma de N de .
= puTpUTMa, a—ka‘P ma, &_ka(p

. e L
ma,, a_ka¢ g.

Multiplying Eq. (62) by —u and adding the result to the

(62)

and Q in such a way as to satisfy the continuity equationright-hand side of Eq(56) yields

(51), the momentum conservation law

Ji+ VI, =0, (53
and the energy conservation law
E+divQ=0. (54)

The energy in the. system is given by the expression

1 .
E= 5ot +Eo(9™) +((Ep)) + W, (55)

whereE(g*P) is the strain energy in th€ system, an# is
the field energy.
The time derivative of the energy, E(5), is then

B ...+1..2+& i de VE
=puu 2pU §t<<8¢>> mua, (p(?ka 0

oo w22} i [ 251

+mt 20N ew

mua,, (’D&ka .

The time derivative of the elastic ener@g(g*?) can be
taken in the following way:

(56)

JE, .

Eo= ag“ﬁgdﬁ: —o.paal, (57)
where
, %o -
Tap=— .
B ag“ﬁ

Substitutingéi“ from the evolution equatiofil0) in Eq. (57)
yields

ga AUy
Eo=0pa| — Uit ag 7% (59
On the other hand,
JEq aa
= aB_ _ B
VKEO &gaﬁ Vg Uaﬁal 0"Xk . (60)
It follows from Egs.(59) and (60) that
. o Bﬁui .
E0=0'aﬁai aka_Xk_UVEo. (61)

Elg lal . g Je VE

=u Epu O o8 aka—xk mua, (Pé’_ka u 0
... 4

+W-ugt —((e¢)). (63)

The last term is considered in Appendix B. Substituting

the time derivatives andp by means of Eqs(53) and (51)
one obtains after cumbersome calculations

. 1 ... . ..
E+Vkr_Pu2uk+ui(Hik_Puiuk+E05ik+<<8f>>5ik)

2
1 - ﬂsf N &ef
2™ apy Pk
ou; - S
:a_Xk{Hik_Puiuk+0'ik_<)\ikf>+E05ik_ui]0i_uk10i}
n de . ..
+(s|f>+<Fa—pf>+W—ug, (64)
where
de o (9E0 o
)\iKZZWai af, Uik=—2&gaﬁai aE. (65)

The last three terms in Eq64) describe the change of the
field energy and field momentum and the effect of external
forces. They depend on the concrete type of interaction.

If there are no external fields, then the last three terms in
Eq. (64) should be omitted and the energy and momentum
fluxes are

. oH 1. .
Qi:Eui+<S(9_pi >—§u2.Ji+Hikuk, (66)
- de Jde
Hik:_(‘Tik+Eo5ik)+PUiUk+()\ikf>—m<fa—pia—pk>
oH oH
+m<fa—ma—pk>- (67

The momentum flux tensor consists of two pdrts and
Pix , which correspond to the contributions of the lattice and
quasiparticles, respectively:

Lik=—(oix+ Eodi) + poll; Uy, (69)
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Pu=(\2f)+ <f‘9H &H> 69) W <Fa8f>+w UG+ (74)

k= (N m{ f—— ={F— —ug+w.

ik ik 0’)p| apk f ap g

where Maxwell's equations(71) and (72) are written in theL

system. They have to be supplemented by constitute rela-
OO F) = (hyF)—m (e Je tions. However, one has to keep in mind that these relations
ik Ik ap;i Pk have their known simple form only in the comoving frame.

, L ) In that frame one has

is the quasiparticle momentum flux tensor in the system of

center of mass whilé\; f) corresponds to the comoving D'=eE’, B'=uH’, (75)

frame. It can be showr{Appendix Q that the sumaoyy

+Eydi correspondgbut coincides in linear approximation

only) to the stress tensor of the linear elasticity theory and 1 1

turns into pressure for isotropic media. D'=D+-vXH, E'=E+ -vXB, (76)
Finally, the equation of the elasticity theory for an elastic ¢ ¢

crystalline body with quasiparticle excitations in the absence

of external fields takes the form B'=B— }vx E. H=H- va D, (77)

where

tmlk Jjoi

- (700 andv=u is introduced for convenience.

It is easy to see that

(P P)=-

The last term on the right-hand side describes the force |p_yp'=c/E'=evE. VB=VB'= uVH' = uvH.
which appears when varying the quasiparticle mass current ’ (79)
with respect to the lattice.

Let us now consider the effect of the electromagnetic Relations(75)—(78) are exact although Eqé76) and(77)

field. Maxwell’s equations are coincide to the letter to the field transformations with an
accuracy tov/c.'®
CurleE=— l E curlH= A'_”je 1 @ (72) When taking the time dgrivgtive of the field ener@_yip
c ot c Jt Eq. (74) one has to keep in mind that the permeabilities
and € in a nonstationary deformed media are functions of
divD=4mq, divB=0, (720 space and time. For example, the variation of the electrical

. part of the field energy in the lattice frame is
wherej.=j.+qu, q=(o—enis the charge densitygg be-

ing the lattice charge and 1 E'2 €E?
6WE—4—E 5D':—{E'256+ €E'OB'}= g det dg—.
i e i
Je=— 5101 e>0, (73 Therefore, the full variation oW in time can be written in
the form

is the electron current density in the comoving frame.

We have now to take into account the field terms in Eq.
(64) containing the densities of the field energy the field
momentumg, and the Lorentz forc€.

A
W= ,—(ED+HB)

Before going on we would like to mention that the extra- _ _( - Yyrllp— v <H
neous charges have to be considered as a separate system. A7 c
They are not accounted for in the Boltzmann equation as
well as in the Lorentz forcé40). Therefore, one needs some i( H Vi olla - Vi £
additional equations. In metals, this additional equation is the 4 c
quasineutrality conditichgo=en. This is a good approxi- ,
mation also for semiconductors at low frequencies. The be- J €E'?+uH? E2 H"2
havior of the systems of electrons and other charges in the ot 8 +8_€+8_“+V(9+G)
crystal depends on the problem considered. This is not the
aim of our work. The presence of extraneous charges makes 9 e(VXE")2+ u(vXH")? (VXE")2.
the whole system open and conservation |&#g—(55) do +E 87c2 + 2 €

i mC 8mc

not present a full system. One has to take into account both
the mechanical work and that of the induced forces. If the (VXH")2?.
only current carriers are electrons, then one has togput +————u+0(v’/cd), (79)

=0. However, in order to keep the general form of Max- gmc?

well's equations we shall compensate the missingvhere

contributiort* to the time derivative of the field energy by a

termw= — U[qE+ (1/c)j X B]. o EXH G DXB
Therefore, the full field contribution is 4ac’ 4mc’

(80)
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From here on we shall restrict our consideration within an

accuracy tov/c [neglecting term®(v?/c?)]. Then

J eE?+puH'? E? HZ
—+—e+—,u+vG

W-vg=2 —5 87 8n

(81)

The quantitiess andu are functions of the metrical tensor
g“P. So their time derivatives and . can be treated in the

same way as the derivative & [cf. Egs.(57)—(61)]. This
yields

IV oV

EIk(?X —VVe, M__Mlkg_vvl-h (82

€=

where

€
ex=2——a'af, pmy= Zgaﬁ ajaf . (83

ages

Substituting Eqs(82) and (83) into Eq. (81) and making
use of the Poynting theorem one obtains

Wevie — div S — 7B’ — 2 H'2 i
—Vvg=—div Je 8 8’7TMIk (9X
E2 2
-V —Ve-l——V,u +VG. (84)

Neglecting terms of the ord@(v?/c?) in Eq.(79) means
that one can repladd by G'. The time derivatives’ can be

transformed using Maxwell’s equations in the comoving

frame. This yields

VG’ =

1
—V QE,+EjéX B’ +Vinti,k

H'2

2
+V<§V6+%Vﬂ , (85

where

2

”(H 'H - H75ik) (86)

E'2
ti=g- | EEk—— o | +5—
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F&sf _E &sf eB de z?sf
ap' | "o\ %' e \ap ap
+—u><B<—e—f>
u
= E+E><B =j.E’. (87

The same term, but with a negative sign exists also in Eq.
(84). Therefore, the total work related to the Lorentz force
(the mechanical one and that of the electromotive fgrces
equals zero as it should. The terms related to the extraneous
charges cancel for the same reason. Finally,

V.
Wf:_diVS,‘i‘VkVitilk_ i,k_ly (88)
an
where
, 1 E/Z
Tik= pp €E{ Ek+ (€ixk—€6ik)
2
+MHi'H1'<+7(Mik—M5ik) . (89
Hence, one has to add the term
Q=S —wit\=S—v;W (90)

to the energy flux density in Eq66), as well as the term
—Tj\, to the momentum flux tensdi;, in Eq. (67).
The elasticity theory equation takes then the form

0 Ly
E(Pui)_

APy dT{ mdjs Iy
. ik + ik + Jei Ji
an an an

The current and the electromagnetic stress tefi$oare
written in the lattice frame. Note that the term with the elec-
trical current represents, in fact, the electron mass fline
momentum, associated with the curperithat part of the
electron mass current, which moves together with the lattice,
is included inp on the left-hand side of the equation. The
electromagnetic momentum flux tensor in thesystem has
the form

1 E?
Tik:E(€EiEk+MHin)+(€ik—65ik)§
2
+ (mik— M5|k) +VGk+VkG —ViQk— Vi3i -

(92

is Maxwell's stress tensor in the comoving frame. It is easy

to show using Eqs(76)—(78) that

1
=V qE+EjeXB

1
v(qE’+Ej{3>< B’ =jeE—j.E".

The term which contains Lorentz force in E@f4) can be
calculated by means of E40):

Obviously, for small velocities one can replatg by the
corresponding tensor;, in the L system.

If electrons in a good conductdmeta) are considered,
then the quasineutrality condition holds and the displacement
current as well as the field momergaand G have to be put
to zero. Actually, the two terms on the right-hand side of
Ampere’s law can be considered as expansion with respect to
the electric field frequency:
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1 4D we As long asf is not supposed to be small the transport equa-
J +E —~0oE+ yp= E. tion (95) is equivalent to Eq(41). For a small deviation from
equilibrium one has to replacdq(e—¢)—Tfo(eo— {o),

In metalso> we/(4), and the displacement current can bede/dk,— deol ik, .

neglected. As a result, one has Equation(95) can be considered as a generalization of the
linearized transport equation used when considering the elec-
© H2 tromagnetic generation of sourcf., e.g., Refs. 7 and 17
T{EEtaIIEHinJF(Mik_Mtsik)g- (93

A. Rotating bodies: Fokker-Plank equation

This tensor contains an additional ter'¢/8) w; com- Let us consider, first, the diffusion in a rotating body.
pared to our previous works,’~*?in which the magnetic Having the diffusion coefficient one can find the mobility
permeability has been taken constant. As shown in Appendiynd conductivity by means of the Einstein relation. We as-
C in the case of a noncrystalline body.g., fluid the quan-  syme that quasiparticles obey Boltzmann statistics ith
tities wi and e have to be replaced by @u/dp)tdix and  —d=#)/T and take the collision integral in the Fokker-Plank
(p d€ldp) ik, correspondinglycompare Ref. 15, Sec. B6  approximationt? In our notation it has the form

V. PARTICULAR CASES Tf= J

0K,

Bap IXx
0 T (9K'3

; (97)
Let us consider some simple cases in order to show the
influence of the new terms in Boltzmann equation as well agvheref="fo(1+ x/T), f,=fox/T=(—dfg/de)x, andB,g
to compare our results with those obtained in linear approxiis the diffusion coefficient inc space. We assume, for sim-
mations. plicity, that B,z is a function of temperature only. If the
Having in mind applications to transport phenomena webody rotates with a constant velociy, then curui=2w. To
transform the Boltzmann equatigdl), substituting the par- obtain the diffusion coefficient one needs only the odd part
tition function as a sunfi="fy+f, wherefo(e —¢) ({ being  of y under the inversionk,——«,. The corresponding
the chemical potentiglcorresponds to a local equilibrium, transport equatiotfor small y but not small velocitiestakes
andf is the nonequilibrium part. We assume for simplicity then the form
T=const. Then the time derivative 6f is
. de de dx (1
oty oty X~ Waavgzaxa@ ?Baﬁ+2mw(aa><aﬁ)).

sz(é_-g)- (94 “ (98

S ) ) It is seen, therefore, that the new inertial term
The derivativee is calculated in Appendix B and has the

form de . de
m—a,Xcurlu=2m—a, X w
oK, K,
e=—Nix— —U(Ve),, is directly added to the diffusion coefficient inspace. The
X diffusion coefficient in real space can be obtained from the

relation
Where)\ikz)\aﬂa{*af. In the same way elatio

MT?D,5=B,s+2mTw(a,Xaz), Dix=a,D,zap-

: o . a
(=—li———UVe, (= ataf, If, for simplicity, B,z=Bod,s WhereB,~T" and w is di-
IX ag9°* rected along the axis, then the diffusion coefficient compo-
nents are
O"fo 0"f0 0—'f0 de
VI=e VETO 5T 5 ey 5 —p._ 0T —
XCTYY p2r2n-24 2] 2z

The transport equation takes, therefore, the form
(whereb=const). This means that at large enough frequen-
mu2 cies w the diffusion in thexy plane can change its tempera-
T] ture dependence fro®~T " to D~T" 2. The uniform
rotation of a metal cannot give a significant efféttte fre-
guencyw has to be of the order of the cyclotron frequency

, (95 QO =eB/myc). However, the termmvxcurlu may come
also from the transverse sound waves with high enough fre-
quencies. The effect of rotating is observable for delocalized
vacanciegvacancions'® wheren=9. Therefore, in a rotat-

. of e ~ .
f1+V-Vf1—aa#+ (Ve)+eE+_VxBmi+V

A au"+
K —— Vi
ik (9Xi q

. afg
= + —
I+~

WhereAik:)\ik_é’ik, V:l.,l‘f'V, V:aaaS/aka, and

-, ing quantum crystal diffusion can decrease alongzlais
e _ ) mu A . . i AT
q=eE+ EuXB+mu+V [+ 5 ) (96) )[/iv(;t: increasing temperature and increase in a radial direc
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B. Pinning of magnetic lines in metals: Magnetoacoustic
effects

The magnetic field enters in the transport equation only

in a combinationB=B— (mc/e)curlu. As a result, the cur-
rent density in a deformed metal takes the form

+mup, (99

mu?
RS

o 1. - 1
j=o’(B)[E+—u><B+—V
C e

where is the conductivity tensor of a uniformly deformed
immobile metal as a function of magnetic field. Let us sub-

stitute this expression in Maxwell's equatig¢il) and ne-

glect the displacement currefdf. the text before Eq(93)]:
1. ~ .

E+ EU XB+mu

4
curlH= TO’ . (100)
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the most general case of time-varying deformations when the

quasimomentum is not a good quantum number and energy
does not coincide to the Hamiltonian. We have derived a full
self-consistent set of equations which consists of the nonlin-
ear elasticity theory equatiof®l), the Boltzmann equation
(41) or (44), and Maxwell’'s equations supplemented by con-
stitute relations. The Boltzmann kinetic equatidd) is valid

for the whole Brillouin zone and contains a new term respon-

sible for some inertial effects. The elasticity theory equation
is derived from the conservation laws written in the most
general form. The only approximation is that the electromag-
netic field transformations are taken with an accuracy to
O(v?/c?). Any higher accuracy for the solid-state theory
now would be pointless. In such a way the theory presented
is exact in the frame of the quasiparticle approach. It can be
used for any materialmetal, semiconductor, quantum crys-
tal, low-dimensional structures, etevith linear relations be-

Applying the curl operator to both sides of this equation andween electromagnetic fields. It is easy to write the corre-

substituting curE from Eq. (71) yields

2
curl curlH.

. .~ mc .
B=cur|(u><B)+FcurIu— (103

4o

The left-hand side of this equation is of the orderegiH,

while the last term on the right-hand side is of the order of

—CZkZ H v H<wH

dro | Came O
Hence, the last term in Eq101) must be neglected and Eq.
(101 takes the form

B=curluxB. (102
Let us consider the mass continuity equation
p+div(pu)=0, (103

sponding set of equations for more than one type of
quasiparticlege.g., electrons and holes

In the case of electrons in metals the results obtained fit
well to those of our previous works™°

ACKNOWLEDGMENTS

The author is grateful to Professor F. Bassani for helpful
discussions. Support from National Science FiBdlgaria
and Consiglio Nazionale delle Ricerclialy) is acknowl-
edged.

APPENDIX A

The evolution equatiorf9) for the primitive vectorsa,
can be deduced from the following considerati¢nwg shall
omit the subscripte for conveniencg The lattice vector
a(r,t) at instantt is defined by the two lattice siteg(t) and
ro(t): a=r,—ry. After a time intervalét the lattice vector

wherep is the full mass density of ions and electrons. Wechanges t&'(r’,t+ 6t)=r;—r;. The new positions of the

introduce now the effective magnetic fieBf''=B/p. It is
easy to see that Eq$102 and (103 yield the following
equation forB®'":

B!+ (u-v)Be'"— (B V)u=0. (104

This equation coincides with the evolution equati® for
the lattice vectors,. Therefore, if the effective magnetic
field vector lines in a given instant are along tag lines,
they will move together with them all the tim{pinned. The
situation is similar to the pinning of magnetic fieldl/p in
plasma(see Ref. 1h It is worth noting that Eq(104) does

lattice sites are obviouslyr;=ri+v(r)ét and ry=r,
+v(r,) dt, where the velocity of the lattice sitein the mo-

mentt is denoted by/(r)=u(r). It follows from the last two
equations that

a’'—a=[v(ry)—v(rq)]éot.

Taking into account thaw(r,)=v(r;+a)=v(ry)+(av)v
anda’=a(r+vét,t+ 6t)=a+[é1+ (vV)a]ét one obtains

a+(vV)a—(av)v=0. (A1)

not depend on the properties of the magnetic permeabilitifhis equation coincides with Eq9) in Sec. Il. It conserves

and its dependence on deformations. Equatid®) shows a

automatically the lattice vectors lines. In fact, taevector

new kind of magnetoacoustic interaction. This effect condine conservation condition consists in collinearity atind
cerns transverse sound waves only. Other magnetoacoustiee left-hand side EqA1),%i.e., in

effects are described by E(R6) and elasticity theory equa-
tion (91).

VI. CONCLUSION

[a+(vV)a—(aV)v]xa=0. (A2)

Hence, Eq(Al) describes deformations which do not break
or cross crystalline lines with equal. This means that in a

In this work we have considered the dynamics and kinetcrystal lattice free of dislocations the three functidifyr,t)
ics of charged quasiparticles with arbitrary dispersion relaare single valued, and EqAl) describes completely the
tions in deformable crystalline structures. We have choservolution of the lattice configuration.
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The evolution equation for the reciprocal lattice vectors

a“ can be obtained from E@A1) and the relation

ON“
ar -’

a“= (A3)

The latter follows directly from the expression for the physi-
cally infinitesimal differential coordinates at a given instant

dr=a,dN® and relations(7). Multiplying Eq. (A1) by &
yields

afa, +af(uV)a, —aga,Vsu=0 (A4)
Taking into account relation&) one has
a,i@f+(uv)ad)+V,u;=0. (A5)
Multiplying this equation witha? yields
a*+V(a®u)=0. (AB6)

In obtaining Eg.(A6) we have taken into account that
Viay—Va*=0 as a consequence of H@3).
Substituting Eq(A3) into Eq. (A6) gives

V(N“+a%u)=0

and, hence,
u=-a,N% N*=-ua* (A7)
It follows from Eqgs.(A3) and (A7) that
dne=" ad + adt— “dr —a*udt A8
= r pn =a*dr —a“udt. (A8)
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(o€} 1 B r9 v
= E K—E)\aﬁg _)\aﬂa aka__u( 6)K1
(B3)

where

ages

Multiplying Eq. (B3) by ¢ and Eq.(B1) by € one obtains
after substituting into EqB2)

J A . Je
Srleh)=((el so>>—dIV( U<<€€D>>+aaﬁ< < Ea_ka“"> > )

v o] i )

{2
~ - Jde
:<6If>—div<u<ef)+<ea—pf> +<Fz9_pf>

ﬂXk
aef . | de ¢ ;
-mu 7 m Uy o +ataf(N )|,

where the ruleg45) are used to replace the double brackets
by single ones. This expression is used when obtaining Eg.
(64).

We would like here to point out how easily this formula
has been obtained. For comparison, the expression which
corresponds to EqB3) in variablesp,r,t has the form

(9U
5Xk

This expression coincides with that given in Sec. Il. It can be

written also in the form used in the text:

dr=a,dN*+ udt.

APPENDIX B

To obtain the time derivative of the quasiparticle energy

density one can use the transport equati®t for ¢ (s, r,t).

Since the fluxes through the Brillouin zone boundaries in this

Jde s (9u .J€e .
- — __m —
), s X, uap u(Vep
R au,
Pi Pk Mt Xy

This expression is both cumbersome and nonperiodical
which creates additional difficulties.

notation equal zero, it can be written in its integrated by parts

form
. d €
e+div G| P
W1V du 9€ X curlii—F =1
6+ma m& BaB curlu [0 a— .
(B1)
We have to transform the expression
d . .
S(eh)=((ee)) +{(ep)). (B2)

As the derivative with respect tois taken at constant one
can use the same procedure, as when obtainingedy. This
yields

APPENDIX C

The lattice contributior;, to the momentum flux density
tensorll;, is given by Eq.(68). The term in the brackets can
be written in the form

okt Eodik=(0apt+EoGap)afal , (Cy

whereEy(g“”) is the strain energy per unit volume.
In an isotropic medium the dependencekyf on g*# is
reduced to a dependence gr-detg,z:

JEq 99

a9 &gﬂlﬁ '

O-a,B_

By the well-known formula

dg=—g9,zdg**,
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one obtains easily

dEy=Tds— PdV+ udN, (C5)
JEq one can define the pressuPeas
O-aﬁzzgﬁaalaﬁl
. 5 (aEO) anv> c . (aEO)
and, hence, =—|—] =- =—Eg+p|l —| .
N Jon N Jon 9P ) sn -
JE, N JEg
Oik=29 - ~8ai8pd; 35229(9_5”(- (C2 _ _ _
9 9 It follows from Egs.(C3) and (C6) that in an isotropic
Taking into account thag is the squared volume of a unit medium
cell (g=V?) and thatV=1/p one obtains o+ Egdy=—P&, . (C7)
= — ‘7_Eo5 (C3) It is supposed in our consideration that the only contribu-
1k p ap K tion to the entropy is due to quasiparticles and this contribu-
o ) . ) tion comes from the transport equation. Therefore, the de-
Hence, it is seen, that in an isotropic case, rivatives of E, with respect to the metrical tensor

5 componentg*? are assumed as taken at constant entropy.
Za{”af e Sp—. (Ca) An alternat!ve apprc_)ach can _be based on the free energy
age dp thermodynamic potential per unit volunk€T,P,N). In that
case one obtains
Let now E, ands be the internal energy and entropy per

unit mass Eo=EgV). Making use of the thermodynamic - P=F—p<f) ) (C8)
relation apl;
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