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Index distribution of random matrices with an application to disordered systems

Andrea Cavagna,* Juan P. Garrahan,† and Irene Giardina‡

Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, United Kingdom
~Received 21 July 1999; revised manuscript received 15 October 1999!

We compute the distribution of the number of negative eigenvalues~the index! for an ensemble of Gaussian
random matrices, by means of the replica method. This calculation has important applications in the context of
statistical mechanics of disordered systems, where the second derivative of the potential energy~the Hessian!
is a random matrix whose negative eigenvalues measure the degree of instability of the energy surface. An
analysis of the probability distribution of the Hessian index is therefore relevant for a geometric characteriza-
tion of the energy landscape in disordered systems. The approach we use here is particularly suitable for this
purpose, since it addresses the problem without anya priori assumption on the random matrix ensemble and
can be naturally extended to more realistic, non-Gaussian distributions.
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I. INTRODUCTION

The importance of random matrix theory~RMT! can
hardly be overstated. Since its initial development by Wig
and Dyson to deal with the spectrum of many-body quant
systems,1,2 it has found applications in areas of physics
diverse as disordered systems, chaos, and quantum gra
to name just a few.3–6 Most of the time RMT has been use
as a very powerful tool for the study of the energy-lev
fluctuations of quantum systems. In this case, the matrix
RMT is modeling is of course the quantum Hamiltonian
the system.

However, there is a different context where RMT can
very useful, namely the study of the statistical properties
classical disordered systems. By disordered systems
mean not only those cases where quenched disorder i
rectly present in the Hamiltonian, as in spin-glasses, rand
field models or neural networks, but also systems wh
physical behavior at low temperatures is heavily influenc
by the self-induced disorder of their typical configuration
as for example, supercooled liquids and structural glasse
all these systems the properties of the energy landscap
energy surface, are known to be far from trivial. In partic
lar, the presence of many local minima of the potential
ergy is one of the most distinctive features of this class
systems.7,8 An obvious consequence of this fact is that t
energy surface displays many extensive regions with
stable negative curvature and therefore has very nontr
stability properties.9,10 In this context, a key object become
the matrix of the second derivatives of the Hamiltonian, n
mally called Hessian, which encodes all the stability
tributes of the energy landscape.

The study of the statistical properties of the Hessian
been an important issue both in the theory of mean-field s
glasses and in liquid theory. In the former case, it is of
possible to analyze the Hessian in the stationary points of
free energy, having therefore important information on
shape and stability of the thermodynamic states.7 In liquids,
on the other hand, the Hessian of the potential energy is
key object in the context of the instantaneous normal mo
approach,11,12 where the average spectrum of the Hessian
directly connected to many physical observables of the s
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tem. In particular, it has been argued that there exists a d
relation between the diffusion properties of a liquid and t
negative unstable eigenvalues of the average Hessian.12

It is evident that in the above context an application
RMT to the study of the statistical properties of the Hess
can be potentially very useful. An important remark is t
following: the Hessian is a matrix that in general depends
the configuration of the system and possibly also on
quenched disorder, when this is present. The basic idea
derive from the distribution of the configurations and fro
the distribution of the disorder an effective probability di
tribution for the Hessian, which can then be studied in
context of RMT ~a recent example of this strategy can
found in Ref. 13!.

Besides, it is clear from the former discussion that
important issue is the analysis of the negative eigenvalue
the Hessian, since their presence is related to regions of
stable negative curvature of the energy surface and thus
sibly to the boundaries of different basins of attractions
the phase space. In particular, the number of negative ei
values of the Hessian, called theindex, is the first and easies
measure of instability. As a consequence, all the tools
vised for the investigation of the index in RMT are partic
larly relevant in the context of statistical mechanics of dis
dered systems. The average value of the index is trivia
related to the average spectrum of the Hessian by a sim
integration. On the other hand, a more interesting and
trivial quantity is theprobability distribution of the index.
Indeed, while the average index gives a measure of the o
all degree of instability of the energy surface, the knowled
of the fluctuations of the index around its average value
lows a more profound and complete geometric description
the energy landscape.

In this paper, we compute the probability distribution
the index for an ensemble of Gaussian random matrices
a diagonal shift. This ensemble provides the simplest p
sible model for the Hessian of a disordered system at a g
energy and represents the ideal context where to develop
technical aspects of this kind of computation. Moreover,
the Gaussian context we are able to give nontrivial phys
interpretations of our results.

In order to compute the index distribution, we use a f
3960 ©2000 The American Physical Society
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mionic replica method. In the past, the replica method
been applied to recover standard results in RMT, with va
able success. Recently the interest of the community has
cused again on this method14–16 and some indications of th
mathematical consistency of the method have been provi
even if some strong criticisms still persist.17 The present
computation offers an interesting example where the rep
method can be applied to obtain exact results, which are
easily available in the standard RMT literature.

There is also another important reason for using the r
lica method in the computation of the index, which is relat
to the physical relevance of the Hessian discussed above
we have seen, RMT can be used once an effective prob
ity distribution for the Hessian has been worked out from
distribution of the configurations and from the distribution
the quenched disorder. This effective distribution will not
Gaussian in general~unless we consider some very particu
models! and typically it will not belong to the standard en
sembles considered by ordinary RMT. By means of the r
lica method we have in principle no need to assume
specific form of the distribution.

The paper is organized as follows. In Sec. II, we comp
the average determinant for matrices of the Gaussian
thogonal Ensemble as a warm-up exercise to fix notation
ideas. We then proceed in Sec. III to the main part of
paper, where we calculate the average index distribution
means of the replica method, in the limit of large matrices
Sec. IV, we apply the previous analysis to the specific c
of a mean-field spin-glass model, where the Hessian is
actly a Gaussian random matrix. Finally, in Sec. V, we d
cuss the general relevance of our results and state our
clusions. The contribution of replica symmetry brok
saddle-point solutions is calculated in the Appendix.

II. A PRELIMINARY CALCULATION

Consider the matrix

Mi j 5Ji j 2E d i j , ~1!

where Ji j is an N-dimensional real and symmetric rando
matrix with the Gaussian distribution function

P@J#522N/2S N

p D N2/2

expS 2
N

4
Tr J2D . ~2!

We have introduced a diagonal shiftE in order to mimic
what in general happens in disordered systems, wherM
represents the Hessian of the Hamiltonian. In this cont
we expect to find very few negative eigenvalues ofM at low
energies, because of the dominance of minima at very
energies. This is the effect of the shiftE in ~1! and we there-
fore shall refer in the following toE as theenergy.

The average density of eigenvalues, or spectrum, ofM is
defined by

r~l;E!52
1

pN
Im Tr~l2M1 i e!21

52
1

pN
Im

]

]l
log det~l2M1 i e!, ~3!
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where the bar indicates the average over distribution~2!. It is
well known that for the Gaussian ensembles the spectrur
in the limit N→` is given by a semicircle centered aroun
l52E, that is

r~l;E!5
1

2p
A42~l1E!2, ~4!

while r is zero outside the semicircle support.3

In order to fix our notation and to acquire some familiar
with the method we will use, we compute in this section t
average determinant ofM. In general this isnot a self-
averaging quantity, in the sense that fluctuations around
mean value do not decrease in the limitN→`. The correct
object to average is in principle the logarithm of the det
minant, as it appears in the definition ofr, since this is an
extensive quantity. However, it is a particular property of t
Gaussian case that the determinantis self averaging at the
leading order, so that the calculation ofdetM is an interest-
ing and simple warm-up exercise for what we want to sh
later.

Using a standard procedure we can write the determin
by means of a Gaussian integral overN-dimensional fermi-
onic vectors (c̄,c)

detM5E dc̄ dc expF2 (
i , j 51

N

c̄ ic j~Ji j 2Ed i j !G , ~5!

If we now average over theJ, perform a Hubbard-
Stratonovich transformation and integrate out t
fermions,18,19 we obtain

detM5E dq eNS(q,E), ~6!

with

S~q,E!52
1

2
q21 log~2E2 iq !. ~7!

This integral can be solved exactly in the limitN→` by
means of the steepest descent method.20 The actionShas two
saddle points in the complex plane, given by

q65
i

2
E6

1

2
A42E2. ~8!

According to the valueE of the energy, only one or both th
saddle points may contribute to the integral so that we
distinguish three different regimes:

E,22: For these values of the energy the only statio
ary point contributing to the integral isq1 and we have

detM5eNS(q1 ,E)522N ~ uEu2AE224!N eN (uEu1AE224)2/ 8.
~9!

In this energy regime, the spectrumr has support completely
contained in the positive semiaxis and we thus expect
average determinant to be positive, as it is.

E.2: The support of the spectrum is now entirely co
tained in the negative semiaxis, so we expect all eigenva
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of the matrix to be negative. In this case, the relevant sad
point turns out to beq2 , and we thus find for the determ
nant

detM5eNS(q2 ,E)

5~21!N 22N ~ uEu2AE224!N eN (uEu1AE224)2/ 8,

~10!

with the correct prefactor (21)N indicating that all eigenval-
ues are negative.

22,E,12: In this regime the situation is qualitativel
different. Indeed in this case the integration path can be
formed in a path passing through the two saddle pointsq1

andq2 and the real part of the actionS is the same in each
one of them. Therefore, the two saddle points both contrib
to the integral and we have

detM5eNS(q1 ,E)1eNS(q2 ,E)5~21!Na(E) eN(E222)/41 log 2,
~11!

where

a~E!5
1

p
arctgS 2A42E2

E
D 1

1

4p
EA42E2. ~12!

At these values of the energy the spectrum ofM is partly
contained in the negative semiaxis, so that a nontrivial fr
tion of the eigenvalues is negative. The interesting poin
that the interplay between the two saddle points gives ris
the correct sign of the determinant. Indeed, it is easy to ch
that a(E) is exactly the mean fraction of negative eigenv
ues ofM, that is

a~E!5E
2`

0

dl r~l;E!. ~13!

Note that the mechanism we have described above, g
by the interplay between the two saddle points, is crucia
order to obtain the correct result for the determinant ofM.

III. THE INDEX DISTRIBUTION

The indexIM of a matrixM, defined as the number of it
negative eigenvalues, can be computed from the follow
formula21

IM5
1

2p i
lim
e→0

@ log det~M2 i e!2 log det~M1 i e!#.

~14!

The meaning of this relation is quite clear: the functi
f (z)5 log det(M2z) has a cut on the real axis at each eige
value ofM, such that by means of the limit in Eq.~14! we
are crossing as many cuts as negative eigenvalues
present. Besides, this formula can be simply obtained
integrating the nonaveraged spectrum~3! from minus infinity
up to zero. In the case we are considering, the index
function of the energyE and its average value is given b
Na(E) @Eq. ~12!#.
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We are interested in calculating the average probab
distribution of the index, at a given energyE, that is the
probability P(K;E) to have a matrixM with indexIM equal
to K, at energyE

P~K;E!5d@K2IM~E!#. ~15!

In the following, it will be important to distinguish betwee
the extensiveindex K, which is a positive integer between
andN, and theintensiveonek5K/N, which takes values in
the continuous interval@0,1#, and whose probability distri-
bution is

p~k;E!5d@k2IM~E!/N#5NP~Nk;E!. ~16!

Note that the limitN→` is well defined only forp(k;E).
From Eqs.~14! and ~15! we get

P~K;E!5
1

2pE2`

`

dm e2 imK G~m,E!, ~17!

where

G~m,E!5detm/2p~M2 i e!det2m/2p~M1 i e!. ~18!

We now make use of the replica method to represent
powers of the determinants inG(m,E) as analytic continua-
tions of integer powers

det6m/2p~M7 i e!5 lim
n6→6m/2p

detn6~M7 i e!. ~19!

By introducing two different sets ofN-dimensional fermionic
vectors (x̄6

r ,x6
r ) with r 51, . . . ,n6 , we can rewrite the de-

terminants as

det6m/2p~M7 i e!5 lim
n6→6m/2p

E Dx̄6
r Dx6

r

3expF2(
r 51

n6

x̄6
r ~M7 i e!x6

r G ,

~20!

where the sums over the matrix indicesi , j are hereafter al-
ways understood. We can write everything in a more co
pact fashion by introducing the Grassmann vectors (c̄a ,ca),
with a51, . . . ,(n11n2), defined as~see also Ref. 22!

~c1 , . . . ,c (n11n2)![~x1
1 , . . . ,x

1

n1 ,x2
1 , . . . ,x

2

n2!,
~21!

together with the matrix

~22!

Note that bothca and eab have replica dimensionn[(n1

1n2)→0. In this way, we have forG
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G~m,E!5 lim
n6→6m/2p

E Dc̄ Dc

3expF2 (
ab51

n

c̄a~Mdab2 i eab!cbG . ~23!

The average ofG over the distribution ofJ can be computed
in the standard way18,19,15by a generalization of the proce
dure of the previous section, the main difference being
fact that we have an extra replica dimension, so that
variable q must be replaced by a matrixQab . We, thus,
obtain thes model18,19 in the form

G~m,E!5E DQ eNS(Q,E), ~24!

with

S~Q,E!52 1
2 Tr Q21 log det~2Ê2 iQ !, ~25!

andÊab5Edab1 i eab . Note the similarity with Eqs.~6! and
~7!. The matrix Q is an n3n self-dual real-quaternion
matrix.19,15 It has 2n22n degrees of freedom, and is diag
nalized by transformations of the simplectic groupSp(n).
Note that the symmetry properties of the matrixQ are a
direct consequence of having used a purely fermionic re
sentation in Eqs.~20!–~23!.23 In Eq. ~25!, we see for the first
time the role ofe as a symmetry breaking field. The matrixÊ
has an upper block of sizen1 , which contains1 i e and a
lower one of sizen2 with 2 i e, so that the action is only
invariant underSp(n)/Sp(n1)3Sp(n2), and the full in-
variance underSp(n) is only recovered in the limite→0.
However, howexactlythe symmetry breaking affects the ca
culation will become clearer below.

We can evaluate the integral~24! by means of the steepe
descent, or saddle point, method, which becomes exac
largeN. The saddle point equation for the matrixQ reads

Q5 i ~Ê1 iQ !21.

This equation can be solved assuming forQ a diagonal form,
Qab5zadab . We have two different sets of equations, o
set for the elements belonging to the upper block,za

(u) , and a
second set for the elements of the lower blockza

( l ) . The only
difference between the two sets is, of course, the sign oe,

za
(u)5 i ~E1 i e1 iza

(u)!21upper block
~26!

za
( l )5 i ~E2 i e1 iza

( l )!21lower block.

Each one of these two sets of equations has two soluti
z6

(u) for the upper block,z6
( l ) for the lower one, namely

z6
(u)5

i

2
~E1 i e!6

1

2
A42~E1 i e!2,

~27!

z6
( l )5

i

2
~E2 i e!6

1

2
A42~E2 i e!2.

For all values of the energy such thatu42E2u@e these so-
lutions can be expanded in powers ofe and read
e
e

e-

or

s,

z6
(u)5q62eS 1

2
6 i

E

2A42E2D 1O~e2!,

~28!

z6
( l )5q61eS 1

2
6 i

E

2A42E2D 1O~e2!,

whereq6 are given in Eq.~8!.
There are some important things to note here, related

the fact that the presence ofe crucially modifies the mutua
relevance of the different saddle points. We have seen in
previous section that in the regime22,E,2 both the
saddle pointsq1 and q2 contribute to the integral. This is
true also in the present case, when a valueeÞ0 is consid-
ered: for eachza the integration path can be deformed in
path passing throughz1 and z2 and in principle both the
saddle points must be taken into account. However, when
look at the real part of the actionS, we now discover that the
contribution of one saddle point is exponentially domina
over the other by a factor exp(2Ne). This is in contrast with
the case of the previous section, where the real part ofSwas
the same in the two saddle points.

The crucial point is that, due to opposite sign ofe in the
upper and lower blocks, the real part of the action is tilted
opposite ways in the two blocks and, as a consequence
dominant saddle point becomesz1 for the upper block and
z2 for the lower one. We now start to understand the way
which e works as a symmetry breaking field: withoute the
two saddle points have the same weight in the integral
we have to consider both of them. Withe, the weights are
modified in opposite ways for the upper and lower blocks.
order to apply the steepest descent method we must per
the limit N→` before the limit e→0, and this selectsjust
one different saddle point for each of the two differe
blocks, dumping completely the nondominant contributio
As a result, when at the ende→0 we have selectedq1 for
the upper block andq2 for the lower one. This is very remi
niscent of what happens in statistical physics, where, in or
to break a symmetry by means of an external field, the th
modynamic limit must be performed before sending the fi
to zero.

On the other hand, for energiesuEu.2, the effect ofe is
harmless, there is no qualitative change from the situa
described in the previous section and the same kind of sa
point for the upper and lower block contributes to the in
gral.

We can now proceed in our computation. We will foc
first on the region22,E,2, where the typical spectrum i
not positive defined and where we thus expect a more in
esting index distribution. According to the above discuss
on the dominant saddle points, we must consider the follo
ing form for the saddle point solutionQSP:

~29!

This form is invariant under the unbroken grou
Sp(n1)3Sp(n2) of replica symmetry transformations, an
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in this sense we shall refer to it as a replica symmetric~RS!
saddle point.10,14We note that Eq.~18! is invariant under the
simultaneous action of complex conjugation and inversion
m, which after replicating becomesn6→n7 , and that our
saddle point satisfies this invariance. If we plug express
~29! into Eq. ~24!, we obtain after taking the limite→0

G~m,E!5~2E2 iq1!Nm/2p ~2E2 iq2!2Nm/2p

3e2N m (q1
2

2q2
2 )/4p

5exp@ imNa~E!#, ~30!

wherea(E) is the average fraction of negative eigenvalu
given by Eq.~12!. From Eq.~17! we finally get the probabil-
ity p(k,E) in the limit N→`,

p~k,E!5d@k2a~E!#. ~31!

This result is very reasonable, but also rather trivial:
probability distribution of the intensive index is ad function
peaked on its average value in the limitN→`. In order to
observe a nontrivial behavior we need to consider the sca
with N, that is, the distribution of the index for large b
finite N. This is particularly important if we are interested
the distribution of the extensive index, as for example in
case of disordered systems, where we want to know
change in the probability of different stationary points wh
variations of the index of order one, not of orderN, are
considered.

To go beyond result~31!, we must consider fluctuation
around the saddle point~29!. The general procedure is dis
cussed in the Appendix. As expected there are three kind
fluctuations: within the upper block, within the lower bloc
and those which mix the two blocks. Their correspond
eigenvalues and degeneracies are,

vu511z1
(u) z1

(u)

5~11q1
2 !2

e q1
2

A12E2/4
1O~e2! du52n1

2 2n1 ,

v l511z2
( l ) z2

( l )5~11q2
2 !2

e q2
2

A12E2/4
1O~e2!

dl52n2
2 2n2 , ~32!

vm511z1
(u) z2

( l )5
e

A12E2/4
1O~e2! dm54n1n2 .

The first two sets of eigenmodes are massive modes, in
sense that their eigenvalues areO(1). Thethird set are soft
modes: for vanishinge they would correspond to zero mode
associated to the restoration of theSp(n11n2) symmetry;
for small nonzeroe they become soft vibrations. In a formu
lation of the problem in terms of the nonlinears
model18,19,24the massive modes would correspond to lon
tudinal variations ofQ ~i.e., variations such thatQ•dQ
1dQ•QÞ0), while soft/zero modes would correspond
tranverse variations.27 Integrating over the fluctuations, w
obtain
f

n

s

e

g

e
e

of

g

he

-

G~m,E!5v
u
2(n1

2
2n1/2)

v
l
2(n2

2
2n2/2)

vm
22n1n2

3exp@ imNa~E!#. ~33!

In the replica limitn6→6m/2p, this quantity becomes

G~m,E!5expF imNa~E!2
m2

2p2
logSAvuv l

vm
D

1
m

4p
logS vu

v l
D G . ~34!

From Eq. ~17! we obtain the distribution for the extensiv
and intensive index for finite but largeN:

P~K,E!5A 1

2pD~E!
expF2

@K2Na~E!1b~E!#2

2D~E! G , ~35!

p~k,E!5A N2

2pD~E!
expF2

N2@k2a~E!1b~E!/N#2

2D~E! G .
~36!

These are Gaussian distributions peaked on the average
a(E). Indeed the shift,

b~E!5
1

2p
arctgS E

A42E2D , ~37!

is of order one and is not relevant at large enough value
N. The varianceD(E) is given by

D~E!5
1

p2
logSAvuv l

vm
D , ~38!

that is

D~E!5
1

p2
log@2p2e21r0~E!2#, ~39!

where we have definedr0(E)[r(l50;E) @see Eq.~4!#.
This result for the variance can also be obtained by
method of orthogonal polynomials wheree plays the role of
a high frequency cutoff.25,26,4

The fact that expression~39! still depends one can seem
rather unphysical, especially when we consider the fact
the limit e→0 has to be performed. However, we have
remember that we are looking at finiteN corrections, and this
very fact makes the parameterse andN no longer indepen-
dent. In this way, the presence ofe translates in a more
physical N dependence and this allows us to compute
scaling of the index distribution with the matrix sizeN. Be-
fore discussing the result we have obtained for the ind
distribution, we have therefore to address the problem of
relation betweene andN.

There are mainly two different reasons whye andN are
related. First, as we have previously noted, there is a pre
interplay between the two limits,N→` ande→0, when the
saddle point approximation is used in order to solve integ
~24!: the symmetry breaking due toe works only if e→0
after N→`, as in any thermodynamic calculation. IfN is
kept finite, we need a value ofe big enough to guarantee th
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dominance of one saddle point over the other. We have s
that the role ofe is to modify the real part of the action i
such a way that along the integration pathg one saddle point
is weighted more than the other. However, ife is too small,
also the nondominant saddle point may give a non-neglig
contribution to the integral. To avoid this fact we need t
secondary contribution to be suppressed also at finiteN and
to vanish when the limitN→` is considered. The suppres
sion factor is given, at ordere, by

e2N[S(z1
(u))2S(z2

(u))]5e22pNer0(E), ~40!

for the upper block~for the lower block an analogous expre
sion is valid!. In order for the suppression factor to vanish
must hold

eN→`, N→`. ~41!

This imposes a lower bound fore whenN is finite. A natural
general choice is therefore to assume

e 5
1

N12d(N)
, ~42!

where the exponentd(N) has to satisfy the relation
d(N)logN→`. The simplest possibility is, of course, a co
stant value ofd. However, as we shall argue immediate
below, this would not be consistent with the second con
tion we have to impose one.

The second bound fore comes from the following obser
vation. When we perform our calculation with a finite valu
of N and of e, there are of course two different kinds o
corrections to the asymptotic exact result: the first kind
related to the saddle-point approximation and brings cor
tions that scale as inverse powers ofN. The second is related
to the nonzero value ofe and brings corrections that scales
powers ofe. Consistency requires that in the final result t
error introduced by considering a finite value ofe must be of
the same order as the terms we discard in the expansio
1/N. It can be easily shown that the corrections to the ind
distribution ~35! for finite e are of ordere2, that is

G~m!5exp@Na~E!1b~E!1O~e2!#. ~43!

On the other hand, by considering the Gaussian fluctuat
around the saddle point, we are discarding terms of or
1/N2 in the exponent of Eq.~43!. Thus, we must impose th
condition

e2;
1

N2
. ~44!

Equation~44! is consistent with Eqs.~42! and ~41! only if,

d~N!→0, d~N!logN→`, N→`. ~45!

In this way, we finally get for the variance the result,

D~E,N!5
1

p2
log@4p2N„12d(N)…r0~E!2#

;
1

p2
logN1

2

p2
log~2pr0!, ~46!
en

le

i-

s
c-

in
x

ns
er

where we have takene51/2N12d, the factor 1/2 being con-
sistent with Eq.~40! at E50. Note that we have disregarde
d(N) in the right-hand side of Eq.~46! since we are inter-
ested in the asymptotic behavior of the variance with resp
to N at a given value of the energyE. Indeedd(N) represents
a vanishing correction to the slope ofD versus log(N), while
the last term in Eq.~46! gives a finite value for the intersec
and has therefore to be kept.

This result agrees very well with numerical simulation
in Fig. 1, we plot the varianceD as a function of logN,
obtained by exact numerical diagonalization. A linear
gives

D5
a

p2
logN1

b

p2
log~2pr0!, a51.00560.006,

b51.99360.003. ~47!

This same scaling for the variance has been found als
Ref. 25, where a completely different method based on
invariance properties of the Gaussian orthogonal ensem
and the dominance of intrinsic binary correlations was us
In the Appendix, we show in details that the contributions
the other possible saddle point solutions of the whole integ
~24! to the index distribution are smaller by inverse powe
of logN in this energy region, therefore the scaling withN is
correctly reproduced by Eqs.~35!, ~36! and ~46!.

We can finally analyze the significance of our result, E
~35!, ~36!, and~46!, in the energy regime22,E,2. What
we see is that the variance of the probability distribution
the intensiveindex goes to zero in the limitN→` and this
was quite expected, given our former result~31!. On the
other hand, the variance of the distribution of theextensive
index diverges logarithmically forN→`. The meaning of
this result is the following: on the one hand the probability
finding a matrix with an index density different from th
average one, that is with an extensive indexI;Na
1O(N), is zero in the limitN→`. But, on the other hand
the probability of having a matrix whose index differs fro

FIG. 1. The varianceD as a function of logN for E50, ob-
tained by means of exact numerical diagonalization on the Gaus
orthogonal ensemble. The full line is the linear fit.
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the average one for a number of negative eigenvalue
order one, i.e.,I;Na1O(1), is exactly the same as th
probability of having a matrix with the average index, in t
limit N→`. As we shall see in the next section, this fact h
some very interesting physical consequences in the con
of disordered systems.

Let us now look at the other energy regions. First of a
we note that the derivation of Eqs.~28!, ~32!, and~40! holds
as long as the energy is such thatr0(E) is of O(1). But this
condition breaks down when the energy gets close to62 and
r0(E)!1. In this region the procedure previously adopted
compute the index distribution has to be modified. Inde
whenr0(E) becomes too small the suppression mechan
~40! starts being inefficient, and the saddle point~29! is no
longer the only one contributing to the integral. At som
point the excitations that were treated as soft modes in
~32! must be considered as zero modes connecting equ
lent saddle points: there exists a manifoldSp(n1

1n2)/Sp(n1)3Sp(n2) of saddle points and the origina
replica symmetry underSp(n11n2) is restored. At this
stagee plays no longer any role and it can be taken to ze
The massive modes are the same as in Eq.~32!, and after
integrating over them and exactly over the degrees of fr
dom associated with the zero modes we obtain~up to trivial
factors in the replica limit!

G~m,E!5N2n1n2V n11n2

n1 v
u
2(n1

2
2n1/2)

v
l
2(n2

2
2n2/2)

3exp@ imNa~E!#, ~48!

whereV n11n2

n1 corresponds to the volume of the manifold

saddle-points solutions~see the Appendix!. At this point, one
has to analytically continue the previous expression forn1

→m/2p, n→0. The volumeV n11n2

n1 is finite for n150 and

it is zero for positive integers.14 Its analytic continuation is
an oscillatory function ofn1 , with exponentially increasing
amplitude17, so that the presence of this factor in the form
equation makes the index distribution non-Gaussian. H
ever, as long as this analytic continuation is finite for no
integer n1;1, the distribution can be approximated by
Gaussian with variance

D~E;62!5
1

p2
log@8p4 N r0~E!3#. ~49!

We can see from Eq.~49! that the variance still scales a
logN. However, when uE22u;1/N2/3. we have r0(E)
;1/N1/3 and a further crossover takes place: the varia
D(E) becomes of order one meaning that the index distri
tion is dramatically more peaked around its typical value
we approachE562. Note also that whenE;2211/N2/3

the typical indexa(E) becomes of order 1, meaning that
this region matrices withO(1) negative eigenvalues ar
dominant. Summarizing, in the energy regime where the
erage number of negative eigenvalues is of order one,
fluctuations around the mean value become of order one

When the energy is exactly at the threshold valuesE
562 we have a special case since the saddle point e
tions for the eigenvalues have a single degenerate solu
of

s
xt

,

o
,

m

q.
a-

.

e-

r
-

-

e
-
s

v-
he
o.

a-
n,

and the harmonic terms in the expansion around the sa
point vanish. It is not difficult to show that the distribution
here become

P~K,E→221!5N21 d~K !,

P~K,E→22!5N21 d~K2N!. ~50!

The calculation in the regionsuEu.2 is completely
straightforward sincee plays no role from the beginning. A
mentioned before, the same kind of saddle point has to g
both blocks, so that we have

~51!

where the plus~minus! sign corresponds to negative~posi-
tive! energies. There is only one kind of massive fluctuat
with degeneracy 2n22n, which goes to zero in the replic
limit, and thus the integration over fluctuations gives a triv
prefactor. The final result for the distribution ofK is

P~K,E!5H N21 d~K ! E,22

N21 d~K2N! E.2,
~52!

which coincides with the limiting behavior~50! of the distri-
bution in the region22,E,2. Thus, while in the energy
region22,E,2 values of the index with anO(1) differ-
ence from the typical one have a finite probability, here
index distribution is so much peaked on the typical value t
even small changes in the index have zero probability.

IV. AN APPLICATION TO DISORDERED SYSTEMS

In this section, we consider a mean-field spin-glass mo
that has been extensively studied in the last years and w
thermodynamical as well as dynamical features are very w
known, namely thep-spin spherical model.28–32Our aim is to
use the results of the calculation we have carried out in
previous section, in order to have a better understandin
the statistical and geometrical properties of the energy la
scape for this model.

This problem is by itself relevant, because both the sta
properties and the peculiar off-equilibrium dynamical beha
ior of mean field spin glasses, and in particular of this mod
are known to be deeply related to the distribution of t
minima and of the saddles of the Hamiltonian.7,9,10,22More-
over, it is now commonly accepted that thep-spin spherical
model shares many common features with structural glas
which are presently one of the major challenges for statist
mechanics. Indeed, notwithstanding the completely differ
form of the Hamiltonians, some structural glasses~in particu-
lar fragile glasses! and thep-spin spherical model have
very similar structure of the energy landscape.33 Therefore, a
thorough investigation of the energy landscape for thep-spin
spherical model is important also for a better understand
of structural glasses.

As already stated in the Introduction, knowing the ind
distribution of the Hessian at various energies is equiva
to knowing the fluctuations in the stability of the energ
surface. In other words, the index distribution tells us wh
are the dominant stationary points of the Hamiltonian~or
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saddles! at a given energy, and, more importantly, what
the probability distribution around the typical saddles, th
providing an insight on the mutual entropic accessibility
different stationary points. This is what we are going to d
scribe in this last section.

The reason why thep-spin spherical model is particularl
appropriate for an application of the above calculation a
concepts is the following: when we look at the stationa
points of the Hamiltonian of this system, we find that t
Hessian matrixM in such stationary points, behaves as
Gaussian random matrix of the same kind as the ones
sidered in the calculations above. More specifically, if
classify the stationary points of the Hamiltonian in terms
their energy densityE, we find that the HessianM (E) in
these stationary points is a random matrix of the form~see
for instance Ref. 31!

Mi j ~E!5Ji j 2E d i j , ~53!

where Ji j is an N-dimensional real and symmetric rando
matrix with the same Gaussian distribution as~2!, and where
N is the size of the system. The spectrum of the Hessia
the stationary points is therefore,

r~l;E!5
1

2p
AEth

2 2~l1E!2, ~54!

whereEth is the so-calledthreshold energy, which depends
on the parameters of the model~in the previous sections i
wasuEthu52). Given the particular shape of the Hessian,
can completely disregard the details of thep-spin spherical
model and assume the results obtained in our calculatio
the starting point, interpreting these results in terms of pr
ability distributions of the stationary points of the Ham
tonian.

Let us begin our geometric analysis of the energy la
scape from very low energies. WhenE,2uEthu the semi-
circle is entirely contained in the positive semiaxis and
average determinant of the Hessian is positive: this is
region dominated by minima, as the index distribution~52!
shows. Moreover, as we have already noted in the prev
section, the probability of finding a stationary point with a
index different from the typical one~i.e., 0! is zero. Minima
are strongly dominant in this energy regime. A more care
analysis10 shows that even in this regime there are sadd
with nonzero index, but the probability of these objects
exponentially small inN, that is

P~K,E!;e2KNV(E) K51,2,3, . . . . ~55!

This result is obtained by considering nonsymmetric con
bution to the saddle-point equations~see Ref. 10 and the
Appendix! and, consistently with Eq.~52!, it gives a contri-
bution too small to be caught by simply analyzing fluctu
tions around the dominant saddle point. The above re
shows that at low energies minima are exponentially do
nant over saddles of order one, and even more dominant
saddles with extensive index. In this sense, we shall call
region thedecoupling regime, since at any energy below th
threshold only one kind of stationary points, namely minim
dominates. When we raise the energy, we finally arrive
E52uEthu: here the semicircle touches the zero and the
coupling between different stationary points is no long
s
f
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true. Indeed, it can be proved10 that V(Eth)50, meaning
that at the threshold energy minima and saddles of order
have the same probability.

Thanks to the calculation of the previous section, we
now in the position to answer the following question: Wh
happensabovethe threshold energy? From a simple inspe
tion of the semicircle law it is clear that above the thresh
saddles become important, since many negative eigenva
appear and the average indexNa(E) is nonzero. Yet, in
order to have information on the degree of decoupling of
stationary points, the simple typical indexNa(E) is not
enough. The reason is the following: the knowledge of
typical index does not tell us whether at that same ene
other stationary points, different from the typical ones, do
do not have nonzero probability. In this sense the mut
entropic accessibility of different stationary points is e
coded in the index distributionP(K,E), which reveals to
what extent the typical saddles are dominant over the n
typical ones.

From Eq. ~35! we see that in this regime not only th
dominant stationary points are saddles of orderN, but, also,
that the probability of finding a minimum is of ordere2N2

.
The decoupling between minima and dominant saddle
therefore much more dramatic than the one we found be
the threshold. On the other hand, because of the diverge
of the varianceD with N @Eq. ~46!#, we see that there is a
mixing among saddles with the sameintensive index: the
probability of having a saddle whose index differs from t
average by a number of order one, is the same as the p
ability of the typical saddles.34 In other words, the main re
sult is that there is no decoupling among saddles with
same intensive index, so that a mixing of different station
points occurs, while still a decoupling exists between dom
nant saddles and minima.

Summarizing, we can therefore distinguish two ener
regimes where the probability distribution of the stationa
points, and therefore the geometric structure of the ene
landscape, is very different: a decoupled regime forE,Eth
and a mixed regime forE.Eth . Interestingly enough, the
threshold energyEth is exactly the asymptotic energy whe
a purely dynamical transition occurs: below a critical te
peratureTd , the ergodicity is broken and the system is
longer able to visit the entire phase space in its time evo
tion, remaining confined to an energy level higher than
equilibrium one. This ‘‘dynamical energy’’ is equal t
Eth .30–32

This suggests us to relate the information we have on
distribution of the stationary points, following from the inde
distribution, to the dynamical physical behavior of the sy
tem. AboveTd the equilibrium energyE of the system is
higher than threshold valueEth and therefore belongs to th
mixed regime: the equilibrium landscape explored by
system is dominated by saddles of orderN which, as we have
shown, are all equally relevant up to variations of the ind
of order one. This means that all these unstable station
points are equally accessible to the system in its time ev
tion. As Td is approached the equilibrium energyE gets
closer and closer toEth , and the properties of the equilib
rium landscape change accordingly to the behavior
P(K,E) we have discussed in the previous section: wh
E;2uEthu11/N2/3 saddles with index of order one becom
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the most relevant and the variance of the index distributio
now finite. This means that minima start having a finite pro
ability in this energy regime. The range of temperatu
where this behavior takes places is of order 1/N2/3 and
shrinks to zero in the thermodynamic limit. BelowTd , the
equilibrium energy belongs to the decoupled regime, tha
E,Eth : minima are now dominant and saddles of any or
have exponentially vanishing probability. We can therefo
interpretTd as the temperature where a geometric transit
occurs from a regime of strong mixing of the stationa
points to a regime of equally strong decoupling.

V. CONCLUSIONS

In this paper, we computed the average index distribut
for an ensemble of Gaussian random matrices. We fin
result which is in optimum agreement with exact numeri
diagonalization. This computation is, in our opinion, an
teresting example where the fermionic replica method,
gether with a careful asymptotic expansion of the integr
gives correct results. We hope that the present work c
therefore, contribute to clarify the role of the replica meth
in the context of RMT.

Besides, and this was our main purpose, the index di
bution provides a really useful tool for investigating the ge
metric structure of the energy landscape in disordered
tems. In the previous section, we applied this tool to
simple case of thep-spin spherical model and discussed t
physical consequences of our results. In general, the tas
computing the distribution of the index of the Hessian is n
as simple as in thep-spin model. The main reason is that th
Hessian usually does not behave as a Gaussian random
trix, because, as noted in the Introduction, its distribution
determined both by the distribution of the quenched disor
and by the distribution of the configurations. However, t
same procedure we adopted in this paper can also be ap
to these more complicated cases, with the appropriate m
fications: to compute the index distribution at a given ene
E, one has to average over the distribution of the disor
and integrate over the relevant configurations belonging
the manifold of energyE.10 This is the reason why the
method presented in this paper is particularly suitable for
e
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task, since it addresses the problem without assuming
particular form for the distribution of the Hessian.

Finally, there have been recently some attempts to fin
connection between the occurrence of a thermodynam
phase transition and the change in the topology of the c
figuration space visited by the system at equilibrium.35 For
various non-disordered models which present a second-o
phase transition it has been shown via numerical simulati
that the fluctuations of the curvature of the configurati
space exhibit a singular behavior at the transition point. T
is similar to the behavior described in the previous sect
for the p-spin spherical model, where the average fluctu
tions of the index~39! at the equilibrium energy encounter
dramatic change as the dynamical transition is approache10

This suggests first of all that also in disordered system
connection between thermodynamical behavior and topol
of the configuration space exists. Besides, the case of thp
spin is also peculiar in this sense: it presents a static ph
transition, which is thermodynamically of second order, b
it is discontinuous in the order parameter28 and exhibits a
purely dynamical transition at a higher temperature.30 As we
have shown, in this case a dramatic change of geomet
properties occurs at the dynamical transition, indicating t
a more complex situation probably holds for disordered s
tems which present this sort of behavior.
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APPENDIX

In this Appendix, we calculate the contributions to th
index distribution of saddle-point~SP! solutions different
from Eq. ~29! for energies in the region22,E,2.

A general SP solution reads,
~A1!
ces
d

by
For p6Þ0,n6 these SP are not invariant under the unbrok
replica symmetrySp(n1)3Sp(n2) of Eq. ~24!, and have
therefore been called replica symmetry broken~RSB!
solutions,14 even though the symmetry is subsequently
stored by zero modes. The action~25! at the saddle-poin
solution ~A1! reads, after taking the replica limit,

iNa~E!@m22p~p12p2!#.
n

-

Let us consider now the fluctuations.15 There are sixteen dif-
ferent normal modes. They are labeled by the pair of indi
(a,s), where the indexs561 indicates the upper an
lower block, and the indexa561 indicates the sub-block
with solution za . The eigenvalues are thus denoted
v (a,s)(a8,s8) . There are three kinds of fluctuations:

~i! Massive modes: these correspond toa5a8 for any s
ands8, with eigenvaluesv (as)(as8)5(11qa

2).
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~ii ! Zero modes: fora52a8 and s5s8. They are
present for any RSB solution.

~iii ! Soft modes: fora52a8 ands52s8, with eigen-
valuev (as)(2a2s)5ase/pr0(E).

Let us consider SP’s withp15p25p, which respect the
symmetry of the problem under simultaneous complex c
jugation and inversion ofm. For these, after integrating ou
the fluctuations, we obtain

G~m,E!p65p5 lim
n6→6m/2p

V n1

p V n2

p @pr0
2~E!#4p2

G~m,E!0 ,

~A2!

whereG(m,E)0 is the result from the RS solution~34! @with
e;1/N12d, see Eq.~45!# and the volume of the zero mod
manifoldsV n6

p is given by

V n
p5@4p3 r0

2~E!#2p(n2p) Fn
p ,

Fn
p5

G~11n!

G~11p! G~11n2p! )j 51

p
G~112 j !

G@112~n2 j 11!#
.

~A3!

We need now to determine the zero-modes volume in
replica limit. Using the property of the Gamma functio
G(z)G(12z)5p/sinpz, and noting that n6→6m/2p
;N/D(E), so we want the largeun6u limit, we find that

Fn1

p →F ~21!p2
p24p2

G2~11p!
)
j 51

p

G2~112 j !G S m

2p D 2p22p

sinp m.

~A4!
-

d

.

-

e

We can now use Eq.~17! to obtain the contribution to the
index distribution of the RSB solutions. For the simplest o
p51 we get,

P1~K,E!5@4p2 r0
2~E!#24A 2

p D3~E!

3S @K2Na~E!11# expH 2
@K2Na~E!11#2

2D~E! J
2@K2Na~E!21# expH 2

@K2Na~E!21#2

2D~E! J D .

~A5!

For uEu,2 this is anO(1/logN) contribution to the distribu-
tion ~36! obtained from the RS solution. In contrast to th
case of correlation functions,14 contributions from higher
RSB saddle points do not vanish, but give contributions d
creasing by powers of logN.

Let us turn now to the external regionsuEu.2. The RSB
solutions here are those withp15(n22p2)5p.0. Evalu-
ating Eq.~25! in these SP’s we find that their contribution
are suppressed by

expH 2pNF uEuAE2241 logS E2

2
1

uEu
2

AE22411D G J ,

as was already found in Ref. 10.
.
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