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Index distribution of random matrices with an application to disordered systems
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We compute the distribution of the number of negative eigenvdthesindey for an ensemble of Gaussian
random matrices, by means of the replica method. This calculation has important applications in the context of
statistical mechanics of disordered systems, where the second derivative of the potentialtbeerpssian
is a random matrix whose negative eigenvalues measure the degree of instability of the energy surface. An
analysis of the probability distribution of the Hessian index is therefore relevant for a geometric characteriza-
tion of the energy landscape in disordered systems. The approach we use here is particularly suitable for this
purpose, since it addresses the problem withoutapyiori assumption on the random matrix ensemble and
can be naturally extended to more realistic, non-Gaussian distributions.

[. INTRODUCTION tem. In particular, it has been argued that there exists a deep
relation between the diffusion properties of a liquid and the
The importance of random matrix theo@®MT) can  negative unstable eigenvalues of the average He&5ian.
hardly be overstated. Since its initial development by Wigner It is evident that in the above context an application of
and Dyson to deal with the spectrum of many-body quantunRMT to the study of the statistical properties of the Hessian
systems;? it has found applications in areas of physics ascan be potentially very useful. An important remark is the
diverse as disordered systems, chaos, and quantum gravifpllowing: the Hessian is a matrix that in general depends on
to name just a fewW-® Most of the time RMT has been used the configuration of the system and possibly also on the
as a very powerful tool for the study of the energy-levelquenched disorder, when this is present. The basic idea is to
fluctuations of quantum systems. In this case, the matrix thaderive from the distribution of the configurations and from
RMT is modeling is of course the quantum Hamiltonian of the distribution of the disorder an effective probability dis-
the system. tribution for the Hessian, which can then be studied in the
However, there is a different context where RMT can becontext of RMT (a recent example of this strategy can be
very useful, namely the study of the statistical properties ofound in Ref. 13.
classical disordered systems. By disordered systems we Besides, it is clear from the former discussion that an
mean not only those cases where quenched disorder is dmportant issue is the analysis of the negative eigenvalues of
rectly present in the Hamiltonian, as in spin-glasses, randorthe Hessian, since their presence is related to regions of un-
field models or neural networks, but also systems whosstable negative curvature of the energy surface and thus pos-
physical behavior at low temperatures is heavily influencedsibly to the boundaries of different basins of attractions in
by the self-induced disorder of their typical configurations,the phase space. In particular, the number of negative eigen-
as for example, supercooled liquids and structural glasses. Walues of the Hessian, called thmlex is the first and easiest
all these systems the properties of the energy landscape, oreasure of instability. As a consequence, all the tools de-
energy surface, are known to be far from trivial. In particu-vised for the investigation of the index in RMT are particu-
lar, the presence of many local minima of the potential endarly relevant in the context of statistical mechanics of disor-
ergy is one of the most distinctive features of this class ofdered systems. The average value of the index is trivially
systems:® An obvious consequence of this fact is that therelated to the average spectrum of the Hessian by a simple
energy surface displays many extensive regions with unintegration. On the other hand, a more interesting and less
stable negative curvature and therefore has very nontrividrivial quantity is theprobability distribution of the index.
stability properties:*° In this context, a key object becomes Indeed, while the average index gives a measure of the over-
the matrix of the second derivatives of the Hamiltonian, nor-all degree of instability of the energy surface, the knowledge
mally called Hessian, which encodes all the stability at-of the fluctuations of the index around its average value al-
tributes of the energy landscape. lows a more profound and complete geometric description of
The study of the statistical properties of the Hessian hathe energy landscape.
been an important issue both in the theory of mean-field spin In this paper, we compute the probability distribution of
glasses and in liquid theory. In the former case, it is ofterthe index for an ensemble of Gaussian random matrices with
possible to analyze the Hessian in the stationary points of tha diagonal shift. This ensemble provides the simplest pos-
free energy, having therefore important information on thesible model for the Hessian of a disordered system at a given
shape and stability of the thermodynamic stdtésliquids, energy and represents the ideal context where to develop the
on the other hand, the Hessian of the potential energy is thiechnical aspects of this kind of computation. Moreover, in
key object in the context of the instantaneous normal modethe Gaussian context we are able to give nontrivial physical
approach*?where the average spectrum of the Hessian isnterpretations of our results.
directly connected to many physical observables of the sys- In order to compute the index distribution, we use a fer-
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mionic replica method. In the past, the replica method hasvhere the bar indicates the average over distributdnit is
been applied to recover standard results in RMT, with variwell known that for the Gaussian ensembles the specirum
able success. Recently the interest of the community has fan the limit N—co is given by a semicircle centered around
cused again on this methfd'®and some indications of the A= —E, that is

mathematical consistency of the method have been provided,

even if some strong criticisms still persiét.The present 1

computation offers an interesting example where the replica P(NE)=Z V4—(N+E)?, (4)
method can be applied to obtain exact results, which are not

easily available in the standard RMT literature. while p is zero outside the semicircle supp%rt_

There is also another important reason for using the rep- In order to fix our notation and to acquire some familiarity
lica method in the computation of the index, which is relatedwith the method we will use, we compute in this section the
to the physical relevance of the Hessian discussed above. Afverage determinant dfl. In general this isnot a self-
we have seen, RMT can be used once an effective probabikveraging quantity, in the sense that fluctuations around the
ity distribution for the Hessian has been worked out from themean value do not decrease in the lifNit>e. The correct
distribution of the configurations and from the distribution of object to average is in principle the logarithm of the deter-
the quenched disorder. This effective distribution will not beminant, as it appears in the definition pf since this is an
Gaussian in generalinless we consider some very particular extensive quantity. However, it is a particular property of the
models and typically it will not belong to the standard en- Gaussian case that the determinanself averaging at the
sembles considered by ordinary RMT. By means of the repreading order, so that the calculation@#tM is an interest-
lica method we have in principle no need to assume anyhg and simple warm-up exercise for what we want to show
specific form of the distribution. later.

The paper is organized as follows. In Sec. Il, we compute  ysing a standard procedure we can write the determinant

the average determinant for matrices of the Gaussian Olby means of a Gaussian integral owdimensional fermi-
thogonal Ensemble as a warm-up exercise to fix notation angniC vectors (. )

ideas. We then proceed in Sec. Ill to the main part of the
paper, where we calculate the average index distribution by N

means of the replica method, in the limit of large matrices. In detM :f dZdwexr{ -> %,/,j(J” —E&)|, (5
Sec. IV, we apply the previous analysis to the specific case ij=1

of a mean-field spin-glass model, where the Hessian is e

actly a Gaussian random matrix. Finally, in Sec. V, we dis
cuss the general relevance of our results and state our co
clusions. The contribution of replica symmetry broken
saddle-point solutions is calculated in the Appendix.

)ji‘ we now average over thel, perform a Hubbard-

Etratonovich transformation and integrate out the

ermions®1°we obtain

detM =f dg V@B, (6)
Il. A PRELIMINARY CALCULATION
Consider the matrix with
1
Mij=Jij—E &jj, (o S(q,E)=—§q2+Iog(—E—iq). (7)

where J;; is an N-dimensional real and symmetric random

matrix with the Gaussian distribution function This integral can be solved exactly in the linht~c by

means of the steepest descent metfidkhe actionShas two
saddle points in the complex plane, given by

i 1
PR =3 ®

2 2

2
—N/2, N N 2
PI]=2 exp — ZTrJ . (2

We have introduced a diagonal shitin order to mimic

what in general happens in disordered systems, where according to the valu of the energy, only one or both the

represents thg Hessian of the I—_|ami|ltonian. In this contextggqgle points may contribute to the integral so that we can
we expect to find very few negative eigenvaluedvbét low distinguish three different regimes:

energies, because of the dominance of minima at very low £_-"_ 5. For these values of the energy the only station-
energies. This is the effect of the sfitin (1) and we there- 51y hoint contributing to the integral i§. and we have
fore shall refer in the following t& as theenergy

The average density of eigenvalues, or spectrunM o detM = eNSa: E)— 2-N (|g| — JEZ=4)N e (IE[+VEZ- 42/ 8.
defined by ©)

In this energy regime, the spectrysirhas support completely
contained in the positive semiaxis and we thus expect the
1 average determinant to be positive, as it is.

d : i i ;
—— im 2 logdetr—M+ie), 3) 'E>2.. The support of the spectrum is now entlrely con
tained in the negative semiaxis, so we expect all eigenvalues

1
e _ -1
p(NE) TrNImTr(A M+i €)

7N 2N
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of the matrix to be negative. In this case, the relevant saddle We are interested in calculating the average probability
point turns out to bey_, and we thus find for the determi- distribution of the index, at a given enerdy that is the
nant probability P(K;E) to have a matridM with indexZ,, equal
to K, at energykE
detM = eNXa- B
= (N2 N(|E| - JEE—a)N N (e VA DGR E)) -
In the following, it will be important to distinguish between
(10) the extensivendex K, which is a positive integer between 0
andN, and theintensiveonek=K/N, which takes values in
the continuous intervdl0,1], and whose probability distri-
bution is

with the correct prefactor<{ 1) indicating that all eigenval-
ues are negative.

—2<E<+2: In this regime the situation is qualitatively
different. Indeed in this case the integration path can be de- _—
formed in a path passing through the two saddle paints pP(k;E)=dLk—Zu(E)/N]=NP(NKE). (16)
andqg_ and the real part of the actidhis the same in each PN o : .
one of them. Therefore, the two saddle points both contributyoéi;?nagrs(lllgl?nd(Oig)sv\é\;eggtefmed only fom(k;E).
to the integral and we have

S 1 (= R
detM = eNS(a+ E) 1 gNS(a- ,E)=(_ 1)Na(E) eN(E272)/4+Iog 2, P(K:E)= z] du e iuK G(u,E), (17)
11 -
where where
1 B \/@ 1 G(w,E)=det?"(M—ie)det “?"(M+ie). (18)
- 2
a(E)—;arct% + EE 4-E% (12 we now make use of the replica method to represent the

powers of the determinants B(u«,E) as analytic continua-
At these values of the energy the spectrumMofis partly  tions of integer powers
contained in the negative semiaxis, so that a nontrivial frac-
tion of the eigenvalues is negative. The interesting point is detf"“?"(MFie)= Ilim def'=(MTie). (19
that the interplay between the two saddle points gives rise to N.—*pl2m

the correct sign of the determinant. Indeed, it is easy to checE . . . : : L
: . . : y introducing two different sets dfi-dimensional fermionic
that «(E) is exactly the mean fraction of negative eigenval- —

ues ofM. that is vectors (. ,x%) withr=1,...n., we can rewrite the de-
terminants as

0
E)= d\ p(NE). 13 . . . —
«(E) f*:x: P(NE) (13 det 2" (MFie)= lim f Dx.Dx%
ntHiM/Z'ﬂ
Note that the mechanism we have described above, given N
by the interplay between the two saddle points, is crucial in Xex;{ _ z ;Q(M Fiex. |,
order to obtain the correct result for the determinankof r=1" " -

(20)

Il. THE INDEX DISTRIBUTION .
where the sums over the matrix indice$ are hereafter al-

The indexZ,, of a matrixM, defined as the number of its ways understood. We can write everything in a more com-
negat|ve1 eigenvalues, can be computed from the following,act fashion by introducing the Grassmann vectars, (¢,),
formula® with a=1,...,(h.+n_), defined agsee also Ref. 22

1
Tyy=5_lim [logdetM —ie)~logdetM +ie)]. (1o o n ) =0 XM,

7TI e—0
(14) (2D)

The meaning of this relation is quite clear: the functiontogether with the matrix
f(z) =log det(M — z) has a cut on the real axis at each eigen-
value of M, such that by means of the limit in E¢L4) we

are crossing as many cuts as negative eigenvalues are €,,= diag(e, ...,€, —€,...,—€). (22
present. Besides, this formula can be simply obtained by S N s
integrating the nonaveraged spectr(8nhfrom minus infinity ny L

up to zero. In the case we are considering, the index is a
function of the energ)e and its average value is given by Note that bothy, and €, have replica dimension=(n_
Na(E) [Eq. (12)]. +n_)—0. In this way, we have fo6
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. — 1 E
G(u,E)= lim wasz Wy —el o — 2
h i Zy/'=0+—€ Zil Sl e +0(€9),
noo (28
X eXF{ - ;1 Ya(M Sap—i€an) |- (23 1 E
R V=g, +e| =i ———=| +0(€?),
The average o6 over the distribution ofl can be computed B 2 2{4-F?

in the standard wa$"'®'°by a generalization of the proce-
dure of the previous section, the main difference being th
fact that we have an extra replica dimension, so that th?h
variable g must be replaced by a matriQ,,. We, thus,
obtain thec modet®%in the form

g\lhereqi are given in Eq(8).
There are some important things to note here, related to
e fact that the presence efcrucially modifies the mutual
relevance of the different saddle points. We have seen in the
previous section that in the regime 2<E<?2 both the
- saddle pointgy, andqg_ contribute to the integral. This is
G(,U«,E)Zf DQ '8, (24 true also in the present case, when a valued is consid-
_ ered: for eacle, the integration path can be deformed in a
with path passing through, andz_ and in principle both the
s ) ~ saddle points must be taken into account. However, when we
S(Q,E)=—iTrQ%+logdet —E—iQ), (25 |00k at the real part of the actic® we now discover that the
contribution of one saddle point is exponentially dominant
over the other by a factor exp(Ne). This is in contrast with
the case of the previous section, where the real pagvedis

andE,,=E&,,+ie€,,. Note the similarity with Eqs(6) and

(7). The matrix Q is an nxn self-dual real-quaternion
., 19,15 2_ i diagn.

matrix. It has 2nh“—n degrees of freedom, and is diago the same in the two saddle points.

nalized by transformations of the simplectic gro8p(n). The crucial point is that, due to opposite signeoin the

Note that the symmetry properties of the mat@xare a SR .
direct conseque?\lce of hya\ﬁngpused a purely fern?i(onic repreL_Jpper_and Iowe_r blocks, the real part of the action is tilted in
sentation in Eqs20)—(23).23 In Eq. (25), we see for the first opposite ways in the two blocks and, as a consequence, the

i o - dominant saddle point becomes for the upper block and
time the role ofe as a symmetry breaking field. The matBx ;o the Jower one. We now start to understand the way in
has an upper block of size, , which contains+ie and a

; . . S5 which e works as a symmetry breaking field: withoethe
lower one of sizen_ with —ie, so that the action is only g saddle points have the same weight in the integral and
invariant underSp(n)/Sp(n.)xSp(n-), and the full in- e haye to consider both of them. With the weights are
variance undeSp(n) is only recovered in the limie—0.  qqgified in opposite ways for the upper and lower blocks. In
However, hownexactlythe symmetry breaking affects the cal- orger to apply the steepest descent method we must perform

culation will become clearer below. the limit N—o beforethe limit e—0, and this selectpst
We can evaluate the integr@4) by means of the steepest ,nq gifferent saddle point for each of the two different

descent, or saddle poi.nt, meth‘?d’ which becomes exact chIocks, dumping completely the nondominant contribution.
largeN. The saddle point equation for the matfixreads As a result, when at the end—0 we have selected, for

e g the upper block and_ for the lower one. This is very remi-
Q=I(E+iQ) "™ niscent of what happens in statistical physics, where, in order

This equation can be solved assuming@a diagonal form, to break a symmetry by means of an external field, the ther-

Q.b=12Z.0a,- We have two different sets of equations, onemodynamic limit must be performed before sending the field

set for the elements belonging to the upper blak,, anda  to zero.

second set for the elements of the lower blagk. The only On the other hand, for energi¢s|>2, the effect ofe is

difference between the two sets is, of course, the sige, of harmless, there is no qualitative change from the situation
described in the previous section and the same kind of saddle

zZW=i (E+ie+iz{")‘upper block point for the upper and lower block contributes to the inte-
(26)  Ooral.
N oy We can now proceed in our computation. We will focus
20 =i (E-ie+iz{) lower block. first on the region- 2<E<2, where the typical spectrum is

Each one of these two sets of equations has two solutionQOt. pos_itive de_fin_ed and where we thus expect a more in_ter-
29 for the upper blockz{) for the lower one, namely esting index distribution. According to the above discussion

on the dominant saddle points, we must consider the follow-
i 1 ing form for the saddle point solutioQgp:
z<;>=§(5+ie)¢§\/4—(E+ie)?,

2 . u u
27) Qsp=d1ag(z(+), - ,z(+), AL ,z(,l)). (29)

i 1
z(i')=§(E—ie)t§\/4—(E—ie)2. "y n_

For all values of the energy such tHdt—E?|> e these so- This form is invariant under the unbroken group
lutions can be expanded in powersefnd read Sp(n,)XSp(n_) of replica symmetry transformations, and
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in this sense we shall refer to it as a replica symmeRs) GlLE = (2 -n,2) —(®-n_i2) —2n,n_
saddle point®*We note that Eq(18) is invariant under the (mBE)=o, o, O
simultaneous action of complex conjugation and inversion of xXexgiuNa(E)] (33

m, which after replicating becomes. —n., and that our -
saddle point satisfies this invariance. If we plug expressionn the replica limitn.. — = u/2m, this quantity becomes
(29 into Eq. (24), we obtain after taking the limig—0

unwl)

Om

2
ot _r
G(M,E):(_E_iq+)N,u/2ﬂ'(_E_iq_)fN,u.IZﬂ' G(,U/,E)—QX[{ULNCZ(E) 27T2|Og

w =N u (a5 —a?)/am

M Wy
where «(E) is the average fraction of negative eigenvaluesFrom Eq.(17) we obtain the distribution for the extensive
given by Eq.(12). From Eq.(17) we finally get the probabil- and intensive index for finite but large:
ity p(k,E) in the limit N— o,

[ 1 [K—Na(E)+ B(E)]2
p(k,E)= o k—a(E)]. @y PKBE=VxE o9 2A(E) (39

This result is very reasonable, but also rather trivial: the 5 2 2
probability distribution of the intensive index is@function  nk E)= + /N_e 4_ NTk= a(E)+ A(E)/N] }
peaked on its average value in the lihit>. In order to 2mA(E) 2A(E)

observe a nontrivial behavior we need to consider the scaling (36)

with N, that is, the distribution of the index for large but These are Gaussian distributions peaked on the average value
finite N. This is particularly important if we are interested in 4 (E). Indeed the shift,

the distribution of the extensive index, as for example in the

—exfi uNa(E)], (30)

case of disordered systems, where we want to know the 1 E

change in the probability of different stationary points when B(E)= —arct% —) , (37
variations of the index of order one, not of ordsr are 2m V4—E?

considered.

is of order one and is not relevant at large enough values of

To go beyond result31), we must consider fluctuations N. The variance\ (E) is given by

around the saddle poiri29). The general procedure is dis-

cussed in the Appendix. As expected there are three kinds of 1 Joum
fluctuations: within the upper block, within the lower block, A(E)= —Iog( u '), (38)
and those which mix the two blocks. Their corresponding w? ®m
eigenvalues and degeneracies are, that is
w,=1+2) 2 1
5 A(E)= = log[27%€ 1po(E)?], (39)
=(1+q%)~——==+0(€%) d,=2n%-n,,
Y J1-EY4 ) T where we have definedy(E)=p(A=0;E) [see Eq.(4)].

This result for the variance can also be obtained by the
€q- method of orthogonal polynomials wheeeplays the role of
w=1+2020= (1+q2,)—\/:2 +0(€%) a high frequency cutoff>?%4
1-E%4 The fact that expressiof89) still depends ore can seem
rather unphysical, especially when we consider the fact that
the limit e—~0 has to be performed. However, we have to
remember that we are looking at finlkecorrections, and this
€ L0() do—an.n very fact m_akes the parametersand N no longer indepen-
J1-E%4 m— A dent. In this way, the presence eftranslates in a more
physicalN dependence and this allows us to compute the
The first two sets of eigenmodes are massive modes, in theealing of the index distribution with the matrix side Be-
sense that their eigenvalues &¢1). Thethird set are soft fore discussing the result we have obtained for the index
modes: for vanishing they would correspond to zero modes distribution, we have therefore to address the problem of the
associated to the restoration of tBg(n,.+n_) symmetry; relation betweere andN.
for small nonzerce they become soft vibrations. In a formu- ~ There are mainly two different reasons whkyandN are
lation of the problem in terms of the nonlinear related. First, as we have previously noted, there is a precise
model®1°?4the massive modes would correspond to longi-interplay between the two limit§y— o ande—0, when the
tudinal variations ofQ (i.e., variations such tha@Q-5Q saddle point approximation is used in order to solve integral
+6Q-Q=+0), while soft/zero modes would correspond to (24): the symmetry breaking due te works only if e—0
tranverse variation%. Integrating over the fluctuations, we after N—o, as in any thermodynamic calculation. Nf is
obtain kept finite, we need a value @fbig enough to guarantee the

2

d=2n%2-n_, (32

on=1+2"z0=
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dominance of one saddle point over the other. We have see 09 . - y .
that the role ofe is to modify the real part of the action in
such a way that along the integration patlone saddle point
is weighted more than the other. Howevergifs too small, O Numerical Simulation
also the nondominant saddle point may give a non-negligible %8| —— a(N)=AlgN+B
contribution to the integral. To avoid this fact we need the
secondary contribution to be suppressed also at fivigand

to vanish when the limiN—o is considered. The suppres- ,

X o 0.7
sion factor is given, at order, by

e—N[S(z&‘))—S(z(E))] — g~ 27Nepo(E) (40)

for the upper blockfor the lower block an analogous expres- 06|
sion is valid. In order for the suppression factor to vanish it
must hold

0.5 L 1 1 L
eN—o,  N—oo. (4D 3.0 4.0 5.0 6.0 7.0 8.0

This imposes a lower bound ferwhenN is finite. A natural log N

general choice is therefore to assume FIG. 1. The variance\ as a function of logN for E=0, ob-

tained by means of exact numerical diagonalization on the Gaussian

1 (42) orthogonal ensemble. The full line is the linear fit.

€= N1 o)’

i ) where we have takea=1/2N'~?, the factor 1/2 being con-
where the exponentd(N) has to satisfy the relation gigient with Eq(40) atE=0. Note that we have disregarded
S8(N)logN—-oe. The simplest possibility is, of course, a con- 8(N) in the right-hand side of Eq46) since we are inter-
stant value ofd. However, as we shall argue immediately ggieq in the asymptotic behavior of the variance with respect
below, this would not be consistent with the second condiy, N at a given value of the enerdsy Indeeds(N) represents
tion we have to impose oe. , a vanishing correction to the slope &fversus logl), while

The second bound far comes from the following obser- e |5t term in Eq(46) gives a finite value for the intersect
vation. When we perform our calculation with a finite value 54 has therefore to be kept.

of N-and of ¢, there are of course two different kinds of g result agrees very well with numerical simulations:

corrections to the asymptotic exact result: the first kind is;,, Fig. 1, we plot the varianca as a function of log\

related to the saddle-point approximation and brings correCpiained by exact numerical diagonalization. A linear fit
tions that scale as inverse powers\ofThe second is related iy ag

to the nonzero value af and brings corrections that scales as

powers ofe. Consistency requires that in the final result the a b

error introduced by considering a finite valueeofnust be of A=—logN+ —log(2mp,), a=1.005-0.006,

the same order as the terms we discard in the expansion in ™ ™

1/N. It can be easily shown that the corrections to the index

distribution (35) for finite € are of ordere?, that is b=1.993+0.003. (47)

- 2 This same scaling for the variance has been found also in
Glw)=exiNa(E)+B(E)+O(e)]. “3 Ref. 25, where a completely different method based on the

On the other hand, by considering the Gaussian fluctuationgvariance properties of the Gaussian orthogonal ensemble
around the saddle point, we are discarding terms of ordesind the dominance of intrinsic binary correlations was used.
1/N? in the exponent of Eq43). Thus, we must impose the In the Appendix, we show in details that the contributions of

condition the other possible saddle point solutions of the whole integral
(24) to the index distribution are smaller by inverse powers
, 1 of log N in this energy region, therefore the scaling withs
€~ @ (44) correctly reproduced by Eq$35), (36) and (46).

We can finally analyze the significance of our result, Egs.
Equation(44) is consistent with Eqg42) and(41) only fif, (35), (36), and(46), in the energy regime- 2<E<2. What
we see is that the variance of the probability distribution of
S(N)—0, &(N)logN—, N-—soo, (49 theintensiveindex goes to zero in the limi—c and this
In this way, we finally get for the variance the result, was quite expected, given our former res(8). On the
other hand, the variance of the distribution of #agensive
1 index diverges logarithmically foN—o. The meaning of
A(E,N)= —Zlog[47-r2N(1*5(N))po(E)2] this result is the following: on the one hand the probability of
™ finding a matrix with an index density different from the
1 2 average one, that is with an extensive ind&x N«
~ —logN+ —log(2mpy), (46)  TO(N), is zero in the limitN— <. But, on the other hand,
T ™ the probability of having a matrix whose index differs from
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the average one for a number of negative eigenvalues aind the harmonic terms in the expansion around the saddle
order one, i.e.Z~Na+O(1), is exactly the same as the point vanish. It is not difficult to show that the distributions
probability of having a matrix with the average index, in the here become
limit N—o. As we shall see in the next section, this fact has N 1
some very interesting physical consequences in the context P(K.E=—2")=N""4(K),
of disordered systems.

Let us now look at the other energy regions. First of all,
we note that the derivation of Eq®8), (32), and(40) holds
as long as the energy is such thg{E) is of O(1). Butthis

P(K,E—=27)=N"18(K—N). (50

The calculation in the regionsE|>2 is completely
straightforward since plays no role from the beginning. As

condition breaks dOV.V“ when the energy get.s close Joand mentioned before, the same kind of saddle point has to go in
po(E)<<1. In this region the procedure previously adopted thoth blocks. so that we have

compute the index distribution has to be modified. Indeed,

when po(E) becomes too small the suppression mechanism L ) w 0 o (51)
(40) starts being inefficient, and the saddle pdia®) is no Qsp=diag(zs’, ... oz2 22, o oze),s

longer the only one contributing to the integral. At some
point the excitations that were treated as soft modes in Eq. . T ) )
(32) must be considered as zero modes connecting equivthere the plugminus sign corresponds to negativposi-
lent saddle points: there exists a manifol8p(n, t|\_/e) energies. There is only one kind of massive fluctugtlon
+n_)/Sp(n,)xSp(n_) of saddle points and the original With degeneracy QZ_”' which goes to zero in the replica
replica symmetry undeBp(n.+n_) is restored. At this limit, and thus the integration over fluc_tuat_lons gives a trivial
stagee plays no longer any role and it can be taken to zeroPrefactor. The final result for the distribution Kfis

The massive modes are the same as in (88), and after N"18(K) E<—2

integrating over them and exactly over the degrees of free- P(K,E)=
dom associated with the zero modes we obtam to trivial ' N™'§(K-N) E>2,
factors in the replica limjt

n

(52

which coincides with the limiting behavidb0) of the distri-
bution in the region—2<E<2. Thus, while in the energy
region —2<E<2 values of the index with a®@(1) differ-
ence from the typical one have a finite probability, here the
xexdiuNa(E)], (48  index distribution is so much peaked on the typical value that
even small changes in the index have zero probability.
Wherev::+n corresponds to the volume of the manifold of
saddle-points solutionsee the Appendix At this point, one IV. AN APPLICATION TO DISORDERED SYSTEMS
has to analytically continue the previous expressionnfor In this section, we consider a mean-field spin-glass model,
—pl2m,n—0. The vqumevzim_ is finite forn, =0 and  that has been extensively studied in the last years and whose
it is zero for positive integer¥ Its analytic continuation is thermodynamical as well as dynamical features are very well
an oscillatory function oh, , with exponentially increasing known, namely th@-spin spherical modéf.~**Our aim is to
amp”tudéj, so that the presence of this factor in the formeruse the results of the calculation we have carried out in the
equation makes the index distribution non-Gaussian. HowPrevious section, in order to have a better understanding of
ever, as long as this analytic continuation is finite for non-the statistical and geometrical properties of the energy land-
integern, ~1, the distribution can be approximated by ascape for this model.
Gaussian with variance This problem is by itself relevant, because both the static
properties and the peculiar off-equilibrium dynamical behav-
1 ior of mean field spin glasses, and in particular of this model,
A(E~+2)=—log[87*N py(E)3]. (49  are known to be deeply related to the distribution of the
2 minima and of the saddles of the Hamiltoniah'®?*More-
over, it is now commonly accepted that thespin spherical
We can see from Eq49) that the variance still scales as model shares many common features with structural glasses,
logN. However, when|E—2|~1/N?*2% we have po(E)  which are presently one of the major challenges for statistical
~1/N'3 and a further crossover takes place: the variancenechanics. Indeed, notwithstanding the completely different
A(E) becomes of order one meaning that the index distribuform of the Hamiltonians, some structural glaséagparticu-
tion is dramatically more peaked around its typical value adar fragile glassesand thep-spin spherical model have a
we approaclE=+2. Note also that wheE~ —2+1/N*3  very similar structure of the energy landscdp@herefore, a
the typical indexa(E) becomes of order 1, meaning that in thorough investigation of the energy landscape forgtspin
this region matrices withO(1) negative eigenvalues are spherical model is important also for a better understanding
dominant. Summarizing, in the energy regime where the avef structural glasses.
erage number of negative eigenvalues is of order one, the As already stated in the Introduction, knowing the index
fluctuations around the mean value become of order one todlistribution of the Hessian at various energies is equivalent
When the energy is exactly at the threshold valies to knowing the fluctuations in the stability of the energy
==+2 we have a special case since the saddle point equaurface. In other words, the index distribution tells us what
tions for the eigenvalues have a single degenerate solutioaye the dominant stationary points of the Hamiltonian

G E) N2y o (22—l n )

n,+n_ "u I
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saddle¥ at a given energy, and, more importantly, what istrue. Indeed, it can be prov¥dthat Q(E,,)=0, meaning
the probability distribution around the typical saddles, thusthat at the threshold energy minima and saddles of order one
providing an insight on the mutual entropic accessibility ofhave the same probability.
different stationary points. This is what we are going to de- Thanks to the calculation of the previous section, we are
scribe in this last section. now in the position to answer the following question: What
The reason why thp-spin spherical model is particularly happensabovethe threshold energy? From a simple inspec-
appropriate for an application of the above calculation andion of the semicircle law it is clear that above the threshold
concepts is the following: when we look at the stationarysaddles become important, since many negative eigenvalues
points of the Hamiltonian of this system, we find that theappear and the average inddb(E) is nonzero. Yet, in
Hessian matrixM in such stationary points, behaves as aorder to have information on the degree of decoupling of the
Gaussian random matrix of the same kind as the ones comtationary points, the simple typical indéxa(E) is not
sidered in the calculations above. More specifically, if weenough. The reason is the following: the knowledge of the
classify the stationary points of the Hamiltonian in terms oftypical index does not tell us whether at that same energy
their energy densityfe, we find that the HessiaM(E) in other stationary points, different from the typical ones, do or
these stationary points is a random matrix of the fds@e do not have nonzero probability. In this sense the mutual

for instance Ref. 31 entropic accessibility of different stationary points is en-
coded in the index distributiof?(K,E), which reveals to
Mij(E)=J;j—E &jj , (53 what extent the typical saddles are dominant over the non-
where J;; is an N-dimensional real and symmetric random typical ones. o )
matrix with the same Gaussian distribution(as and where From Eq. (35 we see that in this regime not only the
N is the size of the system. The spectrum of the Hessian iflominant stationary points are saddles of ordebut, a|320,
the stationary points is therefore, that the probability of finding a minimum is of order N".
The decoupling between minima and dominant saddles is
) 1 \/272 therefore much more dramatic than the one we found below
p()"E):Z B (A+E)%, (54 the threshold. On the other hand, because of the divergence

_ ) of the varianceA with N [Eq. (46)], we see that there is a
whereEy, is the so-calledhreshold energywhich depends  mixing among saddles with the sanmgensiveindex: the
on the parameters of the modgh the previous sections it propability of having a saddle whose index differs from the
was|Ey|=2). Given the particular shape of the Hessian, weayerage by a number of order one, is the same as the prob-
can completely disregard the details of thkspin spherical  gpjlity of the typical saddle¥ In other words, the main re-
model and assume the results obtained in our calculation ag,it is that there is no decoupling among saddles with the
the starting point, interpreting these results in terms of probsame intensive index, so that a mixing of different stationary
ability distributions of the stationary points of the Hamil- points occurs, while still a decoupling exists between domi-
tonian. nant saddles and minima.

Let us begin our geometric analysis of the energy land- symmarizing, we can therefore distinguish two energy
scape from very low energies. Whén< —|E,,| the semi-  regimes where the probability distribution of the stationary
circle is entirely contained in the positive semiaxis and thepoints, and therefore the geometric structure of the energy
average determinant of the Hessian is positive: this is th@andscape, is very different: a decoupled regimeHEstE,j,
region dominated by minima, as the index digtributtﬁﬁ) ~and a mixed regime foE>E,,. Interestingly enough, the
shows. Moreover, as we have already noted in the previougyreshold energg,, is exactly the asymptotic energy where
section, the probability of finding a stationary point with an 5 pyrely dynamical transition occurs: below a critical tem-
index different frqm thg typ'lcal one.e., ()' is zero. Minima eratureTy, the ergodicity is broken and the system is no
are str_or(;gly dominant in this energy regime. A more carefulonger aple to visit the entire phase space in its time evolu-
analysi$® shows that even in this regime there are saddlegon’ remaining confined to an energy level higher than the

with nonzero index, but the probability of these objects isequilibrium one. This “dynamical energy” is equal to
exponentially small irN, that is E,, 3032

_KNO(E _ This suggests us to relate the information we have on the
P(K.E)~e ® K=123.... (59 distribution of the stationary points, following from the index
This result is obtained by considering nonsymmetric contri-distribution, to the dynamical physical behavior of the sys-
bution to the saddle-point equatioisee Ref. 10 and the tem. AboveT, the equilibrium energ)E of the system is
AppendiX and, consistently with Eq52), it gives a contri-  higher than threshold valug,, and therefore belongs to the
bution too small to be caught by simply analyzing fluctua-mixed regime: the equilibrium landscape explored by the
tions around the dominant saddle point. The above resullystem is dominated by saddles of ortlawhich, as we have
shows that at low energies minima are exponentially domishown, are all equally relevant up to variations of the index
nant over saddles of order one, and even more dominant ovef order one. This means that all these unstable stationary
saddles with extensive index. In this sense, we shall call thipoints are equally accessible to the system in its time evolu-
region thedecoupling regimesince at any energy below the tion. As T4 is approached the equilibrium enerdy gets
threshold only one kind of stationary points, namely minima,closer and closer t&,,, and the properties of the equilib-
dominates. When we raise the energy, we finally arrive atium landscape change accordingly to the behavior of
E= —|E|: here the semicircle touches the zero and the deP(K,E) we have discussed in the previous section: when
coupling between different stationary points is no longerE~ —|E,,| + 1/N?® saddles with index of order one become
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the most relevant and the variance of the index distribution isask, since it addresses the problem without assuming any
now finite. This means that minima start having a finite prob-particular form for the distribution of the Hessian.

ability in this energy regime. The range of temperatures Finally, there have been recently some attempts to find a
where this behavior takes places is of ordeN%7 and connection between the occurrence of a thermodynamical
shrinks to zero in the thermodynamic limit. Beldly, the  phase transition and the change in the topology of the con-
equilibrium energy belongs to the decoupled regime, that i§iguration space visited by the system at equilibritifror
E<E,,: minima are now dominant and saddles of any ordenarious non-disordered models which present a second-order
have exponentially vanishing probability. We can thereforephase transition it has been shown via numerical simulations
interpretT, as the temperature where a geometric transitiorthat the fluctuations of the curvature of the configuration
occurs from a regime of strong mixing of the stationaryspace exhibit a singular behavior at the transition point. This

points to a regime of equally strong decoupling. is similar to the behavior described in the previous section
for the p-spin spherical model, where the average fluctua-
V. CONCLUSIONS tions of the index39) at the equilibrium energy encounter a

dramatic change as the dynamical transition is approathed.
In this paper, we computed the average index distributionThis suggests first of all that also in disordered systems a
for an ensemble of Gaussian random matrices. We find gonnection between thermodynamical behavior and topology
result which is in optimum agreement with exact numericalof the configuration space exists. Besides, the case op the
diagonalization. This computation is, in our opinion, an in-spin is also peculiar in this sense: it presents a static phase
teresting example where the fermionic replica method, totransition, which is thermodynamically of second order, but
gether with a careful asymptotic expansion of the integralsit is discontinuous in the order paraméteand exhibits a
gives correct results. We hope that the present work carpurely dynamical transition at a higher temperafifras we
therefore, contribute to clarify the role of the replica methodhave shown, in this case a dramatic change of geometrical
in the context of RMT. properties occurs at the dynamical transition, indicating that
Besides, and this was our main purpose, the index distria more complex situation probably holds for disordered sys-
bution provides a really useful tool for investigating the geo-tems which present this sort of behavior.
metric structure of the energy landscape in disordered sys-
tems. In the previous section, we applied this tool to the ACKNOWLEDGMENTS
simple case of th@-spin spherical model and discussed the
physical consequences of our results. In general, the task %
computing the distribution of the index of the Hessian is not
as simple as in thp-spin model. The main reason is that the
Hessian usually does not behave as a Gaussian random "fﬁp
trix, because, as noted in the Introduction, its distribution is- & )
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to these more complicated cases, with the appropriate modi- APPENDIX
fications: to compute the index distribution at a given energy
E, one has to average over the distribution of the disorder In this Appendix, we calculate the contributions to the
and integrate over the relevant configurations belonging tindex distribution of saddle-poin(SP solutions different
the manifold of energyE.X® This is the reason why the from Eq.(29) for energies in the regior 2<E<?2.
method presented in this paper is particularly suitable for this A general SP solution reads,

f It is a pleasure to thank Jorge Kurchan for many sugges-
ons and discussions. We also thank Kurt Broderix for a
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Q¢p=diag z(f), e ,z(f), A GO AN (O z(l), e ,Z(l)
(A1)

P+ ny—p+ p— n_—p—

Forp. #0,n. these SP are not invariant under the unbrokeri_et us consider now the fluctuatiofsThere are sixteen dif-
replica symmetrySp(n,)XSp(n_) of Eq. (24), and have ferent normal modes. They are labeled by the pair of indices
therefore been called replica symmetry brokéRSB)  («,0), where the indexo==*1 indicates the upper and
solutions!* even though the symmetry is subsequently redower block, and the indexx=*+1 indicates the sub-block
stored by zero modes. The acti¢®5) at the saddle-point With solution z,. The eigenvalues are thus denoted by
solution (A1) reads, after taking the replica limit, ®(q,0)(a’ o) There are three kinds of fluctuations:
(i) Massive modes: these correspondite o’ for any o
iNa(E)[w—2m(ps—p-)]. andg’, with eigenvaluessqg(qo)=(1+02).
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(i) Zero modes: fora=—a’' and o=0¢’'. They are We can now use Eq.l7) to obtain the contribution to the
present for any RSB solution. index distribution of the RSB solutions. For the simplest one
(iii) Soft modes: fora=—a’ ando=—¢’', with eigen- p=1 we get,
value ®(4q)(— o o)= @0 €l mpo(E).
Let us consider SP’s with, =p_=p, which respect the
symmetry of the problem under simultaneous complex cong, (K.E)=[472 pX(E)]* [ 2
jugation and inversion of.. For these, after integrating out = '’ Po m A3(E)
the fluctuations, we obtain

I — [K—Na(E)+1]?
G(u.E)p.—p= lim VB VP [mpd(E)]* G(u.E)o, X| IK=Na(B)+1]exp = —— 15,
- n.—*ul2m
(A2) [K—Na(E)—1]?
EE— ] ) —[K=Na(E)—1] exp — .
whereG(u,E), is the result from the RS solutiai34) [with 2A(E)
e~1/IN'"? see Eq(45)] and the volume of the zero mode (A5)

manifoldsvﬁi is given by

For |E|< 2 this is anO(1/logN) contribution to the distribu-

p_ 3 2 2p(n—p) P . - .
Va=[4m po(E)] Fn, tion (36) obtained from the RS solution. In contrast to the

p ) case of correlation functiorté, contributions from higher
Fp_ I'(1+n) I'(1+2)) RSB saddle points do not vanish, but give contributions de-
" I'(1+p)I'(1+n—p)j=a I'[1+2(n—j+1)]" creasing by powers of lay.
(A3) Let us turn now to the external regiofis|>2. The RSB

solutions here are those wifh, =(n_—p_)=p>0. Evalu-

We need now to determine the zero-modes volume in thgying Eq.(25) in these SP’s we find that their contributions
replica limit. Using the property of the Gamma function 4.0 suppressed by

I'(2)T'(1—2z)=n/sinmz, and noting that n.— = /27
~N/A(E), so we want the larg..| limit, we find that

|\ 20°p exp[—pN{|E|\/Ez—4+log
(—) sinP w.

2

E? |E
7+%\/E2—4+ 1

2 2
(—1)P 74 P ) ’
—|— r?(1+2
N+ I'?(1+p) jﬂl ( )

(A4) as was already found in Ref. 10.
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