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Quasi-long-range order in the random anisotropy Heisenberg model: Functional renormalization
group in 4— e dimensions

D. E. Feldman
Condensed Matter Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel
and Landau Institute for Theoretical Physics, 142432 Chernogolovka, Moscow region, Russia
(Received 8 July 1999

The large-distance behaviors of the random field and random anisd@@@y models are studied with the
functional renormalization group in-4e dimensions. The random anisotropy Heisenbe¥g=@) model is
found to have a phase with an infinite correlation length at low temperatures and weak disorder. The correla-
tion function of the magnetization obeys a power law(r,)m(r,))~|r,—r,| %% The magnetic suscepti-
bility diverges at low fields ay~H ~1"%%* In the random field>(N) model the correlation length is found
to be finite at the arbitrarily weak disorder for aiz>3. The random field case is studied with a simple
method, based on a rigorous inequality. This approach allows one to avoid the integration of the functional
renormalization-group equations.

. INTRODUCTION manifold$®!® and then allowed to obtain information about
some other disordered systems with the Abelian
The effect of impurities on the order in condensed mattesymmetry'>317-1°| ess is known about the non-Abelian
is interesting, since the disorder is almost inevitably presensystems. The simplest of them are the random f(&&)
in any system. If the disorder is weak the short-range order i§Ref. 1) and random anisotropyRA) (Ref. 2 Heisenberg
the same as in the pure system. However, the large-distanceodels. The latter was introduced as a model of the amor-
behavior can be strongly modified by the arbitrarily weakphous magnet? In spite of a long discussion, initiated by
disorder. This happens in the systems of continuous symmeéRef. 20, the question of QLRO in these models is still open.
try in the presence of the random symmetry-breaking field. There is an experimental evidence in favor of no QLRO.
The first experimental example of this kind is the amorphousOn the other hand, recent numerical simulatférsupport
magnet*® During the last decade a lot of other related ob-the possibility of QLRO in these systems. The only theoret-
jects were found. These are liquid crystals in the porouscal approach, developed up to now, is based on the spherical
media? nematic elastomersHe-3 in aerogef, and vortex approximatio?*?* and predicts the absence of QLRO at
phases of impure superconduct6rhe nature of the low- N1 magnetization components. However, there is no rea-
temperature phases of these systems is still unclear. The ondgpn for this approximation to be valid At~1.

reliable statement is that a long-range order is abs&Hf In this paper we study the RF and RA(N) models in
However, other details of the large-distance behavior aréd— e dimensions with the functional renormalization group.
poorly understood. The large-distance behaviors of the systems are found to be

The neutron scatteridgreveals sharp Bragg peaks in im- quite different. Whereas in the RB(N) model with N>3
pure superconductors at low temperatures and weak externgide correlation length is always finite, the RA Heisenberg
magnetic fields. Since the vortices cannot form a regula(N=3) model has a phase with QLRO. In that phase the
latticé® it is tempting to assume that there is a quasi-long-correlation function of the magnetization obeys a power law
range ordefQLRO), that is, the correlation length is infinite and the magnetic susceptibility diverges at low fields.
and correlation functions are power functions of the distance. The paper has the following structure. In the second sec-
Recent theoretici®and numericaf* studies of the random tion the models are formulated and a qualitative discussion is
field XY model, which is the simplest model of the vortex given. The third section contains a derivation of the one-loop
system in the impure superconducfasupport this picture. renormalization-groupRG) equations. Section IV is devoted
The theoretical advancks™ are afforded by two technical to the RF model. The absence of QLRO in that modeM at
approaches: the functional renormalization gréuand the >3 is shown with the help of a rigorous inequality. This
replica variational methotf These methods are free from approach simplifies tedious RG calculations and can be use-
drawbacks of the standard renormalization group and givéul in other problems. The RA case is considered in Sec. V.
reasonable results. The variational method regards the posdihe stable RG fixed point corresponds to QLRO in &
bility of spontaneous replica symmetry breaking and treatslimensions alN~1. In particular, at the weak disorder the
the fluctuations approximately. On the other hand, the funceorrelation length is infinite in the low-temperature phases of
tional renormalization group provides a subtle analysis of thehe RA XY (N=2) and HeisenbergN=3) models. How-
fluctuations about the replica symmetrical ground state. Surever, QLRO is absent &i=10. In four dimensions the cor-
prisingly, the methods give close and sometimes even theelation functions of the RA Heisenberg model depend on
same results. the distance logarithmically. The exact result for the two-

Both techniques were originally suggested for the randonspin correlator is given by the 1R law. The Conclusion
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contains a discussion of the results. Appendix A is devotedHowever, there are two sources of corrections to ).

to a generalization of the Schwartz-Soffer inequaiftythe  Both of them are relevant already at the derivation of the RG
generalized inequality is applied to the stability analyses ofquation for the pure system int2e dimensions® The first

the RG fixed points. Appendix B describes a simple Migdal-source is the renormalization due to the interaction and the
Kadanoff renormalization-group approach that reproducesecond one results from the magnetization rescaling which is
qualitatively the results of the rigorous method. This ap-necessary to ensure the fixed length conditidr=1. The
proximation provides good estimations of the critical expo-leading corrections to Eq2.4) are proportional ta2J, $2A.
nents of the RAXY and Heisenberg models. Appendix C Thus the RG equation for the combinatipA(L)/J(L)]?
includes some technical details of the functional RG in thereads

spherical model.

Il. MODEL d —A(L) 2— —A(L) 2+ —A(L) ) =4-D
' dinL\ 3L, €3] T3y TR
To describe the large-distance behavior at low tempera- (2.5
tures we use the classical nonlineamodel with the Hamil-
tonian If the constant in Eq. (2.5) is positive the Larkin length is
the correlation length indeed. But @<0 the RG equation
_ D ny _ has a fixed point, corresponding to the pha_se Wlth an infinite
H fd X J; 9NN (X) F Vimg(X) | @ correlation length. As seen below, both situations are pos-

) ) o sible, depending on the system.
wheren(x) is the umt vector of the mggnetlzatmvimp(x) The large-distance behaviors of the RF and RAN)
the random potential. In the RF case it has the form models are known in two limit case=2 andN=. In the
spherical limit N=«) QLRO is absenfAppendix C, Ref.
Vimp=— 2 ha(x)ng(x);e=1,... N, (2.2 23) while theXY model possesses QLRO'*?*"Hence, the
@ ordering disappears at some critical numbkrof the mag-
where the random fielti(x) has a Gaussian distribution and N€tization components. This critical number is larger in the
(ha(x)hﬁ(x’)>=A25(x—x’)5aﬂ. In the RA case the ran- RA mod(_al, since the fluctuatlons_ of the magnetization are
dom potential is given by the equation stronger in the RF case. Indeed, in the RF model the magne-
tization tends to be oriented along the random field, whereas
in the RA case there are two preferable local magnetization
Vimp= — aEB Tap(X)N(X)NE(X);a,8=1,... N, (2.3  djrections so that the spins tend to lie in the same semispace.

where 7,5(x) is a Gaussian random variable,
(Tap(X) rya(x’))=A26a75ﬁ55(x—x’). The random potential lll. RG EQUATIONS
(2.3 corresponds to the same symmetry as the more conven- |n the previous section the RG equations are discussed
tional choiceVim,=—(hn)? but is more convenient for the from the qualitative point of view. Equatiof2.5) corre-
further discussion. _ sponds to the Migdal-Kadanoff approach of Appendix B. In
We assume that the temperature is low and the thermahe present section we derive the RG equations in a system-
fluctuations are negligible. The Imry-Ma argumehsug-  atic way.
gests that in our problem the long-range order is absent at The one-loop RG equations for tiecomponent RF and
any dimensiorD<4. One can estimate the Larkin length, up RA models in 4+ e dimensions were already derived in Ref.
to which there are strong ferromagnetic correlations, with theg \we can directly use that result, since the RG equations in
following qualitative RG approach. Let one remove the fastgimensionsdD <4 can be obtained by just changing the sign
modes and rewrite the Hamiltonian in terms of the blockyf (. However, the approaéhis cumbersome and we pro-
spins, corresponding to the scdle=ba, wherea is the ul-  \jide below a simpler derivation.
traviolet cutoff,b>1. Then let one make rescaling such that e yse the method, suggested by PolydRéwr the pure
the Hamiltonian would restore its initial form with new con- system in 2+ e dimensions. This method is technically sim-
stantsA(L),J(L). Dimensional analysis provides estimations pler and closer to the intuition than the other approaches. A
- . disadvantage of the method is the difficulty of the generali-
I(L)~bP 23(@);A(L) ~bPPA(a). 24 zation for the higher orders ie. This generalization requires
To estimate the typical angles between neighbor block —the field-theoretical approach.
spins, one notes that the effective field, acting on each spin, The same consideration as in th& (Ref. 13 and ran-
has two contributions: the exchange contribution and the rardom manifold® models suggests that near a zero-
dom one. The exchange contribution of ordét.) is ori-  temperature fixed point in4 e dimensions there is an infi-
ented along the local average direction of the magnetizatioriite set of relevant operators. Let us show that after the
The random contribution of ordé¥(L) may have any direc- replica averaging the relevant part of the effective replica
tion. This allows one to write at low temperatures thatHamiltonian can be represented in the form
¢(L)~A(L)/I(L). The Larkin length corresponds to the
condition¢(L)~1 and equals ~ (J/A)?“~P) in agreement
with the Imry-Ma argument. If Eq. (2.4 were exact the HR:J’ dPx
Larkin length could be interpreted as the correlation length.

1 R(nanp)
; >T 2 (?Mna(?#na—; TaZ , (3.1
"
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wherea,b are replica indicesR(z) is some function;T the
temperature. We ascribe to the figldhe scaling dimension
0. We also assume that the coefficient before the gradierid the last formulaR’ and R” denote the first and second
term in Eq.(3.1) is 1/(2T) at any scale. Then in the (4 derivatives of the functioiR(z). We have omitted the terms
— €)-dimensional space the scaling dimension of the temof the first order in¢g in Eq. (3.4). These terms are propor-
peratureA = — 2+ O(€). Any operatorA containingm dif-  tional to the products of the fast fietll and some slow fields.
ferent replica indices is proportiofalto 1/T™. Hence the Hence they are nonzero only in narrow shells of the momen-
scaling dimension\ , of the operator satisfies the relation tum space. One can show that their contributions to the RG
Ap=4—n+mA;+0O(e), wheren is the number of the spa- €quations are negligible.
tial derivatives in the operator. The relevant operators have To obtain the RG equations we have to integrate out the
A,=0. Hence, the relevant operators cannot contain moréast variables¢?. Near a zero-temperature fixed point the
than two different replica indices. A symmetry considerationJacobian of the transformatian—(n’,¢;) can be ignored,
shows that all the possible relevant operators are includegince the Jacobian does not depend on the temperature. The
into Eq.(3.1). The functionR(z) is arbitrary in the RF case. integration measure is determined from the condition that the
In the RA caseR(z) is even due to the symmetry with re- field n’? is a slow part of the magnetization. This condition
spect to changing the sign of the magnetization. imposes restrictions on the fields. The expression3.4)

The one-loop RG equations for tiécomponent model depends on the choice of the vectefs3.2). However, after
in 4— e dimensions are obtained by a straightforward com-integrating out the fieldg the Hamiltonian can depend only

Cia}b:(qaer)R/(n/anlb)+(n/aejb)(n/bqa)R//(n/an;b). (35)

bination of the methods of Refs. 15 and 26. We express eaabn the slow parh’? of the magnetization. One can make the
replican®(x) of the magnetization as a combination of fastcalculations simpler, considering special realizations of the
unit length. We use the representation term R(z) (3.1) we can assume that the fietd® does not
depend on the coordinates. The renormalization of the gradi-
nd(x)=n"3(x)\/1— ax) %+ ax)et(x), (3.2 . . i
(x) (x) Z [#700)] Z P&, (32 n’'?(x) depend on one spatial coordinate only and lie in the
same plane. In both cases the vec&rgan be chosen such
and the vecton’?(x). The slow fieldn’? can be chosen in ik X :
different ways. For example, one can cut the system intgn€asure can be omitted and the fiefscan be considered
centerx of a block the vecton’#(x) should be parallel to the nterval 1a>q=>1/. .
total magnetization of the block. In the other points the field 10 derive the one-loop RG equations we express the free
of the magnetization are weak, that (ig?)<1. Then the
fluctuations of the fielch? are orthogonal to the vectar'?
To substitute the expressida.2) into the Hamiltonian we
have to differentiate the vectos§. We use the following

fields ¢2(x),i=1,... N—1 and a slow fieldh’?3(x) of the fieldn’®. To find the renormalization of the disorder-induced
ent energy can be determined, assuming that the vectors

where the unit vectorsl(x) are perpendicular to each other that in Eq.(3.3) 2 ,~0. At such a choice the integration

blocks of sizel >a, wherea is the ultraviolet cutoff. In the @S weakly interacting fields with the wave vectors from the

n’2 should be interpolated. We assume that the fluctuation§N€rdy via the Hamiltonia(8.4). Then we expand the expo-

because of the fixed length constrainf)?=1.

definition:

o€l
—=— Zin’a+2k f2 K€k -

ix, (3.3

It is easy to sho#? that = ,;(c5;)*=2 ,(d,n'%)% With the
accuracy up to the second orderdrthe replica Hamiltonian
(3.1) can be represented as follows:

1
HR=J dPx > ; {(9,n")[1— ()] +chicodi i

1
+(0,¢2— 12 4 D) - = % {R(n"2n"P) + A%P( $?)2

+BPp2 1+ Cf}%w?}] , (3.4)

where the summation over the repeated indicésk, u is
assumed and

Aab: _(nran/b)R/(nran/b);

B{'s}b:(n/bqa)(nlbeji)R/r(nranrb);

nent in the partition function up to the second ordef kty
—JdPx= ,i(d,¢1)%(2T)] and integrate ovew?. Finally,
we make a rescaling. The vectagd can be excluded from
the final expressions with the relatioty(a€’) (be’) = (ab)
—(an'?®)(bn’®). In a zero-temperature fixed point the RG
equations are

dinT

gL =~ (P—=2)+2(N=2)R()+O(RAT); (3.6

B dR(z2)
~ dinL

=eR(2)+4(N—2)R(z)R’(1)—2(N—1)zR (1)R’(z)
+2(1-2)R'(1)R"(2) +[R'(2)]2A(N—2+Z?)

—2R'(2)R"(2)2(1- ) +[R"(2)]3(1- 2?2, (3.7
where the factor 1/(8?) is absorbed intdR(z) to simplify
notations. The RG equations become simpler after the sub-
stitution of the argument of the functidR(z):z=cos¢. In
terms of this new variable one has to find even periodic
solutionsR(¢). The period is 2r in the RF case and in

the RA case due to the additional symmetry of the RA
model. The one-loop equations get the form

dinT

gL~ —(P=2)-2(N=2)R"(0)+O(R%.T); (3.8
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dR(¢) ber of the charges their divergence implies the absence of a
= dinL_ fixed point. However, if the number of the RG charges is
infinite such a criterion does not work and is even ambigu-
=eR(¢)+[R"(¢)]°—2R"($)R"(0) — (N—-2) ous. Indeed, the set of charges can be chosen in different
R'())2 ways and, e.g., the coefficients of the Taylor expansion about
> 4R(¢)R”(O)+20tg</>R’(¢>)R”(0)—( sind ) } z=0 remain finite in our problem.
+O(R3 T). (3.9 IV. RANDOM FIELD
Equation(3.8) provides the following result for the scaling  For the RFXY model the one-loop RG Eq¢3.8) and
dimensionA+ of the temperature (3.9 can be solved exactl. The solution corresponds to
QLRO with the critical exponents 7=m?/9¢,vy=1
Ar=—-2+e—2(N-2)R"(0). (3.10 —m?/18e. In the first order ine the exponent; equals the

) ) o ) prefactorC before the logarithm in the correlation functidn
The two-spin correlation function is given in the one-loop ¢ the anglesp(x) between the spina(x) and some fixed

ordef® by the expression direction:([ ¢(x1) — ¢(X2) 1) = C In|x, — X,|. We expect that
this coincidence does not extend to the higher orders.

(na(x)na(x’)>=(n’a(x)n’a(x’)>( 1— < 2 (¢ia)2> ) If N+#2 the RG Eq(3.9) is more complex. Fortunately, at

i N>3 there is still a simple method to study the large-
(3.1)  distance behavior. The method is based on the Schwartz-

Hence, in the fixed pointn(x)n(x’))~|x—x'| =7, where Soffer inequality® and shows that QLRO is absent. '
In Ref. 25 the inequality is proven for the Gaussian dis-
n=—2(N—1)R"(¢=0). (3.12  tribution of the random field. It can also be proved for the

arbitrary RF distributionfAppendix A).

Let us find the magnetic susceptibility in the weak uni-  |et us demonstrate the absence of physically acceptable
form external fieldH. We add to the Hamiltonia(8.1) the  fixed points in the RF case &>3. We derive some in-
term —3,/dP°xHnY/T (the field is directed along theaxis).  equality for critical exponents. Then we show that the in-
The renormalization of the fieldd is determined by the equality has no solutions. We use a rigorous inequality for
renormalization of the temperatu(8.8) and the fieldn. In  the connected and disconnected correlation functions:
the zero-loop order the renormalized magnetic fib(d.)
depends on the scale héL) =H X (L/a)2. Hence the corre- ({n(g)n(—q)))={(n(q)Na(—a))—{(n(q)ny(—q))
lation lengthR.~H 2. The magnetization, averaged over a
block of sizeR;, is oriented along the field. The absolute <const/(na(q)na(—q)), 4.1

. A . . . /2
val_ue of this average magnet|zat|on_ is proportionaRfd”™. wheren(q) is a Fourier component of the magnetizatiarb
This allows us to calculate the (y:r!tlcal exponentof the  4re replica indices. The disconnected correlation function is
magnetic susceptibilityy(H)~H "7 in a zero-temperature  jescribed by the critical expone(®.12. The large-distance
fixed point: behavior of the connected correlation function in a zero-
y=1+(N-1)R"(=0)/2. (3.13 temperature fixed point can be derived from the expression

In Ref. 28 Eqs(3.6) and(3.7) were derived \{Vlth.a dlffgr— X’VJ’ {(n(0)n(x)))dPx 4.2
ent method. In that paper the critical behavior in- 4 di-
mensions was studied by considering analytical fixed point

solutionsR(z). In the Heisenberg model, analytical solutions gnd the critical exponent of the susceptibilg.13. The

are absent and they are unphysical fo£3.28 In 4— e di- integral in the right-hand side of E.2) is proportional to

. ) N A D—nq . . )
mensions appropriate analytical solutions are absent for an? , whereR, is the correlation length in the external
i

C
N. To demonstrate this let us differentiate E8.7) overz at eld H, #n; the critical exponent of the connected correlation

z=1. For any analyticaR(z) we obtain the following flow ~function. For the calculation of the exponent(3.13 we
equation: used the zero-loop expressionRf via H. Now we need the
one-loop accuracy. In this ordeR,~H Y2~ (N=3)R"(0)],
dR'(z=1) R (2= 1)+ 2(N—2)[ R’ (2= 1)12 This allows us to get the following equation for the exponent
dlnL —€ (Z_ ) ( )[ (Z_ )] . 7]1:
(3.149

At N>2 the fixed point of this equatiorR’(z=1)

=—¢€l[2(N—2)]<0. It corresponds to the negative critical | 3 fixed point Eq(4.1) provides an inequality for the criti-

exponenty (3.12 and hence is unphysical. However, we ca| exponents of the connected and disconnected correlation
shall see that in the RA model some appropriate nonanalytifynctions?® The inequality has the form

cal fixed pointsR(z) appear. In these fixed poinR”(z

=1)==. In Ref. 28 the RG charges are the derivatives of 2(2—D+75)=4—D+ 7. (4.4)
the functionR(z) at z=1. Thus in a nonanalytical fixed

point these charges diverge. In the systems with a finite numFhis allows us to obtain the following relation:

m=D—2—2R"(0). 4.3
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3—N field m(x)=[n,(x)]>—1/N, where n, denotes one of the
4-D= N—1 n+0(R), (4.5 magnetization components,NL/is subtracted to ensure the
relation{m)=0.

L . . To calculate the critical exponent of the disconnected
where 7 is given by Eq.(3.12. The two-spin correlation correlation function we use the representati8r2) and ob-

function cannot increase up to infinity as the distance in-tain the relation
creases. Hence the critical exponents positive. AtN>3
this is incompatible with Eq4.5 at smalle. Thus there are
no accessible fixed points fd&>3. This suggests the strong ZNZ (($)?)
coupling regime with a presumably finite correlation length. ; .a A\ — /' v _ !
Certainly, in the RFXY model?'® Eq. (4.5) is satisfied. (MEOOMAXT)=(Mogm™=0c)) | 1 N-1
However, the unstable fixed points of the RG equafidds (5.2
not satisfy the inequality.
The marginal Heisenberg cabl=3 is the most difficult,
since in the one-loop order the right-hand side of EQg5)

; The critical exponen of the connected correlation
equals zero al=3. Hence the two-loop corrections may be P W

relevant. The RF Heisenberg model is beyond the scope g%mctmn 1S c_jeterm.meci analogously to t_he RF cgse. We apply
the present paper. a weak uniform fieldH, conjugated with the fielan, and

calculate the susceptibilitgm/dH in two ways. The result
for the critical exponent igt;=D—2-2(N+2)R"(0).
V. RANDOM ANISOTROPY The Schwartz-Soffer inequality provides a relation be-
tween the exponentg and w. It has the same structure as
Eq. (4.4). Finally, we obtain the following equation:

wherea is a replica indexm’ = (n.)?— 1/N the slow part of
the fieldm. One findsu=—4NR"(0).

In this section we investigate the possibility of QLRO in
the RAO(N) model. The first subsection is devoted to the
simplest case of th&Y model. The second subsection con- 4-D
tains an inequality for the critical exponent The derivation n=——(N—-1)+0(R). (5.3
of the inequality is analogous to E@L.5). This inequality is 4
applied in the next subsections. The third subsection containg terms of the RG chargR(#) this inequality can be re-
the results for the Heisenberg model. In the last subsectiofyritten in the form
we consider the cagd>3.

R"(0)<— e/8+0(R). (5.4)
A N=2
This case is studied analogously to the RF model®® _ C.N=3 _ . _
At N=2 the RG Eq.(3.9 can be solved analytically. Its In this case we solve Eq3.9) numerically. Since coeffi-

solution is a periodical function with period. In interval ~ cients of Eq(3.9) are large ag—0, it is convenient to use
0< ¢< 1 the fixed point solutiorR(¢) is given by the for- @ series expansion of the fixed-point solutiR(x) at small

mula ¢. At the larger¢ the equation can be integrated with the
Runge-Kutta method. The following expansion over
vy =/(1—2)/2=|sin(¢/2)| holds:
R(¢) 144{1/36—(<;S/7r) [1-(p/m)]7}. (5.D) o (N—1)a? L -n2¢
(P e= T4 N=2)a 12253

It is a stable fixed point. This can be verified with the linear-

ization of the flow equation(3.9) for the small deviations +4\/E [—a+2(N-2)a Singf
from the fixed point. Another proof of the stability is based -3 N+2 \ 2
on the inequality of the next subsection.

The stable fixed point corresponds to the QLRO phase at sin5f )
low temperatures and weak disorder. The critical exponents 2()’
n=mel36,y=1—mw2€l72. 5.5

The solution(5.1) is nonanalytical aip=0, sinceR' (¢ '
=0)=». Hence the Taylor expansion ovef is absent. wherea=R"(¢$=0)/e. We see that the RG charg ¢) is
However, a power expansion ovip| exists. We shall see nonanalytical at smal. Similar to the random manifold
below that the same behavior at sméllconserves also at and random-fieldk Y*2 modelsR'Y (0)=cc.
otherN. Numerical calculations show that at aNythe solutions,
compatible with the inequality5.4), have sign ‘“+" before
the third term of Eq.(5.5). The solutions to be found are
even periodical functions with period. Hence their deriva-

We use the same approach as in the RF model. Since iive is zero at¢p= /2. At N=3 there is only one solution
the RA case the random field is conjugated with a secondthat satisfies Eq.(5.4). It corresponds toR"(4$=0)
order polynomial of the magnetization, the Schwartz-Soffer= —0.154%. If this solution is stable Eq$3.12 and(3.13
inequality’® should be applied to correlation functions of the provide the following results for the critical exponents:

2a 2

M)

P
a7
)sm 5 +0

B. An inequality for a critical exponent



PRB 61

QUASI-LONG-RANGE ORDER IN THE RANDOM . ..

387

TABLE I. Critical exponents of the RAO(N) model.

N 2 3 4 5 6 7 8 9
n m2€l36 0.6z 1.1e 1.7¢ 2.7¢€ 4.6e 9.0e 33e
Ay —2+e€ —2+13 —2+17¢ —2+23 —2+32 —2+48 —2+87¢ —2+30e
7=0.62; y=1-0.1%. (5.6) Eqg. (3.9 at e=1. We obtain the following result for the

All the other solutions of Eq(3.9) do not satisfy Eq(5.4)
and hence are unstable.

We have still to test the stability of the solution found. For
this aim we use an approximate method. First, we find an

approximate analytical solution of E3.9). We rewrite Eq.
(3.9), substitutingw[ R"(#)]? for [R”($)]?. The case of in-

two-spin correlation function with Eq3.11):

(n(x)n(x"))~ In"963x—x"|. (5.9

D. N>3
Numerical analysis of EQq(3.9) shows that solutions,

terest isw=1 but atw=0 the equation can be solved ex- compatible with Eq.(5.4), are absent alN=10. Hence

actly. The solution atv=1 can then be found with the per-
turbation theory overw. The exact solution aw=0 is
R,-o(¢®)=€e(cos 2p/24+ 1/120). The corrections of order
" are trigonometric polynomials of order ¢ 1). The first
correction is

2we we

Ri(¢) =~ ~5g C0S 2+ 5,C0s 4+ const. (5.7)

QLRO is absent for anjN=10. In the spherical modelN
=) the absence of fixed points can be demonstrated ana-
lytically (Appendix Q. This agrees with the previous
results>?® For each integeN<10 the RG Eq(3.9) has ex-
actly one solution, satisfying the inequality of Sec. V B.
These solutions are described in Table I. In the tahlis, the
critical exponent of the two-spin correlation functiaxy the
scaling dimension of the temperatui&10.

Unfortunately, it is not clear if the fixed points, found at

After the calculation of the corrections we can write anN>3, survive in three dimensions. A zero-temperature fixed

asymptotic series for the critical exponent (3.12: 7
=¢(0.67—0.08»+0.140?— - - -). The resulting estimation
7=¢€(0.67+0.08) agrees with the numerical resuh.6)

point can exist only if the scaling dimension of the tempera-
ture is negative. Table | shows that scaling dimension is
positive in the one-loop approximation &t 1 andN=5. In

well. This allows us to expect that the stability analysis ofthe three-dimension&(4) model the one-loop correction to

the solutionrR,,—, of the equation withw=0 provides infor-
mation about the stability of the solution of E@.9).

the scaling dimensior-2(N—2)R"(0)~0.7¢ is close to the
zero-loop approximation- 2+ €. Thus the next orders of the

To study the stability of the exact solution of the equationperturbation theory are crucial to understand what happens in
with =0 is a simple problem. We introduce a small devia-three dimensions.

tion r(¢):R(¢)=R,=o(®) +r(¢) and write the flow equa-
tion for this deviation:

dr(¢)
dinL

=[5r(¢p)+r"(¢p)+r"(0)cos 2p]/3+constxr”(0).
(5.9

It is convenient to use the Fourier expansiaifeo)
=23 n,ancos 2ng. The flow equations for the Fourier har-
monics can be easily integrated. We see thgt-0 asL

In the O(2) model the scaling dimensiah;=—2+€ is
exact’>!® Hence QLRO disappears in two dimensions. In
systems with a larger numbers of magnetization components
fluctuations become stronger. Thus one expects the absence
of QLRO in all the two-dimensionaD(N) models.

At the zero temperature E§3.9) is valid independently
of the scaling dimensioA ;. It is tempting to assume that at
the zero temperature QLRO still exists in the RAN>3)
models below the critical dimension, in whicdty=0. How-
ever, the experience of the two-dimensional R¥ model

—oe for anym>0. The solution is unstable with respect t0 goes not support such an expectation. Recent numerical

the constant shifa,. However, this instability has no interest gimylations show that QLRO is absent even in the ground
for us, since the correlation functions do not change at sucbtate of that modeP

shifts1® Indeed, the constant shift corresponds to the addition
of just a random term, independent of the magnetization, to
the Hamiltonian(2.1). Thus the RG equation possesses a VI. CONCLUSION

stable fixed point. This fixed point describes the QLRO we have obtained QLRO in the RA Heisenberg model.
phase with the critical exponentS.6). _ This is the first example of QLRO in a non-Abelian system.

In the Abelian systems the results of the functional RGThe RF disorder tends to destroy the ordering which exists in
are supported by the variational methidn our problem  the RA case. This difference between the RF and RA models
this method cannot be applled. However, it is Interesting tha’:s not Surprising, since the same difference was a|ready ob-
in the Abelian systems the functional RG equations withoutajned in Ref. 17 for the two-dimensional RF and B&
[R"(¢)]? reproduce the variational results. models with the dipole forces.

As usual in critigal phenomena, in fou_r dimensions the e have not yet discussed the role of the topological
one-loop RG equations allow one to obtain the exact largegefects. The contribution of the topological excitations to the
distance asymptotics of the correlation function. In the four-RG Eqs.(3.8) and (3.9 is determined by the rare regions
dimensional caseR(¢)=R(¢)/InL, where R(¢) satisfies where the random field is sufficiently strong to compensate
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the core energy. Hence similar to the pure system +ne2
dimensions they are responsible for the nonperturbative cor- H =f dxP{H [ ¢(x)]—h(x)m[ (x) 1}, (A1)
rections of order expf1/e). Thus their effect is negligible at
small e. Several studies were devoted to the role of the vorwhere ¢ is the order parameteh the random field with
tices in the RFXY model3! The theoretical prediction of short-range correlations{; may depend on some other ran-
QLRO in this system is based on the vortexless version oflom fields. We prove an inequality for the Fourier compo-
the modef?'® A qualitative estimatioh’ and variational nents of the fieldn:
calculationd! suggest that the topological defects do not
change the behavior of the REY model at the weak disor- Geon(q)<const/Gy;s(d), (A2)
der. Our approach allows us to consider ¥¥ model, in- —_— —_—
cluding vortices. We see that QLRO does exist in the modef'Nere_Gais(a) =(m(a)m(—a)),Gcon(a) =(m(q)m(—a))
with the defects. —(m(q)){m(—q)), the angular brackets denote the thermal
However, in our problem there may be a more importan@Veéraging, the bar denotes the disorder averaging.
source of the nonperturbative corrections. The effect of the ThiS inequality can be easily obtained in the case of the
multiple energy minima can lead to corrections of ored¢ ~ Gaussian distributiorP(h) of the field h.=> Indeed, in the
to the RG equation® Unfortunately, the nonperturbative ef- Gaussian case
fects in the RF systems are not well understood.
The present paper uses a systematic RG approach.. How- Gdis(Q):f (P(h) d mq(h)) D{h!
ever, some results can be reproduced more simply with an dh(q)
approximate Migdal-Kadanoff renormalization-group ap- d
proach(Appendix B). - _f (_p(h)m (h)) D{h}
The question of the large-distance behavior of the RF and dh(q) d
RA Heisenberg models was discussed in Ref. 20 on the basis
of an approximate equation of state. In that paper QLRO was =const| [P(h)h(—g)my(h)]D{h}, (A3)
also obtained in the RA case. However, we believe that this
is an accidental coincidence, since the equation of tite \here/D{h} denotes the integration over the realizations of
valid only in the first order in the strength of the disorder, the random field,
while higher orders are crucial for critical propertfésin
particular, the approa&?lincorrectly predicts the absence of mq(h)sz{¢}exp(— H/T)m(q)/fD{p}exp(—H/T).
QLRO in the RFXY model and its presence in the exactly ) ) )
solvable RA spherical model. It also provides incorrect criti-APPlying the Cauchy-Bunyakovsky inequality to ECA3)
cal exponents in the Heisenberg case. The reason of the midle gets Eq(A2). _ o
takes is the fact that in the weak external uniform field the However, the assumption about the Gaussian distribution
perturbation parameter of Ref. 20 is large. of the random field is not necessary. The m_equa(my) can
The RA Heisenberg model is relevant for the amorphouglSO be extended to a more general situation, corresponding
magnets: At the same time, for their large-distance behaviort0 the effective replica Hamiltonia8.1). Indeed, if one adds
the dipole interaction may be importéitBesides, a weak to any Hamiltonian a weak Gaussian random fielctonju-
nonrandom anisotropy is inevitably present due to mechanigated with the fieldm, it suffices for Eq.(A2) to become
cal stresses. valid. The addition of the Gaussian random field corresponds
In conclusion, we have found that the random anisotropyto the transformationR(n,n,)— R(nany) +Angn, in Eq.

Heisenberg model has an infinite correlation length and @3.1) whereA~h? is a positive constant. Thus E¢A2) is
power dependence of the correlation function of the magnemvalid only, if for the arbitrarily smallA the replica Hamil-
tization on the distance at low temperatures and weak disokpnians cannot contain the two-replica contribution
der in 4— e dimensions. On the other hand, the Co”elat'onNR(nanb)zR(nanb)—Ananb. This corresponds to the border

length of the random fiel®(N>3) model is always finite. ¢ the region of the possible Hamiltonians and has zero prob-
ability.
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APPENDIX B: MIGDAL-KADANOFF
RENORMALIZATION GROUP

This appendix contains a simple approximate version of
the renormalization group. The results for the critical expo-
nents of theXY and Heisenberg models have a very good
accuracy. The value of the magnetization component number

In this appendix we derive an inequality for the correla-N., at which QLRO disappears in the RF model, is probably
tion functions of the disordered systems. We consider thexact. However, the critical number of the components in the
system with the Hamiltonian RA model is underestimated.

APPENDIX A: INEQUALITY FOR CORRELATION
FUNCTIONS
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1. Random field function R(¢) = a cos 26+ B is justR,_, of Sec. V C. The

We use the following ansatz for the disorder-induced ternfritical exponent of the two-spin correlation function is given
in the Hamiltonian(2.1): R(n,np) = an,n,+ B, wherea and Py the following equation:
B are constants. This expression corresponds to the Gaussian e(N—-1)
RF disorder(2.2). Below we ignore the generation of the n=——
other contributions to the functioR(z). The missed contri- 6—N
butions are related with random anisotropies of different or-a¢ N=2,3 this value is close to the results of the systematic
ders. In terms of the angle variabje (3.8) and(3.9), approachTable |).

(B5)

R(¢)=a cos¢+ B. (B1)
APPENDIX C: SPHERICAL MODEL
To ensure consistency we have to truncate the RGES). . ) . ) .
We substitute the ansatB1) into Eq. (3.9 and retain only In this appendix we consider the spherical RA model with

the terms, proportional to ca@s or independent ofs. This  the functional RG. We §hqw that QLRO is absent in this
leads to the following RG equation for the constantB1): ~ model. In the spherical limiN=q only the terms, propor-
tional to N, and the termeR(z) should be retained in the

da ) right-hand side of Eq(3.7). After the change of the variable
dinL €@t 2a7(N=3). (B2 R(2)=er(2)/N one obtains
For N<3, Eg.(B2) has a stable solutior=€/[2(3—N)]. 0=r(z)[1+4r'(1)]—2zr' (D)r'(z)+[r'(2)]>. (CY

The critical exponent3.12 equals ] . ) )
It is convenient to differentiate EGC1) overz. One gets
N—1)e
’Fﬁ- (B3) O=r"(2)[1+2r'(1)]+2r"(D[r'(2)—2zr'(1)]. (C?)

Analytical functionsr (z) can satisfy Eq(C2) atz=1 only if

= i 0 H
At N=2 this result has less than 10% difference from ther,(l):0 or r'(1)=—1/2. In both cases EqC2) can be

systematic theory” QLRO disappears ai=3. This is the easily solved. There are three analytical nonzero solutions:

same critical number which is found in Sec. IV. 2 >
: . o : . - 1(2)=—-22+ 14 (2)=—(1-2)%/4;r(z2) = —z°/4. The last
For N>3 a fixed point exists in 4 e dimensions. It de solution only has the necessary symmetry.

scribes the transition between the ferromagnetic and para- The nonanalytical solutions are absent. Indeed, (E@)
magnetic phases. In this fixed point the critical exponent : y ; Lo '

g o : . .~ can be integrated with the substitution(z)=zt(z). The
(B3) satisfies the modified dimensional reduction eneral intearal has the form
hypothesi$2 However, we believe that this is an artifact of 9 9
the Migdal-Kadanoff approximation, since the correct value [t(z)]2®)
of the critical exponent differs from E¢B3).

[2t(z)+1]2D+1 - (C3

2. Random anisotropy Besides, there are special solutions. They all satisfy the rela-

. _ tion t(z)=t(1). Hence the special solutions are analytical.
In this case we use the ans&gmn,n,,) =A(n,n,)%+B. In . ) -
terms of the variablep (3.8) and(3.9) R(¢)= a cos 2p+p. Thgs ttT]e fun(g!?nt(?];fnl pe nonar:glytma_ll taZf_El ggl)y
We again substitute our ansatz into £8.9) and retain the under the condition =1 is a peculiar point of EqC3).

: : This means that(1)=0 ort(1)= —1/2. However, it is easy
terms proportional to cos#, and the terms independent of . . S
. The RG equation for the constaathas the form to verify that in both cases the solution is one of the found

above.
da We see that the only fixed point of the spherical RA
m=ea+8(N—6)a2. (B4  model isR(z) = — €z?/(4N). With Eq. (3.12 one finds the

critical exponenty= — e/2. Sincen>0 the solution found is
The fixed point solution of this equation i&=€/[8(6  applicable atD>4. At D<4 the fixed points are absent.
—N)]. It describes the QLRO phase [dt<6. At N=3 the  Thus QLRO is absent too.

1Y, Imry and S.K. Ma, Phys. Rev. Let85, 1399(1975. Cryst. 22, 275(1997).

2R. Harris, M. Plischke, and M.J. Zuckermann, Phys. Rev. Lett. 5S.V. Fridrikh and E.M. Terentjev, Phys. Rev. Left9, 4661
31, 160(1973. (1997; T. Emig, ibid. 82, 3380(1999.

3D.J. Sellmyer and M.J. O'Shea, Recent Progress in Random ©J.V. Porto, Ill and J.M. Parpia, Phys. Rev. L&, 4667(1995);
Magnetism edited by D. Ryan(World Scientific, Singapore, K. Matsumoto, J.V. Porto, L. Pollak, E.N. Smith, T.L. Ho, and
1992, p. 71. J.M. Parpiajbid. 79, 253(1997.

“N.A. Clark, T. Bellini, R.M. Malzbender, B.N. Thomas, A.G. ’G. Blatter, M.V. Feigel’'man, V.B. Geshkenbein, A.l. Larkin, and
Rappaport, C.D. Muzny, D.W. Shaefer, and L. Hrubesh, Phys. V.M. Vinokur, Rev. Mod. Phys66, 1125(19949.
Rev. Lett. 71, 3505(1993; T. Bellini, N.A. Clark, and D.W. 8A.l. Larkin, Zh. Eksp. Teor. Fiz.58, 1466 (1970 [Sov. Phys.
Schaeferibid. 74, 2740(1999; H. Haga and C.W. Garland, Lig. JETP31, 784 (1970)].



390

9R.A. Pelcovits, E. Pytte, and J. Rudnik, Phys. Rev. L40t.476
(1978.

O\, Aizeman, and J. Wehr, Phys. Rev. Le®2, 2503 (1989;
Commun. Math. Physl50, 489 (1990.

11y. Yaron, P.L. Gammel, D.A. Huse, R.N. Kleiman, C.S. Oglesby,
E. Bucher, B. Batlogg, D.J. Bishop, K. Mortensen, K. Clausen,
C.A. Bolle, and F. De La Cruz, Phys. Rev. Le#t3, 2748
(1994.

125 E. Korshunov, Phys. Rev. 83, 3969(1993.

13T, Giamarchi and P. Le Doussal, Phys. Rev. L&®, 1530
(1994); Phys. Rev. B52, 1242(1995.

M.J.P. Gingras and D.A. Huse, Phys. Rev58 15 193(1996.

15p.s. Fisher, Phys. Rev. Lefi, 1964(1986); L. Balents and D.S.
Fisher, Phys. Rev. B8, 5949(1993.

18M. Mezard and G. Parisi, J. Phys.28, L1229(1990; J. Phys. |
1, 809(1991). ]

1D .E. Feldman, Pis'ma zh.Ksp. Teor. Fiz65, 108(1997 [JETP
Lett. 65, 114 (1997]; Phys. Rev. B56, 3167(1997.

8T Emig and T. Nattermann, Phys. Rev. Lef, 1469 (1998;
ibid. 81, 5954(1998; A. Hazareesing and J.-P. Bouchailwd.
81, 5953(1998.

9 Radzihovsky and J. Toner, Phys. Rev6B 206 (1999.

20A. Aharony and E. Pytte, Phys. Rev. Letb, 1583(1980.

21B. Barbara, M. Coauch, and B. Dieny, Europhys. L&{t1129
(1987.

D. E. FELDMAN

PRB 61

22R. Fisch, Phys. Rev. B57, 269 (1999; 58, 5684 (1998; J.
Chakrabaty, Phys. Rev. Le®l, 385(1998.

23p. Lacour-Gayet and G. Toulouse, J. Ph§aris 35, 425(1974;
S.L. Ginzburg, Zh. Esp. Teor. Fiz80, 244(1981) [Sov. Phys.
JETP53, 124 (1981)]; A. Khurana, A. Jagannathan, and J.M.
Kosterlitz, Nucl. Phys. B240, 1 (1984; M.V. Feigelman and
M.V. Tsodyks, Zh. Kksp. Teor. Fiz91, 955(1986 [Sov. Phys.
JETP64, 562(1986)].

24Y.Y. Goldshmidt, Nucl. Phys. 225 123(1983.

25M. Schwartz and A. Soffer, Phys. Rev. L6, 2499(1985.

26A.M. Polyakov, Phys. Lett59B, 79 (1975; Gauge Fields and
Strings(Harwood Academic Publishers, Chur, 1987

2"The results about QLRO, obtained for the RF model in Refs.
12 and 13, can be easily extended to the RAmodel, since in
terms of the angleg(x) between the sping(x) and some fixed
direction the Hamiltonians of these models are almost identical.

28D.S. Fisher, Phys. Rev. B1, 7233(1985.

293, Zinn-Justin,Quantum Field Theory and Critical Phenomena
(Oxford University Press, Oxford, 1983

30C. Zeng, P.L. Leath, and D.S. Fisher, Phys. Rev. 182}.1935
(1999.

317, Garel, G. lori, and H. Orland, Phys. Rev.58, R2941(1996);
D. Carpentier, P. Le Doussal, and T. Giamarchi, Europhys. Lett.
35, 379(1996; J. Kierfeld, T. Nattermann, and T. Hwa, Phys.
Rev. B55, 626 (1997.

32M. Schwartz and A. Soffer, Phys. Rev. 38, 2059(1986.



