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Quasi-long-range order in the random anisotropy Heisenberg model: Functional renormalization
group in 42e dimensions

D. E. Feldman
Condensed Matter Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel
and Landau Institute for Theoretical Physics, 142432 Chernogolovka, Moscow region, Russia

~Received 8 July 1999!

The large-distance behaviors of the random field and random anisotropyO(N) models are studied with the
functional renormalization group in 42e dimensions. The random anisotropy Heisenberg (N53) model is
found to have a phase with an infinite correlation length at low temperatures and weak disorder. The correla-
tion function of the magnetization obeys a power law^m(r1)m(r2)&;ur12r2u20.62e. The magnetic suscepti-
bility diverges at low fields asx;H2110.15e. In the random fieldO(N) model the correlation length is found
to be finite at the arbitrarily weak disorder for anyN.3. The random field case is studied with a simple
method, based on a rigorous inequality. This approach allows one to avoid the integration of the functional
renormalization-group equations.
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I. INTRODUCTION

The effect of impurities on the order in condensed ma
is interesting, since the disorder is almost inevitably pres
in any system. If the disorder is weak the short-range orde
the same as in the pure system. However, the large-dist
behavior can be strongly modified by the arbitrarily we
disorder. This happens in the systems of continuous sym
try in the presence of the random symmetry-breaking fie1

The first experimental example of this kind is the amorpho
magnet.2,3 During the last decade a lot of other related o
jects were found. These are liquid crystals in the poro
media,4 nematic elastomers,5 He-3 in aerogel,6 and vortex
phases of impure superconductors.7 The nature of the low-
temperature phases of these systems is still unclear. The
reliable statement is that a long-range order is absent.1,8–10

However, other details of the large-distance behavior
poorly understood.

The neutron scattering11 reveals sharp Bragg peaks in im
pure superconductors at low temperatures and weak exte
magnetic fields. Since the vortices cannot form a regu
lattice8 it is tempting to assume that there is a quasi-lon
range order~QLRO!, that is, the correlation length is infinit
and correlation functions are power functions of the distan
Recent theoretical12,13and numerical14 studies of the random
field XY model, which is the simplest model of the vorte
system in the impure superconductor,7 support this picture.
The theoretical advances12,13 are afforded by two technica
approaches: the functional renormalization group15 and the
replica variational method.16 These methods are free from
drawbacks of the standard renormalization group and g
reasonable results. The variational method regards the p
bility of spontaneous replica symmetry breaking and tre
the fluctuations approximately. On the other hand, the fu
tional renormalization group provides a subtle analysis of
fluctuations about the replica symmetrical ground state. S
prisingly, the methods give close and sometimes even
same results.

Both techniques were originally suggested for the rand
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manifolds15,16 and then allowed to obtain information abo
some other disordered systems with the Abel
symmetry.12,13,17–19 Less is known about the non-Abelia
systems. The simplest of them are the random field~RF!
~Ref. 1! and random anisotropy~RA! ~Ref. 2! Heisenberg
models. The latter was introduced as a model of the am
phous magnet.2,3 In spite of a long discussion, initiated b
Ref. 20, the question of QLRO in these models is still op
There is an experimental evidence in favor of no QLRO21

On the other hand, recent numerical simulations22 support
the possibility of QLRO in these systems. The only theor
ical approach, developed up to now, is based on the sphe
approximation9,23,24 and predicts the absence of QLRO
N@1 magnetization components. However, there is no r
son for this approximation to be valid atN;1.

In this paper we study the RF and RAO(N) models in
42e dimensions with the functional renormalization grou
The large-distance behaviors of the systems are found t
quite different. Whereas in the RFO(N) model with N.3
the correlation length is always finite, the RA Heisenbe
(N53) model has a phase with QLRO. In that phase
correlation function of the magnetization obeys a power l
and the magnetic susceptibility diverges at low fields.

The paper has the following structure. In the second s
tion the models are formulated and a qualitative discussio
given. The third section contains a derivation of the one-lo
renormalization-group~RG! equations. Section IV is devote
to the RF model. The absence of QLRO in that model aN
.3 is shown with the help of a rigorous inequality. Th
approach simplifies tedious RG calculations and can be
ful in other problems. The RA case is considered in Sec.
The stable RG fixed point corresponds to QLRO in 42e
dimensions atN;1. In particular, at the weak disorder th
correlation length is infinite in the low-temperature phases
the RA XY (N52) and Heisenberg (N53) models. How-
ever, QLRO is absent atN>10. In four dimensions the cor
relation functions of the RA Heisenberg model depend
the distance logarithmically. The exact result for the tw
spin correlator is given by the ln20.62R law. The Conclusion
382 ©2000 The American Physical Society
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contains a discussion of the results. Appendix A is devo
to a generalization of the Schwartz-Soffer inequality.25 The
generalized inequality is applied to the stability analyses
the RG fixed points. Appendix B describes a simple Migd
Kadanoff renormalization-group approach that reprodu
qualitatively the results of the rigorous method. This a
proximation provides good estimations of the critical exp
nents of the RAXY and Heisenberg models. Appendix
includes some technical details of the functional RG in
spherical model.

II. MODEL

To describe the large-distance behavior at low tempe
tures we use the classical nonlinears model with the Hamil-
tonian

H5E dDxFJ(
m

]mn~x!]mn~x!1Vimp~x!G , ~2.1!

wheren(x) is the unit vector of the magnetization,Vimp(x)
the random potential. In the RF case it has the form

Vimp52(
a

ha~x!na~x!;a51, . . . ,N, ~2.2!

where the random fieldh(x) has a Gaussian distribution an
^ha(x)hb(x8)&5A2d(x2x8)dab . In the RA case the ran
dom potential is given by the equation

Vimp52(
a,b

tab~x!na~x!nb~x!;a,b51, . . . ,N, ~2.3!

where tab(x) is a Gaussian random variabl
^tab(x)tgd(x8)&5A2dagdbdd(x2x8). The random potentia
~2.3! corresponds to the same symmetry as the more con
tional choiceVimp52(hn)2 but is more convenient for the
further discussion.

We assume that the temperature is low and the ther
fluctuations are negligible. The Imry-Ma argument1,9 sug-
gests that in our problem the long-range order is absen
any dimensionD,4. One can estimate the Larkin length, u
to which there are strong ferromagnetic correlations, with
following qualitative RG approach. Let one remove the f
modes and rewrite the Hamiltonian in terms of the blo
spins, corresponding to the scaleL5ba, wherea is the ul-
traviolet cutoff,b.1. Then let one make rescaling such th
the Hamiltonian would restore its initial form with new con
stantsA(L),J(L). Dimensional analysis provides estimatio

J~L !;bD22J~a!;A~L !;bD/2A~a!. ~2.4!

To estimate the typical anglef between neighbor block
spins, one notes that the effective field, acting on each s
has two contributions: the exchange contribution and the
dom one. The exchange contribution of orderJ(L) is ori-
ented along the local average direction of the magnetizat
The random contribution of orderA(L) may have any direc-
tion. This allows one to write at low temperatures th
f(L);A(L)/J(L). The Larkin length corresponds to th
conditionf(L);1 and equalsL;(J/A)2/(42D) in agreement
with the Imry-Ma argument.1 If Eq. ~2.4! were exact the
Larkin length could be interpreted as the correlation leng
d
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However, there are two sources of corrections to Eq.~2.4!.
Both of them are relevant already at the derivation of the
equation for the pure system in 21e dimensions.26 The first
source is the renormalization due to the interaction and
second one results from the magnetization rescaling whic
necessary to ensure the fixed length conditionn251. The
leading corrections to Eq.~2.4! are proportional tof2J,f2A.
Thus the RG equation for the combination@A(L)/J(L)#2

reads

d

d ln L S A~L !

J~L ! D
2

5eS A~L !

J~L ! D
2

1cS A~L !

J~L ! D
4

, e542D.

~2.5!

If the constantc in Eq. ~2.5! is positive the Larkin length is
the correlation length indeed. But ifc,0 the RG equation
has a fixed point, corresponding to the phase with an infin
correlation length. As seen below, both situations are p
sible, depending on the system.

The large-distance behaviors of the RF and RAO(N)
models are known in two limit cases:N52 andN5`. In the
spherical limit (N5`) QLRO is absent~Appendix C, Ref.
23! while theXY model possesses QLRO.12,13,27Hence, the
ordering disappears at some critical numberNc of the mag-
netization components. This critical number is larger in t
RA model, since the fluctuations of the magnetization
stronger in the RF case. Indeed, in the RF model the mag
tization tends to be oriented along the random field, wher
in the RA case there are two preferable local magnetiza
directions so that the spins tend to lie in the same semisp

III. RG EQUATIONS

In the previous section the RG equations are discus
from the qualitative point of view. Equation~2.5! corre-
sponds to the Migdal-Kadanoff approach of Appendix B.
the present section we derive the RG equations in a sys
atic way.

The one-loop RG equations for theN-component RF and
RA models in 41e dimensions were already derived in Re
28. We can directly use that result, since the RG equation
dimensionsD,4 can be obtained by just changing the si
of e. However, the approach28 is cumbersome and we pro
vide below a simpler derivation.

We use the method, suggested by Polyakov26 for the pure
system in 21e dimensions. This method is technically sim
pler and closer to the intuition than the other approaches
disadvantage of the method is the difficulty of the gener
zation for the higher orders ine. This generalization require
the field-theoretical approach.29

The same consideration as in theXY ~Ref. 13! and ran-
dom manifold15 models suggests that near a zer
temperature fixed point in 42e dimensions there is an infi
nite set of relevant operators. Let us show that after
replica averaging the relevant part of the effective repl
Hamiltonian can be represented in the form

HR5E dDxF(
a

1

2T (
m

]mna]mna2(
ab

R~nanb!

T2 G , ~3.1!
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wherea,b are replica indices,R(z) is some function,T the
temperature. We ascribe to the fieldn the scaling dimension
0. We also assume that the coefficient before the grad
term in Eq. ~3.1! is 1/(2T) at any scale. Then in the (4
2e)-dimensional space the scaling dimension of the te
peratureDT5221O(e). Any operatorA containingm dif-
ferent replica indices is proportional15 to 1/Tm. Hence the
scaling dimensionDA of the operatorA satisfies the relation
DA542n1mDT1O(e), wheren is the number of the spa
tial derivatives in the operator. The relevant operators h
DA>0. Hence, the relevant operators cannot contain m
than two different replica indices. A symmetry considerati
shows that all the possible relevant operators are inclu
into Eq. ~3.1!. The functionR(z) is arbitrary in the RF case
In the RA caseR(z) is even due to the symmetry with re
spect to changing the sign of the magnetization.

The one-loop RG equations for theN-component mode
in 42e dimensions are obtained by a straightforward co
bination of the methods of Refs. 15 and 26. We express e
replica na(x) of the magnetization as a combination of fa
fields f i

a(x),i 51, . . . ,N21 and a slow fieldn8a(x) of the
unit length. We use the representation

na~x!5n8a~x!A12(
i

@f i
a~x!#21(

i
f i

a~x!ei
a~x!, ~3.2!

where the unit vectorsei
a(x) are perpendicular to each oth

and the vectorn8a(x). The slow fieldn8a can be chosen in
different ways. For example, one can cut the system
blocks of sizeL@a, wherea is the ultraviolet cutoff. In the
centerx of a block the vectorn8a(x) should be parallel to the
total magnetization of the block. In the other points the fie
n8a should be interpolated. We assume that the fluctuati
of the magnetization are weak, that is^f i

2&!1. Then the
fluctuations of the fieldna are orthogonal to the vectorn8a

because of the fixed length constraint (na)251.
To substitute the expression~3.2! into the Hamiltonian we

have to differentiate the vectorsei
a . We use the following

definition:

]ei
a

]xm
52cm i

a n8a1(
k

f m,ik
a ek

a . ~3.3!

It is easy to show26 that (m i(cm i
a )25(m(]mn8a)2. With the

accuracy up to the second order inf the replica Hamiltonian
~3.1! can be represented as follows:

HR5E dDxF 1

2T (
a

$~]mn8a!2@12~f i
a!2#1cm i

a cmk
a f i

afk
a

1~]mf i
a2 f m,ik

a fk
a!2%2

1

T2 (
ab

$R~n8an8b!1Aab~f i
a!2

1Bi j
abf i

af j
a1Ci j

abf i
af j

b%G , ~3.4!

where the summation over the repeated indicesi , j ,k,m is
assumed and

Aab52~n8an8b!R8~n8an8b!;

Bi j
ab5~n8bei

a!~n8bej
a!R9~n8an8b!;
nt

-
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Ci j
ab5~ei

aej
b!R8~n8an8b!1~n8aej

b!~n8bei
a!R9~n8an8b!. ~3.5!

In the last formulaR8 and R9 denote the first and secon
derivatives of the functionR(z). We have omitted the term
of the first order inf in Eq. ~3.4!. These terms are propor
tional to the products of the fast fieldf and some slow fields
Hence they are nonzero only in narrow shells of the mom
tum space. One can show that their contributions to the
equations are negligible.

To obtain the RG equations we have to integrate out
fast variablesf i

a . Near a zero-temperature fixed point th
Jacobian of the transformationn→(n8,f i) can be ignored,
since the Jacobian does not depend on the temperature
integration measure is determined from the condition that
field n8a is a slow part of the magnetization. This conditio
imposes restrictions on the fieldsf. The expression~3.4!
depends on the choice of the vectorsei

a ~3.2!. However, after
integrating out the fieldsf the Hamiltonian can depend onl
on the slow partn8a of the magnetization. One can make th
calculations simpler, considering special realizations of
field n8a. To find the renormalization of the disorder-induce
term R(z) ~3.1! we can assume that the fieldn8a does not
depend on the coordinates. The renormalization of the gr
ent energy can be determined, assuming that the vec
n8a(x) depend on one spatial coordinate only and lie in
same plane. In both cases the vectorsei

a can be chosen suc
that in Eq.~3.3! f m,ik

a 50. At such a choice the integratio
measure can be omitted and the fieldsf i

a can be considered
as weakly interacting fields with the wave vectors from t
interval 1/a.q.1/L.

To derive the one-loop RG equations we express the
energy via the Hamiltonian~3.4!. Then we expand the expo
nent in the partition function up to the second order in@HR

2*dDx(m i(]mf i)
2/(2T)# and integrate overf i

a . Finally,
we make a rescaling. The vectorsei

a can be excluded from
the final expressions with the relation( i(aei

a)(bei
a)5(ab)

2(an8a)(bn8a). In a zero-temperature fixed point the R
equations are

dlnT

dlnL
52~D22!12~N22!R8~1!1O~R2,T!; ~3.6!

05
dR~z!

dlnL

5eR~z!14~N22!R~z!R8~1!22~N21!zR8~1!R8~z!

12~12z2!R8~1!R9~z!1@R8~z!#2~N221z2!

22R8~z!R9~z!z~12z2!1@R9~z!#2~12z2!2, ~3.7!

where the factor 1/(8p2) is absorbed intoR(z) to simplify
notations. The RG equations become simpler after the s
stitution of the argument of the functionR(z):z5cosf. In
terms of this new variable one has to find even perio
solutionsR(f). The period is 2p in the RF case andp in
the RA case due to the additional symmetry of the R
model. The one-loop equations get the form

dlnT

dlnL
52~D22!22~N22!R9~0!1O~R2,T!; ~3.8!
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05
dR~f!

dlnL

5eR~f!1@R9~f!#222R9~f!R9~0!2~N22!

3F4R~f!R9~0!12ctgfR8~f!R9~0!2S R8~f!

sinf D 2G
1O~R3,T!. ~3.9!

Equation~3.8! provides the following result for the scalin
dimensionDT of the temperature

DT5221e22~N22!R9~0!. ~3.10!

The two-spin correlation function is given in the one-lo
order26 by the expression

^na~x!na~x8!&5^n8a~x!n8a~x8!&S 12K (
i

~f i
a!2L D .

~3.11!

Hence, in the fixed point̂n(x)n(x8)&;ux2x8u2h, where

h522~N21!R9~f50!. ~3.12!

Let us find the magnetic susceptibility in the weak u
form external fieldH. We add to the Hamiltonian~3.1! the
term2(a*dDxHnz

a/T ~the field is directed along thez axis!.
The renormalization of the fieldH is determined by the
renormalization of the temperature~3.8! and the fieldn. In
the zero-loop order the renormalized magnetic fieldh(L)
depends on the scale ash(L)5H3(L/a)2. Hence the corre-
lation lengthRc;H21/2. The magnetization, averaged over
block of sizeRc , is oriented along the field. The absolu
value of this average magnetization is proportional toRc

2h/2 .
This allows us to calculate the critical exponentg of the
magnetic susceptibilityx(H);H2g in a zero-temperature
fixed point:

g511~N21!R9~f50!/2. ~3.13!

In Ref. 28 Eqs.~3.6! and~3.7! were derived with a differ-
ent method. In that paper the critical behavior in 41e di-
mensions was studied by considering analytical fixed po
solutionsR(z). In the Heisenberg model, analytical solutio
are absent and they are unphysical forNÞ3.28 In 42e di-
mensions appropriate analytical solutions are absent for
N. To demonstrate this let us differentiate Eq.~3.7! overz at
z51. For any analyticalR(z) we obtain the following flow
equation:

dR8~z51!

d ln L
5eR8~z51!12~N22!@R8~z51!#2.

~3.14!

At N.2 the fixed point of this equationR8(z51)
52e/@2(N22)#,0. It corresponds to the negative critic
exponenth ~3.12! and hence is unphysical. However, w
shall see that in the RA model some appropriate nonana
cal fixed pointsR(z) appear. In these fixed pointsR9(z
51)5`. In Ref. 28 the RG charges are the derivatives
the function R(z) at z51. Thus in a nonanalytical fixed
point these charges diverge. In the systems with a finite n
t

ny

ti-

f

-

ber of the charges their divergence implies the absence
fixed point. However, if the number of the RG charges
infinite such a criterion does not work and is even ambig
ous. Indeed, the set of charges can be chosen in diffe
ways and, e.g., the coefficients of the Taylor expansion ab
z50 remain finite in our problem.

IV. RANDOM FIELD

For the RFXY model the one-loop RG Eqs.~3.8! and
~3.9! can be solved exactly.13 The solution corresponds t
QLRO with the critical exponents h5p2/9e,g51
2p2/18e. In the first order ine the exponenth equals the
prefactorC before the logarithm in the correlation function13

of the anglesf(x) between the spinsn(x) and some fixed
direction:^@f(x1)2f(x2)#2&5C ln ux12x2u. We expect that
this coincidence does not extend to the higher orders.

If NÞ2 the RG Eq.~3.9! is more complex. Fortunately, a
N.3 there is still a simple method to study the larg
distance behavior. The method is based on the Schwa
Soffer inequality25 and shows that QLRO is absent.

In Ref. 25 the inequality is proven for the Gaussian d
tribution of the random field. It can also be proved for t
arbitrary RF distribution~Appendix A!.

Let us demonstrate the absence of physically accept
fixed points in the RF case atN.3. We derive some in-
equality for critical exponents. Then we show that the
equality has no solutions. We use a rigorous inequality
the connected and disconnected correlation functions:25

^^n~q!n~2q!&&5^na~q!na~2q!&2^na~q!nb~2q!&

<constA^na~q!na~2q!&, ~4.1!

wheren(q) is a Fourier component of the magnetization,a,b
are replica indices. The disconnected correlation function
described by the critical exponent~3.12!. The large-distance
behavior of the connected correlation function in a ze
temperature fixed point can be derived from the express

x;E ^^n~0!n~x!&&dDx ~4.2!

and the critical exponent of the susceptibility~3.13!. The
integral in the right-hand side of Eq.~4.2! is proportional to
Rc

D2h1 , where Rc is the correlation length in the externa
field H, h1 the critical exponent of the connected correlati
function. For the calculation of the exponentg ~3.13! we
used the zero-loop expression ofRc via H. Now we need the
one-loop accuracy. In this orderRc;H21/[22(N23)R9(0)].
This allows us to get the following equation for the expone
h1:

h15D2222R9~0!. ~4.3!

In a fixed point Eq.~4.1! provides an inequality for the criti-
cal exponents of the connected and disconnected correla
functions.25 The inequality has the form

2~22D1h1!>42D1h. ~4.4!

This allows us to obtain the following relation:
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42D<
32N

N21
h1o~R!, ~4.5!

where h is given by Eq.~3.12!. The two-spin correlation
function cannot increase up to infinity as the distance
creases. Hence the critical exponenth is positive. AtN.3
this is incompatible with Eq.~4.5! at smalle. Thus there are
no accessible fixed points forN.3. This suggests the stron
coupling regime with a presumably finite correlation leng

Certainly, in the RFXY model12,13 Eq. ~4.5! is satisfied.
However, the unstable fixed points of the RG equations13 do
not satisfy the inequality.

The marginal Heisenberg caseN53 is the most difficult,
since in the one-loop order the right-hand side of Eq.~4.5!
equals zero atN53. Hence the two-loop corrections may b
relevant. The RF Heisenberg model is beyond the scop
the present paper.

V. RANDOM ANISOTROPY

In this section we investigate the possibility of QLRO
the RA O(N) model. The first subsection is devoted to t
simplest case of theXY model. The second subsection co
tains an inequality for the critical exponenth. The derivation
of the inequality is analogous to Eq.~4.5!. This inequality is
applied in the next subsections. The third subsection cont
the results for the Heisenberg model. In the last subsec
we consider the caseN.3.

A. N52

This case is studied analogously to the RFXY model.13

At N52 the RG Eq.~3.9! can be solved analytically. Its
solution is a periodical function with periodp. In interval
0,f,p the fixed point solutionR(f) is given by the for-
mula

R~f!5
p4e

144
$1/362~f/p!2@12~f/p!#2%. ~5.1!

It is a stable fixed point. This can be verified with the linea
ization of the flow equation~3.9! for the small deviations
from the fixed point. Another proof of the stability is base
on the inequality of the next subsection.

The stable fixed point corresponds to the QLRO phas
low temperatures and weak disorder. The critical expone
h5p2e/36,g512p2e/72.

The solution~5.1! is nonanalytical atf50, sinceRIV(f
50)5`. Hence the Taylor expansion overf is absent.
However, a power expansion overufu exists. We shall see
below that the same behavior at smallf conserves also a
otherN.

B. An inequality for a critical exponent

We use the same approach as in the RF model. Sinc
the RA case the random field is conjugated with a seco
order polynomial of the magnetization, the Schwartz-Sof
inequality25 should be applied to correlation functions of th
-

.

of

ns
n

-

at
ts

in
d-
r

field m(x)5@nz(x)#221/N, where nz denotes one of the
magnetization components, 1/N is subtracted to ensure th
relation ^m&50.

To calculate the critical exponentm of the disconnected
correlation function we use the representation~3.2! and ob-
tain the relation

^ma~x!ma~x8!&5^m8a~x!m8a~x8!&S 12

2N(
i

^~f i
a!2&

N21
D

~5.2!

wherea is a replica index,m85(nz8)
221/N the slow part of

the fieldm. One findsm524NR9(0).
The critical exponentm1 of the connected correlation

function is determined analogously to the RF case. We ap
a weak uniform fieldH̃, conjugated with the fieldm, and
calculate the susceptibilitydm/dH̃ in two ways. The result
for the critical exponent ism15D2222(N12)R9(0).

The Schwartz-Soffer inequality provides a relation b
tween the exponentsm andm1. It has the same structure a
Eq. ~4.4!. Finally, we obtain the following equation:

h>
42D

4
~N21!1o~R!. ~5.3!

In terms of the RG chargeR(f) this inequality can be re-
written in the form

R9~0!<2e/81o~R!. ~5.4!

C. N53

In this case we solve Eq.~3.9! numerically. Since coeffi-
cients of Eq.~3.9! are large asf→0, it is convenient to use
a series expansion of the fixed-point solutionR(f) at small
f. At the largerf the equation can be integrated with th
Runge-Kutta method. The following expansion overt
5A(12z)/25usin(f/2)u holds:

R~f!/e5
~N21!a2

124~N22!a
12a sin2

f

2

6
4A2

3
A2a12~N22!a2

N12 Usin3
f

2U
1S 2a

3
2

2

3~N14! D sin4
f

2
1OS Usin5

f

2U D ,

~5.5!

wherea5R9(f50)/e. We see that the RG chargeR(f) is
nonanalytical at smallf. Similar to the random manifold15

and random-fieldXY13 modelsRIV(0)5`.
Numerical calculations show that at anyN the solutions,

compatible with the inequality~5.4!, have sign ‘‘1’’ before
the third term of Eq.~5.5!. The solutions to be found ar
even periodical functions with periodp. Hence their deriva-
tive is zero atf5p/2. At N53 there is only one solution
that satisfies Eq. ~5.4!. It corresponds to R9(f50)
520.1543e. If this solution is stable Eqs.~3.12! and~3.13!
provide the following results for the critical exponents:
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TABLE I. Critical exponents of the RAO(N) model.

N 2 3 4 5 6 7 8 9

h p2e/36 0.62e 1.1e 1.7e 2.7e 4.6e 9.0e 33e
DT 221e 2211.3e 2211.7e 2212.3e 2213.2e 2214.8e 2218.7e 22130e
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h50.62e; g5120.15e. ~5.6!

All the other solutions of Eq.~3.9! do not satisfy Eq.~5.4!
and hence are unstable.

We have still to test the stability of the solution found. F
this aim we use an approximate method. First, we find
approximate analytical solution of Eq.~3.9!. We rewrite Eq.
~3.9!, substitutingv@R9(f)#2 for @R9(f)#2. The case of in-
terest isv51 but atv50 the equation can be solved e
actly. The solution atv51 can then be found with the pe
turbation theory overv. The exact solution atv50 is
Rv50(f)5e(cos 2f/2411/120). The corrections of orde
vk are trigonometric polynomials of order 2(k11). The first
correction is

R1~f!52
2ve

99
cos 2f1

ve

264
cos 4f1const . ~5.7!

After the calculation of the corrections we can write
asymptotic series for the critical exponenth ~3.12!: h
5e(0.6720.08v10.14v22•••). The resulting estimation
h5e(0.6760.08) agrees with the numerical result~5.6!
well. This allows us to expect that the stability analysis
the solutionRv50 of the equation withv50 provides infor-
mation about the stability of the solution of Eq.~3.9!.

To study the stability of the exact solution of the equati
with v50 is a simple problem. We introduce a small dev
tion r (f):R(f)5Rv50(f)1r (f) and write the flow equa-
tion for this deviation:

dr~f!

dlnL
5@5r ~f!1r 9~f!1r 9~0!cos 2f#/31const3r 9~0!.

~5.8!

It is convenient to use the Fourier expansionr (f)
5(mamcos 2mf. The flow equations for the Fourier ha
monics can be easily integrated. We see thatam→0 as L
→` for any m.0. The solution is unstable with respect
the constant shifta0. However, this instability has no intere
for us, since the correlation functions do not change at s
shifts.15 Indeed, the constant shift corresponds to the addi
of just a random term, independent of the magnetization
the Hamiltonian~2.1!. Thus the RG equation possesses
stable fixed point. This fixed point describes the QLR
phase with the critical exponents~5.6!.

In the Abelian systems the results of the functional R
are supported by the variational method.16 In our problem
this method cannot be applied. However, it is interesting t
in the Abelian systems the functional RG equations with
@R9(f)#2 reproduce the variational results.

As usual in critical phenomena, in four dimensions t
one-loop RG equations allow one to obtain the exact lar
distance asymptotics of the correlation function. In the fo
dimensional caseR(f)5R̃(f)/ lnL, where R̃(f) satisfies
n

f

-

h
n
to
a

t
t

-
-

Eq. ~3.9! at e51. We obtain the following result for the
two-spin correlation function with Eq.~3.11!:

^n~x!n~x8!&; ln20.62ux2x8u. ~5.9!

D. N>3

Numerical analysis of Eq.~3.9! shows that solutions
compatible with Eq.~5.4!, are absent atN>10. Hence
QLRO is absent for anyN>10. In the spherical model (N
5`) the absence of fixed points can be demonstrated a
lytically ~Appendix C!. This agrees with the previou
results.9,23 For each integerN,10 the RG Eq.~3.9! has ex-
actly one solution, satisfying the inequality of Sec. V
These solutions are described in Table I. In the table,h is the
critical exponent of the two-spin correlation function,DT the
scaling dimension of the temperature~3.10!.

Unfortunately, it is not clear if the fixed points, found
N.3, survive in three dimensions. A zero-temperature fix
point can exist only if the scaling dimension of the tempe
ture is negative. Table I shows that scaling dimension
positive in the one-loop approximation ate51 andN>5. In
the three-dimensionalO(4) model the one-loop correction t
the scaling dimension22(N22)R9(0)'0.7e is close to the
zero-loop approximation221e. Thus the next orders of the
perturbation theory are crucial to understand what happen
three dimensions.

In the O(2) model the scaling dimensionDT5221e is
exact.13,15 Hence QLRO disappears in two dimensions.
systems with a larger numbers of magnetization compon
fluctuations become stronger. Thus one expects the abs
of QLRO in all the two-dimensionalO(N) models.

At the zero temperature Eq.~3.9! is valid independently
of the scaling dimensionDT . It is tempting to assume that a
the zero temperature QLRO still exists in the RAO(N.3)
models below the critical dimension, in whichDT50. How-
ever, the experience of the two-dimensional RFXY model
does not support such an expectation. Recent nume
simulations show that QLRO is absent even in the grou
state of that model.30

VI. CONCLUSION

We have obtained QLRO in the RA Heisenberg mod
This is the first example of QLRO in a non-Abelian syste
The RF disorder tends to destroy the ordering which exist
the RA case. This difference between the RF and RA mod
is not surprising, since the same difference was already
tained in Ref. 17 for the two-dimensional RF and RAXY
models with the dipole forces.

We have not yet discussed the role of the topologi
defects. The contribution of the topological excitations to t
RG Eqs.~3.8! and ~3.9! is determined by the rare region
where the random field is sufficiently strong to compens
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the core energy. Hence similar to the pure system in 21e
dimensions they are responsible for the nonperturbative
rections of order exp(21/e). Thus their effect is negligible a
small e. Several studies were devoted to the role of the v
tices in the RFXY model.31 The theoretical prediction o
QLRO in this system is based on the vortexless version
the model.12,13 A qualitative estimation13 and variational
calculations31 suggest that the topological defects do n
change the behavior of the RFXY model at the weak disor
der. Our approach allows us to consider theXY model, in-
cluding vortices. We see that QLRO does exist in the mo
with the defects.

However, in our problem there may be a more import
source of the nonperturbative corrections. The effect of
multiple energy minima can lead to corrections of ordere5/2

to the RG equations.15 Unfortunately, the nonperturbative e
fects in the RF systems are not well understood.

The present paper uses a systematic RG approach. H
ever, some results can be reproduced more simply with
approximate Migdal-Kadanoff renormalization-group a
proach~Appendix B!.

The question of the large-distance behavior of the RF
RA Heisenberg models was discussed in Ref. 20 on the b
of an approximate equation of state. In that paper QLRO w
also obtained in the RA case. However, we believe that
is an accidental coincidence, since the equation of state20 is
valid only in the first order in the strength of the disorde
while higher orders are crucial for critical properties.24 In
particular, the approach20 incorrectly predicts the absence
QLRO in the RFXY model and its presence in the exac
solvable RA spherical model. It also provides incorrect cr
cal exponents in the Heisenberg case. The reason of the
takes is the fact that in the weak external uniform field
perturbation parameter of Ref. 20 is large.

The RA Heisenberg model is relevant for the amorpho
magnets.2 At the same time, for their large-distance behav
the dipole interaction may be important.21 Besides, a weak
nonrandom anisotropy is inevitably present due to mech
cal stresses.

In conclusion, we have found that the random anisotro
Heisenberg model has an infinite correlation length an
power dependence of the correlation function of the mag
tization on the distance at low temperatures and weak di
der in 42e dimensions. On the other hand, the correlat
length of the random fieldO(N.3) model is always finite.
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APPENDIX A: INEQUALITY FOR CORRELATION
FUNCTIONS

In this appendix we derive an inequality for the corre
tion functions of the disordered systems. We consider
system with the Hamiltonian
r-

r-

f

t

el

t
e
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n

-

d
sis
s

is
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-
is-

e
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H5E dxD$H1@f~x!#2h~x!m@f~x!#%, ~A1!

where f is the order parameter,h the random field with
short-range correlations,H1 may depend on some other ra
dom fields. We prove an inequality for the Fourier comp
nents of the fieldm:

Gcon~q!<constAGdis~q!, ~A2!

where Gdis(q)5^m(q)m(2q)&,Gcon(q)5^m(q)m(2q)&
2^m(q)&^m(2q)&, the angular brackets denote the therm
averaging, the bar denotes the disorder averaging.

This inequality can be easily obtained in the case of
Gaussian distributionP(h) of the field h.25 Indeed, in the
Gaussian case

Gdis~q!5E S P~h!
d

dh~q!
mq~h! DD$h%

52E S d

dh~q!
P~h!mq~h! DD$h%

5constE @P~h!h~2q!mq~h!#D$h%, ~A3!

where*D$h% denotes the integration over the realizations
the random field,

mq~h!5*D$f%exp~2H/T!m~q!/*D$f%exp~2H/T!.

Applying the Cauchy-Bunyakovsky inequality to Eq.~A3!
one gets Eq.~A2!.

However, the assumption about the Gaussian distribu
of the random field is not necessary. The inequality~A2! can
also be extended to a more general situation, correspon
to the effective replica Hamiltonian~3.1!. Indeed, if one adds
to any Hamiltonian a weak Gaussian random fieldh̃, conju-
gated with the fieldm, it suffices for Eq.~A2! to become
valid. The addition of the Gaussian random field correspo
to the transformationR(nanb)→R(nanb)1Dnanb in Eq.
~3.1! whereD;h̃2 is a positive constant. Thus Eq.~A2! is
invalid only, if for the arbitrarily smallD the replica Hamil-
tonians cannot contain the two-replica contributi
R̃(nanb)5R(nanb)2Dnanb . This corresponds to the borde
of the region of the possible Hamiltonians and has zero pr
ability.

For systems in the critical domain there is a simple way
understand why the inequality is valid not only in the Gau
ian case but also in the general situation. This is just a c
sequence of the universality.

APPENDIX B: MIGDAL-KADANOFF
RENORMALIZATION GROUP

This appendix contains a simple approximate version
the renormalization group. The results for the critical exp
nents of theXY and Heisenberg models have a very go
accuracy. The value of the magnetization component num
Nc , at which QLRO disappears in the RF model, is proba
exact. However, the critical number of the components in
RA model is underestimated.
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1. Random field

We use the following ansatz for the disorder-induced te
in the Hamiltonian~2.1!: R(nanb)5ananb1b, wherea and
b are constants. This expression corresponds to the Gau
RF disorder~2.2!. Below we ignore the generation of th
other contributions to the functionR(z). The missed contri-
butions are related with random anisotropies of different
ders. In terms of the angle variablef ~3.8! and ~3.9!,

R~f!5a cosf1b. ~B1!

To ensure consistency we have to truncate the RG Eq.~3.9!.
We substitute the ansatz~B1! into Eq. ~3.9! and retain only
the terms, proportional to cosf or independent off. This
leads to the following RG equation for the constanta ~B1!:

da

dlnL
5ea12a2~N23!. ~B2!

For N,3, Eq. ~B2! has a stable solutiona5e/@2(32N)#.
The critical exponent~3.12! equals

h5
~N21!e

~32N!
. ~B3!

At N52 this result has less than 10% difference from
systematic theory.13 QLRO disappears atN53. This is the
same critical number which is found in Sec. IV.

For N.3 a fixed point exists in 41e dimensions. It de-
scribes the transition between the ferromagnetic and p
magnetic phases. In this fixed point the critical expon
~B3! satisfies the modified dimensional reducti
hypothesis.32 However, we believe that this is an artifact
the Migdal-Kadanoff approximation, since the correct va
of the critical exponent differs from Eq.~B3!.

2. Random anisotropy

In this case we use the ansatzR(nanb)5A(nanb)21B. In
terms of the variablef ~3.8! and ~3.9! R(f)5a cos 2f1b.
We again substitute our ansatz into Eq.~3.9! and retain the
terms proportional to cos 2f, and the terms independent o
f. The RG equation for the constanta has the form

da

dlnL
5ea18~N26!a2. ~B4!

The fixed point solution of this equation isa5e/@8(6
2N)#. It describes the QLRO phase atN,6. At N53 the
et

,

.
y

.

ian

-

e

a-
t

e

function R(f)5a cos 2f1b is just Rv50 of Sec. V C. The
critical exponent of the two-spin correlation function is give
by the following equation:

h5
e~N21!

62N
. ~B5!

At N52,3 this value is close to the results of the systema
approach~Table I!.

APPENDIX C: SPHERICAL MODEL

In this appendix we consider the spherical RA model w
the functional RG. We show that QLRO is absent in th
model. In the spherical limitN5` only the terms, propor-
tional to N, and the termeR(z) should be retained in the
right-hand side of Eq.~3.7!. After the change of the variable
R(z)5er (z)/N one obtains

05r ~z!@114r 8~1!#22zr8~1!r 8~z!1@r 8~z!#2. ~C1!

It is convenient to differentiate Eq.~C1! over z. One gets

05r 8~z!@112r 8~1!#12r 9~z!@r 8~z!2zr8~1!#. ~C2!

Analytical functionsr (z) can satisfy Eq.~C2! at z51 only if
r 8(1)50 or r 8(1)521/2. In both cases Eq.~C2! can be
easily solved. There are three analytical nonzero solutio
r (z)52z/211/4;r (z)52(12z)2/4;r (z)52z2/4. The last
solution only has the necessary symmetry.

The nonanalytical solutions are absent. Indeed, Eq.~C2!
can be integrated with the substitutionr 8(z)5zt(z). The
general integral has the form

@ t~z!#2t(1)

@2t~z!11#2t(1)11
5Cz. ~C3!

Besides, there are special solutions. They all satisfy the r
tion t(z)5t(1). Hence the special solutions are analytic
Thus the functiont(z) can be nonanalytical atz51 only
under the condition thatz51 is a peculiar point of Eq.~C3!.
This means thatt(1)50 or t(1)521/2. However, it is easy
to verify that in both cases the solution is one of the fou
above.

We see that the only fixed point of the spherical R
model isR(z)52ez2/(4N). With Eq. ~3.12! one finds the
critical exponenth52e/2. Sinceh.0 the solution found is
applicable atD.4. At D,4 the fixed points are absen
Thus QLRO is absent too.
d
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