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Disorder-induced desynchronization in a 2Ã2 circular Josephson junction array

A. S. Landsberg
W. M. Keck Science Center, The Claremont Colleges, Claremont, California 91711

~Received 16 August 1999!

Analytical results are presented which characterize the behavior of a dc-biased, two-dimensional circular
array of overdamped Josephson junctions subject to increasing levels of disorder. It is shown that high levels
of disorder can abruptly destroy the synchronous functioning of the array. We identify the transition boundary
between synchronized and desynchronized behavior, along with the mechanism responsible for the loss of
frequency locking. Comparisons with recent results for arrays with rectangular lattice geometries are described.
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I. INTRODUCTION

Josephson junction arrays, comprised of multiple Jose
son junctions coupled to one another, offer many poten
benefits over solitary junctions in terms of possible dev
applications~e.g., Refs. 1–5!. Since many common arra
applications require that the junctions oscillate in a coher
manner, a key design goal is determining which array ty
are most amenable to supporting a synchronous mod
operation. Achieving this goal is complicated, however,
the presence of disorder in an array~i.e., small variations in
the individual junction characteristics!, which is unavoidably
introduced during the manufacturing process. Such non
formities can potentially disrupt the coherent functioning
the array. For this reason, understanding and desig
against the desynchronizing effects of disorder represent
important yet challenging consideration in array design.

At present, a number of different ways of promoting c
herent oscillations in arrays with disorder have been ide
fied. Some involve linking the array in an external fashi
~e.g., coupling the array to an external load, applying a hi
frequency external signal, etc.!, while others rely on various
spatially distributed array designs that demand a somew
more sophisticated analysis to properly model~since the
standard ‘‘lump circuit’’ analysis fails!.6–8 Though these ap
proaches can at times be effective, a basic underlying q
tion remains largely unanswered: To what extent does
lattice geometryof an array determine its intrinsic robustne
against disorder? In particular, are certain array geome
naturally more conducive to maintaining coherence in
presence of disorder than others?

While we cannot fully address this larger question, o
intention in this paper is to garner some modest insight i
this problem by examining the behavior of one particu
geometric model~a ‘‘circular plaquette’’!. This model repre-
sents the simplest possible~nontrivial! two-dimensional cir-
cular array, and our aim is to provide a detailed descript
of how disorder affects this system’s synchronization pr
erties. Since our larger objective is to isolate the influence
lattice geometry on behavior, our model array is high
stripped down, i.e., the circular plaquette is a ‘‘bare’’ arr
which is entirely free of external loads, signals, and spat
distribution effects like those described above which mi
otherwise obscure the intrinsic contribution of lattice geo
PRB 610163-1829/2000/61~5!/3641~8!/$15.00
h-
al
e

nt
s
of

y

i-
f
g

an

-
i-

-

at

s-
e

es
e

r
o
r

n
-
f

l-
t
-

etry to the overall synchronization process. For this sa
reason, we choose to model the individual junctions mak
up the array in the simplest possible fashion, i.e., we use
resistively shunted junction~RSJ! model.2 Although our cir-
cular plaquette model is admittedly quite special, we ho
that it might serve as a prototype and that a number of
results which come out of our study will prove useful mo
generally for studies of other lattice geometries. Specifica
we will identify the principle physical mechanism respo
sible for~disorder-induced! desynchronization in this system
and also analytically construct the transition boundary se
rating sychronized from desynchronized behavior by e
ploying a useful perturbative approach.

Our focus on the two-dimensional circular-lattice stru
ture of the plaquette model is motivated by twin consid
ations: First, recent work suggests that two-dimensional
ray designs might enjoy a significant advantage over th
one-dimensional counterparts in their ability to maintain c
herence in the presence of disorder.9–15 Second, studies o
prototype two-dimensional arrays with a rectangular latt
geometry have recently yielded analytic estimations of th
ability to tolerate disorder.14,15Thus, a detailed analysis of a
array with circular geometry will permit a direct compariso
of the relative merits of these two types of lattice geometri

This paper is organized as follows. In Sec. II we descr
the basic circular plaquette model and construct the eq
tions of motion. Section III presents a formal asympto
analysis leading to the construction of the transition bou
ary separating synchronized from desynchronized beha
as a function of disorder. Our theoretical predictions are th
compared with results from numerical simulations. In S
IV we make a direct comparison between 232 arrays with
circular and rectangular geometries, and then discuss ge
alizations to larger circular arrays as well as limitations
our model. Section V summarizes our main findings.

II. THE CIRCULAR PLAQUETTE: BASIC MODEL
AND NUMERICAL BEHAVIOR

The circular plaquette model represents a 232 array con-
sisting of six overdamped@i.e., RSJ~Ref. 2!# Josephson junc-
tions. A dc bias currentI is fed in uniformly from the outside
3641 ©2000 The American Physical Society
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3642 PRB 61A. S. LANDSBERG
and extracted uniformly along the inner edge, as shown
Fig. 1. The governing equations for the array follow from t
dual constraints of current conservation and flux quant
tion. Letting D1 ,D2 ,D3 denote the spontaneously induc
shunt currents in the array, the requirements of current c
servation together with the fundamental Josephson relat
yield the basic equations of motion

\

2er
ḟc11I c1sin~fc1!5I 2D12D2 , ~1a!

\

2er
ḟc21I c2sin~fc2!5I 1D11D2 , ~1b!

\

2er
ḟa11I a1sin~fa1!5D1 , ~1c!

\

2er
ḟa21I a2sin~fa2!5D2 , ~1d!

\

2er
ḟb11I b1sin~fb1!5D11D3 , ~1e!

\

2er
ḟb21I b2sin~fb2!5D22D3 , ~1f!

where thef ’s denote the phase differences across the v
ous junctions. Disorder has been included in the model
allowing the critical currents of the six junction
(I c1 ,I c2 ,I a1 ,I a2 ,I b1 ,I b2) to be nonidentical.~Note, how-
ever, that we neglect disorder in the junction resistancer
here, in keeping with most prior studies; see Ref. 15 fo
discussion of this issue.!

The above equations must be supplemented by the a
tional constraints imposed by flux quantization. In particul
in the absence of magnetic fields, the sum of the phase
ferences around any closed loop must be zero. This yiel

fa12fa250, fb12fb250, fa11fc21fb12fc150.

~2!

Together, Eqs.~1a!–~1f!, ~2! constitute our basic model.

FIG. 1. The circular plaquette.The crosses mark the location
of the six junctions. Here,fa1 ,fa2 ,fb1 ,fb2 are the phase differ-
ences across the four azimuthal junctions andfc1 ,fc2 denote the
phase differences across the two radial junctions.I represents the
~imposed! bias current, andD1 ,D2 ,D3 the ~spontaneously induced!
shunt currents.
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An inspection of these governing equations reveals th
in the absence of disorder, there exists a synchronized s
tion in which the two radial junctions oscillate in perfe
synchrony@fc1(t)5fc2(t)#, while the azimuthal junctions
are completely inactive@fa1(t)5fa2(t)5fb1(t)5fb2(t)
50#. This solution, known as the ‘‘in-phase state,’’ is d
namically stable when no disorder is present, as a strai
forward stability analysis reveals. For many potential dev
applications involving Josephson junction arrays, the
phase state—a state of perfect synchrony—represents
ideal operating state of the system.

Our main interest in this paper, however, is in the beh
ior of the system when disorder is present. A numerical s
vey of our model for different realizations of the disord
~obtained by varying the values of the critical curren
I c1 ,I c2 ,I a1 ,I a2 ,I b1 ,I b2) shows that there exist two gener
categories of solutions.

~a! Synchronized states. Here, the two radial junctions
overturn at the same average rate:^dfc1 /dt&5^dfc2 /dt&.
Meanwhile, the azimuthal junctions are active, but do n
overturn: ^dfa1 /dt&5^dfa2 /dt&5^dfb1 /dt&5^dfb2 /dt&
50. ~The bracketŝ & denote time averages.! Figure 2 de-
picts a representative example of a synchronized state.

~b! Desynchronized states. In such states, the coherenc
between the two radial junctions is lost:̂dfc1 /dt&
Þ^dfc2 /dt&. The azimuthal junctions now overturn~i.e.,
their time averages are no longer zero!. Figure 3 illustrates
this loss of synchronization in the radial junctions.

For a fixed value of the bias currentI, one observes tha
the array enters a synchronized state when the disorde
relatively low, while for high levels of disorder a desynchr
nized state is realized. If instead one fixes the level of dis
der and varies the bias current, one finds synchronized
havior for high values of the bias current and desynchroni
behavior for low values of the bias current. The transiti
between these two states is abrupt, as can be seen from
I -V plot depicted in Fig. 4.

Our objective is to explain these qualitative numerical o
servations and to construct an analytical characterization
the transition from synchronized to desynchronized behav
We describe in the next section how this can be achie
through an asymptotic~multiple-time scale! analysis.

III. ANALYSIS OF THE PLAQUETTE

To proceed, we must first put Eqs.~1a!–~1f!, ~2! into a
form more suitable for analysis. We begin by noting th
while Eqs.~1a!–~1f! represents a six-dimensional system
equations~one for each of the six junctions!, the presence of
three constraint relations~2! implies that there are in fac
only three dynamically independent phases in the probl
We arbitrarily choosefc1 ,fc2 ,fA as the three independen
variables, where we have definedfA[fa15fa2.

Next, we nondimensionalize the equations by rescal
time @ t→(\/2erI)t# and introduce dimensionless critica
currents

i c15I c1 /I , i c25I c2 /I , i A5
I a11I a2

2I
, i B5

I b11I b2

2I
.

~3!
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PRB 61 3643DISORDER-INDUCED DESYNCHRONIZATION IN A 232 . . .
Note that this procedure has the effect of normalizing
bias currentI to unity, so that the~dimensionless! critical
currents (i c1 ,i c2 ,i A ,i B) become small as the bias curre
becomes large. This will prove useful for our asympto
analysis, which will focus on the high bias current regim
since the critical currents can then be treated as small pa
eters.

In dimensionless form, the equations for the circu
plaquette become

dfA

dt
52

5

6
i Asin~fA!1

1

6
i Bsin~fc12fc22fA!

1
1

6
i c2sin~fc2!2

1

6
i c1sin~fc1!, ~4a!

FIG. 2. ~a! A synchronized state~for I 53.0, I c152.6, I c2

51.1, I a150.9, I a250.7, I b150.6, I b250.8). The phases of the
two radial junctionsfc1 ,fc2 are shown as a function of time. In th
plot, the curves forfc1 ~dashed line! andfc1 ~solid line! are vir-
tually indistinguishable, consistent with the fact that these two ju
tions grow at the same average rate@compare to Fig. 3~a!#. ~b! The
corresponding voltage oscillations across the radial juncti
(dfc1 /dt, dfc2 /dt). Note here that the instantaneous voltag
have been plotted, rather than the time-averaged voltages, to b
accentuate the frequency-locked nature of the synchronized st
e

,
m-

r

dfc1

dt
512

1

3
i Asin~fA!2

1

3
i Bsin~fc12fc22fA!

2
1

3
i c2sin~fc2!2

2

3
i c1sin~fc1!, ~4b!

dfc2

dt
511

1

3
i Asin~fA!1

1

3
i Bsin~fc12fc22fA!

2
2

3
i c2sin~fc2!2

1

3
i c1sin~fc1!. ~4c!

@Note here that the constraint relations~2! have been used to
eliminate three of the six phases in Eqs.~1a!–~1f! and to
reexpress the shunt currentsD1 ,D2 ,D3 in terms of the three
independent phases.#

One final manipulation is needed to prepare the sys
for analysis. We introduce new coordinates

-

s
s
tter
e.

FIG. 3. ~a! A desynchronized state~for I 53.0, I c152.6, I c2

51.1, I a150.1, I a250.05, I b150.2, I b250.8). Note that the two
radial junctions~dashed curvefc1, solid curvefc2) have different
average growth rates.~b! The corresponding voltage oscillation
across the radial junctions (dfc1 /dt, dfc2 /dt), illustrating the
lack of coherent oscillations in the desynchronized state.
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3644 PRB 61A. S. LANDSBERG
fC5
fc11fc2

2
, fDC5

fc12fc2

2
, ~5!

yielding

dfA

dt
52

5

6
i Asin~fA!1

1

6
i Bsin~2fDC2fA!1

1

6
i c2sin~fC

2fDC!2
1

6
i c1sin~fC1fDC!, ~6a!

dfDC

dt
52

1

3
i Asin~fA!2

1

3
i Bsin~2fDC2fA!1

1

6
i c2sin~fC

2fDC!2
1

6
i c1sin~fC1fDC!, ~6b!

dfC

dt
512

1

2
i c2sin~fC2fDC!2

1

2
i c1sin~fC1fDC!.

~6c!

Equations~6a!–~6c! are in final form. The impetus behin
coordinate transformation~5! has to do with the question o
synchronization. Since we are interested in understand
whether the radial junctionsfc1 ,fc2 remain synchronized
when disorder is present, the phase differencefDC5(fc1
2fc2)/2 is the natural variable to monitor. In particula
when this phase difference remains bounded in time,
plaquette is synchronized; iffDC grows in time, synchroni-
zation is lost.

To analyze our model, we employ a variation of
multiple-time-scale perturbation scheme~see Ref. 16 for a
description of the basic method!. We will work in the high-
bias-current regime, so that the rescaled critical currents~3!
may now be regarded as small. We make this explicit
letting e denote a dimensionless small parameter and wri

i c1→e i c1 , i c2→e i c2 , i A→e2i A , i B→e2i B . ~7!

FIG. 4. I -V plot for the circular plaquette. The time-averag
voltage across each radial junction^dfc1 /dt&, ^dfc2 /dt& as a
function of imposed currentI is shown. The transition from a de
synchronized to synchronized state nearI 52.2 is clearly seen.
~Here, I c150.3, I c251.5, I a150.06, I a250.11, I b150.4, I b2

50.2.!
g

e

y
g

Note here that we use different scaling factors for the vari
critical currents. This is motivated by our desire to captu
the transition from synchronized to desynchronized beha
in the array, which only occurs if there is sufficient variatio
in the critical currents.~Recall that for weak disorder, th
array remains locked in a synchronized state.! Hence, if iden-
tical scaling factors had been used in Eq.~7!, one would have
found that the disorder would never have been large eno
to force the system out of a synchronized state. In eff
then, by choosing different scaling factors in Eq.~7!, we are
able to describe a wider range of behaviors in the array t
would otherwise have been possible.~This situation is not
unusual; it is well known from general asymptotic theo
that a judicious choice of scaling factors often provides
key to understanding a system’s behavior.! The choice of
scalings in Eq.~7! can also be justified by physical argu
ments, since the radial and azimuthal junctions in a circu
array play very different roles~this point will be discussed in
more detail later!.

We next introduce fast, slow, and superslow time sca
t05t, t15et, t25e2t such that

d

dt
5] t0

1e] t11e2] t2
~8!

and expand the phases

fA5fA01efA11efA2 , ~9a!

fDC5fDC01efDC11e2fDC2 , ~9b!

fC5~v0t01v1t11v2t2!1fC01efC11e2fC2 . ~9c!

Note that in the expansion forfC we have explicitly in-
cluded a linear growth term (v0t01v1t11v2t2). This is
because, unlike the other phase variables, we expectfC to
grow approximately linearly with time@see Eq.~5! and Fig.
2~a!#.

The general procedure is now as follows: We substit
Eqs. ~7!, ~8!, ~9a!–~9c! into Eqs.~6a!–~6c! and collect like
powers ofe. In this manner we obtain an entire hierarchy
equations. From these we extract so-called ‘‘nonresona
conditions,’’ which serve to suppress terms which might o
erwise grow without bound and destroy the validity of o
asymptotic expansion~see Ref. 16!. We now carry out this
procedure.~Since these calculations are somewhat lengt
we present only the key landmarks in this construction.!

At leading order in the expansion we find

] t0
fA050; ] t0

fDC050; ] t0
fC0512v0 . ~10!

The nonresonance condition associated with the third eq
tion impliesv051. Solving Eq.~10! yields

fA05fA0~ t1 ,t2!, fDC05fDC0~ t1 ,t2!,

fC05fC0~ t1 ,t2!, ~11!

indicating that thefA0 ,fDC0 ,fC0 do not evolve on the fas
time scalet0.

At O(e), the resulting equations are
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] t0
fA152] t1

fA02
1

6
i c1

sin~ t01v1t11v2t21fC01fDC0!

1
1

6
i c2

sin~ t01v1t11v2t21fC02fDC0!, ~12a!

] t0
fDC152] t1

fDC02
1

6
i c1

sin~ t01v1t11v2t21fC0

1fDC0!1
1

6
i c2

sin~ t01v1t11v2t21fC0

2fDC0!, ~12b!

] t0
fC152v12] t1

fC02
1

2
i c1

sin~ t01v1t11v2t21fC0

1fDC0!2
1

2
i c2

sin~ t01v1t11v2t21fC02fDC0!.

~12c!

The nonresonance conditions are readily extracted
solved:

] t1
fA050 → fA05fA0~ t2!, ~13a!

] t1
fDC050 → fDC05fDC0~ t2!, ~13b!

v11] t1
fC050 → fC052v1t11f̂C0~ t2!. ~13c!

Solving Eqs.~12a!–~12c! yields

fA15
1

6
i c1cos~ t01v2t21f̂C01fDC0!

2
1

6
i c2cos~ t01v2t21f̂C02fDC0!, ~14a!

fDC15
1

6
i c1cos~ t01v2t21f̂C01fDC0!

2
1

6
i c2cos~ t01v2t21f̂C02fDC0!, ~14b!

fC15
1

2
i c1cos~ t01v2t21f̂C01fDC0!

1
1

2
i c2cos~ t01v2t21f̂C02fDC0!. ~14c!

Lastly, atO(e2), the nonresonant conditions are

] t2
fA05

1

18
~ i c2

2 2 i c1
2 !2

5

6
i Asin~fA0!

1
1

6
i Bsin~2fDC02fA0!, ~15a!
d

] t2
fDC05

1

18
~ i c2

2 2 i c1
2 !2

1

3
i Asin~fA0!

2
1

3
i Bsin~2fDC02fA0!, ~15b!

] t2
f̂C052S v21

1

6
~ i c1

2 1 i c2
2 ! D2

1

6
i c1i c2cos~2fDC0!.

~15c!

Equations~15a!–~15c! represent the desired equations d
scribing the basic behavior of the plaquette.

Observe that the first two equations~15a!,~15b! decouple
from the third, and are readily analyzed. When the disorde
small, there exist four fixed points in the (fA0 ,fDC0) phase
plane: one sink, one source, and two saddles. The sys
will be attracted to the sink. Accordingly,fDC0, which mea-
sures the phase difference between the junctionsfc1 andfc2
@Eq. ~5!#, will not grow. This corresponds to the plaquet
being in a synchronized state.

If the level of disorder is increased, one finds that the fo
fixed points approach one another in the phase plane. T
is a critical level of disorder at which these fixed points
multaneously collide with one another and annihilate~in a
‘‘double saddle-node’’ bifurcation!. Above this critical
threshold, no fixed points exist, and the phase difference
tweenfc1 andfc2 begins to grow without bound, indicatin
that the system has entered a desynchronized state. The
cise bifurcation point can be determined via a linear stabi
analysis of Eqs.~15a!,~15b!. We find

U 1

12

~ i c1
2 2 i c2

2 !

min~ i A ,i B!
U51, ~16!

where min(iA ,iB) denotes the lesser ofi A ,i B . Converting
back to our original parameters@see Eq.~3!#, the transition
boundary separating synchronized from desynchronized
havior is given by

U1
6

~ I c1
2 2I c2

2 !

I min~ I a11I a2 ,I b11I b2!
U51. ~17!

@When the left-hand side of Eq.~17! exceeds unity, synchro
nization is lost.#

Equation ~17! provides a quantitative prediction for th
maximum amount of disorder the circular plaquette can
erate before frequency locking is lost. The only assumpt
made in our derivation is that the array is operated in
high-bias-current regime (I @I c1 ,I c2 ,I a1 ,I a2 ,I b1 ,I b2). We
tested our theoretical prediction against numerical simu
tions by fixing the values ofI a1 ,I a2 ,I b1 ,I b2 ,I and sweeping
through different values of the critical currentsI c1 ,I c2. In
this manner, we numerically constructed the boundary in
I c12I c2 parameter plane separating synchronized from
synchronized states. These results are illustrated in Fig. 5
this shows, the agreement between our numerical results
the predictions of Eq.~17! is excellent. We remark that thi
agreement remains relatively good even if the bias curreI
is reduced so that we are no longer inside the~high-bias
current! regime where the asymptotic analysis is forma
valid ~see, e.g., the transition point in Fig. 4!.
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3646 PRB 61A. S. LANDSBERG
The transition formula~17! reveals that the plaquette
robust against even very high levels of disorder. For
ample, variations as large as 50% in the values of the crit
currents from one junction to the next are not sufficient
desynchronize the array~with present fabrication technique
the typical size of variations can be reduced to about the
level!. In this respect, then, the circular geometry of t
plaquette is intrinsically good at fostering coherent osci
tions among the individual junctions even in the presence
relatively high levels of disorder. The quantification of th
result in the form of Eq.~17! represents a key result of ou
asymptotic analysis.

Moreover, the mathematical analysis leading to Eq.~17!
also uncovers the principal physical mechanism respons
for the onset of desynchronized behavior for sufficiently h
levels of disorder. A stability analysis reveals that the bif
cation described above in which the four fixed points coll
and annihilate in the (fA0 ,fDC0) phase plane occurs pre
cisely when eitherusin(fA0)u or usin(2fDC02fA0)u equals
unity. Now, the variablefA0 represents the phase of th
outer two azimuthal junctions of the circular plaquette, wh
(2fDC02fA0) represents the phase of the inner two a
muthal junctions@this may be seen by tracing back the s
quence of transformations that led from Eqs.~1a!–~1f! to
Eqs. ~15a!–~15c!#. Therefore, the quantitiesusin(fA0)u,
usin(2fDC02fA0)u above are simply proportional to th
amount of supercurrent passing through the outer and in
azimuthal junctions, respectively. Hence, the meaning of
conditions usin(•••)u51 is that the amount of supercurre
being passed by any of the azimuthal junctions has atta
its maximum allowed value. In other words,synchronization
is lost when the supercurrent passing through any azimu
junction equals the critical current of that junction.This is
the fundamental physical mechanism behind the loss of s
chronization in a circular plaquette subject to strong disord

FIG. 5. The transition boundary separating sychronized fr
desynchronized behavior. Synchronized states lie in the interio
gion between the upper and lower curves. This plot was constru
by fixing I 59, I a150.0056,I a250.0111,I b150.30, I b250.07 and
sweeping through theI c12I c2 parameter plane to locate transitio
points. The circles mark the numerically determined transit
points, while the solid curves represent the theoretical bounda
predicted by the transition formula~17!.
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IV. COMPARISON TO RECTANGULAR PLAQUETTE
AND GENERALIZATIONS TO LARGER ARRAYS

Despite some distinctions~to be discussed shortly!, the
similarities between the circular plaquette model describ
here and previous analytical studies of a rectangu
plaquette model14,15 are both striking and informative. Firs
we observe that for both geometries, the arrays are abl
tolerate disorder and remain synchronized, provided the
order lies below a critical threshold level. Second, and mu
more revealing, we now know~based on the analysis in Se
III ! that the mechanism by which disorder destroys synch
nization in a Josephson plaquette with circular geometry
identical to that found in a plaquette with rectangular geo
etry ~see Ref. 14!: Synchronization is lost when the supe
current through the azimuthal junctions reaches its maxim
allowed value.~Note: the ‘‘horizontal’’ junctions of the rect-
angular plaquette play the role of the ‘‘azimuthal’’ junction
in the circular plaquette.! The implications of this are signifi-
cant: This finding suggests that perhaps the principal mec
nism underlying disorder-induced desynchronization in a
sephson junction array is universal, i.e., independent of
underlying lattice geometry.~We must emphasize, howeve
that this suggestion is only speculative at present—we
claim rigorous results only for the case of plaquettes w
circular and rectangular geometries. Moreover, the pre
manner in which bias current is fed into an array most like
plays a role here as well, but this issue has yet to be fu
explored.!

It is important to note that while the mechanism by whi
disorder destroys synchronization may be the same for b
the circular and rectangular cases, this does not mean
these two arrays are identical in terms of their ability
tolerate disorder. Indeed, a comparison of the transition
mula ~17! with the corresponding transition formula for th
rectangular-geometry case~see Ref. 14! reveals that the cir-
cular plaquette is the more robust of the two against disor
~although only modestly more so!. This ability to tolerate
higher levels of disorder comes at a price, however, six
sephson junctions are required to construct the circu
plaquette, but only four are needed in the rectangular ca

Lastly, we speculate as to what might occur if we co
sider generalizations of our circular plaquette~which is a 2
32 circular array! to larger (N3M ) circular arrays. Are the
synchronization properties of larger circular arrays similar
that of the plaquette, or might new features arise? This qu
tion is especially intriguing in light of what has been learn
recently about generalizations of the rectangular plaqu
model~a 232 array! to larger (N3M ) rectangular arrays. In
particular, if anN3M rectangular Josephson junction arr
~with N.2) is subjected to weak levels of disorder, the arr
only partially synchronizes: The junctions across any giv
row of the array all synchronize with one another, but the
is no synchronization from one row to the next.9,17,14In other
words, the synchronization mechanism observed in an
lated rectangular plaquette operates across rows in large
rays, but not between rows. Ultimately, this failure to ful
synchronize traces its origins to a highly unusual mathem
cal property possessed byN3M rectangular arrays in the
absence of disorder:neutral stability.18,19,15 In this context,
neutral stability refers to the fact that it is possible to pertu
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the junctions within any given row of a rectangular array
such a manner that the system has no natural tendenc
return to its original~preperturbed! configuration~see Ref.
18!. @Indeed, it was the discovery of neutral stability a
related nongeneric mathematical properties~e.g., Ref. 20!
that originally stimulated a great deal of interest in Joseph
junction arrays among the nonlinear dynamics communit#

Hence, to understand the behavior of large circular arra
a natural starting point is to first ask ifN3M circular arrays
(N.2) also possess the neutral-stability property. If so, o
might reasonably speculate that such arrays will exhibit o
partial synchronization when subjected to weak disorder,
if one pictures the radial junctions in a circular array as for
ing a series of concentric rings, then the radial junctio
within any given ring should synchronize, but no synchro
zation would be expected as one moves radially inward fr
one ring to the next.

We offer here a preliminary inquiry into this issue b
considering the 332 circular array depicted in Fig. 6. Th
equations of motion are constructed in the usual manner.
find

\

2er
ḟ l11I l1sin~f l1!5I 2D12D2 , ~18a!

\

2er
ḟ r11I r1sin~f r1!5I 1D11D2 , ~18b!

\

2er
ḟ l21I l2sin~f l2!5I 2D12D22D32D4 , ~18c!

\

2er
ḟ r21I r2sin~f r2!5I 1D11D21D31D4 , ~18d!

\

2er
ḟa11I a1sin~fa1!5D1 , ~18e!

\

2er
ḟb11I b1sin~fb1!5D3 , ~18f!

FIG. 6. A 332 circular array. f l1 ,f r1 ,f l2 ,f r2 denote the four
radial junctions, andfa1 ,fa2 ,fb1 ,fb2 ,fc1 ,fc2 the six azimuthal
junctions. An externally imposed bias currentI is fed into and ex-
tracted from the array as shown.D1 ,D2 ,D3 ,D4 ,D5 ,D6 represent
the spontaneously induced shunt currents in the array.
to

n

s,

e
y
.,
-
s
-

e

\

2er
ḟc11I c1sin~fc1!5D5 , ~18g!

\

2er
ḟa21I a2sin~fa2!5D2 , ~18h!

\

2er
ḟb21I b2sin~fb2!5D4 , ~18i!

\

2er
ḟc21I c2sin~fc2!5D6 , ~18j!

together with constraint relations

fa12fa250, fb12fb250, fc12fc250, ~19a!

FIG. 7. I -V plot for the 332 circular array. The time-average
voltage across each radial junction̂df l1 /dt&, ^df r1 /dt&,
^df l2 /dt&, ^df r2 /dt& as a function of imposed currentI is shown.
The critical currents were held fixed atI l150.3, I r151.5, I l2

51.6, I r250.2, I a150.06, I a250.11, I b150.4, I b250.2, I c1

50.1, I c250.04. ~a! for low values of the bias current, all fou
junctions are desynchronized.~b! at higher bias current, the oute
junctionsf l1 , f r1 become frequency locked, as do the inner jun
tionsf l2 , f r2. Observe, however, that the outer and inner pairs
not synchronized, owing to the neutral stability property of the
32 array.
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fa11f r12fb12f l150, fb11f r22fc12f l250,
~19b!

D11D21D31D41D51D650. ~19c!

Owing to the presence of the constraints, Eqs.~18a!–~18j!
may be reduced down to a five-dimensional dynamical s
tem. These calculations are lengthy and we do not reprod
them here.

Observe that if we set all the critical currents in Eq
~18a!–~18j! the same~i.e., the zero-disorder case!, then there
exists an ‘‘in-phase’’ solution of the formf l15f r15f l2
5f r25f(t), with all the azimuthal junctions identically
zero. Now, a straightforward check reveals thatf l15f r1
5f(t), f l25f r25f(t1d) is also a solution of these equa
tions ~with d an arbitrary constant!, indicating that this cir-
cular array does indeed possess the neutral stability prop
found previously in a rectangular array~see Refs. 18 and 15
for a more general discussion!.

This result is both significant and~from a mathematica
perspective! somewhat surprising. It is significant because
suggests that indeed the circular array might exhibit o
partial synchronization when weak disorder is present. I
surprising because neutral stability is a nongeneric m
ematical property that in general would not be expected
persist if one makes changes to a system, and yet it
survived the change from a rectangular to circular latt
geometry. We do not yet have a complete understandin
why this should be the case.

To verify our hypothesis about partial synchronization
a 332 circular array, we ran a series of numerical simu
tions. The resultingI -V diagram is shown in Fig. 7. We find
that for low values of the bias current, all four radial jun
tions f l1 , f r1 , f l2 , f r2 are desynchronized@Fig. 7~a!#. As
the bias current is increased, the outer junctionsf l1 , f r1
eventually synchronize with one another@as in the plaquette
case~Fig. 4!#. Likewise, the inner pairf l2 , f r2 also even-
tually synchronizes~though not at the same time as the ou
its
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pair!. Observe, however, that the outer and inner pairs
junctions do not synchronize with one another, see Fig. 7~b!.

V. CONCLUSIONS

In this paper we have presented a detailed analytical
scription of the behavior of a 232 Josephson junction arra
with a circular geometry, culminating in a quantitative a
sessment of its ability to remain synchronized in the prese
of disorder. The primary physical mechanism responsible
the loss of synchronization when disorder becomes too la
has also been identified, and has been shown to be iden
to that found previously in a 232 rectangular array. This
finding suggests that the underlying cause of disord
induced desynchronization in an array might be more gen
than previously believed, and transcend the particular lat
geometry of the array.

Moreover, our study of the circular plaquette indicat
that larger circular arrays can also synchronize when diso
is present~provided the disorder is not too large!, but that
this synchronization is only partial, owing to the~somewhat
surprising! existence of the neutral stability property in the
larger arrays. Thus, in terms of theintrinsic ability of lattice
geometry to promote synchronization, we have determi
that acircular lattice geometry is only partially successful
this regard~i.e., the circular geometry does not naturally i
duce synchronization in the radial direction, though it does
the azimuthal direction!. Hence, while it may still be possible
to fully synchronize a circular array by other means~e.g., by
applying a high-frequency external signal, coupling the ar
to an external load, or through nonlocal mutual inductan
effects, etc.!, the innate contribution of the~circular! lattice
structure to the synchronization process has been dem
strated to be somewhat limited. It remains to be seen whe
other lattice geometries might exist that are intrinsically b
ter at promoting~full ! synchronization in an array compare
to the circular or rectangular cases.
l,

s.

. B
1D. R. Tilley, Phys. Lett.33A, 205 ~1970!.
2K. K. Likharev, Dynamics of Josephson Junctions and Circu

~Gordon and Breach, New York, 1986!.
3T. D. Clark, Phys. Rev. B8, 137 ~1973!.
4A. K. Jain, K. K. Likharev, J. E. Lukens, and J. E. Savage

Phys. Rep.109, 309 ~1984!.
5M. Darula, T. Doderer, and S. Beuven, Supercond. Sci. Tech

12, R1 ~1999!.
6P. Hadley, M. R. Beasley, and K. Wiesenfeld, Phys. Rev. B38,

8712 ~1988!.
7G. Filatrella and K. Wiesenfeld, J. Appl. Phys.78, 1878~1995!.
8B. Larsen and S. P. Benz, Appl. Phys. Lett.66, 3209~1995!.
9S. P. Benz and C. J. Burroughs, Appl. Phys. Lett.58, 2162

~1991!.
10M. Octavio, C. B. Whan, and C. J. Lobb, Appl. Phys. Lett.60,

766 ~1990!.
11M. Darula, P. Seidel, J. von Zameck Glyscinski, A. Darulova,
,

l.

.

Busse, and S. Benacka, inApplied Superconductivity, edited by
H. C. Freyhardt ~DGM Informationsgesellschaft, Oberurse
1993!, p. 1245.

12P. A. A. Booi and S. P. Benz, Appl. Phys. Lett.64, 2163~1994!.
13R. L. Kautz, IEEE Trans. Appl. Supercond.5, 2702~1995!.
14A. S. Landsberg, Y. Braiman, and K. Wiesenfeld, Appl. Phy

Lett. 67, 1935~1995!.
15A. S. Landsberg, Y. Braiman, and K. Wiesenfeld, Phys. Rev

52, 15 458~1996!.
16A. H. Nayfeh,Introduction to Perturbation Methods~Wiley, New

York, 1981!.
17C. B. Whanet al., Bull. Am. Phys. Soc.40, 117 ~1995!.
18K. Wiesenfeld, S. P. Benz, and P. A. A. Booi, J. Appl. Phys.76,

3835 ~1994!.
19P. Hadley, Ph.D. thesis, Stanford University, 1989.
20S. Watanabe and S. H. Strogatz, Physica D74, 197 ~1994!.


