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Spin waves in a two-dimensionalp-wave superconductor: Sr2RuO4
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We study spin excitations in a two-dimensionalp-wave superconductor withDW 5d̂( k̂16 i k̂2) symmetry in
the context of the newly discovered superconducting Sr2RuO4. The polarization and spectrum of spin-wave
excitations are identified and their experimental consequences are discussed.
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I. INTRODUCTION

The recent discovery of superconducting Sr2RuO4 gener-
ates much efforts to determine the pairing symmetry o
possible unconventional superconducting order paramete
this system. Being a 4d-orbital analog1 of the high-Tc cu-
prate superconductors, Sr2RuO4 has the same layered pero
skite structure as La2CuO4 and becomes superconducting b
low Tc'1.5 K.2–4 Despite the structural similarity, i
behaves very differently from the copper oxides. The norm
state below 50 K can be well described by a quasi-tw
dimensional Landau-Fermi liquid: The resistivity showsT2

behavior in thea-b plane andc direction with a large anisot
ropy ratio.4 Quantum oscillations5 revealed three cylindrica
Fermi-surface sheets in accordance with the band-struc
calculations.6 There are three 4d orbitals (dxy ,dyz ,dzx) of
the Ru41 ions which form three bands crossing the Fer
level. There are two electronlike and one holelike Fer
surfaces.5 On the other hand, the mass enhancement ('4) in
this material is not small indicating the existence of stro
correlation.5 The fact that it has a large mass enhancem
and a related material, SrRuO3, shows ferromagnetism lead
to the proposal that the superconducting state of Sr2RuO4 is
formed by odd-parity pairing~spin-triplet pairing! presum-
ably in thep-wave channel.7–9

There have been a number of experiments indicating
conventional superconductivity in Sr2RuO4. The transition
temperature was found to be very sensitive to nonmagn
impurities10 and nuclear quadrupole resonance~NQR! found
no Hebel-Slichter peak.11 Even though these exper
ments10–12 suggested that the pairing symmetry is nons
wave, they could not determine the pairing symmetry its
More recently,17O-Knight shift in NMR was measured an
it is consistent with the spin-triplet superconductivity13 with
d̂ parallel to thec axis as the case of superfluid3He-A.14

Here d̂ is the unit vector of the triplet order parameter.14 On
the other hand, the specific-heat data are consistent
usual s-wave superconductors if we subtract a persist
T-linear term.15,16 In the earlier experiment the ratio of th
coefficient of theT-linear term to the one in the normal sta
PRB 610163-1829/2000/61~5!/3584~8!/$15.00
a
in

-

l
-

re

i
i

g
nt

n-

tic

f.

ith
t

g0 /gN was larger than 0.5. This initiated the proposal
possible nonunitary state in Sr2RuO4.17 However, more re-
cent data16 show thatg0 /gN,0.25. This means the nonun
tary state is untenable. The specific-heat data further im
that the energy gap should be almost independent ofk like in
ans-wave superconductor and also there should be a norm
state-like component. These features are most naturally
scribed by the three orbital band model,18 where it is as-
sumed that the superconductivity resides mainly in theg
band, while thea and b bands may be considered in th
normal state. Of course we cannot exclude the possible s
superconducting order parameter associated with thea and
b band.19 In this perspective, the small magnetization se
by the muon spin resonance20 is rather puzzling. In addition
rather strong flux pinning in the vortex state is observed
Sr2RuO4 comparable to the one inB phase of UPt3 and
U0.97Th0.03Be13.21 The latter two systems are considered
be in the nonunitary state.22 Here it is worthwhile to mention
that, although all these are consistent with the triplet pairi
both the magnetization and the strong vortex pinning sho
arise from some topological defects or dislocation in t
samples. A recent small-angle neutron-scattering experim
in a magnetic field parallel to thec axis showed that the
square vortex lattice is almost everywhere in theB-T phase
diagram.23 This square vortex lattice is also very consiste
with p-wave superconductivity we consider here.24–26

In the following we take the order parameter

DW ~k!5Dd̂~ k̂16 i k̂2!, ~1!

whered̂ is assumed to be parallel to thec axis andk is the
quasiparticle wave vector within thea-b plane. For simplic-
ity, we also assume that the superconductivity resides onl
the g band. This means thea and b bands provide nonsu
perconducting background. Recently starting from Eq.~1!,
microscopic studies of the vortex state,25,26 the effect of
impurities,27 and the quasiparticle spectrum around a sin
vortex28 have been discussed.

Here we study spin dynamics in thep-wave superconduct
ors with the order parameter given by Eq.~1!. It is important
to realize that there are four distinct situations for the m
3584 ©2000 The American Physical Society
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PRB 61 3585SPIN WAVES IN A TWO-DIMENSIONAL p-WAVE . . .
surement of the dynamical spin susceptibility in tw
dimensionalp-wave superconductors. This is because the
rection of the vectorial order parameterd(k) is fixed along a
crystallographic axis which is perpendicular to the ba
plane. One can apply a magnetic field along the directi
perpendicular and parallel to the RuO2 plane. In each case
one can measure longitudinal and transverse susceptibil
Therefore there exist four different susceptibilities. This i
unique property of the two-dimensionalp-wave supercon-
ductor because, in the three-dimensional case, the direc
of the order parameter is not fixed and is always perpend
lar to the applied magnetic field.

We also assume that the pinning ofd̂ vector parallel to the
c axis involves a finite pinning energy2 1

2 xNVd
2(dz)

2, most
likely due to the spin-orbit coupling. Here we do not evalua
the exact value ofVd , but we expect that it will beVd(T)
,D(T). Recently the pinning frequency was estimated
Tewordt.29

We believe that the experimental determination ofVd(T)
will provide an insight in the pinning mechanism ofd̂. In
order to avoid future misunderstanding, we shall first expl
the role ofd̂ here.d̂ is called the spin vector which has bee
used in studying3He. It is perpendicular to the direction o
the spin associated with the condensed pair.14 Under these
assumptions, we found the following results for the spin
citations.

Case A: When magnetic field is parallel to thea-b plane
~i.e., H'd̂). We have the spin waves with the dispersi
relations

v i
25~12I f d!Vd

21
1

2
f d~vFq!2 ~2!

and

v'
2 5v i

21vL
2 ~3!

for the longitudinal (v i) and the transverse (v') resonance,
respectively. The ‘‘pinning’’ frequencyVd is associated with
the restoring tendency of the order parameter to the in
directiond̂ against external perturbations. HerevL5mBH is
the Larmor frequency.I (52 1

4 Z0) is the dimensionless on
site Hubbard potential andf d is the dynamical superfluid
density (v@vFq) given by

f d5E
D

`

dE
D2

E2

tanh~E/2T!

AE22D2
, ~4!

where D is the magnitude of the full gap. These can
readily generalized in the presence of Fermi-liqu
corrections.14

Case B: When magnetic field is perpendicular to thea-b
plane ~i.e., Hi d̂). The static susceptibility in this case
given by

x5x0

Y

12IY
, ~5!

whereY512 f s is the Yoshida function.14 There is no lon-
gitudinal collective mode, but a damped mode with the f
lowing dispersion exists in the longitudinal response:
i-

l
s

s.
a

on
u-

e

y

n

-

l

-

v5 i
1

A2
vFuquA~12 f d!I . ~6!

For the transverse response, we have the spin wave with
same dispersion relation as Eq.~3!.

The remainder of this paper is organized as follows.
Sec. II, we show the calculation of the dynamical spin s
ceptibilities for four different cases mentioned above. W
conclude in Sec. III. Some of the technical details are r
egated to the appendixes.

II. DYNAMICAL SPIN SUSCEPTIBILITY
AND SPIN WAVES

Here we use Green’s-function method of Ref. 30. T
single-particle Green’s function in the Nambu space is giv
by

G21~ ivn ,k!5 ivn2Fjk1
VL

2
~sW •ĥ!Gr32D~ k̂•rW !s1 ,

~7!

wherer i ands i are Pauli matrices acting on the particle-ho
and spin spaces, respectively,ĥ is the unit vector parallel to
the static magnetic field.vn5(2n11)pT is the fermionic
Matsubara frequency,VL5vL /(12I ),jk5k2/2m2m, and
D is the magnitude of the superconducting order parame
Then the spin susceptibility is expressed as the autocorr
tion function of spin operators. For example, the irreduci
spin-spin correlation functionx i j

00;^@Si ,Sj #&0 can be com-
puted from

x i j
00~ ivn ,q!5T(

n
(

p
Tr@a iG~p,vn!

3a jG~p2q,ivn2 ivn!#, ~8!

where a15r3s1 ,a25s2 ,a35r3s3 are the spin vertices
and come from the expression of spin density:Si
;Tr@C†a iC#. vn52npT is the bosonic Matsubara fre
quency.

In the fully renormalized spin susceptibilities, it is cruci
to include the fluctuation of the superconducting order
rameter related to the rotation of thed̂ vector. Now let us
look at the specific cases.

A. Magnetic field is perpendicular to the order parameter:
Hi x̂

1. Longitudinal susceptibility

Since the direction of the magnetic field is inx̂ direction,
the longitual susceptibility is given byxxx;^@Sx ,Sx#& and
can be obtained from

xxx5
xxx

0

12Ixxx
0

, ~9!

whereI is the exchange interaction andxxx
0 is the suscepti-

bility irreducible with respect toI. xxx
0 includes the coupling

between the spin and the order parameter, and can be wr
as
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xxx
0 5xxx

001
VxxgV̄xx

12gPxx
, ~10!

whereg is the strength of the interaction which is responsi
for the superconductivity. Herexxx

00;^@Sx ,Sx#&0 is the bare

susceptibility, Vxx;^@Sx ,dDx#&0 ,V̄xx;^@dDx ,Sx#&0 repre-
sent the coupling between the spin density and the or
parameter fluctuation, andPxx;^@dDx ,dDx#&0 the correla-
tion between the order-parameter fluctuations. In Namb
notation,dDx;DTr@C†a1r1s1C#. Notice thatxxx

0 consists
of two parts: the quasiparticle contribution and the contrib
tion from the excitation of the condensate. In the case of
longitudinal response, theVL term in Eq. ~7! should be
dropped out from the final expression. The details of
n
th
r-

’s

-
e

e

computation of each correlation function can be found
Appendix A. We obtain (z5vF•q):

xxx
00~v,q!5N~0!K z22v2f

z22v2 L ,

Vxx~v,q!5N~0!K v

2D
f L 5V̄xx~v,q!,

Pxx~v,q!5g212N~0!K z22v2

4D2
f L , ~11!

where
ld be an
ning’’

tion
gth limit
f ~v,z!54D2~z22v2!E
D

`

dE
tanh~E/2T!

AE22D2

~z22v2!224E2~v21z2!14z2D2

@~z22v2!214E2~v22z2!14z2D2#2216v2E2~z22v2!2
~12!

and ^F&5*0
2p(df/2p)F(f). From now on, we set the density of stateN(0)[1. In all these analyses we neglectVL

5vL /(12I ) for simplicity.
Since the orientation of the order parameter is initially fixed along one of the crystallographic directions, there shou

energy scaleVd associated with the tendency to restore the original direction against external perturbations. This ‘‘pin
frequency enters in the correlation between fluctuations of order parameters and leads to

Pxx~v,q!5g212K z22v21Vd
2

4D2
f L . ~13!

Thus we get the following expression forxxx
0 :

xxx
0 5K 1

z22v2 S z21
v2Vd

2f

v22z22Vd
2D L . ~14!

In order to find a well-defined excitation, we consider the limitv@vFq, where the quasiparticles do not generate dissipa
which could make collective modes damped. In this case, the above expression can be simplified in the long-wavelen
(q!kF) as

xxx
0 'F 2

1

2

~vFq!2

v2
1

v2Vd
2f d

F1

2
~vFq!22v2GFv22

1

2
~vFq!22Vd

2G G . ~15!

Finally, in the limit v@vFq, we get the following full susceptibility after taking into account the exchange interaction:

xxx'

v2Vd
2f d1

1

2
~vFq!2~v22Vd

2!

F1

2
~vFq!22v2GFv22

1

2
~vFq!22Vd

2G2I F1

2
~vFq!2~v22Vd

2!1v2Vd
2f dG , ~16!
al
tion

in
where f d5 limv→0limq→0^ f & and it is given by

f d5E
D

`

dE
tanh~E/2T!

AE22D2

D2

E2 . ~17!

It is called the ‘‘dynamical superfluid density.’’ Now we ca
read off the dispersion relation of a collective mode from
 e

pole of the response function. We find that the longitudin
susceptibility supports a spin wave and its dispersion rela
is given by

v25~12I f d!Vd
21

1

2
f d~vFq!2. ~18!

This is consistent with the similar expression
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superfluid 3He-A phase.14,31Not surprisingly,p-wave super-
conductors have the longitudinal spin wave as in superfl
3He-A.

2. Transverse susceptibility

Now we analyze the transverse susceptibility. The tra
verse susceptibilityx12; 1

2 ^@Sy1 iSz ,Sy2 iSz#& can be ob-
tained from

x125
~12Ix21

0 !x12
0 1Ix11

0 x22
0

~12Ix12
0 !~12Ix21

0 !2I 2x11
0 x22

0
, ~19!

wherex (6,6)
0 are the susceptibilities irreducible toI. One can

easily show thatx12
0 5x21

0 and x11
0 5x22

0 . Now x12
0

andx11
0 are given by

x12
0 5x12

00 1 (
k5y,z

V1kgV̄k2

12gPkk
,

x11
0 5x11

00 1 (
k5y,z

V1kgV̄k1

12gPkk
. ~20!

Here x12
00 ;^@Sy1 iSz ,Sy2 iSz#&0 , x11

00 ;^@Sy1 iSz ,Sy

1 iSz#&0 are the bare susceptibilities.V6k;^@Sy6 iSz ,
dDk#&0 , V̄k6;^@dDk ,Sy6 iSz#&0 and Pkk;^@dDk ,dDk#&0
are spin/order-parameter couplings and the fluctuation pro
gator of the order parameters, respectively, wheredDk
;Tr@C†akr1s1C#.

WhenvL50, we find

x12
00 5x21

00 5 K z

z2v L 2 K z1v

z2v

f

2L , x11
00 5x22

00 5 K f

2L ,

V6y5V̄y65
1

A2
K v

2D
f L , V6z5V̄6z50,

Pyy5g212K z22v2

4D2
f L , Pzz52Pyy1^ f &. ~21!

In the presence of ‘‘pinning’’ frequency,Pyy should be
modified to

Pyy5g212K z22v21Vd
2

4D2
f L . ~22!

Now incorporating finitevL and, using Eq.~20!, we get the
following results:

x12
0 5x21

0

5F K z21VL
22v2f

z21VL
22v2 L 2

^ f &
2

2
1

2

v2^ f &2

^~v22z22Vd
2! f &

G ,

x11
0 5x22

0 5F ^ f &
2

2
1

2

v2^ f &2

^~v22z22Vd
2! f &

G . ~23!

Whenv@vFq, the transeverse susceptibilities irreducible
I in the long-wavelength limit (q!kF) become
id

s-

a-

x12
0 5x12

0

'N~0!F 2
1

2

~vFq!2

v2

1
v2f dVd

2

F1

2
~vFq!22v2GFv22

1

2
~vFq!22Vd

2G
2

f d

2
1

1

2

v2f d

v22Vd
22

1

2
~vFq!2G ,

x11
0 5x22

0 'N~0!F f d

2
2

1

2

v2f d

v22Vd
22

1

2
~vFq!2G .

~24!

Using the above results and the RPA~random-phase ap
proximation! expression@see Eq.~19!# for the full transverse
susceptibility, one finds two poles which correspond to
propagating spin-wave mode and a damped mode. The
persion relation of the spin wave is the same as the one in
longitudinal susceptibility:

v25~12I f d!Vd
21vL

21
1

2
f d~vFq!2, ~25!

wherevL is the Larmor frequency.

B. Magnetic field is parallel to the order parameter: Hi ẑ

1. Longitudinal susceptibility

If the magnetic field is applied along the direction of th
order parameter, then the longitudinal susceptibility cor
sponds toxzz;^@Sz ,Sz#&. As explained in previous sections
the full xzz can be again obtained from

xzz5
xzz

0

12Ixzz
0

,

xzz
0 5xzz

001
VzzgV̄zz

12gPzz
. ~26!

Here xzz
0 is the longitudinal susceptibility irreducible with

respect to I. Notice that xzz
00;^@Sz ,Sz#&0 ,Vzz

;^@Sz ,dDz#&0 ,V̄zz;^@dDz ,Sz#&0, and Pzz
;^@dDz ,dDz#&0, wheredDz;DTr@C†a3r1s1C#.

In this geometry the superconducting order parame
does not move in the presence of the ac field. So there i
coupling between the spin density and the fluctuation of
order parameter. As a result, we have

xzz5
xzz

0

12Ixzz
0

, ~27!

where
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xzz
0 5xzz

005K z2~12 f !

z22v2 L . ~28!

Equation~27! gives a pole which gives the damped mo
at

v5 i
1

A2
vFuquAI ~12 f d!. ~29!

2. Transverse susceptibility

The transverse susceptibility,x12; 1
2 ^@Sx1 iSy ,Sx

2 iSy#&, can be computed by using RPA expression@Eq.
~19!# and the following relation:

x12
0 5x12

00 1 (
k5x,y

V1kgV̄k2

12gPkk
,

x11
0 5x11

00 1 (
k5x,y

V1kgV̄k1

12gPkk
. ~30!

Here x12
00 ;^@Sx1 iSy ,Sx2 iSy#&0 ,x11

00 ;^@Sx1 iSy ,Sx

1 iSy#&0. Also V6k;^@Sx6 iSy ,dDk#&0 ,V̄k6;^@dDk ,Sx
6 iSy#&0, andPkk;^@dDk ,dDk#&0 are spin/order-paramete
couplings and the fluctuation of the order parameter, resp
tively. In Appendix B, we show thatx12

00 ,V12 , andP12

are the same asxxx
0 ,Vxx , andPxx when the magnetic field is

along x̂ direction. It is also shown thatx665V665P66

50. Thus we can use the previous results, Eq.~11!, to get

x12
0 5K 1

z22v2 S z21
v2Vd

2f

v22z22Vd
2D L . ~31!

This is again exactly the same asxxx
0 , Eq. ~14!, when the

magnetic field is alongx̂ direction. Sincex11
0 5x22

0 50,
the full susceptibility is just given by

x125
x12

0

12Ix12
0

. ~32!

This is also the same as the full longitudinal susceptibi
xxx for the case ofHi x̂.32 Thereforex12 in this case sup-
ports a propagating spin-wave mode~there is no damped
mode! and the dispersion relation is given by in Eq.~25!.
The transverse responsex12 whenH i ẑ is exactly the same
as the longitudinal response for the case ofHi x̂.

III. CONCLUSION

In this paper, we study dynamical spin susceptibilities i
two-dimensional p-wave superconductor withDW 5d̂( k̂1

6 i k̂2) symmetry. This order-parameter vector has bee
strong candidate for the pairing symmetry of the superc
ducting Sr2RuO4. Due to the fact that the direction of th
order parameter vector is fixed along a crystallographic
rection, there are four possible susceptibility measureme
Longitudinal and transverse responses in the cases of
magnetic field parallel and perpendicular to the order par
c-

a

a
-

i-
ts:
he
-

eter vector. The existence of spin-wave modes in each ca
examined and the dispersion relation is obtained. We fo
the following three modes; two of them are spin waves:

~a! v i
25(12I f d)Vd

21 1
2 f d(vFq)2 ,

~b! v'
2 5v i

21vL
2 ,

~c! v5 i
1

A2
vFuquAI (12 f d) .

The most crucial parameter is the pinning frequency.29 It
is most likely that the spin wave is observable for electr
spin resonance ifVd!D(T). We also believe that the ex
perimental determination ofVd(T) will provide an important
insight in the pinning mechanism ofd̂. Naturally this will
provide another test ofp-wave superconductivity.

As it is pointed out elsewhere,33 the superconductivity in
Bechgard-like (TMTSF)2PF6 ,(TMTSF)2ClO4, etc., is most
likely of p-wave character as well. Therefore it is high
desirable to look for the spin wave in the above compou
as well.

Unlike in superfluid 3He,Sr2RuO4 is most likely in the
vortex state. Otherwise the magnetic field would penetr
only in the surface. Nevertheless, we believe that we can
the same expression for the spin-wave dispersion, if we
interpret the superfluid density with the one in the vort
state. We shall postpone the study of the spin wave in
vortex state to the future.
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APPENDIX A

Magnetic field is perpendicular to the order parameter: Hi x̂

a. Longitudinal susceptibility

Each correlation function can be computed from

xxx
00~ ivn ,q!5T(

n
(

p
Tr@a1G~p,vn!

3a1G~p2q,ivn2 ivn!#,

Vxx~ ivn ,q!5T(
n

(
p

Tr@a1G~p,vn!

3a1r1s1G~p2q,ivn2 ivn!#,

Pxx~ ivn ,q!5T(
n

(
p

Tr@a1r1s1G~p,vn!

3a1r1s1G~p2q,ivn2 ivn!#. ~A1!
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Summing overp ~circular Fermi surface is assumed! leads to

xxx
00~ ivn ,q!5pTN~0!(

n
S 12

vnvn1n1D2

Avn
21D2Avn1n

2 1D2D
3

Avn
21D21Avn1n

2 1D2

~Avn
21D21Avn1n

2 1D2!21z2
,

Vxx~ ivn ,q!5pTN~0!(
n

S 2 ivnD

Avn
21D2Avn1n

2 1D2D
3

Avn
21D21Avn1n

2 1D2

~Avn
21D21Avn1n

2 1D2!21z2
,

Pxx~ ivn ,q!5pTN~0!(
n

S 11
vnvn1n1D2

Avn
21D2Avn1n

2 1D2D
3

Avn
21D21Avn1n

2 1D2

~Avn
21D21Avn1n

2 1D2!21z2
, ~A2!

where z5vF•q and N(0)5m/2p is the two-dimensiona
density of states. After summing overvn and analytic con-
tinuation ivn→v1 id, we get Eq.~11!.

b. Transverse susceptibility

Here x12
00 ;^@Sy1 iSz ,Sy2 iSz#&0 , x11

00 ;^@Sy1 iSz ,Sy

1 iSz#&0 are the bare susceptibilities and they can be co
puted from

x12
00 ~ ivn ,q!5T(

n
(

p
Tr@a1G~p,vn!

3a2G~p2q,ivn2 ivn!#,

x11
00 ~ ivn ,q!5T(

n
(

p
Tr@a1G~p,vn!

3a1G~p2q,ivn2 ivn!#, ~A3!

wherea65(1/A2)(a26 ia3) respresents the transverse sp
vertices: (1/A2)(Sy6 iSz);Tr@C†a6C#. Similarly, we
have

V6k~ ivn ,q!5T(
n

(
p

Tr@a6G~p,vn!

3akr1s1G~p2q,ivn2 ivn!#,

Pkk~ ivn ,q!5T(
n

(
p

Tr@akr1s1G~p,vn!

3akr1s1G~p2q,ivn2 ivn!#. ~A4!

It is also useful to represent these correlation functions
terms of V(6,6);^@Sy6 iSz ,dD6#&0 and P (6,6)
;^@dD6 ,dD6#&0, where dD6;Tr@C†a6r1s1C#. It is
found that
-

n

V6y5V̄y65
1

A2
~V661V67!,

V6z5V̄z65
1

A2i
~6V667V67!,

Pyy5
1

2
~P111P121P211P22!,

Pzz52
1

2
~P112P122P211P22!, ~A5!

where

V(6,6)~ ivn ,q!5T(
n

(
p

Tr@a6G~p,vn!

3a6r1s1G~p2q,ivn2 ivn!#,

P (6,6)~ ivn ,q!5T(
n

(
p

Tr@a6r1s1G~p,vn!

3a6r1s1G~p2q,ivn2 ivn!#.

~A6!

After summing overp, we get

x12
00 5x21

00 5pTN~0!(
n

S 12
vnvn1n

Avn
21D2Avn1n

2 1D2D
3

Avn
21D21Avn1n

2 1D2

~Avn
21D21Avn1n

2 1D2!21z2
,

x11
00 5x22

00 5pTN~0!(
n

S 2D2

Avn
21D2Avn1n

2 1D2D
3

Avn
21D21Avn1n

2 1D2

~Avn
21D21Avn1n

2 1D2!21z2
,

V125V215V115V22

5pTN~0!(
n

S 1

2

2 ivnD

Avn
21D2Avn1n

2 1D2D
3

Avn
21D21Avn1n

2 1D2

~Avn
21D21Avn1n

2 1D2!21z2
,

P125P215pTN~0!(
n

S D2

Avn
21D2Avn1n

2 1D2D
3

Avn
21D21Avn1n

2 1D2

~Avn
21D21Avn1n

2 1D2!21z2
,
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n
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P115P225pTN~0!(
n

S 11
vnvn1n

Avn
21D2Avn1n

2 1D2D
3

Avn
21D21Avn1n

2 1D2

~Avn
21D21Avn1n

2 1D2!21z2
. ~A7!

Now summing overvn and analytic continuationivn→v
1 id lead to Eq.~21!.

APPENDIX B

Magnetic field is parallel to the order parameter: Hi ẑ

a. Longitudinal susceptibility

Notice that xzz
00;^@Sz ,Sz#&0 ,Vzz;^@Sz ,dDz#&0 ,V̄zz

;^@dDz ,Sz#&0, and Pzz;^@dDz ,dDz#&0, where dDz
;DTr@C†a3r1s1C#. These correlations functions can b
expressed as

xzz
00~ ivn ,q!5T(

n
(

p
Tr@a3G~p,vn!

3a3G~p2q,ivn2 ivn!#,

Vzz~ ivn ,q!5T(
n

(
p

Tr@a3G~p,vn!

3a3r1s1G~p2q,ivn2 ivn!#,

Pzz~ ivn ,q!5T(
n

(
p

Tr@a3r1s1G~p,vn!

3a3r1s1G~p2q,ivn2 ivn!#. ~B1!

From the consideration of the matrix elements, we can ea
see thatVzz5V̄zz50. Therefore, there is no mixing betwee
spin fluctuations and the order paramter in this case andxzz

0

is just given byxzz
00. After summing overp, we get

xzz
00~ ivn ,q!5pTN~0!(

n
S 12

vnvn1n2D2

Avn
21D2Avn1n

2 1D2D
3

Avn
21D21Avn1n

2 1D2

~Avn
21D21Avn1n

2 1D2!21z2
. ~B2!

Summing overvn and analytic continuation lead to Eq.~28!.

b. Transverse susceptibility

Here x12
00 ;^@Sx1 iSy ,Sx2 iSy#&0 ,x11

00 ;^@Sx1 iSy ,Sx

1 iSy#&0. Also V6k;^@Sx6 iSy ,dDk#&0 ,V̄k6;^@dDk ,Sx
6 iSy#&0, andPkk;^@dDk ,dDk#&0. These correlation func
tions can be again calculated from

x17
00 ~ ivn ,q!5T(

n
(

p
Tr@b1G~p,vn!

3b7G~p2q,ivn2 ivn!#,
ily

V6k~ ivn ,q!5T(
n

(
p

Tr@b6G~p,vn!

3akr1s1G~p2q,ivn2 ivn!#,

Pkk~ ivn ,q!5T(
n

(
p

Tr@akr1s1G~p,vn!

3akr1s1G~p2q,ivn2 ivn!#, ~B3!

where b65(1/A2)(a16 ia2) respresenting the transvers
spin vertices: (1/A2)(Sx6 iSy);Tr@C†b6C#. One can also
rewrite these correlation functions in terms ofV(6,6);^@Sx
6 iSy ,dD6#&0P (6,6);^@dD6 ,dD6#&0, where dD6

;Tr@C†b6r1s1C#:

V6x5V̄y65
1

A2
~V661V67!,

V6y5V̄z65
1

A2i
~6V667V67!,

Pxx5
1

2
~P111P121P211P22!,

Pyy52
1

2
~P112P122P211P22!, ~B4!

where

V(6,6)~ ivn ,q!5T(
n

(
p

Tr@b6G~p,vn!

3b6r1s1G~p2q,ivn2 ivn!#,

P (6,6)~ ivn ,q!5T(
n

(
p

Tr@b6r1s1G~p,vn!

3b6r1s1G~p2q,ivn2 ivn!#.

~B5!

From the matrix elements, one can see that

x11
00 5x22

00 50, V115V2250, P115P2250.
~B6!

Thus Eq.~30! can be simplified as

x12
0 5x21

0 5x12
00 1

V12gV̄12

12gP12
,

x11
0 5x22

0 50. ~B7!

After summing overp, we obtain the same equation as E
~A2!. Thus we can use the previous results@Eq. ~11!# to get
Eq. ~31! which is same as Eq.~14!.
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