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Spin waves in a two-dimensionap-wave superconductor: SERuQO,
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We study spin excitations in a two-dimensiomawave superconductor with =d(k; *ik,) symmetry in
the context of the newly discovered superconductingR86,. The polarization and spectrum of spin-wave
excitations are identified and their experimental consequences are discussed.

[. INTRODUCTION vo!/yn Was larger than 0.5. This initiated the proposal of
possible nonunitary state in $uQ,.}” However, more re-

The recent discovery of superconductingfuO, gener-  cent dat&® show thaty,/y,<0.25. This means the nonuni-
ates much efforts to determine the pairing symmetry of dary state is untenable. The specific-heat data further imply
possible unconventional superconducting order parameter iat the energy gap should be almost independektli® in
this system. Being a d+orbital analog of the highT, cu- answave superconductor and also there should be a normal-
prate superconductors,,RuQ, has the same layered perov- sta;e—like component. Th(_ese features are most naturally de-
skite structure as L&£u0, and becomes superconducting be-Scribed by the three orbital band mod®iwhere it is as-
low T,~1.5K2* Despite the structural similarity, it sumed that the superconductivity resides mainly in the

behaves very differently from the copper oxides. The normaP2nd. while thea and 5 bands may be considered in the

state below 50 K can be well described by a quasi-tvvo-normal state. Of course we cannot exclude the possible small

dimensional Landau-Fermi liquid: The resistivity shoWs supercolgductmg order pgrameter associated W.'thMd
o L ) . B band.” In this perspective, the small magnetization seen
behavior in thea-b plane andt direction with a large anisot-

ropy ratio? Quantum oscillationsrevealed three cylindrical by the muon spin resonartds rather puzzling. In addition,

. ; . rather strong flux pinning in the vortex state is observed in
Fermi-surface sheets in accordance with the band—structur§ :
calculation$. There are three @ orbitals (d,,,d,,,d,,) of RRUC, compgllrable to the one iB phase of URt and
the Rd* ions which form three bands crgys,siézg, the Fermj o7 Mo.odBe1s.” The latter two systems are considered to
level. There are two electronlike and one holelike Fermibe in the nonunitary staté.Here itis worthwhlle to mention
surfa.ceé On the other hand, the mass enhancementYin that, although aII_ the_se are consistent with the t.npl'et pairing,
this matérial is not small inaicating the existence of strongbo.'[h the magnetization an_d the strong vorte_x pinning -ShOUId
correlation® The fact that it has a large mass enhancemen rise from some topological defects or dlslqcat|on n the

) . . amples. A recent small-angle neutron-scattering experiment

and a related material, SrRyQshows fgrromagne'usm Ie;ads in a magnetic field parallel to the axis showed that the
to the proposal that the superconducting state gR80, is square vortex lattice is almost everywhere in Byd phase

formed by odd-parity pairindspin-triplet pairing presum- diagram?® This square vortex lattice is also very consistent

; -9
abl%_/r:nrthre;pglwak\)/e (;lhannnejﬁb ¢ of experiments indicating urVith P-wave superconductivity we consider héfe?®
ere nave been a number of experiments cating un- - the following we take the order parameter

conventional superconductivity in SuQ,. The transition
temperature was found to be very sensitive to nonmagnetic
impurities® and nuclear quadrupole resonarib&)R) found

no Hebel-Slichter peak Even though these experi-
ments®*2 suggested that the pairing symmetry is reon-
wave, they could not determine the pairing symmetry itself
More recently,'’O-Knight shift in NMR was measured and . v band. This means the and 8 bands provide nonsu-

iAt is consistent with the spin-triplet superconducti¥ityith perconducting background. Recently starting from EL,

d parallel to thec axis as the case of superfldide-A.**  microscopic studies of the vortex stat&® the effect of
Hered is the unit vector of the triplet order parametéOn  impurities?” and the quasiparticle spectrum around a single
the other hand, the specific-heat data are consistent withortex® have been discussed.

usual swave superconductors if we subtract a persistent Here we study spin dynamics in thewvave superconduct-
T-linear term™ 8 In the earlier experiment the ratio of this ors with the order parameter given by E). It is important
coefficient of theT-linear term to the one in the normal state to realize that there are four distinct situations for the mea-

A(k)=Ad(k; *iky), (1)
whered is assumed to be parallel to tieeaxis andk is the

quasiparticle wave vector within treeb plane. For simplic-
ity, we also assume that the superconductivity resides only in
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surement of the dynamical spin susceptibility in two- 1
dimensionap-wave superconductors. This is because the di- o=i—=Vg|q|V(1-fyl. (6)
rection of the vectorial order paramet#{k) is fixed along a V2

crystallographic axis which is perpendicular to the basakq, the transverse response, we have the spin wave with the
plane. One can apply a magnetic field along the directiong e dispersion relation as HG).

perpendicular and parallel to the Ru@lane. In each case,  The remainder of this paper is organized as follows. In
one can measure longitudinal and transverse susceptibilitiegec |1 we show the calculation of the dynamical spin sus-
Therefore there exist four different susceptibilities. This is aceptibilyities for four different cases mentioned above. We

unique property of the two-dimensionpiwave SUpercon- concjyde in Sec. Ill. Some of the technical details are rel-
ductor because, in the three-dimensional case, the dlrectl%ated to the appendixes.

of the order parameter is not fixed and is always perpendicu-
lar to the applied magnetic field. Il. DYNAMICAL SPIN SUSCEPTIBILITY
We also assume that the pinningdfector parallel to the AND SPIN WAVES
c axis involves a finite pinning energy % ynQ3(d,)?, most
likely due to the spin-orbit coupling. Here we do not evaluate Here we use Green's-function method of Ref. 30. The
the exact value of)y, but we expect that it will be4(T) single-particle Green’s function in the Nambu space is given
<A(T). Recently the pinning frequency was estimated byby
Tewordt?®
We believe that the experimental determinatiorﬂg(T) G Yiw, k) =iw,— pg—A(R-,;)ol,
will provide an insight in the pinning mechanism df In
order to avoid future misunderstanding, we shall first explain @)
the role ofd here.d is called the spin vector which has been wherep; ando; are Pauli matrices acting on the particle-hole
used in studying®He. It is perpendicular to the direction of and spin spaces, respectivelyjs the unit vector parallel to
the spin associated with the condensed Halinder these the static magnetic fieldw,=(2n+1)#T is the fermionic
assumptions, we found the following results for the spin ex-Matsubara frequencyQ), = w, /(1—1),&=k?/2m— u, and
citations. A is the magnitude of the superconducting order parameter.
Case A When magnetic field is parallel to teeb plane  Then the spin susceptibility is expressed as the autocorrela-
(i.e., HLd). We have the spin waves with the dispersiontion function of spin operators. For example, the irreducible
relations spin-spin correlation functi0|7(§)j°~<[si ,Si1)o can be com-
puted from

QL - ~
&t 7(0"h)

1

Wl = (1= 1) Q2+ Zfy(veq)? 2)
i d) a5 TalVe xilio, )=T2 2 TraG(p.wn)

and n

XajG(p_CI.iwn_iwy)], (8)

where a1=p301,a,=0,,a3=pz0o3 are the spin vertices
for the longitudinal {») and the transverses( ) resonance, and come from the expression of spin densit$;
respectively. The “pinning” frequenc§lq is associated with  _T[w'e,W]. w,=2v#T is the bosonic Matsubara fre-
the restoring tendency of the order parameter to the initiajyency.
directiond against external perturbations. Hese= ugH is In the fully renormalized spin susceptibilities, it is crucial
the Larmor frequencyl(=—$Z,) is the dimensionless on- to include the fluctuation of the superconducting order pa-

site Hubbard potential andly is the dynamical superfluid rameter related to the rotation of tlievector. Now let us

2__ 2 2
wi—wH-l-a),_ (3)

density (@>veq) given by look at the specific cases.
o 2
fd:f EA— tani(E/2T) (4) A. Magnetic field is perpendicular to the order parameter:
E?2 JEZ-AZ' H||x
where A is the magnitude of the full gap. These can be 1. Longitudinal susceptibility
readily generalized in the presence of Fermi-liquid

Since the direction of the magnetic field isxrdirection,
the longitual susceptibility is given by,,~{[S,,S:]) and
can be obtained from

corrections:*
Case B When magnetic field is perpendicular to theb

plane (i.e., H|d). The static susceptibility in this case is
given by o ng
Y . RPN

X=XoT vy 5

9

wherel is the exchange interaction and, is the suscepti-
whereY=1-f is the Yoshida functioh* There is no lon-  bility irreducible with respect té. x, includes the coupling
gitudinal collective mode, but a damped mode with the fol-between the spin and the order parameter, and can be written
lowing dispersion exists in the longitudinal response: as
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Vo gV. computation of each correlation function can be found in
0 00 xx8 Vxx . . _ .
Xxx=Xxx+m1 (100  Appendix A. We obtain {=Vv-Qq):

XX

whereg is the strength of the interaction which is responsible 00 - w?
for the superconductivity. Her@22~([sx,sx]>o is the bare Xxx(@,0)=N(0) 2—w? ]’

susceptibility, Vy,~ ([ Sy, 8A1)0, Vix~ ([ 5A«,S )0 repre-

sent the coupling between the spin density and the order- w o

parameter fluctuation, and,,~([ §A,,5A,]), the correla- Vxx(w,q)zN(0)<ﬂf> =V, (,q),

tion between the order-parameter fluctuations. In Nambu’s

notation, A ,~ AT ¥ a;p,0,¥]. Notice that)(gX consists

of two parts: the quasiparticle contribution and the contribu- g P~ o?

tion from the excitation of the condensate. In the case of the ol @,@)=g "= N(0) 4A2 e (1)
longitudinal response, th€, term in Eq. (7) should be

dropped out from the final expression. The details of thewhere

tanH E/2T) (2= 0?)?—4E%(w?+ [P+ 47%A?
VEZ=A? [({2— 0?)2+4E2(w?— {?)+42A2]2 - 1602E2({?— ?)?
and (F)=[3"(d¢/2m)F($). From now on, we set the density of staX$0)=1. In all these analyses we negle@{
=w_ /(1-1) for simplicity.
Since the orientation of the order parameter is initially fixed along one of the crystallographic directions, there should be an

energy scal€)y associated with the tendency to restore the original direction against external perturbations. This “pinning”
frequency enters in the correlation between fluctuations of order parameters and leads to

§2—w2+Q§f
4A2 '

f(w,g)=4A2(§2—w2)KdE (12)

Hxx(qu):gl_< (13

Thus we get the following expression fQEXZ

1 w?Q3f

In order to find a well-defined excitation, we consider the lim#vq, where the quasiparticles do not generate dissipation
which could make collective modes damped. In this case, the above expression can be simplified in the long-wavelength limit
(a<kg) as

0 1 (veq)? w’Q3f g
Xxx~=| — E (1)2 1 1 (15)
5 (Ve®)? = ? || 0= S (vea)*— O

Finally, in the limit o>vq, we get the following full susceptibility after taking into account the exchange interaction:

1
0 Qffa+ 5 (VeQ) (07— Q)

XXX~ H (16)
1 2 2 2 1 2 2 1 2 2 2 202
E(qu) -0 w _E(VFq) -Q5|—1 E(VFq) (0= QH + 0w Qgfy
|
wherefy=lim,_olim,_o(f) and it is given by pole of the response function. We find that the longitudinal
susceptibility supports a spin wave and its dispersion relation
is given by
. wdEtanr( E/2T) A? an
d= =% g2-
A JEZ—AZ2 E 1
0?=(1=1f) QG+ 5 fu(ve)?. (18)

It is called the “dynamical superfluid density.” Now we can
read off the dispersion relation of a collective mode from the This is consistent with the similar expression in
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superfluid *He-A phaset*3Not surprisingly p-wave super-
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conductors have the longitudinal spin wave as in superfluid

SHe-A.

2. Transverse susceptibility
Now we analyze the transverse susceptibility. The trans
verse susceptibility(+_~%<[sy+iSZ,Sy—iSZ]) can be ob-
tained from
G S P e P PP
A=1x3a=1x2 =158 A%
Wherex?iyi) are the susceptibilities irreducible koOne can

X+ - (19)

easily show thaty% _=x°, and x°,=x"_. Now x%_
andx? . are given by
V. Vi
X3 =xP+ ToaT
k5.2 1— gl
V+kgvk+
X=X Pt 2 (20)

k=y,z 1- ngk .

Here x%_~([S,+iS;,S,~iS,1)o, xT:~([S,+iS,.S,
+iS,])o are the bare susceptibilitiesV.,~([S,*iS,,
A D)oy Vie~([8A,Sy=iS,])o and Iy~ ([ 5Ay, 4]0

X3-=x2-
1 (veq)?
~NO)| -5
w?f404
_l’_

1 1
E(VFQ)Z—wZ w?— E(VFQ)Z—Qﬁ

1
2

wzfd

1
w?= 05— E(VFq)Z

wzfd

1
d
X3i=x2 ~N©O)| -5 :
2 2 2 2 1 2
o _Qd_E(VFq)

(24)

Using the above results and the RRAandom-phase ap-
proximation expressiorisee Eq(19)] for the full transverse
susceptibility, one finds two poles which correspond to a
propagating spin-wave mode and a damped mode. The dis-
persion relation of the spin wave is the same as the one in the
longitudinal susceptibility:

are spin/order-parameter couplings and the fluctuation propa-

gator of the order parameters, respectively, whétg,
~T{ ¥ ayp0,¥].
Whenw, =0, we find

4 (o f f
3°=X°°+:<_—w>—<§_—w§>, 3°+=X°°:<§>,
_ 1 ) _
Viy:Vyt:E ﬁf y V+Z:ViZ:0’

_ -1 o’ _
Myy=g "~ e f), I,=—I0,+(f). (21

In the presence of “pinning” frequencyll,, should be

modified to
I,,=g '~ < f > .

Now incorporating finitew, and, using Eq(20), we get the

{2—w2+Q§

4A? @2

following results:
X3—2X9+
|00 (H 1 w?(f)?
L\ erai-e?) 2 2(wr-2-0)n)
(fH 1 w¥(f)?
0. =x_=|>"-2 . (23
e A TP )

Whenw>ve(q, the transeverse susceptibilities irreducible to
| in the long-wavelength limitd<kg) become

1
0?=(1=1f )05+ o+ 5To(vea)?, (25

wherew, is the Larmor frequency.

B. Magnetic field is parallel to the order parameter: H||2
1. Longitudinal susceptibility

If the magnetic field is applied along the direction of the
order parameter, then the longitudinal susceptibility corre-
sponds toy,,~([S,,S;]). As explained in previous sections,
the full x,, can be again obtained from

0
Xzz

1-1x;,

Xzz—

0, VeldVzz
2 1= gsz.

X2 X2 (26)
Here ng is the longitudinal susceptibility irreducible with
respect to I. Notice that x%~([S,,S,])0.V;s

N([Sz15Az]>01vzz~<[5Aerz]>01 and sz
~([8A,,8A,])0, WhereSA,~ATH{ ¥ agp 0V ].

In this geometry the superconducting order parameter
does not move in the presence of the ac field. So there is no
coupling between the spin density and the fluctuation of the

order parameter. As a result, we have

0
Xzz

1-1x%,

Xzz— (27)

where
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00__
zz—

(1=

e (28)

ng:X < > .
Equation(27) gives a pole which gives the damped mode
at

(29

1
w=i Evp|q|x/l(1—fd).

2. Transverse susceptibility

The transverse susceptibility,X+_~%([Sx+iSy,Sx
—iSy]), can be computed by using RPA expressjéy.
(19)] and the following relation:

V@ Vi
NI Ly
kSxy 1= gl
\% gv
0O _ .00 +k k+
X++_X+++k:x,y 1—glly (30

Here X% ~([Sc+iSy, S i8]0 XL ~([Sc+iSy .S
+iSy]>0. Also Vtk~<[5xii3y,5Ak]>o,th~<[5Ak,Sx
*iSy])o, andIly~([ Ay, 5A])o are spin/order-parameter
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eter vector. The existence of spin-wave modes in each case is
examined and the dispersion relation is obtained. We found
the following three modes; two of them are spin waves:

@ of=(1-11)QF+3fu(vea)?

2 2 2
(b) 0T =wi+of,

1
(© wZiEVF|q|\/I(l_fd) :

The most crucial parameter is the pinning frequefcy.
is most likely that the spin wave is observable for electron
spin resonance if)4<A(T). We also believe that the ex-
perimental determination dd4(T) will provide an important

insight in the pinning mechanism af. Naturally this will
provide another test gf-wave superconductivity.

As it is pointed out elsewher¥ the superconductivity in
Bechgard-like (TMTSKPF;,(TMTSF),CIO,, etc., is most
likely of p-wave character as well. Therefore it is highly
desirable to look for the spin wave in the above compounds
as well.

Unlike in superfluid He, SERuQ, is most likely in the
vortex state. Otherwise the magnetic field would penetrate
only in the surface. Nevertheless, we believe that we can see
the same expression for the spin-wave dispersion, if we re-
interpret the superfluid density with the one in the vortex
state. We shall postpone the study of the spin wave in the

couplings and the fluctuation of the order parameter, respedortex state to the future.

tively. In Appendix B, we show that® ,V. _, andII, _
are the same ag", ,V,, andIl,, when the magnetic field is
along x direction. It is also shown that..=V..=II. .
=0. Thus we can use the previous results, @4), to get

1
x3=<g2_w2<z2+ > (3D

This is again exactly the same agx, Eq. (14), when the
magnetic field is along direction. Since)(3+=)((l_=0,
the full susceptibility is just given by

w?Q3f

w2—§2—Q§

0
X+—

—_— 32
——n (32)

X+-=
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APPENDIX A

This is also the same as the full longitudinal susceptibility Magnetic field is perpendicular to the order parameter: H|X

Xxx for the case oH|x.32 Thereforey ., _ in this case sup-
ports a propagating spin-wave modere is no damped
mode and the dispersion relation is given by in E5).
The transverse responge - whenH ||2 is exactly the same
as the longitudinal response for the caseHdk.

IIl. CONCLUSION

a. Longitudinal susceptibility

Each correlation function can be computed from

xSS(in,q>=T; % T a1G(p,wy,)

X alG(p—q,iwn—iw,,)],

In this paper, we study dynamical spin susceptibilities in a

two-dimensional p-wave superconductor withA =d(k;

vxx<iwy,q>=T; ; Tr @, G(p,wy)

+ik,) symmetry. This order-parameter vector has been a
strong candidate for the pairing symmetry of the supercon-
ducting SyRuQ,. Due to the fact that the direction of the
order parameter vector is fixed along a crystallographic di-
rection, there are four possible susceptibility measurements:
Longitudinal and transverse responses in the cases of the
magnetic field parallel and perpendicular to the order param-

Xap10:G(p—Q,iv,—iw,)],
Hxx<iwy,q>=T§ % Tr a1p10:G(p, @)

Xa1p101G(p—Qioy—iow,)]. (Al)
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Summing ovep (circular Fermi surface is assumddads to

— 1
Vty:Vyi:E(V+++V+I )
o, q)=aTNOS, | 1- On@n i+ A7
o A e A :
— - (+ V. _
\/wﬁ+A2+\/wﬁ+V+A2 Vtz Vz: 2i(—V:¢+V:+)u

>< L
(Nopt A%+ oy, ,+A%)2+ 2

1
My =5 (T, +TT, +TT +TT ),

Vyli@,,q)=7TN(O) S Lo
lw,,qQ)=1
e AR )
Jolr A2+ ol + A7 M== (M —Tl =T +T1_),  (AS)
X
2 2 2 2\2 2’
(\/(")n_|—A +\/wn+v+A ) +§ Whel’e
(i, q)=7TNO)D | 1+ @non iyt A7
iw,,q)=m i =
XX q =~ JoZ+ A2, +A? Viz +)(io,,q) T§n) Ep: Tle.G(p,wn)
Voir+ A%+ i, +A2 Xa.p1o1G(p—Qioy~iw,)],
X 2 2 2 2\2 27 (AZ)
(Nol+ A%+ w2,  +A2)2+¢
where {=vg-q and N(0)=m/27 is the two-dimensional H(ii)(in’Q):T; % Trla.p101G(p.wy)
density of states. After summing ovexr, and analytic con- _ _
tinuationiw,— w+i4, we get Eq.(11). Xa:p101G(p—Qiw,—io,)].
- (A6)
b. Transverse susceptibility
Here X2 ~([Sy+iS,,S,—iS,])0, X% ~([S,+iS,.S, After summing ovemp, we get
+iS,])o are the bare susceptibilities and they can be com-
puted from On@ny
00 00 n—n+v
_=x_,=7TN(O 1-
o 2o memoiS (-
XP (0, =T 2 Ta.G(p,o,)
nop Voli+ A2+ \/wﬁ+v+A2
. . X ,
Xa_G(p—gio,—iw,)], (Voi+ A%+ w2, +A%)2+ 2
. 2
)(30+(|w,,,q)=T; > Ta.G(p,wy) Y =4 = 2TNO) S —A
P AT n \/wﬁ+A2 wi, +A?

Xa,G(p—Qiwy—iw,)], (A3

y Vol + A%+ w2, +A?
(Vop+ A%+ Vo, ,+A4%)%+ %

wherea ., = (1/y/2)(a,*ias3) respresents the transverse spin
vertices: (1,(/5)(Syiisz)~Tr[\PTai\I']. Similarly, we
have

vikawy,q):T; ; T a-G(p,w,)

=7TN(0) D,

n

1 —iw,A
2 Jw?+ Az\/wﬁ+v+A2

Xap101G(p—diw,—iw,)],

Vor+ A%+ oi, +A2

2 2 2 2\2, 2
Hkk(iwluq):T; % Tr[akplo'lG(p,wn) (\/(Dn—'_A +\/wn+y+A ) +§
Xap101:G(p—Qiwy—iw,)]. (Ad4) A2
II,_=II__=#TN(O
+ += T ( ); \/wﬁ+A2\/w§+V+A2

It is also useful to represent these correlation functions in
terms  of Vi . ~([S,*iS;,6A.])p and Il 4 JoZ+ A2+ \Jo?, +A2
~([6A+,8A.])o, where SA. ~TH{V a.poW]. It is X — s ——
found that (Vwi+ A%+, +A%)2+¢
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WnWn 4y

+
N AZ\/wﬁJrV-i- A?

M,.=I__=#TNO)2, |1
n

y Voir+ A2+ i, +A?
(Voi+ A%+ ol ,+A%)2+ 2

(A7)

Now summing overw,, and analytic continuationw,—
+i 6 lead to Eq.(21).
APPENDIX B
Magnetic field is parallel to the order parameter: HHE

a. Longitudinal susceptibility

Notice that x39~([S,.S,1)0.V,~([S,.84,1)0.V;,
~([34;,S;1)o, and II,,~([8A;,5A,])o, where &4,

~AT{¥Tagp,0,¥]. These correlations functions can be

expressed as

xSS(iwy,m:T; ; Tl 3G(p, wp)

XaBG(p_q!iwn_iwv)]!

vzgiwy,m:T; ; Tr asG(p, wn)

Xazp101G(p—Q,ioy—iw,)],

Hzxiwy,q>=T§ % T ap101G(p, wp)

X azp10,G(p—Q,ioy—iw,)]. (B1)

From the consideration of the matrix elements, we can easily

see thatxlzzzvzzzo. Therefore, there is no mixing between
spin fluctuations and the order paramter in this caseghd
is just given byy2. After summing ovelp, we get

2
Wp@nt,— A

 Jo2+AZJwl, +AZ

xNiw,,q)=7TN0)>, | 1

y Vol + A%+ w2, +A?
(Vo2 + A%+ w2, +A%)2+ 2

(B2)

Summing ovemw, and analytic continuation lead to E&8).

b. Transverse susceptibility

Here X2 ~([S,+iSy,S—iSy1)o.x L ~([Sc+iSy. S,
+iS,)0. A0 V., ~([S=iS,, 8810, Vis ~([ A, S
*iSy])o, and Il ~([ 8Ay,5A])o. These correlation func-
tions can be again calculated from

X(iox(iwv,QFTEn: ; T B.G(p, )

X,B;G(p—q,iwn—iw,,)],
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vik(iwv.q>=T§ % T B.G(p,wp)
Xayp101G(p—,iw,—iw,)],

Hkk<iwy,q>=T§ % Tr ayp101G(p, wp)
Xayp10:G(p—0q,iw,—iw,)], (B3

where B. =(1/\2)(a,=ia,) respresenting the transverse
spin vertices: (1@)(8)(ii8y)~Tr[‘IfTBi‘If]. One can also
rewrite these correlation functions in terms\§f. .,~([S,

iiSya(SAi]>OH(i,t)~<[5At 0A -+ 1)o, where  SA.
~T{¥'B.pio W]
— 1
Vix:Vyizﬁ(V+++V+I )
_ 1 _
V:y:VZi:_.(int"‘VtI)v
2i
1
HXX=§(H+++H+,+H,++H,,),
1
Hyy:_z(H++_H+—_H—++H——)y (B4)
where
Vie )10y, =T2 2 T A-G(pwn)
XﬁtplUlG(p_q1iwn_in)]l
e 0,0 =T2 ; T B-p101G(p,@p)
XB:p101G(p—Qiw,—iw,)].
(BS)

From the matrix elements, one can see that

x2, =x* =0, V,,=V__=0, M,,=I1__=0.

(B6)
Thus EQq.(30) can be simplified as
\% ,gv _
0 _.0 _ 00 + -
X+-=X-4=X+-T 1-gll,_"
X2 =x%_=0. (B7)

After summing overp, we obtain the same equation as Eq.
(A2). Thus we can use the previous resyis|. (11)] to get
Eqg. (31 which is same as Ed14).
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