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Correlated random-field systems: Dissipative dynamics and phenomenological scaling
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We investigate a (d11)-dimensional ‘‘correlated’’ random-field system withd spatial dimensions and one
Trotter dimension along which randomness is ‘‘correlated’’ or striped. In the sense of universality this model
is equivalent to ad-dimensional quantum random-field system. We investigate the dissipative Langevin dy-
namics of this ‘‘striped’’ (d11)-dimensional systems within a replica symmetric framework, employing the
perturbativee expansion around the upper critical dimension to explore the effect of an additional dimension
~along which the randomness is correlated! on the dynamical scaling. We argue that thee expansion fails to
capture the activated nature of dynamics. We also extend the phenomenological renormalization-group calcu-
lations to investigate the critical behavior of a (d11)-dimensional correlated random-field Ising systems.
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I. INTRODUCTION

The random-field systems~especially the random-field
Ising model!1–3 have been investigated over the last two d
cades and have provided a sequences of challenges to
the theoreticians and the experimentalists. Even though
resolution of the puzzle concerning the lower critical dime
sion of the random-field Ising systems4 confirmed the valid-
ity of the ‘‘domain wall’’ argument,1 the nature of the tran
sition is yet to be fully understood. Whether the transition
first order or second order is still questioned2 and the possi-
bility of an intermediate glassy phase5,6 has also been re
ported. The phase diagram is not known for general dim
sions and the critical behavior in three dimensions7 is
presently not understood. These models were studied u
field-theoretical renormalization-group calculations.8,9 Very
recently the extensive high-temperature series expan
studies10 have provided important results.

Quantum phase transitions have been attracting a g
deal of attention in recent years. Especially the ze
temperature transitions in the transverse Ising model11,12 and
its M-component generalization, the rotor models,12,13are be-
ing explored extensively. Studies have been carried out w
the interaction between the rotors taken to be random
thus elucidating properties of quantum spin glasses.13–15The
zero-temperature phase transition in a pured-dimensional
quantum system is equivalent to the thermal phase trans
in a (d11)-dimensionalanisotropicclassical system16 with
d spatial dimensions and one additional Trotter dimensio17

The Trotter formalism maps ad-dimensional random quan
tum system to an equivalent (d11)-dimensional classica
system with randomness ‘‘correlated’’ in the Trotter dire
tion with the interaction in the Trotter direction being ferr
magnetic~see Fig. 1!. The equivalent classical system ha
pens to be strongly anisotropic and the dynamical exponez
is different from unity unlike the pure case. The zer
temperature or low-temperature transitions in rando
disordered quantum systems~e.g., quantum spin glass an
quantum random-field systems! are often characterized b
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some unique phenomena. Renormalization-group studie
short-range quantum spin-glass rotor systems suggest
quantum fluctuations happen to be ‘‘dangerousl
irrelevant.13 Dynamical scaling is found to be ‘‘activated’’ in
the case of disordered quantum Ising systems18,19 whereas it
is argued to be conventional~power law! for rotors (M
>2).13 Both real-space renormalization-group calculatio
for one-dimensional random Ising systems18 and numerical
studies of quantum Ising spin glasses20 emphatically estab-
lish that the quantum critical point (T50) is flanked by a
‘‘Griffiths-McCoy’’ region ~with continuously varying expo-
nents! where disorder wipes out the gap in the energy sp
trum ~i.e., the correlation length in the Trotter direction d
verges! causing a diverging response even away from
critical point.

FIG. 1. A typical randomness distribution of a~111!-
dimensional striped random-field system with one spatial and
trotter dimension. Filled circles of different radii correspond to d
ferent values of random field. Note that the randomness is str
~of same value! along the Trotter direction. The interactions in th
spatial as well as in the Trotter direction are ferromagnetic.
354 ©2000 The American Physical Society
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PRB 61 355CORRELATED RANDOM-FIELD SYSTEMS: . . .
In this work, we investigate the dissipative Langevin d
namics and the critical behavior of a (d11)-dimensional
random-field classical system with randomness correla
~striped! in the (d11)th ~Trotter! direction. This model is
derived employing the Suzuki-Trotter~or imaginary time!
mapping to ad-dimensional random-field quantum rotor
quantum Ising system. The equivalent classical system
obtained, happens to be ‘‘correlated’’ or striped in thed
11)th ~Trotter! dimension. The finite-temperature transitio
in this (d11)-dimensional model is equivalent in the sen
of universality to the quantum phase transition in the qu
tum d-dimensional random-field system. Aharony, Gefe
and Shapir21 introduced the Ising version (M51) of the
quantum random-field model with competing quantum flu
tuations and random-field fluctuations. Boyanovski a
Cardy22 employed supersymmetric techniques to derive d
ferent exponents and investigated the possible ‘‘dimensio
reduction.’’ In recent years, extensive studies of both
Ising and the rotor version of the model have been m
using molecular field theory,23 spherical limit,24 ande expan-
sion in the replica-symmetric framework, and the static a
dynamic scaling relations have been established.25,26 Up to
now the model has presented plenty of mystery to be un
eled and provides a rich and intriguing field of study.

The experimental motivation behind the study of quant
random-field systems~or the equivalent classical random
field system with correlated randomness; see Fig. 1! is the
following: the d-dimensional quantum order-disorder ferr
electrics~potassium dihydrogen phosphte type! with random
field at T50 can nicely be modeled by a transverse Is
system in a random longitudinal field.9 As mentioned al-
ready, this is equivalent to a classical Ising system wth r
domness correlated along the additional Trotter directi
Moreover, as in the case of classical random-field system27

it has been shown at least in the semiclassical limit that
random-field transverse Ising systems can be mapped to
dilute transverse Ising antiferromagnet in a steady fiel23

which can provide a scope for experimental verification.
The plan of the paper is the following. In Sec. II, w

briefly indicate the way to derive a correlated random-fi
system starting from a quantum random-field Hamiltoni
In Sec. III, we investigate the dissipative Langev
dynamics28 of a (d11)-dimensional correlated random-fie
system usinge-expansion calculations within the replic
symmetric framework.22 Of course, the dynamics of the cla
sical correlated system does not simulate the relaxationa
namics of the original quantum system~for which one needs
to derive the appropriate Langevin equation starting from
original quantum Hamiltonian itself! but the asymptotic (t
→`) results should correspond to the quantum random-fi
transition. We believe some features of quantum dynam
~e.g., activated dynamical scaling, occurrence of
Griffiths-McCoy region! should also show up in the relax
ational dynamics of these types of systems as an artifac
correlated randomness. Recently, Stinchcombe
co-workers29,30 have investigated the random-field Isin
model ~RFIM! using phenomenological renormalizatio
group and finite-size scaling31 on a bar geometry. They hav
addressed the question of marginality breakdown in RF
due to domain decoration ind52. In Sec. IV, we extend
these renormalization arguments to (d11)-dimensional
-
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random-field ‘‘Ising’’ systems with correlated randomne
and provide a zeroth-order theory. Throughout this work,
shall assume that the transition in these models is sec
order and use a Gaussian distribution of random field so
at least in the mean-field limit the transition is definite
continuous.32,23

II. THE DERIVATION OF THE CORRELATED
RANDOM-FIELD HAMILTONIAN

The Hamiltonian describing theO(M ) quantum rotors is
written as12

H5
g

2 (
i

L̂ i
22(

i j
Ji j x̂i• x̂ j , x̂i

251,

where x̂i is a unit length rotor sitting at the sitei with M
componentsxim , N the number of sites, andLimn (n,m
51,2, . . . ,M ) are theM (M21)/2 components of the angu
lar momentum generatorLi in the rotor space. The first term
in the Hamiltonian corresponds to the kinetic energy of
rotors whereas the second term denotes the interac
among the rotors. Noncommutivity ofxi ’s and L̂ i ’s intro-
duces quantum fluctuations in the model that result in a ze
temperature quantum phase transition.12 Here,g denotes the
strength of the noncommuting term in the Hamiltonian.
the presence of a static random fieldhi ~random in space!
which couples to the components of the rotorsxi , producing
a term2hW i• x̂i in the Hamiltonian, we have

H~hi !5
g

2 (
i

L̂ i
22(

i j
Ji j x̂i• x̂ j2(

i
hW i• x̂i , ~1!

wherehi is the site-dependent random field with zero me
and nonzero variance satisfying the Gaussian distribution

P~hi !5
1

A~2pD!
expS 2

hi
2

2D2D . ~2!

The corresponding random-field transverse Ising Ham
tonian (M51) is written as

H52J(̂
i j &

Si
zSj

z2G0(
i

Si
x2(

i
hiSi

z , ~3!

whereG0 is the strength of the quantum fluctuation, name
the transverse~tuneling! field.

With the soft-spin consideration, we can work with a
effective classical action~obtained via path-integral formal
ism! for the M-component rotors within the stati
framework26

A5E
0

b

dtS L02(
i j

Ji j x̂i~t!• x̂ j~t!2(
i

hW i• x̂i~t! D , ~4!

where

L0~t!5
1

2g (
i

@]tx̂i~t!#21
r

2 (
i

x̂i~t!2

1
u

4 (
i

@ x̂i~t!2#2,
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wherex̂i corresponds to rotors forM>2 and Ising spins for
M51. We will also assume short-ranged interactions am
the rotors and the interaction term2(Ji j xixj will contribute
*(¹xm)•(¹xm)ddy where yW denotes thed spatial dimen-
sions. Consequently we arrive at the appropriate continu
action

A5E
0

b

dtE ddyF r

2
xmxm1

1

2g
@]txm~t!#2

1
1

2g
~¹xm!•~¹xm!1

u

4
~xmxm!22hmxmG . ~5!

Herem denotes the components of the rotor and the repe
indexm implies sum over it from 1 toM. To calculate the the
quenched averaged partition function, we introduce repli
at this stage of calculation to obtain then-replicated classica
action ~with m1 ,m2 as replica indices! given as

A (n)E ddyF E
0

b

dt (
m151

n
r

2
xm

m1xm
m11

1

2g
@]txm

m1~t!#2

1
1

2
~¹xm

m1!•~¹xm
m1!1

u

4
~xm

m1xm
m1!2

2D/2E
0

b

dt1E
0

b

dt2S (
m1

xm
m1~t1! D S (

m2

xm
m2~t2! D G .

~6!

One is required to take the limitn→0 at the end of the
calculation. It is convenient to rewrite the above action
terms of Fourier componentsfm

m1(kW ,v0) ~wherev0 denotes
the Matsubara frequencies which are continuous in thT

50 limit! of the xm
m1(yW ,t) fields so that the action now

becomes26

A (n)5E dv0

2p E ddk

~2p!d (
m

@~r /21gv0
2/2

1k2/2!fm
m~kW ,v0!fm

m~2kW ,2v0!#

2
D

2 (
m1

E dv0

2p

ddk

~2p!d
fm

m1~kW ,v0!

3(
m2

fm
m2~2kW ,2v0!d~v0!

1uE dv0
1

2p
•••

dv0
4

2p E ddk1

~2p!d
•••

ddk4

~2p!d

3dd~kW11•••1kW4!d~v0
11•••1v0

4!

3fm
m~kW1 ,v0

1!fm
m~kW2,v0

2!fn
m~kW3 ,v0

3!fn
m~kW4v0

4!,

~7!

where repeated indices (m,m,n) denote sum. ForM51 this
action describes the equivalent classical action for
random-field quantum Ising model. The parameterg is given
by g51/g, whereg ~or G) denotes the strength of quantu
g

m

ed

s

e

fluctuations in Eq.~1! @or Eq. ~3!#. Equation~7! shows that
the random-field fluctuations couple to the static (v050)
part of the order parameter. In passing from Eq.~1! to Eq.
~7!, we have effectively derived an equivale
(d11)-dimensional classical system@described by the ac
tion ~7!# where the random field is correlated in the (d
11)th ~Trotter! direction. It has already been shown prev
ously that the upper and lower critical dimensions in the c
of quantum random-field systems@or the spatial lower criti-
cal dimension of the equivalent (d11)-dimensional classica
systems# are the same as those for the isotropic random-fi
systems, i.e.,dl

c52 for M51 and54 for M>2, the upper
critical dimension being 6 in either case.26 The free con-
nected and disconnected correlation functions in this ter
nology and within a replica symmetric framework in then
→0 limit can be written as26

Gcon~k,v0!dmn5^fk
m~v0!f2k

n ~2v0!&2^fk
m~0!&^f2k

n ~0!&

5
1

k21gv0
21r

,

Gdisd
mn~k,v0!5^fk

m~0!&^f2k
n ~0!&5

Dd~v0!

~k21r !2
.

We wind up this section with the note that we have n
included randomness ing or G. This helps us to obtain the
correlated random system with ferromagnetic interaction
the Trotter direction; otherwise the equivalent classical
tion will be complicated. However, this does not seem
modify critical behavior drastically. In the coming section
we will dwell on this correlated classica
(d11)-dimensional random-field system and use both
dynamical renormalization as well as the phenomenolog
renormalization~for the Ising version!.

III. THE LANGEVIN DYNAMICS

In this section, we shall consider the dissipative Lange
dynamics of the above correlated random classical sys
without referring to the original quantum Hamiltonian fro
which this is derived. Our aim is to explore the effect of t
Trotter dimension~along which the randomness is corr
lated! on the dynamical relaxation of the system. We sh
call the Trotter direction theath direction, and also denot
v0 aska ~the Fourier conjugate to this special direction!. The
action we use is given as~for M51)

A5F

5E dka

2p

ddk

~2p!d
@~r /21gka

2/21k2/2!f~kW ,ka!

3f~2kW ,2ka!#2
D

2E dka

2p

ddk

~2p!d

3f~k,ka!f~2k,2ka!d~ka!1u . . . . ~8!

We investigate the dissipative Langevin dynamics~model A
dynamics! of the above (d11)-dimensional classical corre
lated system described by the equation28
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]f~k,ka!

]t
52G

dF
df~2k,2ka!

1h~k,ka ,t ! ~9!

with h(k,ka ,t) being Gaussian white noise satisfying

^h~kW ,ka ,t !h~kW8,ka8 ,t8!&52Gdd~kW1kW8!d~ka1ka8 !d~ t2t8!.

~10!

Conversion of the above equation to the (kW ,v) represen-
tation immediately gives us the ‘‘free’’ response functio
G0(k,ka ,v) @which measures the response of the syste
i.e., the variational derivative of the order parameter w
respect to an arbitrary magnetic fieldh(t) computed ath
50], and the free correlation functionC0(k,ka ,v) given,
respectively, as

G0~k,ka ,v!5
1

2 iw/G1k21gka
21r

, ~11!

C0~k,kav!5^f~k,ka ,v!f~2k,2ka ,2v!&

5
2G1Dd~v!d~ka!

u2 iv/G1gka
21k21r u2

, ~12!

where the overbar indicates the average over the rand
field fluctuations. Clearly, the first term in the above com
from fluctuation dissipation due to noise@Eq. ~10!# whereas
the second term is due to the random-field fluctuations.

We shall now employ the dynamical renormalizatio
group calculations, namely thee expansion around the uppe
critical ~spatial! dimensiondc

u56 ~Ref. 26! and look at the
dynamical scaling behavior. Static renormalization-gro
calculations of the classical random-field system8 and also of
the quantum random-field systems26 clearly show that the
random-field fixed point is stable and thermal fluctuations~or
quantum fluctuations! are ‘‘dangerously’’ irrelevant. It has
also been shown that under renormalization the measur
randomness (D) grows and tends to take the system beyo
the scope of perturbative calculations. The appropriate s
ing variable isW5Du, which is relevant below the~spatial!
upper critical dimension~56!,8,26 and at the same timeu is
irrelevant ford,6. Thus, we have to look at the flow equ
tions of the scaling variablesr, u andW.26 From the nature of
the free correlation function given in Eq.~12!, we find that
the most infrared divergence (;1/k4) comes from the
random-field fluctuations, so the noise term is altoget
neglected22 and consequently the free correlation functi
reduces to

C0~k,ka ,v!5
Dd~v!d~ka!

u2 iv/G1gka
21k21r u2

. ~13!

The static critical exponents obtained from perturbative
expansion and the nature of the critical point of the mo
considered here, are already discussed in the literature25,26

We shall here look at the dynamical aspect of this correla
random-field system. We need to calculate the self-ene
diagram~Fig. 2!, which is the only relevant diagram up t
the ordere2,26 to find its contribution to the self-energ
S(k,ka ,v). The line with the thick circle in Fig. 2 denote
,

m-
s

p

of
d
l-

r

l

d
y

the random-field partC0(k,kav) with both v,ka50 @Eq.
~13!# and the line without the thick circle denotes the fr
response functionG0 given in Eq.~11!. Clearly with twou’s
and twoD ’s the diagram is of the orderW2(5e2). We defer
the details of the calculation to the Appendix and only qu
the results here. We need to introduce an additional expo
zq such thatja @the correlation length in the (d11)th direc-
tion# ;jzq ~wherej is the correlation length in thed spatial
dimensions! in the vicinity of the critical point. Clearly, this
exponent corresponds to the dynamical exponent of
d-dimensional random-field quantum model.

Having calculated the self-energy diagram~Appendix! we
look at S(k,ka ,v) in different limits at the cortical point:

S(k,0,0)2S(0,0,0);2k2h ln k,
S(0,ka,0)2S(0,0,0);2ka

2ha ln ka

S(0,0,v)2S(0,0,0);2 ivh t ln v.
Above two expressions actually define the exponentsh t

andha .
Under renormalization by a factor of length scaleb, G and

g scale as

G85Gb22z2h~11h t ln b!, g85gb222zq2h~11ha ln b!.

~14!

Up to ordere2, one can show thatha5h t53h. Demanding
that bothg and theG scale to a fixed point, one finds~Ap-
pendix!

zq511h, z5212h. ~15!

As mentioned earlier, the exponentzq appearing here is the
quantum dynamical exponent which in this particular mo
is half that of the classical dynamical exponent up
O(e2).22 This is an artifact of the symmetry of the propag
tor and the dominance of the random-field term.

We have performed this calculation withM51. It is
straightforward to extend these calculations to rotorsM
>2) and obtain identical expressions forz andzq . However,
the value of the exponenth will definitely depend uponM.

FIG. 2. The self-energy diagram up to the second order ie
with two filled circles (D) and twou’s. The thin line corresponds
free propagatorG0(k,ka ,v) and the line with a filled circle stand
for free correlatorC0(k).



-
n
n

ica
i-
-

he
er
l
ic
os

re

x

s
nt
he
ex
lin

th
ra
he

o
ca
rk

g

e
s

on

in
nd
e
ts
a

i

be-
son

-
nd
l to

i-
del
ob-

in
s at
r-
y-

st
stem

ve
a

re
lso
can
e

dy-

a
l,

on-
um
ng
c-

hat
ort-
-
at
u-

gth
the

re-
ted

rder
ics

’’
to
be

ed

nt
ion

358 PRB 61A. DUTTA AND R. B. STINCHCOMBE
IV. DYNAMICAL SCALING

The replica symmetrice-expansion studies imply that dy
namical scaling in the present model is conventional. O
can then propose a scaling form for the dynamical respo
function given as

x~k,ka ,v,r !5ur u2gX~kj,vjz,kajzq! ~16!

with

v~k!5kzf ~kj!5j2zf 1~kj!, ~17!

wherez is the dynamical exponent for the correlated class
system andzq is the ‘‘anisotropy exponent’’ or the dynam
cal exponent of the equivalentd-dimensional quantum sys
tem andg is the susceptibility exponent.

Let us now recall the relaxational scaling behavior of t
isotropic random-field Ising system as proposed by Fish33

~see also Ref. 34!. The contribution to the dynamics wil
essentially come from large, ‘‘rare’’ locally ferromagnet
regions having two minima with energy separation alm
zero. The barrier height near the criticality increases asju

and the relaxation dynamics is essentially activated with
laxation time diverging ast;exp(aju). e expansion fails to
capture this ‘‘activated’’ nature of dynamics. From the e
perimental measurement of King Mydosh, and Jaccarino,35 it
has been found that the variation of the peak height in the
susceptibility for three-dimensional random-field Ising sy
tem (Fe0.46Zn0.54F2) as a function of frequency, is consiste
with the activated dynamical scaling as proposed by Fis
We refer to Ref. 36 for the discussion on various other
perimental observations concerning the dynamical sca
behavior ofd53 RFIM systems.

One can readily extend the above idea of Fisher to
correlated random-field Ising systems. In this case, the
regions will be correlated in the Trotter direction, and t
dynamics of these types of systems are expected to be m
activated. We assume that the barriers in the present
scale asju8 ~note that the effects of the Trotter direction lu
in this modified valueu8, which is also seen ine-expansion
calculations26!, which readily leads to the activated scalin
form for the dynamical response function given as

x~j,v,r !5j22hXS ln v

ju8 D . ~18!

At criticality j disappears from the scaling relation and w
havex(v);u ln vu(22h)/u8. The relaxational dynamics is thu
argued to be activated with an exponentu8 different from
that in Ref. 33 and this does not show up ine-expansion
studies. Because of the additional ferromagnetically c
nected Trotter direction, we expect thatu8 is larger thanu
and the dynamics is slower.

To address the question of replica symmetry break
~RSB! in classical random-field systems, Mezard a
Young5 considered anM component generalization of th
random-field Ising systems and evaluated the exponenh
andh̄ using the nonperturbative self-consistent screening
proximation~SCSA!, which is exact up to the orderO(1/M ).
They found that the replica symmetric ansatz is unstable w
respect to the RSB ansatz. Mezard and Monasson5 extended
e
se

l

t

-

-

ac
-

r.
-
g

e
re

re
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-

g

p-

th

this calculation to predict an intermediate glassy phase
tween the ferro and para phase. Both Mezard and Monas
and also De Dominicis, Orland, and Temessvari6 determined
the temperatureTRSB.Tc where the replica symmetric solu
tion is unstable. In principle, it should be possible to exte
these calculations to the correlated random-field mode
check the stability of the replica symmetric ansatz. Prelim
nary calculations based on the SCSA in the present mo
seem to indicate possible replica symmetry breaking as
tained by Mezard and Young.5 Let us now recall the ‘‘drop-
let’’ model37,38 proposed with a view to investigate the sp
glass phase of the short-range classical Ising spin glas
very low temperature. This model includes no nontrivial ‘‘e
godicity’’ breaking and assumes only a single thermod
namic phase up to an overall flip.39 From the dynamical
point of view, in the low-temperature limit, only the faste
activated processes are considered and eventually the sy
shows activated dynamics in the glassy phase.40 If the replica
symmetry breaking in the correlated RFIM is of the abo
type ~that is, replica symmetry breaking is trivial, or replic
symmetric as in droplet model! it should lead to activated
dynamical scaling. But we believe it would be too prematu
to make any such conjecture at this point. We should a
mention here that nonperturbative effects like instantons
break down thee expansion and this could explain that th
perturbative computation fails to capture the activated
namics.

We should also mention here that the abovee expansion
shows that the correlation in the Trotter direction grows in
power lawja;jzq, i.e., quantum dynamics is conventiona
which is possibly not true. The real space renormalizati
group calculation of the one-dimensional random quant
Ising chain18 and also the studies on dilute quantum Isi
systems19 predict that the quantum dynamics is actually a
tivated with the dynamical exponentzq diverging at the
quantum critical point. We should also note in passing t
the numerical studies of two- and three-dimensional sh
range quantum Ising spin glass20 seem to indicate a conven
tional dynamical scaling with a finite dynamical exponent
the critical point. Very recent numerical Monte Carlo sim
lations, however, predict activated dynamics ind52.41 In
the next section, we shall indicate that the correlation len
ja of the present model indeed grows much faster than
power law.

We shall now provide a phenomenological argument
garding the dynamical scaling aspect of a general correla
random classical system based on the symmetry of the o
parameter. As argued before, the contribution to dynam
will essentially come from the dynamics of ‘‘large rare
blocks which are locally ordered. Neglecting the coupling
the environment, the fluctuations of this block spin can
described by a one-dimensional@the (d11)th or Trotter di-
mension along which the rare blocks are correlat#
M-component spin chain with ferromagnetic couplingKa
;Ld. The relaxation time of this approximate equivale
chain is naively expected to be of the order of correlat
lengthja . Then we find that the relaxation timet is given as
some finite power of the correlation lengthja of the equiva-
lent one-dimensionl chain,

t;Ka;Ld for M>2, ~19!
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t;exp~Ka!;exp~cLd! for M51, ~20!

wherec is constant. The above equations obtained from
phenomenological argument indicate that the relaxatio
dynamics of correlated random systems isactivatedfor M
51, but is conventional forM>2. We thus expect the criti
cal dynamics of short-range Ising spin glass systems w
‘‘striped’’ randomness to be activated, even though the cr
cal dynamics of isotropic spin glass systems
conventional.39

V. PHENOMENOLOGICAL RENORMALIZATION

In this section, we shall investigate the critical behav
and marginality of a general (d11)-dimensional ‘‘corre-
lated’’ ~striped! random-field ‘‘Ising’’ system, using analytic
phenomenological scaling on a bar geometry.29 The (d
11)th dimension, as mentioned earlier, is the Trotter dim
sion along which the randomness is correlated~see Fig. 1!.
Before going into the details of this phenomenological sc
ing, we must briefly discuss the established conjecture c
cerning the critical behavior of the striped random-field Isi
system~with spatial dimensiond) or the equivalent quantum
random-field Ising systems. The extension of domain w
arguments1 to the present case implies that that the low
critical ~spatial! dimension happens to be 2, i.e., in (21e)
spatial dimension~with additional Trotter dimension! the
correlated RFIM system will sustain long-range order
small randomness and temperature.26 Secondly, an extension
of the Harris criterion42 in the correlated random-field cas
suggests that random fluctuations always dominate over
thermal fluctuations and the random-field fixed point det
mines the nature of criticality. The thermal fluctuations in t
correlated classical system actually mimic the quantum fl
tuations in thed-dimensional random quantum model.
Fig. 3, we schematically draw the renormalization-gro
flows and the different fixed points.43 In this section, we
denote the measure of randomness byh(5D1/2) whereD is
defined through the distribution given in Eq.~2!.

As mentioned previously, Stinchcombe, Moore, and
Queiroz,29 obtained a scaling description for th

FIG. 3. The schematic phase diagram of the correlated rand
field Ising system with spatial dimensiond.2. R denotes the
random-field fixed point andC corresponds to the pure therm
fixed point. The arrows indicate the renormalization group flo
and for any amount randomness, random field fluctuations domi
over the thermal fluctuations and determine the critical behavio
e
al

th
i-

r

-

l-
n-

ll
r

r

he
-

-

e

d-dimensional random-field Ising model considering d
mains on a bar geometry. They showed that the wall rou
ening removes the marginality ind52 and calculated the
correlation length for bothd52 and d521e.30 We shall
here extend the same phenomenological renormaliza
group ideas to striped random-field Ising systems in (d11)
dimensions. The zeroth-order theory~flat domain walls! for
the RFIM ~Ref. 29! that provides the asymptotically corre
flow equations for the variance of the random-field fluctu
tions, deals with the ground-state energy of the RFIM aT
50. This argument stems from the fact that the random-fi
fluctuations always dominate over the thermal fluctuatio
and temperature is irrelevant. TheT50 theory discussed in
Ref. 29 yields the equilibrium value of the correlation leng
jL of the finite-width bar, in the asymptotic limit~small h)
when the correlation lengthjL ~or the measure of the typica
size of the of the domains along a particular direction, aris
due to the random-field fluctuations! is much bigger thanL,
the size of the bar in other (d21) directions.

The situation is fairly complicated in the present proble
~with correlated random field! in comparison to that consid
ered in Ref. 29. In this case as well, the random-field flu
tuations slice the system in domains of sizejL , but since the
randomness is correlated in the Trotter direction this dom
will ‘‘percolate’’ along that direction causing the correlatio
length ja to diverge~see Fig. 4!. One must then introduce
thermal fluctuations at the very outset to slice the doma
into finite sizes in the Trotter direction. To be more specifi
to formulate the zeroth-order theory for the present proble
we need to consider entropic effects in addition to the
sumption of flat domain walls.

With a view to formulate the zeroth-order phenomen
logical renormalization-group theory in this correlate
random-field system, we make a convenient compromise
tween the random-field fluctuations and the thermal fluct
tions. We here study the system on a (d11)-dimensional bar
geometry~Fig. 4! with sizeN in one of the spatial directions
andL in the other (d21) spatial directions. We take the siz
of the bar along the Trotter direction asLa . The random-
field fluctuations slice the directionN into domains of typical
sizejL . The random field being relevant in the sense of
renormalization group, we ignore the entropic effect aris

-

s
te

FIG. 4. The correlated random-field Ising system on a bar
ometry. We take one spatial direction of sizeN, the size along the
Trotter (ath) direction isLa , and the transverse sizeL. The do-
mains are of typical sizejL along the directionN andja alongLa .
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due to the arrangements of these walls so that we get b
the results of Ref. 29 for the ordinary RFIM. As discuss
earlier, we must take into account the thermal fluctuatio
which create domains of typical sizeja in the ath ~i.e.,
Trotter! direction. We consider both the energy and the
tropic ~finite-temperature! effect of these domain walls in th
Trotter direction. We believe that this simple-minded geo
etry is going to constitute the zeroth-order theory for t
striped random-field system, which should be exact in
asymptotic limit~smallh, smallT), when bothja andjL are
much larger thanL.

The procedure we employ here is to minimize the fr
energy F5U2TS to determine the characteristic leng
scalesj and ja via phenomenological scaling.31 As argued
in the preceding paragraph, we work in the low-temperat
and low-randomness limit and consider well-separated
mains (j,ja@L) as in Ref. 29. In the zeroth-order~flat do-
main wall! theory, the entropy contribution we consider co
responds to the ways of arrangingLa /ja flat walls with
average spacingja along the Trotter direction of sizeLa
~Fig. 4!, and is given by

S~ja!5 lnS La

La /jaD . ~21!

Simplifying the above expression for the entropy usi
Stirling’s approximation one can immediately write the e
pression for free energy as

F5U2TS

5
NLa

jLja
@2JLd21ja2hjaALd21jL12J0jLLd21#2TS,

~22!

where the simplified expression for the entropy is of the fo
~with kB51)

S52NLa@xaln xa1~12xa!ln~12xa!#, where xa5
1

ja
.

~23!

In the expression for energyU in Eq. ~22!, the first term is
due to the interfacial energy of domain walls along the
rectionN, the second term originates from the random-fie
fluctuations~as suggested by the central-limit theorem!, and
the third one is the interfacial energy due to domain slic
in the Trotter direction. The~ferromagnetic! interaction
along the ~anisotropic! Trotter direction is denoted byJ0
while interaction along thed spatial directions isJ.

Let us now extremalize the above free energy with fix
N andLa , demanding

]F
]xa

50,
]F
]xL

50, where xL51/jL .

This gives the characteristic inverse length scales of
problem as

xL5
1

jL
5S h

4JD 2

L12d, ~24!
ck

s

-

-

e

e

e
o-

-

g

d

e

xa5
1

ja
5

1

exp~2J0Ld21/T!11
. ~25!

The renormalization-group~RG! transformations of pa-
rameters (h/J,J0 /T) under rescaling ofL by a factorb are
obtained from the phenomenological scaling relations.31 The
scaling relation forh/J is given by

jL„~h/J!8…

L
5

jLb~h/J!

bL
. ~26!

Using the expression forjL @Eq. ~24!# in Eq. ~26!, one im-
mediately arrives at the recursion relation forh/J, which is
given as

S h

JD 8
5b(22d)/2S h

JD . ~27!

This result is identical to that in the case of ordinary rando
field systems, as in Refs. 43 and 44. Equation~27! has an
unstable fixed point ath50 for d,2 and the eigenvalue
b(d22)/2 implies that the bulk~spatial! correlation lengthj
~for d,2) diverges forh→0 andT50 as

j;h22/(22d).

The renormalization is marginal ford52 and one has to
consider domain ‘‘decoration’’ perturbations of the flat wa
to deal with the marginality atd52.29 The flow Eq. ~27!
implies thath50 is a stable fixed point ford.2 and it is
unstable ford,2. This suggests that the lower critical~spa-
tial! dimension is 2 in agreement with the existing conje
ture.

We shall now apply the corresponding phenomenolog
finite-size scaling relation to the correlation lengthja along
the Trotter direction

ja„La ,~T/J0!8…

La
5

ja„bLa ,~T/J0!…

bLa
. ~28!

Using the expression forja given in Eq.~24!, in the low-
temperature limit and ignoring corrections of the order
ln b, we find that the recursion relation for the parame
T/J0 is given by

S J0

T D 8
;bd21S J0

T D . ~29!

The recursion relations given in Eqs.~27! and ~29! com-
pletely describe the phenomenological RG equations for
correlated random field systems in (d11) dimensions.
Above the lower critical~spatial! dimension~i.e., for d52
1e), Eq. ~29! shows that temperature scales down to z
confirming that thermal fluctuations~quantum fluctuations in
the equivalent quantum model! are irrelevant. Let us now
recall the expression for the correlation lengthja given in
Eq. ~25! which shows an exponential growth of the corre
tion lengthja in the Trotter direction as temperature sca
down to zero. We identify this as the signature of activa
quantum dynamics which was missing thee-expansion cal-
culation of the previous section. It should be noted here t
we do not expect to retrieve pure Ising results forh50,
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because in our zeroth-order theory we have not taken
consideration the complete entropic fluctuations; i.e.,
have neglected the entropic fluctuations due to arrangem
of domain walls in the directionN.

Just above the lower critical dimension (d521e), the
roughening of the domain wall induced by the rando
fields45 ~see also Refs. 43 and 30! introduces a correction o
the order (h/J)2 to the recursion relation~27!, given as

S h

JD 8
5b(22d)/2S h

JD1Aln bS h

JD 2

. ~30!

Definingw5h/J andt5T/J0 we find@with b5exp(l)] using
Eqs.~29! and ~30!,

]w

] l
52

e

2
w1Aw2, ~31!

]t

] l
52~11e!t. ~32!

Clearly, the fixed point that determines the criticality is giv
as w* 5(e/2A)1/2, t* 50 and the corresponding correlatio
length exponentn51/e to the ordere2. This immediately
leads to the conclusion that the fixed point that determi
the criticality in the (d11)-dimensional correlated o
equivalentd-dimensional quantum random-field system
the same as that ind-dimensional random-field system an
the exponents happen to be the same as the exponen
d-dimensional random field systems. Thus, the phenome
logical zeroth-order theory is completely in agreement w
the results obtained using the field-theoretice expansion.

We conclude this section with the note that we have
tended the phenomenological renormalization calculation
the correlated random-field Ising systems on a bar geome
The zeroth order theory we present is completely in agr
ment with the existing conjecture and provides physica
relevant results. Efforts are being made to extend this a
ment to the systems withM>2 and also to explore a pos
sible Griffiths singular phase associated with this transiti

VI. CONCLUSION

We have studied (d11)-dimensional striped random
field systems. The finite-temperature transition in this mo
is equivalent ~in the sense of universality! to the zero-
temperature transition in quantum random-field systems.
e-expansion studies~within the replica symmetric frame
work! of the relaxational dynamics of the above model fail
capture the activated dynamical scaling. The dynamical s
ing is argued to be activated with a modified exponentu8
which bears the signature of correlated randomness. A p
nomenological argument is provided in favor of activat
critical dynamics in general random Ising systems with c
related randomness.

We also discuss a zeroth-order phenomenological sca
theory using a bar geometry to investigate the the crit
behavior of striped random-field Ising systems. The ex
nents just above the lower critical dimension@in (21e) spa-
tial dimensions# are evaluated and the signature of the a
vated~quantum! dynamical scaling is clearly indicated.
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APPENDIX: EVALUATION OF EXPONENTS z AND zq

In this appendix, we shall evaluate the exponentsz andzq
up to the second order ine. We shall here consider th
self-energy diagram given in Fig. 2, which is the only re
evant diagram up to this order of expansion with free pro
gator and free correlator, given as~at criticality r 50)

G0~k,ka ,v!5
1

2 iw/G1k21gka
2

, ~A1!

C0~k,ka ,v!5
Dd~v!d~qa!

u2 iv/G1gka
21k2u2

. ~A2!

The contribution of the above diagram to the self-energy
be written as

S~kW ,ka ,v!5u2D2E dDk1

~2p!DE dDk2

~2p!D

1

k1
4

3
1

k2
4

1

@2 iv/G1~kW2kW12kW2!21gka
2 #

.

~A3!

Let us now dropG andg till the end of the calculation. We
define exponentsh, ha, andh t in the following way:

S~k,0,0!2S~0,0,0!5hk2ln b

5E
L/b

L dDk1

~2p!DEL/b

L dDk2

~2p!D

3F 1

k1
4

1

k2
4

1

~kW2kW12kW2!2

2
1

~kW11kW2!2G . ~A4!

Similarly,

S~0,ka,0!2S~0,0,0!5ka
2ha ln b ~A5!

5E
k1

E
k2

~2ka
2 !

k1
4k2

4~kW11kW2!4
. ~A6!

to the orderka
2 .

We define identicallyh t ,
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S~v,0,0!2S~0,0,0!51 ivh t ln b ~A7!

5E
k1

E
k2

iv

k1
4k2

4~kW11kW2!4
.

~A8!

From Eq.~A4!, we find

S~k,0,0!2S~0,0,0!5E
k1

E
k2

1

k1
4

1

k2
4

1

~kW11kW2!2

3F @2k212kW•~kW11kW2!#

~kW2kW12kW2!2 G .

~A9!

We have to extract the coefficient ofk2 in the above expres-
sion; with a few lines of algebra, in the limitk→0, we find

S~k,0,0!2S~0,0,0!5E
k1

E
k2

1

k1
4

1

k2
4

k2~4cos2u21!

~kW11kW2!4
,

~A10!
o

where u is the angle betweenkW and kW11kW2. Inserting the
angular average of cos2u51/d, we find from Eq.~6!,

S~k,0,0!2S~0,0,0!5E 1

k1
4

1

k2
4

k2~4/d21!

~kW11kW2!4
. ~A11!

Comparing Eqs.~A11! and ~A6!, we find

ha5S d

d24Dh. ~A12!

With d56, we find ha53h. Similarly comparing Eqs.
~A11! and~A8! we findh t53h. These immediately lead us
to the scaling@using Eq.~9!# of parametersg andG given as

g85gb222zq12h, G85Gb22z12h. ~A13!

Demandingg andG to scale to a fixed point immediately
gives us

z5212h and zq511h. ~A14!
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