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Correlated random-field systems: Dissipative dynamics and phenomenological scaling
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We investigate ad+ 1)-dimensional “correlated” random-field system widhspatial dimensions and one
Trotter dimension along which randomness is “correlated” or striped. In the sense of universality this model
is equivalent to a-dimensional quantum random-field system. We investigate the dissipative Langevin dy-
namics of this “striped” @+ 1)-dimensional systems within a replica symmetric framework, employing the
perturbativee expansion around the upper critical dimension to explore the effect of an additional dimension
(along which the randomness is correlated the dynamical scaling. We argue that thexpansion fails to
capture the activated nature of dynamics. We also extend the phenomenological renormalization-group calcu-
lations to investigate the critical behavior of @+ 1)-dimensional correlated random-field Ising systems.

[. INTRODUCTION some unique phenomena. Renormalization-group studies of
short-range quantum spin-glass rotor systems suggest that
The random-field systemgespecially the random-field quantum fluctuations happen to be “dangerously”
Ising mode)'~2 have been investigated over the last two de-rrelevant!? Dynamical scaling is found to be “activated” in
cades and have provided a sequences of challenges to bdie case of disordered quantum Ising systértiavhereas it
the theoreticians and the experimentalists. Even though thi§ argued to be conventiondpower law for rotors (M
resolution of the puzzle concerning the lower critical dimen-=2)."> Both real-space renormalization-group calculations
sion of the random-field Ising systefrsonfirmed the valid-  for one-dimensional random Ising systéfhand numerical
ity of the “domain wall” argument the nature of the tran- Studies of quantum Ising spin glaséesmphatically estab-
sition is yet to be fully understood. Whether the transition islish that the quantum critical poinfT=0) is flanked by a
first order or second order is still questioRethd the possi- “Griffiths-McCoy” region (with continuously varying expo-
bility of an intermediate glassy phasehas also been re- nents where disorder wipes out the gap in the energy spec-
ported. The phase diagram is not known for general dimentrum (i.e., the correlation length in the Trotter direction di-
sions and the critical behavior in three dimensiois Verges causing a diverging response even away from the
presently not understood. These models were studied usir@itical point.
field-theoretical renormalization-group calculatidrisVery
recently the extensive high-temperature series expansion
studied® have provided important results.
Quantum phase transitions have been attracting a great
deal of attention in recent years. Especially the zero- @ ¢ ‘
temperature transitions in the transverse Ising mddéand
its M-component generalization, the rotor modéli$>are be-
ing explored extensively. Studies have been carried out with  pyotter ‘7__.__‘_
the interaction between the rotors taken to be random and
thus elucidating properties of quantum spin glasses.The
zero-temperature phase transition in a pdrdimensional ® o .
guantum system is equivalent to the thermal phase transition
in a (d+ 1)-dimensionaknisotropicclassical systefi with
d spatial dimensions and one additional Trotter dimen&fon.
The Trotter formalism maps ddimensional random quan- ® it .
tum system to an equivalentd{ 1)-dimensional classical
system with randomness “correlated” in the Trotter direc-
tion with the interaction in the Trotter direction being ferro-
magnetic(see Fig. 1 The equivalent classical system hap-  FiG. 1. A typical randomness distribution of &lL+1)-
pens to be strongly anisotropic and the dynamical expanentgimensional striped random-field system with one spatial and one
is different from unity unlike the pure case. The zero-trotter dimension. Filled circles of different radii correspond to dif-
temperature or low-temperature transitions in randomferent values of random field. Note that the randomness is striped
disordered quantum systenis.g., quantum spin glass and (of same valugalong the Trotter direction. The interactions in the
quantum random-field systejnare often characterized by spatial as well as in the Trotter direction are ferromagnetic.
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In this work, we investigate the dissipative Langevin dy-random-field “Ising” systems with correlated randomness
namics and the critical behavior of @+ 1)-dimensional and provide a zeroth-order theory. Throughout this work, we
random-field classical system with randomness correlate@hall assume that the transition in these models is second
(striped in the (d+1)th (Trotten direction. This model is order and use a Gaussian distribution of random field so that
derived employing the Suzuki-Trottdpr imaginary timg  at least in the mean-field limit the transition is definitely

. . . . H 2,23
mapping to ad-dimensional random-field quantum rotor or continuous’
guantum lIsing system. The equivalent classical system thus
obtained, happens to be “correlated” or striped in thk ( Il. THE DERIVATION OF THE CORRELATED
+1)th (Trotten dimension. The finite-temperature transition RANDOM-FIELD HAMILTONIAN
in this (d+1)-dimensional model is equivalent in the sense The Hamiltonian describing th@(M) quantum rotors is
of universality to the quantum phase transition in the quan-_ . 2

. . \ written ag
tum d-dimensional random-field system. Aharony, Gefen,
and Shapft* introduced the Ising versionM=1) of the g < o Y
quantum random-field model with competing quantum fluc- H= > E Li—2 JijXi-X, x=1,
. i : . :

tuations and random-field fluctuations. Boyanovski and

2 ; ; ; ; A
Cardy” employed supersymmetric techniques to derive dif\yherex; is a unit length rotor sitting at the sitewith M
ferent 'exp’t,)nents and investigated th_e possble d'mens'on%omponentsxi , N the number of sites, and;,, (v,u
reduction.” In recent years, extensive studies of both the_ 1 2,... M) are theM (M —1)/2 components of the angu-

Ising and the rotor version of the model have been madgy momentum generatdr; in the rotor space. The first term
using molecular field theory/, spherical limit’* ande expan- i the Hamiltonian corresponds to the kinetic energy of the
sion in the replica-symmetric framework, and the static anqqtors whereas the second term denotes the interaction
dynamic scaling relations have been establisiéfiUp to among the rotors. Noncommutivity of’s and i s intro-

~ . | I
now the model has presented plenty of mystery to be unra duces quantum fluctuations in the model that result in a zero-

eled and provides a rich and intriguing field of study. .
The experimental motivation behind the study of quamumtemperature quantum phase transitibiiere,g denotes the

random-field systemsor the equivalent classical random- tsrt]r:n?égeor:cct:%fngnsig?cm;::]%%rf;?;i"jn(rg'ned:rﬁr?rzltgn:‘gé in
field system with correlated randomness; see Fjgis the P b

following: the d-dimensional quantum order-disorder ferro- which couples to the components of the roters producing

electrics(potassium dihydrogen phosphte typéth random @ term—h;-X; in the Hamiltonian, we have

field at T=0 can nicely be modeled by a transverse Ising

system in a random longitudinal fieldAs mentioned al- H(hi)zg > - Jij)}i.)}j_E hi-Xi, (1)
ready, this is equivalent to a classical Ising system wth ran- 25 i [

domness correlated along the additional Trotter direction
Moreover, as in the case of classical random-field systéms,
it has been shown at least in the semiclassical limit that th

whereh; is the site-dependent random field with zero mean
gnd nonzero variance satisfying the Gaussian distribution

random-field transverse Ising systems can be mapped to the 1 h2
dilute transverse lIsing antiferromagnet in a steady figld, P(ho:—exr{ __'). )
which can provide a scope for experimental verification. V(2mA) 272

The plan of the paper is the following. In Sec. Il, we . . : .
: S : .~ The corresponding random-field transverse Ising Hamil-
briefly indicate the way to derive a correlated random'f'eldtonian M=1) is written as

system starting from a quantum random-field Hamiltonian.
In Sec. lll, we investigate the dissipative Langevin
dynamic$® of a (d+ 1)-dimensional correlated random-field H=-J> SIS-To> S hs, 3
system usinge-expansion calculations within the replica {n ' !

symmetric framework? Of course, the dynamics of the clas- whereT, is the strength of the quantum fluctuation, namely
sical correlated system does not simulate the relaxational dythe transversétuneling field.

namics of the original quantum systefor which one needs With the soft-spin consideration, we can work with an
to derive the appropriate Langevin equation starting from thexffective classical actiofobtained via path-integral formal-
original quantum Hamiltonian itselfout the asymptotict( ism) for the M-component rotors within the static
— ) results should correspond to the quantum random-fieldramework®

transition. We believe some features of quantum dynamics

(e.g., activated dynamical scaling, occurrence of the B ~ A RN
Griffiths-McCoy region should also show up in the relax- A= o d"( EO_% Jiixi(T)‘Xj(T)_zi hi-xi(7) |, (4)
ational dynamics of these types of systems as an artifact of

correlated randomness. Recently, Stinchcombe anwhere

co-workeré®3° have investigated the random-field Ising . .

model (RFIM) using phenomenological renormalization - z 2, _ L2

group and finite-size scalifjon a bar geometry. They have £o(7) 29 2 Lo+ 2 2 ()

addressed the question of marginality breakdown in RFIM

due to domain decoration id=2. In Sec. IV, we extend + u 2 [§<-(T)2]2

these renormalization arguments tal+1)-dimensional 445 ' ’
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where>A<I corresponds to rotors favl =2 and Ising spins for
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fluctuations in Eq(1) [or Eq. (3)]. Equation(7) shows that

M =1. We will also assume short-ranged interactions amondhe random-field fluctuations couple to the staticy¢0)

the rotors and the interaction term>J;;x;x; will contribute
f(VxM)-(Vx#)ddy Where)7 denotes thed spatial dimen-

sions. Consequently we arrive at the appropriate continuu

action

ZX#XM+

A= J‘dedd

+—g(Vx ) (VX,)+ = (x

g[ﬁTX,L(T)]z

W2=hux, ©)

part of the order parameter. In passing from Eb.to Eq.
(7), we have effectively derived an equivalent

rﬁd+ 1)-dimensional classical systefdescribed by the ac-

tion (7)] where the random field is correlated in thd (
+1)th (Trotten direction. It has already been shown previ-
ously that the upper and lower critical dimensions in the case
of quantum random-field systerfier the spatial lower criti-

cal dimension of the equivalend { 1)-dimensional classical
system$ are the same as those for the isotropic random-field
systems, i.e.df=2 for M=1 and=4 for M=2, the upper
critical dimension being 6 in either ca¥&The free con-

Hereu denotes the components of the rotor and the repeategected and disconnected correlation functions in this termi-

index u implies sum over it from 1 td/. To calculate the the

nology and within a replica symmetric framework in the

quenched averaged partition function, we introduce replicas-0 limit can be written &€

at this stage of calculation to obtain theeplicated classical
action (with m;,m, as replica indicesgiven as

A(n)f ddy

1
+ 5 (VG (Vh+ 7 (%mewz

B
J dr 2 XXM 4
0

m 2
0 g[afxﬂr)]

> x;‘jl(m)(% xZZ(m) :

B B
—A/Zf d'rlf dr,
0 0 my
(6)

One is required to take the limit—0 at the end of the

Goorl ki o) 8""= (i (w0) %~ wo)) — (#(0))($~(0))

B 1
ran ng+r'
Y - _ (wo)
Gisd" (K, w0) =(#{(0))( " ,(0)) = )2

We wind up this section with the note that we have not
included randomness ig or I'. This helps us to obtain the
correlated random system with ferromagnetic interaction in
the Trotter direction; otherwise the equivalent classical ac-
tion will be complicated. However, this does not seem to

calculation. It is convenient to rewrite the above action inmodify critical behavior drastically. In the coming sections,

terms of Fourier components,, (K, w,) (Wherew, denotes
the Matsubara frequencies WhICh are continuous in The
=0 limit) of the xml(y 7) fields so that the action now
become®

ddk

A(n) f dwoJ
271')d

+K212) (K, w0) $T(—K, — wo)]

Sy [
(2m)

X ; ¢:2(_

[(r/2+ yw3l2

7 H(K, o)

K, — o) 8(wo)

d;,
(2m)°®

ddk,
(2m)

4
dwo

dwo

+u
27

X &Kyt - - +Ky) S+ - - -+ wp)

X Bp(Ky,05) 1Ko, ) ¢(Kg, 03) ¢ (Kg(),
(7)

where repeated indicesn(u,v) denote sum. FoM =1 this

we will dwell on this correlated classical
(d+1)-dimensional random-field system and use both the
dynamical renormalization as well as the phenomenological
renormalization(for the Ising version

Ill. THE LANGEVIN DYNAMICS

In this section, we shall consider the dissipative Langevin
dynamics of the above correlated random classical system
without referring to the original quantum Hamiltonian from
which this is derived. Our aim is to explore the effect of the
Trotter dimension(along which the randomness is corre-
lated on the dynamical relaxation of the system. We shall
call the Trotter direction therth direction, and also denote
wq ask, (the Fourier conjugate to this special direcdichhe
action we use is given asor M=1)

A=F
dk, d’ [(r/2+ yK212+K%/2) p(K,K,)
= —_— r Ke
2T (24r)4 Yra
X (k)] dk, d%
2 (277)"

X (kK p(—k,—k,)d(k,)+u. .. (8

action describes the equivalent classical action for theéNe investigate the dissipative Langevin dynanficedel A

random-field quantum Ising model. The parametés given

dynamic$ of the above @+ 1)-dimensional classical corre-

by y=1/g, whereg (or I') denotes the strength of quantum lated system described by the equation
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d(kk,) SF Colk)
Jt _—Féd)(—k,—ka)_l—n(k,ka,t) (9)

with 5(k,k,,t) being Gaussian white noise satisfying

(KK, ) (k" K. 1)) =2 84(k+K')S(k,+k.)S(t—t).

(10 Golk, by )

Conversion of the above equation to thécé) represen-
tation immediately gives us the “free” response function
Go(k,k, ,w) [which measures the response of the system,
i.e., the variational derivative of the order parameter with
respect to an arbitrary magnetic fieldt) computed ath
=0], and the free correlation functio@y(k,k, ,») given,
respectively, as

1 FIG. 2. The self-energy diagram up to the second ordet in

. > > ) (11 with two filled circles (A) and twou’s. The thin line corresponds

—IWIT K+ oy +r free propagato6G,(k,k, ,») and the line with a filled circle stands
for free correlatorCy(k).

Go(k, Ky )=

Co(k,kaw):<¢(klka1w)¢(_k1_ka!_w)>

the random-field parCy(k,k,®) with both w,k,=0 [Eq.
= 2T+ A 8(0) (k,) , (12 (13)] and the line without the thick circle denotes the free
|—i /T + yk2+Kk2+r|? response functios, given in Eq.(11). Clearly with twou’s

and twoA'’s the diagram is of the orda?(= €?). We defer
Mhe details of the calculation to the Appendix and only quote
Sthe results here. We need to introduce an additional exponent
z4 such that, [the correlation length in thed(+ 1)th direc-
tion] ~ £% (where¢ is the correlation length in the spatial

lculati v thee . dth dimensiong in the vicinity of the critical point. Clearly, this
group caiculations, namely Xpansion around the upper exponent corresponds to the dynamical exponent of the

critical (spatia) dimensiond;=6 (Ref. 26 and look at the d-dimensional random-field quantum model.

dynamical scaling behavior. Static renormalization-group Having calculated the self-energy diagréappendix we
calculations of the classical random-field systemd also of look at 3 (k,k, ,) in different limits at the cortical point:
the quantum random-field systefislearly show that the S (k,0 0)’_“2'(0 0.0y~ —k25Ink '
random-field fixed point is stable and thermal fluctuaticors E(O’k’ 0)_2((’) 0 0y k27 "; K

guantum fluctuationsare “dangerously” irrelevant. It has E(O,OC,Z))—E(O O 'Oyv—ic: ”inw“

also been shown that under renormalization the measure of Abo’ve Wo exp;réssions aZ'EuaIIy. define the exponepts
randomness/A) grows and tends to take the system beyond n
the scope of perturbative calculations. The appropriate scaft UZéér renormalization by a factor of length sch)d and
ing variable isW= Au, which is relevant below théspatia) |

upper critical dimensiori=6),22 and at the same timeis 7’ Sco'c 88

irrelevant ford<6. Thus, we have to look at the flow equa-

tions of the scaling variables u andw.?® From the nature of I'’=I'b?"?"7(1+5Inb), y'=yb* %~ 7(1+7,Inb).
the free correlation function given in E¢L2), we find that (14)
the most infrared divergence~(1/k* comes from the

random-field fluctuations, so the noise term is altogethelp to ordere?, one can show thap,= 7,=37. Demanding
neglecte® and consequently the free correlation functionthat bothy and thel scale to a fixed point, one find#p-
reduces to pendiy

where the overbar indicates the average over the rando
field fluctuations. Clearly, the first term in the above come
from fluctuation dissipation due to noi$Eqg. (10)] whereas
the second term is due to the random-field fluctuations.
We shall now employ the dynamical renormalization-

Ad(w)(k,) z,=1+7, z=2+27. (15)

Co(k,k, ,w)= . 13
of i Ser e P

As mentioned earlier, the exponent appearing here is the

The static critical exponents obtained from perturbative quantum dynamical exponent which in this particular model
expansion and the nature of the critical point of the modeis half that of the classical dynamical exponent up to
considered here, are already discussed in the literatdfe. O(e€?).? This is an artifact of the symmetry of the propaga-
We shall here look at the dynamical aspect of this correlatetor and the dominance of the random-field term.
random-field system. We need to calculate the self-energy We have performed this calculation withl=1. It is
diagram(Fig. 2), which is the only relevant diagram up to straightforward to extend these calculations to rotaw (
the ordere?,?® to find its contribution to the self-energy =2) and obtain identical expressions foandz, . However,
> (k,k,,w). The line with the thick circle in Fig. 2 denotes the value of the exponenj will definitely depend uporM.
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IV. DYNAMICAL SCALING this calculation to predict an intermediate glassy phase be-
: . . L tween the ferro and para phase. Both Mezard and Monasson
The repllcg symmetrie-expansion stqdles |mply'that dy- and also De Dominicis, Orland, and Temessdetermined
o o [EMREraI s T, Where he eplca ymmelic Soli
. prop 9 y PONSEon is unstable. In principle, it should be possible to extend
function given as

these calculations to the correlated random-field model to

IR z z check the stability of the replica symmetric ansatz. Prelimi-
Xk o) =[r] 77X (ke 08" kot™) (16) nary calculations based on the SCSA in the present model
with seem to indicate possible replica symmetry breaking as ob-
tained by Mezard and YourgLet us now recall the “drop-
w(k)=Kk*f (k&) =& *f1(ké), (17 let” model”% proposed with a view to investigate the spin

plass phase of the short-range classical Ising spin glass at
very low temperature. This model includes no nontrivial “er-
godicity” breaking and assumes only a single thermody-

wherezis the dynamical exponent for the correlated classica
system and, is the “anisotropy exponent” or the dynami-

cal exponent of the equivaledtdimensional quantum sys- i oh f I 9. F the d ical
tem andy is the susceptibility exponent. namic phase up to an overa -rrom the dynamica

Let us now recall the relaxational scaling behavior of thepOi.nt of view, in the Iow-temperature limit, only the fastest
isotropic random-field Ising system as proposed by Fi€her activated processes are co_nS|dered and eventually thg system
(see also Ref. 34 The contribution to the dynamics will shows activated .dyn?‘m'cs in the glassy ph”ﬁ:ﬂathe replica
essentially come from large, “rare” locally ferromagnetic symmetry_break|_ng in the correlated_ RF.IM IS of the ab_ove
regions having two minima with energy separation almostYP® (tha’g is, replica symmetry breaking is trivial, or replica
zero. The barrier height near the criticality increasests zymme_trlti as Il'n drgpltet mt;)d‘glt ShtOUId :g%d io actlvatetd
and the relaxation dynamics is essentially activated with rei yr:;an;(lca r?ca mgr.] “n.Wet tralevtet;]iwouim ?NOO p;]renr da ulre
laxation time diverging as~ exp@&?). € expansion fails to 0 Mmake any such conjecture at this point. Ye should aiso
capture this “activated” nature of dynamics. From the ex. mention here that nonperturbative effects like instantons can

perimental measurement of King Mydosh, and Jaccafiio, break down thes expansion and this could explain that the

has been found that the variation of the peak height in the aeerturbative computation fails to capture the activated dy-

- . ) ' . namics.

susceptibility for three-dimensional random-field Ising sys- . .

tem (F@ 4¢ZNg 54~) as a function of frequency, is consistent We should also mention here that the .ab@\./expansmn.

with the activated dynamical scaling as proposed by Fishets.'hOWS that the c;orr'elatlon in the Trotter'd|rgct|on grows in a

We refer to Ref. 36 for the discussion on various other exp?]‘{vir .IaW§a~.§ % "Ei"t quarjl'_tﬁm dyr|1amlcs IS convenlporl_al,

perimental observations concerning the dynamical scaliné/ Ich IS possibly not trué. The real space renormalization-

behavior ofd=3 RFIM systems. roup calptglatmn of the one—d!mensmn_al random quan.tum
One can readily extend the above idea of Fisher to théSlng Crg"} a_nd also the studies on d|Iu.te q_uantum Ising

correlated random-field Ising systems. In this case, the rargystem predict that the quantum dynamics is actually ac-

regions will be correlated in the Trotter direction, and thellvated with the dynamical exponent, diverging at the

. tum critical point. We should also note in passing that
dynamics of these types of systems are expected to be mof'd" . . . .
y yp Y P Ege numerical studies of two- and three-dimensional short-

activated. We assume that the barriers in the present ca . in ql22 o
¥ (note that the effects of the Trotter direction lurk |2"9E uantum Ising spin gldseem to indicate a conven-
scale ag” (note tha Irection IUrk tional dynamical scaling with a finite dynamical exponent at

in this modnged valued’, which is also seen il-expansion  na critical point. Very recent numerical Monte Carlo simu-
calculation$®), Whlc_h readily leads to t_he agtlvated scaling lations, however, predict activated dynamicsdr 2.4 In
form for the dynamical response function given as the next section, we shall indicate that the correlation length
n &, of the present model indeed grows much faster than the
_ 2y @ power law.

X(& o) =6"7X &' ) (18 We shall now provide a phenomenological argument re-
garding the dynamical scaling aspect of a general correlated
At criticality ¢ disappears from the scaling relation and werandom classical system based on the symmetry of the order
have x()~|In /@ 7'¥ The relaxational dynamics is thus parameter. As argued before, the contribution to dynamics
argued to be activated with an exponetit different from  will essentially come from the dynamics of “large rare”
that in Ref. 33 and this does not show up dérexpansion blocks which are locally ordered. Neglecting the coupling to
studies. Because of the additional ferromagnetically conthe environment, the fluctuations of this block spin can be
nected Trotter direction, we expect th@t is larger thand  described by a one-dimensiorjghe (d+ 1)th or Trotter di-
and the dynamics is slower. mension along which the rare blocks are correlated

To address the question of replica symmetry breaking-component spin chain with ferromagnetic couplikg
(RSB in classical random-field systems, Mezard and~LY The relaxation time of this approximate equivalent
Young considered arM component generalization of the chain is naively expected to be of the order of correlation
random-field Ising systems and evaluated the expongnts lengthé,. Then we find that the relaxation times given as
and 7 using the nonperturbative self-consistent screening apsome finite power of the correlation length of the equiva-
proximation(SCSA), which is exact up to the ord@(1/M).  lent one-dimensionl chain,

They found that the replica symmetric ansatz is unstable with
respect to the RSB ansatz. Mezard and Monasegtended ~K, ~L% for M=2, (19
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Lo f=m————— = o«

197

T c

FIG. 3. The schematic phase diagram of the correlated random- ) .
field Ising system with spatial dimensiof>2. R denotes the FIG. 4. The correlated random-field Ising system on a bar ge-

random-field fixed point andC corresponds to the pure thermal ometry. We tall<e one spatial direction of sidethe si.ze along the
fixed point. The arrows indicate the renormalization group rowsTrO_tter (ath)f d'"_aCt'lor_' 'SLal’ andhthe_ traqsverse site The do-
and for any amount randomness, random field fluctuations dominat@'d!ns are o typical siz€, along the directiomN and¢, alongL,,.

over the thermal fluctuations and determine the critical behavior. . ) ) ) S
d-dimensional random-field Ising model considering do-

r~exp(K,)~expcLd) for M=1, (20) mains on a bar geometry: They ;howed that the wall rough-
ening removes the marginality id=2 and calculated the
wherec is constant. The above equations obtained from theorrelation length for botld=2 andd=2+¢.** We shall
phenomenological argument indicate that the relaxationdhere extend the same phenomenological renormalization
dynamics of correlated random systemsaitivatedfor M group ideas to striped random-field Ising systemsdr ()
=1, but is conventional foM=2. We thus expect the criti- dimensions. The zeroth-order thedfiat domain wall$ for
cal dynamics of short-range Ising spin glass systems witfihe RFIM (Ref. 29 that provides the asymptotically correct
“striped” randomness to be activated, even though the critiflow equations for the variance of the random-field fluctua-
cal dynamics of isotropic spin glass systems istions, deals with the ground-state energy of the RFIM at
conventionaf® =0. This argument stems from the fact that the random-field
fluctuations always dominate over the thermal fluctuations
and temperature is irrelevant. THe=0 theory discussed in
Ref. 29 yields the equilibrium value of the correlation length
In this section, we shall investigate the critical behavioré, of the finite-width bar, in the asymptotic limismall h)
and marginality of a generald@ 1)-dimensional “corre- when the correlation lengty (or the measure of the typical
lated” (striped random-field “Ising” system, using analytic size of the of the domains along a particular direction, arising
phenomenological scaling on a bar geoméfryThe (d  due to the random-field fluctuationis much bigger thar,
+1)th dimension, as mentioned earlier, is the Trotter dimenthe size of the bar in othed(-1) directions.
sion along which the randomness is correlatege Fig. 1 The situation is fairly complicated in the present problem
Before going into the details of this phenomenological scal{with correlated random fiejdn comparison to that consid-
ing, we must briefly discuss the established conjecture corered in Ref. 29. In this case as well, the random-field fluc-
cerning the critical behavior of the striped random-field Isingtuations slice the system in domains of sée but since the
system(with spatial dimensiom) or the equivalent quantum randomness is correlated in the Trotter direction this domain
random-field Ising systems. The extension of domain walWwill “percolate” along that direction causing the correlation
arguments to the present case implies that that the lowerlength &, to diverge(see Fig. 4 One must then introduce
critical (spatia) dimension happens to be 2, i.e., in42)  thermal fluctuations at the very outset to slice the domains
spatial dimension(with additional Trotter dimensionthe into finite sizes in the Trotter direction. To be more specific,
correlated RFIM system will sustain long-range order forto formulate the zeroth-order theory for the present problem,
small randomness and temperattfi&econdly, an extension we need to consider entropic effects in addition to the as-
of the Harris criteriof? in the correlated random-field case sumption of flat domain walls.
suggests that random fluctuations always dominate over the With a view to formulate the zeroth-order phenomeno-
thermal fluctuations and the random-field fixed point deterdogical renormalization-group theory in this correlated
mines the nature of criticality. The thermal fluctuations in therandom-field system, we make a convenient compromise be-
correlated classical system actually mimic the quantum fluctween the random-field fluctuations and the thermal fluctua-
tuations in thed-dimensional random quantum model. In tions. We here study the system ondaH(1)-dimensional bar
Fig. 3, we schematically draw the renormalization-groupgeometry(Fig. 4) with sizeN in one of the spatial directions
flows and the different fixed poinfS.In this section, we andL in the other —1) spatial directions. We take the size
denote the measure of randomnesshy: A% whereA is  of the bar along the Trotter direction &s,. The random-
defined through the distribution given in E@®). field fluctuations slice the directiad into domains of typical
As mentioned previously, Stinchcombe, Moore, and desize¢, . The random field being relevant in the sense of the
Queiroz?® obtained a scaling description for the renormalization group, we ignore the entropic effect arising

V. PHENOMENOLOGICAL RENORMALIZATION
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due to the arrangements of these walls so that we get back 1 1
the results of Ref. 29 for the ordinary RFIM. As discussed Xog=7= 1 . (25
earlier, we must take into account the thermal fluctuations S exp(23LYHT)+1

which create domains of typical sizg&, in the ath (i.e., o .
Trotten direction. We consider both the energy and the en- The renormahzatmn-groupRG) transformations of pa-
tropic (finite-temperatureeffect of these domain walls in the rameters /3,3o/T) under rescah_ng oL by a facto_rb are
Trotter direction. We believe that this simple-minded geom-OPtainéd from the phenomenological scaling relatitrishe

etry is going to constitute the zeroth-order theory for theSCaling relation fomn/J is given by

striped random-field system, which should be exact in the h/J)’ h
asymptotic limit(smallh, smallT), when both¢, andé&, are ) _ £p(hVd) (26)
much larger thart.. L bL

The procedure we employ here is to minimize the freeyging the expression fag, [Eq. (24)] in Eq. (26), one im-
energy 7=U—TS to determine the characteristic length megiately arrives at the recursion relation fgd, which is
_scalesf and g_a via phenomenologlcal_scallrf'é.As argued given as
in the preceding paragraph, we work in the low-temperature
and low-randomness limit and consider well-separated do- h\’ h
mains ¢,£,>L) as in Ref. 29. In the zeroth-ordéiat do- ( ) :b(z_dW( )
main wal)) theory, the entropy contribution we consider cor-
responds to the ways of arranging,/&, flat walls with  This result is identical to that in the case of ordinary random-
average spacing, along the Trotter direction of size,  field systems, as in Refs. 43 and 44. Equati@n) has an

(27)

(Fig. 4), and is given by unstable fixed point ah=0 for d<2 and the eigenvalue
b(d=2)2 implies that the bulk(spatia) correlation length¢
L. (for d<2) diverges folh—0 andT=0 as
S(é)=In\ L s¢, |- (21 e

Simplifying the above expression for the entropy usingThe renormalization is marginal fat=2 and one has to
Stirling’s approximation one can immediately write the ex- consider domain “decoration” perturbations of the flat walls

pression for free energy as to deal with the marginality atl=2.2° The flow Eq.(27)
implies thath=0 is a stable fixed point fod>2 and it is
F=U-TS unstable fod<2. This suggests that the lower critidapa-

NL tial) dimension is 2 in agreement with the existing conjec-
= (209 Y —hE LT TE +205¢ L9 -Ts,  Wre
foa[ ¢ ¢ & oft ] We shall now apply the corresponding phenomenological
(22) finite-size scaling relation to the correlation lengthalong
the Trotter direction
where the simplified expression for the entropy is of the form

(W|th kB:l) ga(Lal(T/‘]O)’)_ga/(bLai(T/‘]O)) (28)
. L, B bL, '
S=—NLy[XInX,+(1=X,)In(1—X,)], where Xa=g Using the expression fof, given in Eq.(24), in the low-

temperature limit and ignoring corrections of the order of
(23 Inb, we find that the recursion relation for the parameter

In the expression for energy in Eq. (22), the first term is  T/J, is given by

due to the interfacial energy of domain walls along the di-

rectionN, the second term originates from the random-field Jo|" 4 afJo
fluctuations(as suggested by the central-limit theojermnd T ~b T/ (29
the third one is the interfacial energy due to domain slicing
in the Trotter direction. The(ferromagnetig interaction The recursion relations given in E27) and(29) com-
along the (anisotropig Trotter direction is denoted by, pletely describe the phenomenological RG equations for the
while interaction along thé spatial directions is. correlated random field systems ird{1) dimensions.
Let us now extremalize the above free energy with fixedAbove the lower critical(spatia) dimension(i.e., for d=2
N andL,, demanding +¢€), Eq. (29) shows that temperature scales down to zero
confirming that thermal fluctuatioriguantum fluctuations in
IF IF the equivalent quantum modedhre irrelevant. Let us now
EZO’ (9_XL:O’ where x = 1/¢, . recall the expression for the correlation length given in

Eg. (25 which shows an exponential growth of the correla-
This gives the characteristic inverse length scales of thgon lengthé, in the Trotter direction as temperature scales
problem as down to zero. We identify this as the signature of activated
) guantum dynamics which was missing teexpansion cal-
Y= 1 :( h ) L1-d (24) culation of the previous section. It should be noted here that

§_L we do not expect to retrieve pure Ising results for 0,

4]
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2
3) +Aln b(j) : (30) APPENDIX: EVALUATION OF EXPONENTS zAND z,

In this appendix, we shall evaluate the exponerdadz,
up to the second order ia. We shall here consider the
self-energy diagram given in Fig. 2, which is the only rel-
evant diagram up to this order of expansion with free propa-

Definingw=h/J andt="T/J, we find[with b=exp()] using
Egs.(29) and(30),

oW €

=" §W+ AW?, (31) gator and free correlator, given & criticality r =0)
at Go(k,k,, @)= ! (A1)
St (32 O O I+ K K
Clearly, the fixed point that determines the criticality is given Ad(0)6(q,)
asw* =(e/2A)*? t* =0 and the corresponding correlation Co(k,k, , )= — B TEE (A2)
length exponenty=1/e to the ordere®. This immediately | =i /T + vk + K|

leads to the conclusion that the fixed point that determines . ,
the criticality in the (+1)-dimensional correlated or The c_ontnbunon of the above diagram to the self-energy can
equivalentd-dimensional quantum random-field system isP€ Written as
the same as that id-dimensional random-field system and

the exponents happen to be the same as the exponents of e  aa2
d-dimensional random field systems. Thus, the phenomeno- 2(k kg, 0)=UA J (2m)P
logical zeroth-order theory is completely in agreement with

delJ dk, 1
(2m)° ki

the results obtained using the field-theoretiexpansion. 1 1

We conclude this section with the note that we have ex- X — = >
tended the phenomenological renormalization calculations to Ky [T/l +(k—ky—kp)"+ kG ]
the correlated random-field Ising systems on a bar geometry. (A3)

The zeroth order theory we present is completely in agree-

ment with the existing conjecture and provides physicallyLet us now drog” and v till the end of the calculation. We
relevant results. Efforts are being made to extend this argudefine exponents, 7,, and », in the following way:

ment to the systems witM =2 and also to explore a pos-

sible Griffiths singular phase associated with this transition.3,(k,0,0)— 2(0,0,00= 7k?Inb

D D
VI. CONCLUSION :fA dk fA d”ka
D D
We have studied d+1)-dimensional striped random- Afo(2m)= I Al (2m)
field systems. The finite-temperature transition in this model 11 1

is equivalent(in the sense of universalityto the zero- X
temperature transition in quantum random-field systems. The
e-expansion studiegwithin the replica symmetric frame-
work) of the relaxational dynamics of the above model fail to _ 1
capture the activated dynamical scaling. The dynamical scal- (|21+ K,)2
ing is argued to be activated with a modified exponéht
which bears the signature of correlated randomness. A ph&imilarly,
nomenological argument is provided in favor of activated
critical dynamics in general random Ising systems with cor-3,(0k,,0)—3(0,0,00=k27,Inb (A5)
related randomness.

We also discuss a zeroth-order phenomenological scaling (—k2)
theory using a bar geometry to investigate the the critical :f J' S — (AB)
behavior of striped random-field Ising systems. The expo- kq kzk‘l‘k‘z‘(lir kp)*
nents just above the lower critical dimensiom (2+ €) spa-
tial dimension$ are evaluated and the signature of the acti-to the orderk? .
vated(quantum dynamical scaling is clearly indicated. We define identicallyy, ,

ki ka(k—ki—kp)

. (A4)




362

3 (®,0,00-2(0,0,0=+iwnInb (A7)
fklsz kik (k1+k2)4
(A8)
From Eq.(A4), we find
1
. (k,0,0)—3(0,0,0) = f f W
y [—k2+2|2.(|21+|22)]
(k—ki—kp)? |
(A9)

We have to extract the coefficient kf in the above expres-
sion; with a few lines of algebra, in the limkt— 0, we find

2 —
E(k,o,O)—E(o,o,o):fkf 1 1 k%(4cod0-1)

1Jko K1 K3 (ky+kp)*
(A10)
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where 6 is the angle betweek and k;+Kk,. Inserting the
angular average of c&8=1/d, we find from Eq.(6),

1 1 k%(4/d—1)

>(k,0,00-2(0,00= | —————>—. (All

(KOO2O00= [ hdid vk (ALY
Comparing Eqs(A11) and(A6), we find

= d Al2

.=\ g=z] " (A12)

With d=6, we find »,=3#. Similarly comparing Egs.
(A11) and(A8) we find ;=37. These immediately lead us
to the scalindusing Eq.(9)] of parameterg andIl" given as
,yr:,yb2722q+27;, Fr:l-*b272+27]_ (A13)
Demandingy andI to scale to a fixed point immediately
gives us

z=2+27 and z;=1+ 7. (A14)
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