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Theory of anomalous magnon softening in ferromagnetic manganites
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In metallic manganites with low Curie temperatures, a peculiar softening of the magnon spectrum close to
the magnetic zone boundary has experimentally been observed. Here we present a theory of the renormaliza-
tion of the magnetic excitation spectrum in colossal magnetoresistance compounds. The theory is based on the
modulation of magnetic exchange bonds by the orbital degree of freedom of double-degepetatdrons.

The model considered is an orbitally degenerate double-exchange system coupled to Jahn-Teller active
phonons which we treat in the limit of strong on-site repulsions. Charge and coupled orbital-lattice fluctuations
are identified as the main origin of the unusual softening of the magnetic spectrum.

[. INTRODUCTION the ferromagnetic interaction at a given bond strongly de-
pends on the orbital quantum number &f electrons(see
The motion of charge carriers in the metallic phase offFig. )—along thez direction, e.g., only electrons it,2_ 2
manganites establishes a ferromagnetic interaction betwegibitals can hop between sites and hence can participate in
spins on neighboring sites. According to the conventionadouble-exchange processes; the transfed,of ;2 electrons
theory of double exchande® the spin dynamics of the fer- is blocked due to the vanishing overlap with @ 2rbitals
romagnetic state that evolves at temperatures below the Cilpcated in-between two neighboring Mn sites. Temporal
rie temperaturd ¢ is expected to be of the nearest-neighborfluctuations ofe, orbitals may thus modulate the magnetic
Heisenberg type. This picture seems to be indeed reasonab#ykchange bondsee Fig. 2 thereby renormalizing the mag-
accurate for manganese oxides with large valuegqfi.e.,,  non dispersion. Short-wavelength magnons are most sensi-
for compounds whose ferromagnetic metallic phase is sugive to these local fluctuations and are affected most strongly.
tained up to rather high temperatufellowever, recent ex- Quantitatively the modulation of exchange bonds is con-
perimental studies indicate marked deviations from this catrolled by the characteristic time scale of orbital fluctuations:
nonical behavior in compounds with low values ®f. If the typical frequency of orbital fluctuations is higher than
Quite prominent in this respect are measurements of the spihe one of spins fluctuations, the magnon spectrum remains
dynamics of the ferromagnetic manganese oxidgnostly unrenormalized—the orbital state then effectively en-
Pr0,6§ro,37lvln03.7 While exhibiting conventional Heisenberg ters the spin dynamics only on the time average which re-
behavior at small momenta, the dispersion of magnetic excistores the cubic symmetry of exchange bonds. On the other
tations (magnon$ shows curious softening at the boundary hand, if orbitals fluctuate slower than spins, the renormaliza-
of the Brillouin zone. This observation is of high importance tion of the magnon spectrum is most pronounced—the an-
as it indicates that some specific feature of magnetism ifgotropy imposed upon the magnetic exchange bonds by the
manganites has yet to be identified. orbital degree of freedom now comes into play. The presence
A comparison of the magnetic behavior of different man-of Jahn-Teller phonons enhances this effect by quenching the
ganese oxides further highlights the shortcomings of the

double-exchange theory: Assuming the magnon dispersion to
be of the Heisenberg type, a small-momentum fit to a qua-
dratic dispersion relatiormq=Dq2 yields the spin-wave
stiffnessD; in a conventional Heisenberg system the spin-
wave stiffness scales with the strength of magnetic exchange

bondsD «J. Since the latter also controls the Curie tempera-

ture TcocJ, the ratio ofD and T is expected to be a univer-

sal constant. Manganites, on the other hand, exhibit a pro-

nounced deviation from this behavioD/T. increases

significantly as one goes from compounds with high to com- Je ot Je =0

pounds with low values o .8 The presence of an addi-

tional mechanism that controls the magnetic behavior of FiG. 1. Theey-electron transfer amplitude, which controls the

manganites is to be inferred. double-exchange interactialpe, strongly depends on the orbital
In the present paper, we propose a mechanism to explaigtrientation: Along thez direction, e.qg.ds,2_,2 electrons(left) can

the above peculiar magnetic properties of ferromagnetitiop into empty sites denoted by a sphere, while the transfer of

manganites. Our basic idea is the following: The strength otl,._,> electrons(right) is forbidden.
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I : where we have chosen a representation with respect to the
! orbital basis{|3z2—r?),|x2—y?)}. The second term of Eq.

% -~ 6 (1) describes the Hund’s coupling between the itinet

e T /% - electrons and the localized core spifs the magnitude of

| | this coupling isJy . The spin operatos, acts oney elec-
trons in orbitalse, while §=% .5, denotes the tota, spin

FIG. 2. Fluctuation of magnetic exchange bonds: Full lines de-at a given site. Finally, the last two terms in modg) ac-
note active bonds, dashed lines inactive ones. count for the intra-(inter-) orbital Coulomb interactiorlJ

(U") and the Hund'’s coupling betweey electrons in dou-
dynamics of orbitals. The suppression of fluctuations bebly occupied statesys, is the number operators ef; elec-
comes almost complete as orbitals begin to order, resultingons in the state defined by and «, and n;,=>n;, .
in a distinct softening of magnons which we interprete as éouble counting is excluded from the primed sum in the last
precursor effect of static orbital order. term of Eq.(2).

In the following, we calculated the dispersion of one- In analogy to the transformation from a conventional
magnon excitations at zero temperature. We start from apjubbard tot-J model, Eq.(1) can be projected onto the part
orbitally degenerate Hubbard model that comprises thef the Hilbert space with no double occupancies in the limit
strongly correlated nature of the Mnd3electrons and the of strong on-site repulsiond>t and U’ —Jy)>t. Doubly
physics of double exchange. The metallic motion of chargeyccupied states are then allowed only in virtual superex-
carriers establishes magnetic double-exchange bonds whiglhange processes. Due to the presence of Hund’s coupling,
are found to be further contributed to by virtual superex-the energy level of these virtual states depends on the spin
change processes. Both types of exchange interaction are éfientation of core ana, spins—a rich multiplet structure
ferromagnetic nature in the orbitally degenerate system suljollows.*® The problem considerably simplifies in the limit of
ject to a strong Hund’s coupling. Employing é8Jéxpansion  |arge Hund’s couplingJ,U’>J,;>t which we believe to be
of spin and an orbital-liquid sche¥ to handle correlation  realistic to manganites: Transitions to the lowest-lying inter-
effects, three different mechanisms are analyzed with respegediate state with enerdy,=U’—Jy, in which core and,
to their capability to renormalize the magnon spectrum: scatspins are in a high-spin configuration then dominate; doubly
tering of magnons on orbital fluctuations, on charge fluctuaoccupied sites with different spin structures lie higher by an
tions, and on phonons. Within this picture we can successenergy of the order ofJ,, and can be neglected. We hence
fully reproduce the experimentally observed softening of thepptain the followingt-J Hamiltonian:
magnon dispersion. Furthermore, we predict the renormal-
ization effect to become dramatic as static order in the
orbital-lattice sector is approached. We note that the renor- Hyy=— 2 > tzﬁ(ci‘rsacstJr H'Cl)_JHZ Ss
malization of the magnetic excitation spectrum by optical (D), sap i
phonons has recently been investigated by Furukdwa.

_\]s,E<_,> (i— 7SS +S(S+DInin;. (2

IJ'y

Il. MAGNETIC EXCHANGE BONDS

The main aspects of the physics of manganites, i.e., thghe first two terms in Eq(2) describe the double-exchange
correlated motion of itinerarg, electrons and the ferromag- mechanism in the limit of strong on-site repulsions. All
netic interaction ok, spins with & background of localized double occupancies @, electrons are projected out by the
core spins, is captured by the following orbitally degenerateconstrained operator&,s :CiTs (1—n;) which act only on

Hubbard model: empty sites. The third term in EQR) describes the superex-
change interaction between singly occupied sites. The
How=— > > t“’g(cﬁsachBJr H.c)—Jy>, S5 strength of this interaction is controlled byJge
(0, sas 7 i =(2t?/U,)[S(2S+1)] !, whereS denotes the total onsite
spin of 3d electrons. It is important to note that in the present
> > UnmanuDﬂFE > ’(U'—JHIS)nianiﬁ, model with largely,, superexchange is dérromagneticna-
P ioa?p ture. This stems from the fact that Hund’s coupling forbids
(1) any double occupancy of a singég orbital. Pauli’'s exclu-
sion principle, which is responsible for the antiferromagnetic
with ﬁ’z(sasBJr%). The first term in Eq(1) describes the nature of conventional superexchange, is therefore ineffec-
intersite transfer of electrons within degeneratg levels. tive in dictating the spin structure of the virtual state. Rather,
Here,CiTSa creates ary electrons with Spin and orbital quan- the spin orientation in the intermediate state is controlled by
tum numberss and a/B, respectively. The spatial direction Hund’s coupling which favors a ferromagnetic alignment of
of bonds is specified by e {x,y,z}. One of the important SPins. The superexchange term in E2).exhibits yet another

features of the orbitally degenerate model is the nondiagondleculiar feature: The amplitude of superexchange processes
structure of the transfer matricés depends on the orbital states of tag electrons involved.

This information enters via the orbital pseudospin operators

ap
xly

14 T34 1 0
=t , t¥h=t ,

V314 3/4 00 7V=—4(ofx\30)), rf=}07,
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These auxiliary particles are subject to the following con-

‘ ‘ straints that depend on theg occupation numben; :

dijdiy +diy i =n;, (4)

gJH ::::> D! Dj;+D{ D; =2S—1+n;. 5

The creation and destruction operators égrelectrons can
then be expressed in terms of spinless fermiopswhich
carry charge and orbital pseudospin and Schwinger bosons
which carry spin:

FIG. 3. The itinerangg spin (top lefy) interacts with the local-
ized core spingbottom lef) via Hund’s coupling. In the limitl,
>1, the former can be separated from the orbital and charge degregthe kinetic-energy Hamiltonia(8) now describes the trans-

of freedom of theey electron(circle) and can be absorbed into the fer of pairs of spinless fermions and Schwinger bosons:
total spin(bottom righj.

Cisa= CioUis -

X/z
|

_ aBat & 4t
where the Pauli matrices;” “ act on the orbital subspace; the Hi= _<% gﬁ tyﬁ(ciaCJBdisdisJ“H-C-)_JHZ S's -
Y

factor (5 — 7'7)) in Eq. (2) accounts for the specific nondi- (6)

agonal structure of the trans_fer matrlq § and ensures that The Bose operators are subject to the constr@nthat en-
no double occupancy of a single orbital occurs which would ¥ . .
forces the operatord;s andd;g to act only on projected Hil-

be forbidden by Pauli's exclusion principle and the Iargeberts aces with one or zero Schwinger bosons, respectivel
Hund’s coupling. We finally note that superexchange pro- P 9 » Tesp y-

cesses in an orbitally degenerate system have also been stl%L-jr aim is to absr?rb the, spn;dlnto the total spin, th'Ch
ied by Feiner and Ofe¥ In the limit of largeJ,, the expres- réquires to map the, operatorsd;s onto operatord;s for

sion obtained by these authors maps onto the superexchanglﬁﬁgt?\llvsop'tn' 1;2If)flsodZ?StgéC%T]pt?]zngrfgehg]r?émf(gleeri?qen?i
term of Eq.(2) for the special cas&=2. yp P : ’ ping

In the following, double-exchange and superexchange in_[nind that Hund'’s rule enforces the on-site spins to be always

teractions which are jointly responsible for ferromagnetismgeanfgﬁgsgTt;zmgneet:;srt:t;;he only nonvanishing matrix
in manganites are discussed in more detail. is OP

S—3,m—3|d;|S,m)=(S+m)/(29), 7
A. Double-exchange bonds { z 2| T| ) ( (29) @

We begin by analyzing the kinetic term of Hamiltonian (S—%,m+%|dl|s,m)= V(S—m)/(2S). (8)
(2),

In deriving the above expressions we have used the Clebsch-
. Gordan coefficient$S®, m®; m®|S,m) to decompose the total-
He=—2> > teP(CluCispt He)—Jdp> S's. (3 spin state|S,m) into core- andey-spin statesS°,m®;m¢)
{1}y sap ' with m®=1/]. These coefficients are given by
which establishes the double-exchange mechanism in the

correlated system. Due to the strong Hund’s coupling, core S 1m E'T Sm)= S+_m v
spinsS° and itinerante, spinss are not independent of each 2 27 2S '
other; rather a high-spin state with total on-site sBinS°

+ 3 is formed. This unification of band and local spin sub- L . 12

spaces suggests to decompose épeelectron into its spin (S—32,m+3;][Sm)= 25

and orbital/charge components. T@gspin can then be ab-

sorbed into the total spin, allowing an independent treatmern the other hand, the matrix elements of g operators
of spin and orbital/charge degrees of freed@re Fig. 3. are

The procedure of this separation scheme is the following: In

a first step we introduce Schwinger bosahsandd; (see, (S—32,m—3|Dy|S,m)=(S+m), 9)
e.g., Ref. 14to describe they spin ) .

L s (S—3.m+3|D|[Sm)=\(S—m). (10

si =djdiy, s =dj dig, . . .
All other matrix elements vanish due to the constraint of Eq.
= %(d_‘r d.—dl d;,) (5). By comparing Eqgs(7),(8) with Egs. (9),(10) we obtain
' T SR the mapping
as well as Schwinger bosolly', andD{| to model the total
on-site spin 1
dis=—==Dis-
S'=D{\Di;, S =D/Dy;, V2s

s 1t . Hamiltonian(6) can hence be rewritten in terms of total-spin
Si=32(Dj;Di; =Dy Dj)). operatorsDs:
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1 ~ami A
=—— *A(cl ¢ ;DLD; He=— tfcl cip+H.c. 14
Hi=— 55 %y gﬁ t2#(cl,CsDEDjs+H.c). (1D . %7 aEﬁ “Bel CiptH.c (14
The Hund’s coupling term of Eq6) has been dropped here This _model gxhibists an unconventional phase-dependent
as its presence is implied by the spin construction employe#OPPINg amplitude!
above. This completes the separation of spin from the
. ~ 3 1 . . ) . :
charge/orbital quantum numbers &f .electrons. tgﬁz tﬁﬁ —+ S (sin6;sin 6, + sin 6;sin 4 gl (4% |,
At low temperatures the magnetic moment of ferromag- 4 4
netic manganites studied here is almost fully saturated. It isa similar result has been discussed in Refs. 16,17 in terms of
therefore, reasonable to expand Enfl) around a ferromag- 5 Berry-phase effect.
netic ground state. Technically this is done by condensing
the spin-up Schwinger bosortassuming the ferromagnetic
moment to point along this directipmnd by treating spin- _ _ _ _
wave excitations around this ground state in the leading or- At low- and intermediate-doping levels, virtual charge-

der of 18. Introducing magnon operatobs, the following  transfer processes across the Hubbard gap beco_mes of_ im-
relations hold: portance. These superexchange processes establish an inter-

site interaction, which in the limit of a strong Hund’s
coupling is described bisee Eq(2)]:

B. Superexchange bonds

1
D1 =125-b/b,~ Jz—s( 1- 4—Sb?bi),

Hy=—Jdse (i—7/m)SS+S(S+1)Inin;. (15
DiL: bi i <'J>y

) ) ) i . As mentioned above, superexchange is of ferromagnetic na-
This spin representation fixes the number of Schwingefyre in the orbitally degenerate system with strong onsite
bosons per site to& The essence of theSkxpansion is to  cqrrelations. Double exchange and superexchange therefore
consider the presence of a hole as a small perturbation whicky:t together in establishing the ferromagnetic exchange links
changes the spin projectid@®f but not the spin magnitud® iy metallic manganite&’

Employing magnon operators, the kinetic-energy Hamil-  £ojlowing the discussion on double-exchange bonds we

tonian(11) hence becomes express the spin operators in E45) in terms of magnon
1 operators; . This leads to
Hi=—> > t;“ﬁ&?a&jﬁJrz—S > > tePcl.cip
W)y «f W)y «b HJ=SJSE<§ (F— )i,
1]
X (3b/b;+3b/b;—bb;) +H.c. (12) g

_ _ _ X[(5b{bi+3blb;—blb;+H.c)—(2S+1)].

The first term of Eq(12) describes the motion of strongly
correlated fermions in a ferromagnetic background. The sec- (16)
ond term controls the dynamics of spin excitations in theequation(16) describes the interaction between orbital fluc-
magnetic background and the interaction of these excitationgations and the magnetic sector of the Hilbert sgdcene
with the fermionic sector. phase dependence exhibited by the double-exchange coun-

At small magnon numbers, i.e., at low temperatufes terpart Eq.(12) is absent here. This is due to the fact that
<Tc, Eq.(12) can be mapped onto the following expressionsuperexchange is a second-order process which depends only
for the magnetic double-exchange bonds: the amplitude but not on the phase of the transfer amplitude.

S R _ IIl. MAGNON DISPERSION
He=— > > t2cl ¢ 2t =SS+ sﬁ)] +H.c.
(i), ap 4S In the previous section, the role of double-exchange and

(13 superexchange processes in promoting ferromagnetic ex-

Equation(13) highlights an important point: The strength of change bonds in manganites was discussed. At intermediate-
double-exchange bonds is a fluctuating complex quantit)/.jc’p'”g levels these exchange interactions induce a ferromag-

Only when treating the orbital and charge sectors on averag8€tic ground state in a variety of manganese oxides. We now
. . ~p n : firn to analyze the propagation of magnetic excitations in
i.e., when replacing the bond operatoFgciB by their mean-

A this ferromagnetic phase, namely by deducing the dispersion
field value(c;raciﬁ>, an effective Heisenberg model as in a rg|ation of single-magnon excitations.
conventional mean-treatment of double exchange is ob- |n a first step, we derive the correct operator for creating
tained:H = JpeZ ;)5 S; with JDE=(282)‘1Eaﬁt$ﬁ(cfacjﬁ>. a magnetic excitation in hole-doped double-exchange sys-
In Sec. lll we investigate in more detail the modification of tems. It has to account for the fact that the total on-site spin
the mean-field picture by fluctuations in the bond amplitudedepends on whether a hole or @pelectron is present at that

It is interesting to turn to the limit of classical spins site: The spin number i$—3 in the former andS in the
shortly. Replacing the spin operators in EA3) by their latter case. This difference in the spin number was neglected
classical counterpar®=ScosfandS™=Ssinge™'?, anef-  in the 15 expansion employed in Sec. Il. Here this approxi-
fective fermionic model is obtained: mation is no longer valid, which requires a rescaling of the
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magnon operator; . In general, a spin excitation is created The two terms on the right-hand sideéns) of Eq. (18) cor-
by the operatorS| . Expressing this operator in terms of respond to an expansion of the bond operadfys; ; around
Schwinger bosonS§;" = DiTTDU, condensing;;, and map- their average value:

ping D;; onto the magnon operattx, the following repre-

sentation is obtained: araajﬂ_)<6?a6j o+ 5(6?6(61' ).
. V2S 1, for sites with e, electron, The mean-field magnon dispersian in the first term of Eq.
i \/m b.. for sites with hole (18) is of the conventional nearest-neighbor Heisenberg form
i .
AssumingSto be the “natural” spin number of the system, wp=2D(1—7p), (19
the magnon operatdy, hence has to be rescaled by a factor .
[(2S—-1)/(2S)]¥2 when being applied to hole sites: with the form factor y,=z" "= ;exp(pé), z=6, and the
spin-wave stiffness constantlis=SJyg. On this mean-field
b; , for sites with ey electron, level the strength of the exchange bonds depends on the
Biz[ 55-1)/(25 b for sites with hole orbital and charge degrees of freedom only on average:
( )/(29) by, ' =(28%) 13, 4t9%(c],Ci ). The second term in Eq(18) is
The general magnon operator that automatically probes thié€ scattering vertex needed to construct the magnon self-
presence of aey electron can finally be written as energy>(w,p). It describes the interaction between mag-

nons and orbital/charge fluctuations. The vertex function is

25-1 1
Bi:bi n;+ 2—8(1_ni) Nbi_4_s(1_ni)bi! Agﬁ(k):’ygﬁ_’ysfp’

wheren; is the number operator af, electrons.B; repre- ~ With the form factoryi”= (zt) "= 5t5” exp(ké). The ver-
sents the true Goldstone operator of hole-doped doubldex functionA#(k) vanishes in the limipp—0 in compli-
exchange systems. Its composite character comprises locaihce with the Goldstone theorem.
and itinerant spin features which is a consequence of the fact Before we can engage in evaluating the magnon self-
that static core and mobile, electrons together form the energy associated with the scattering vertex in @), the
total on-site spin. While the itinerant part 8f is of order  problem of dealing with the correlated nature of fermionic
1/S only, it nevertheless is of crucial importance to ensureoperatorsﬂa:cfs(l—ni) has to be addressed. To handle the
consistency of the spin dynamics with the Goldstone theoconstraint that allows only for one electron per site, we
rem, i.e., to yield an excitation mode whose energy vanishesmploy an orbital-liquid schentet® Orbital and charge de-
at zero momentum. grees of freedom of they electron are treated on separate
Having derived the correct magnon operator for dopedootings by introducing “orbiton” and “holon” quasiparti-
double-exchange systems, we now study the propagation efes. To describe an orbitally disordered state in which orbit-
the magnetic excitations it creates. The link between siteg|s fluctuate strongly, orbitorfs are assigned fermionic and

that allows a local excitation to spread throughout the systerolonsh; bosonic statistic&” The original fermion operators
is established by the exchange-bond Hamiltonidi® and  are hence reexpressed by

(16). At low temperatures the dynamics of spin waves which
hence develop is captured by the single-magnon dispersion. ch =t h .
The important question we are interested in is the following: '
To which extent is the magnon spectrum affected by fluctuaThe |ocal no-double-occupancy constraint is now relaxed to
tions in the exchange bonds? To answer this question wg global one:
express the full magnon spectrLTng in terms of the conven-
tzional mean-field dispersiom, and the magnon self-energy nif+n{‘=l—>(nif>+<n{‘)=l.

(w,p):

(20

The main feature associated with the constrained nature of
wp=wpt RIS (wp,p)]. (17)  electrons, namely the separation of energy scales of orbital
and charge dynamics, sustains this procedure due to the fact
Fluctuation are considered only on average in the former buhat two different types of quasiparticles are being used. In-
are explicitly accounted for in the latter term. The mean-fieldtroducing mean-field parameters
dispersionw, as well as the scattering vertices needed to
constructX (w,p) can be derived by commuting the magnon
operatorB; with the Hamiltonian. To be specific we explic- X=t"12 et 1), x=(blby), (21
itly perform this commutation, for now restricting ourselves “p
to the double-exchange Hamiltonigh given by Eq.(12). In \yherex is the concentration of holes in the system, orbitons

the momentum representation we obtain and holons can now be decoupled. We note that the two
. mean-field parameters in E(R1) are approximately related
~ ~ 1
B, ,H,]= 0 Byt == AYP(K)SL G sBosa. by x=2(1-X). .
[Bp,Hi]=woBp ZSEq azg p (K)CkaC-qBp+a Employing representatiof20), we reexpress the commu-

(18 tator of Eq.(18) in terms of orbiton and holon operators:
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(a) (b) @ =

FIG. 4. Magnon self-energies describing the effect of magnon FIG. 5. Effective spin-phonon-coupling vertex. The dominant
scattering or(a) orbital fluctuations(b) charge fluctuations, ana) contribution shown on the right stems from a combination of spin-
phonons. Solid, dashed, dotted, and wiggled lines denote orbitororbital- (filled dot ot) and orbital-lattice{open dotx=g,) coupling
holon, magnon, and phonon propagators, respectively. vertices. The orbital susceptibility depicted by a bubble controls the
coupling strength. Solid, dotted, and wiggled lines represent orbi-
ton, magnon, and phonon propagators, respectively.

t
[prHt]:“’pBFfl_Z_SE 2 Cgﬁ(k)flafquﬁqu

v W‘E“ Qf’)V:(Qéir ﬁQZi)hlz, Q=Qs, and Q
tx =(Q,i,Qsi); P; denotes the conjugate momentum vector
*3g Eq: Dp(hhi_Bpiq- (220 corresponding to the lattice distortio@. The three terms
on the rhs of Eq(24) account for the crystal deformation
The vertex functions are given by energy, the correlations between neighboring sites, and the
lattice kinetics, respectively. Equatid@4) can be diagonal-
CP(k)=xAsP(K), ized in the momentum representation, yielding

Dp(K) = Yk= Yk+p-

Orbitons and holons have been decoupled in &%) by
employing the mean-field parametersand y of Eq. (21).
This yields two different types of scattering vertices, one
describing the interaction of magnons with orbital fluctua- £ R T
tions, i.e., orbitons, the other of magnons with charge fluc- Wy = 0o Ky VKo K3
tuations, i.e., holons. _ _ (2) _ (3)
y ' Here, =1+k;(cy+cy+c,), =k , =k

Finally, we include in our treatment the magnetic bonds; ;i kfikKl/K ;(ndx 77(23’: _Z)\/§Z:2k_cl)75 n(g)sic _12‘;
stemming from superexchange processes as described by “lo with ¢ — cosk kandw :W Tk o2
in Eq. (16). The effect is twofold: Superexchange enhances ZWyhiIe theare s nao, directo couplin(j between spins and

the spin-wave stiffnes® which now becomes . -
phonons in the present system, lattice modes nevertheless
D =S(Jpe+Jsp) = tx(X+X0)/(29), strongly affect the spin dynamics. The link between spin and
lattice is established via the orbital channel: The coupling of
with Xo=2xt/Uy; further, superexchange processes renororbitals to the lattice imposes low phononic frequencies onto
malize the vertex function of magnon-orbiton scatteringorbital fluctuations. This acts to enhance the modulation of

Hon= 2 0,2 (25)
with index v= = and the phonon dispersions

(26)

which becomes magnetic exchange bonds; thereby the effect of phonons ex-
4Bl o naf B tends onto the spin sector. To study this mechanism in more
Cp"(k) =xA"(K) +x0By"(k,q), detail, we construct an effective spin-phonon coupling
with Hamiltonian from which we then calculate the phononic con-
tribution to the magnon self-energy. Combining the spin-
B;‘B(k,q) = y3ﬁ+ ﬁfq_ Yffp— yﬁfq_p- orbital coupling term of the exchange Hamiltonigdag) and

. _ _ (16) with the orbital-lattice Hamiltoniart23) we obtain(see
From the two types of scattering vertices in Eg2), two Fig. 5):

contributions to the magnon self-energy follow. These de-

scribe the scattering of magnons on orbitons and on holons . .

and are depicted in Figs(a and 4b), respectively. Hepri= — 2 Opo(8qy T 3g)BpBpig- (27)

An important piece of physics is still missed in the above P

treatment, namely the Jahn-Teller coupling of orbitals to theThe coupling constants in ER7) are

lattice?° In a cubic system there exist two independent Jahn-

Teller modesQ, and Q3 which lift the degeneracy of singly

occupiedey orbitals. The interaction between orbitals and g;qz 60(
w

1/2
) (A\Pcos® .~ A sin®),
these two orthogonal lattice modes is described by

g
n+|o

12
Hyr=— Z (92Q2i07+93Q3:07), (23 Ypo= 60( __) (\§3sin®g+\{JcosO,),

q
where the Pauli matricas’? act on the orbital subspace and
the coupling constantg,~ g5. The crystal dynamics is con-

trolled by the Hamiltonian

with €o=(Ejradwo/S)M and A& = ({7 5 —5{3)).
Further
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Sin6 = — (1 39 )ﬂzsi N K2) /;
=—=|1-—F——= Koq)-

2 VK5t K3 I 150 {1t 1t e
The strength of the spin-lattice interaction is controlled by
the orbital susceptibilit)((fmeiT)(af))w which enters the
parameter a0=t(x+xo)((fLZ’TfiT)(aiZ))w:O; the zero-
frequency limit is admissible bearing in mind that the energy
scale of orbital fluctuations exceeds the one of phonons. The
phononic contribution to the magnon selfenergy that follows
from Hamiltonian(27) can finally be calculated, the corre-
sponding diagram is depicted in Figici

—_
(=]
[=]
T
1
T
~
1
T

Energy [meV]

IV. COMPARISON WITH EXPERIMENT 50 b s 4t
/

We are now in the position to evaluate the self-energies of ‘ /
Fig. 4. Charge and orbital susceptibilities are calculated us- | /
ing mean-field Green'’s functions in slave-bodgnand fer- / )
mion f; subspaces. For the spectral density of Jahn-Teller /

phonons in Fig. &) we employ the expression . . . : : .
0 025 050 025 050 025 05
(O!O:E) (Eigio) (E’E’E)

FIG. 6. Magnon dispersion along (0D, (£,£,0), and €,¢,£)

. . directions, wher&=0.5 at the cubic zone boundary. Experimental
which phenomenologlcally e}ccounts fc_)r the daum@f data from Ref. 7 are indicated by circles, the mean-field dispersion
phonons due to thf'r coupling to orbital fluctuations. Thewp of Eq. (19) is marked by a dashed line; the latter is of conven-
phonon dispersiom, is given by Eq.(26). o tional nearest-neighbor Heisenberg form. Solid lines represent the

_The expressions obtained from the diagrams in Fig. 4 cONgegretical result for the dispersian, defined by Eq.(17); it in-
tain summations over momentum space which we perforng|ydes charge, orbital, and lattice effects. The upper curve is ob-
numerically using a Monte Carlo algorithm. The result iStained for dispersionless phonons with=0, the lower one is a fit
shown by solid lines in Fig. 6. For comparison, the experi-to the experimental data with, = — 0.33 corresponding to ferrotype
mental data of Ref. 7 are marked by circles and the bargrbital-lattice correlations.
mean-field dispersiow, is indicated by a dashed line. The
following parameters are chosen: The hopping amplitude physics: Conventionally, one would expégt>0 associated
=04 eV is adjusted to fit the spin stiffness in with a tendency of the orbital-lattice sector to develop anti-
Pr.6:510.3MnOs;” further we useU; =4 eV.*® The phonon  ferrotype ordef? In the hole-doped system, however, this
contribution depends on the quantitiEgTaéz(gzaO)ZIZK effect competes against charge mobility which prefers a fer-
=0.004 eV?! »;=0.08 eV?2 andI'=0.04 eV. rotype orbital orientation. The latter minimizes the kinetic

The upper solid line in Fig. 6 is obtained fioy=0. In this  energy by maximizing the transfer amplitude between sites.
case intersite orbital-lattice correlations in Hamiltoni@d) ~ While Jahn-Teller lattice effects prevail at low doping, we

are discarded—phonons are dispersionless. A pronouncespeculate the kinetic energy to dominate at large enough hole
softening of magnons at large momenta can be observed. éoncentrations. In fact, low-dimensional ferrotype orbital
more detailed analysis reveals this effect to be mostly due taorrelations(resonatingx?—y?), |x2—z?), |y?—z?) planar
fluctuations of the orbital and lattice degrees of freedom. Irconfigurationg have been observed to evolve in a bosonic
contrast, charge fluctuations are found to play only a minodescription of orbital fluctuationsThe fermionic description
role. We attribute this to the fact that the spectral density obf orbitals employed in the present work emphasizes on
charge fluctuations lies well above the magnon band. Orbitaihodeling a strongly fluctuating orbital-liquid state, but un-
and lattice fluctuations, on the other hand, are of rather lovderestimates these orbital-lattice instabilities. In order to
frequency é-xt andocwgh, respectivelyand hence affect the simulate the competition between Jahn-Teller effect and ki-
spin-wave dispersion in a more pronounced way. netic energy we, therefore, turn to a phenomenological ap-
The lower solid line in Fig. 6 is obtained fd;=—0.33  proach: By tuning the parametky we control the character
which yields a fit to the experimental data of Ref. 7. Theof intersite orbital-lattice correlations. The result for different
directional dependence of the magnon renormalization seevalues ofk; is shown in Fig. 7 wheré ;;a3=0.006 eV is
in experiment is well reproduced: The effect is strongest inused.
(0,0¢) and (0¢,¢) directions. A key observation here is the  Ferrotype orbital correlations witky<<O are found to be
crucial role of intersite correlations of orbital-lattice most effective in renormalizing the magnon spectrum. This
distortions—these are captured by the phononic dispersiois ascribed to slowly fluctuating layered orbital configura-
being controlled by the parametky. In order to reproduce tions which effectively reduce the dimensionality of ex-
the experimental data we are forced to assume these correlehange bonds. We note that magnons in #é&,¢) direction
tions to be offerrotype i.e., k;<<0. We believe this some- are sensible to all three spatial directions of the exchange
what surprising result to reflect an important piece of newbonds; their dispersion, therefore, remains unaffected by the

w0 == L (29)
+\w, = T T i o o
puted T wg (w—wa)2+rz
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100 T T T T T T g spin stiffnessD remains unaffected which explains the
K 1T T anomalous enhancement of tHe/T. ratio in low-T¢
gof 03 ¢t 1t - manganites.
-0.3 {1} ]
-0.33 V. CONCLUSION
60 F 0333 qrf 1r .

11 ] In summary, we have presented a theory of the spin dy-
o | 1L 1L i namics in ferromagnetic manganites. Taking into account the
orbital degeneracy and the correlated natureoélectrons,
we analyzed the structure of magnetic exchange bonds; these
20 ir ir 1 are established by the intersite transfer of electrons in coher-
ent double-exchange and virtual superexchange processes.
L i . ' L Orbital and charge fluctuations are shown to strongly modu-
0 025 050 025 050 025 05 late the exchange bonds, leading to a softening of the mag-
(0,0,%) (££,0) (£, non excitation spectrum close to the Brillouin-zone bound-
ary. The presence of Jahn-Teller phonons further enhances
FIG. 7. Magnon dispersion including charge, orbital, and latticethe effect. This peculiar interplay between double-exchange
effects. Different values fok, controlling intersite orbital-lattice physics and orbital-lattice dynamics becomes dominant close
correlations are used. The softening enhancek;as—3 corre-  to the instability towards an orbital-lattice ordered state. The
sponding to an instability point towards ferrotype orbital-lattice or- unusual magnon dispersion experimentally observed in low-
der. T manganites can hence be understood as a precursor effect
of orbital-lattice ordering. While the softening of magnons at
local symmetry breaking induced by low-dimensional orbitalthe zone boundary is responsible for reducing the value of
correlations. As an instability towards orbital-lattice order isT¢c, the small-momentum spin dynamics that enters the spin-
approached, exchange-bond fluctuations become quasistatitave stiffnesD remains virtually unaffected. This explains
In the magnon spectrum this is reflected by a strong enhancéhe enhancement of the rafiy T observed in lowf ¢ com-
ment of the renormalization effect as is seen in Fig. 7 foPounds. In general it can be concluded that strong correla-
k,— — . The layered orbital structure which evolves at thistions and orbital fluctuations play a crucial role in explaining
point is accompanied by a layered spin structure; the latter i1€ peculiar magnetic properties of metallic manganites.
indeed experimentally observed at doping levels of about
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