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Theory of anomalous magnon softening in ferromagnetic manganites
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In metallic manganites with low Curie temperatures, a peculiar softening of the magnon spectrum close to
the magnetic zone boundary has experimentally been observed. Here we present a theory of the renormaliza-
tion of the magnetic excitation spectrum in colossal magnetoresistance compounds. The theory is based on the
modulation of magnetic exchange bonds by the orbital degree of freedom of double-degenerateeg electrons.
The model considered is an orbitally degenerate double-exchange system coupled to Jahn-Teller active
phonons which we treat in the limit of strong on-site repulsions. Charge and coupled orbital-lattice fluctuations
are identified as the main origin of the unusual softening of the magnetic spectrum.
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I. INTRODUCTION

The motion of charge carriers in the metallic phase
manganites establishes a ferromagnetic interaction betw
spins on neighboring sites. According to the conventio
theory of double exchange,1–5 the spin dynamics of the fer
romagnetic state that evolves at temperatures below the
rie temperatureTC is expected to be of the nearest-neighb
Heisenberg type. This picture seems to be indeed reason
accurate for manganese oxides with large values ofTC , i.e.,
for compounds whose ferromagnetic metallic phase is s
tained up to rather high temperatures.6 However, recent ex-
perimental studies indicate marked deviations from this
nonical behavior in compounds with low values ofTC .
Quite prominent in this respect are measurements of the
dynamics of the ferromagnetic manganese ox
Pr0.63Sr0.37MnO3.7 While exhibiting conventional Heisenber
behavior at small momenta, the dispersion of magnetic e
tations ~magnons! shows curious softening at the bounda
of the Brillouin zone. This observation is of high importan
as it indicates that some specific feature of magnetism
manganites has yet to be identified.

A comparison of the magnetic behavior of different ma
ganese oxides further highlights the shortcomings of
double-exchange theory: Assuming the magnon dispersio
be of the Heisenberg type, a small-momentum fit to a q
dratic dispersion relationvq5Dq2 yields the spin-wave
stiffnessD; in a conventional Heisenberg system the sp
wave stiffness scales with the strength of magnetic excha
bondsD}J. Since the latter also controls the Curie tempe
tureTC}J, the ratio ofD andTC is expected to be a univer
sal constant. Manganites, on the other hand, exhibit a
nounced deviation from this behavior:D/TC increases
significantly as one goes from compounds with high to co
pounds with low values ofTC .8 The presence of an add
tional mechanism that controls the magnetic behavior
manganites is to be inferred.

In the present paper, we propose a mechanism to exp
the above peculiar magnetic properties of ferromagn
manganites. Our basic idea is the following: The strength
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the ferromagnetic interaction at a given bond strongly
pends on the orbital quantum number ofeg electrons~see
Fig. 1!—along thez direction, e.g., only electrons ind3z22r 2

orbitals can hop between sites and hence can participa
double-exchange processes; the transfer ofdx22y2 electrons
is blocked due to the vanishing overlap with O 2p orbitals
located in-between two neighboring Mn sites. Tempo
fluctuations ofeg orbitals may thus modulate the magne
exchange bonds~see Fig. 2!, thereby renormalizing the mag
non dispersion. Short-wavelength magnons are most se
tive to these local fluctuations and are affected most stron
Quantitatively the modulation of exchange bonds is co
trolled by the characteristic time scale of orbital fluctuation
If the typical frequency of orbital fluctuations is higher tha
the one of spins fluctuations, the magnon spectrum rem
mostly unrenormalized—the orbital state then effectively e
ters the spin dynamics only on the time average which
stores the cubic symmetry of exchange bonds. On the o
hand, if orbitals fluctuate slower than spins, the renormali
tion of the magnon spectrum is most pronounced—the
isotropy imposed upon the magnetic exchange bonds by
orbital degree of freedom now comes into play. The prese
of Jahn-Teller phonons enhances this effect by quenching

FIG. 1. Theeg-electron transfer amplitude, which controls th
double-exchange interactionJDE , strongly depends on the orbita
orientation: Along thez direction, e.g.,d3z22r 2 electrons~left! can
hop into empty sites denoted by a sphere, while the transfe
dx22y2 electrons~right! is forbidden.
3494 ©2000 The American Physical Society



be
tin
s

e-
a

th

rg
h
x

re
u

pe
ca
ua
s

th
a

th
o

ca

th
-
d
at

-
n

n

the
.

ast

al
rt

it

ex-
ling,
spin

f

er-

bly
an
ce

e
ll
e

-
he

nt

ds

tic
fec-
er,
by
of

sses

ors

de
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dynamics of orbitals. The suppression of fluctuations
comes almost complete as orbitals begin to order, resul
in a distinct softening of magnons which we interprete a
precursor effect of static orbital order.

In the following, we calculated the dispersion of on
magnon excitations at zero temperature. We start from
orbitally degenerate Hubbard model that comprises
strongly correlated nature of the Mn 3d electrons and the
physics of double exchange. The metallic motion of cha
carriers establishes magnetic double-exchange bonds w
are found to be further contributed to by virtual supere
change processes. Both types of exchange interaction a
ferromagnetic nature in the orbitally degenerate system s
ject to a strong Hund’s coupling. Employing a 1/S expansion
of spin and an orbital-liquid scheme9,10 to handle correlation
effects, three different mechanisms are analyzed with res
to their capability to renormalize the magnon spectrum: s
tering of magnons on orbital fluctuations, on charge fluct
tions, and on phonons. Within this picture we can succe
fully reproduce the experimentally observed softening of
magnon dispersion. Furthermore, we predict the renorm
ization effect to become dramatic as static order in
orbital-lattice sector is approached. We note that the ren
malization of the magnetic excitation spectrum by opti
phonons has recently been investigated by Furukawa.11

II. MAGNETIC EXCHANGE BONDS

The main aspects of the physics of manganites, i.e.,
correlated motion of itineranteg electrons and the ferromag
netic interaction ofeg spins with a background of localize
core spins, is captured by the following orbitally degener
Hubbard model:

HHub52 (
^ i j &g

(
sab

tg
ab~cisa

† cjsb1H.c.!2JH(
i

Si
csi

1(
i

(
a

Uni↑ani↓a1(
i

(
aÞb

8~U82JHP̂!nianib ,

~1!

with P̂5(siasib1 3
4 ). The first term in Eq.~1! describes the

intersite transfer of electrons within degenerateeg levels.
Here,cisa

† creates aneg electrons with spin and orbital quan
tum numberss and a/b, respectively. The spatial directio
of bonds is specified bygP$x,y,z%. One of the important
features of the orbitally degenerate model is the nondiago
structure of the transfer matrices12

tx/y
ab5tS 1/4 7A3/4

7A3/4 3/4
D , tz

ab5tS 1 0

0 0D ,

FIG. 2. Fluctuation of magnetic exchange bonds: Full lines
note active bonds, dashed lines inactive ones.
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where we have chosen a representation with respect to
orbital basis$u3z22r 2&,ux22y2&%. The second term of Eq
~1! describes the Hund’s coupling between the itineranteg

electrons and the localized core spinsSi
c ; the magnitude of

this coupling isJH . The spin operatorsia acts oneg elec-
trons in orbitalsa, while si5(asia denotes the totaleg spin
at a given site. Finally, the last two terms in model~1! ac-
count for the intra-~inter-! orbital Coulomb interactionU
(U8) and the Hund’s coupling betweeneg electrons in dou-
bly occupied states.nisa is the number operators ofeg elec-
trons in the state defined bys and a, and nia5(snia .
Double counting is excluded from the primed sum in the l
term of Eq.~1!.

In analogy to the transformation from a convention
Hubbard tot-J model, Eq.~1! can be projected onto the pa
of the Hilbert space with no double occupancies in the lim
of strong on-site repulsionsU@t and (U82JH)@t. Doubly
occupied states are then allowed only in virtual super
change processes. Due to the presence of Hund’s coup
the energy level of these virtual states depends on the
orientation of core andeg spins—a rich multiplet structure
follows.13 The problem considerably simplifies in the limit o
large Hund’s couplingU,U8@JH@t which we believe to be
realistic to manganites: Transitions to the lowest-lying int
mediate state with energyU15U82JH in which core andeg
spins are in a high-spin configuration then dominate; dou
occupied sites with different spin structures lie higher by
energy of the order of}JH and can be neglected. We hen
obtain the followingt-J Hamiltonian:

HtJ52 (
^ i j &g

(
sab

tg
ab~ ĉisa

† ĉ jsb1H.c.!2JH(
i

Si
csi

2JSE(
^ i j &g

~ 1
4 2t i

gt j
g!@SiSj1S~S11!#ninj . ~2!

The first two terms in Eq.~2! describe the double-exchang
mechanism in the limit of strong on-site repulsions. A
double occupancies ofeg electrons are projected out by th
constrained operatorsĉisa

† 5cisa
† (12ni) which act only on

empty sites. The third term in Eq.~2! describes the superex
change interaction between singly occupied sites. T
strength of this interaction is controlled byJSE
5(2t2/U1)@S(2S11)#21, whereS denotes the total onsite
spin of 3d electrons. It is important to note that in the prese
model with largeJH , superexchange is offerromagneticna-
ture. This stems from the fact that Hund’s coupling forbi
any double occupancy of a singleeg orbital. Pauli’s exclu-
sion principle, which is responsible for the antiferromagne
nature of conventional superexchange, is therefore inef
tive in dictating the spin structure of the virtual state. Rath
the spin orientation in the intermediate state is controlled
Hund’s coupling which favors a ferromagnetic alignment
spins. The superexchange term in Eq.~2! exhibits yet another
peculiar feature: The amplitude of superexchange proce
depends on the orbital states of theeg electrons involved.
This information enters via the orbital pseudospin operat

t i
x/y52 1

4 ~s i
z6A3s i

x!, t i
z5 1

2 s i
z ,

-
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3496 PRB 61G. KHALIULLIN AND R. KILIAN
where the Pauli matricess i
x/z act on the orbital subspace; th

factor (1
4 2t i

gt j
g) in Eq. ~2! accounts for the specific nond

agonal structure of the transfer matricestg
ab and ensures tha

no double occupancy of a single orbital occurs which wo
be forbidden by Pauli’s exclusion principle and the lar
Hund’s coupling. We finally note that superexchange p
cesses in an orbitally degenerate system have also been
ied by Feiner and Oles´.13 In the limit of largeJH the expres-
sion obtained by these authors maps onto the superexch
term of Eq.~2! for the special caseS52.

In the following, double-exchange and superexchange
teractions which are jointly responsible for ferromagneti
in manganites are discussed in more detail.

A. Double-exchange bonds

We begin by analyzing the kinetic term of Hamiltonia
~2!,

Ht52 (
^ i j &g

(
sab

tg
ab~ ĉisa

† ĉ jsb1H.c.!2JH(
i

Si
csi , ~3!

which establishes the double-exchange mechanism in
correlated system. Due to the strong Hund’s coupling, c
spinsSc and itineranteg spinss are not independent of eac
other; rather a high-spin state with total on-site spinS5Sc

1 1
2 is formed. This unification of band and local spin su

spaces suggests to decompose theeg electron into its spin
and orbital/charge components. Theeg spin can then be ab
sorbed into the total spin, allowing an independent treatm
of spin and orbital/charge degrees of freedom~see Fig. 3!.
The procedure of this separation scheme is the following
a first step we introduce Schwinger bosonsdi↑ anddi↓ ~see,
e.g., Ref. 14! to describe theeg spin

si
15di↑

† di↓ , si
25di↓

† di↑ ,

si
z5 1

2 ~di↑
† di↑2di↓

† di↓!,

as well as Schwinger bosonsDi↑
† andDi↓

† to model the total
on-site spin

Si
15Di↑

† Di↓ , Si
25Di↓

† Di↑ ,

Si
z5 1

2 ~Di↑
† Di↑2Di↓

† Di↓!.

FIG. 3. The itineranteg spin ~top left! interacts with the local-
ized core spins~bottom left! via Hund’s coupling. In the limitJH

@t, the former can be separated from the orbital and charge deg
of freedom of theeg electron~circle! and can be absorbed into th
total spin~bottom right!.
d

-
ud-

ge

-

he
e

-

nt

n

These auxiliary particles are subject to the following co
straints that depend on theeg occupation numberni :

di↑
† di↑1di↓

† di↓5ni , ~4!

Di↑
† Di↑1Di↓

† Di↓52S211ni . ~5!

The creation and destruction operators foreg electrons can
then be expressed in terms of spinless fermionscia which
carry charge and orbital pseudospin and Schwinger bos
which carry spin:

cisa5ciadis .

The kinetic-energy Hamiltonian~3! now describes the trans
fer of pairs of spinless fermions and Schwinger bosons:

Ht52 (
^ i j &g

(
sab

tg
ab~ ĉia

† ĉ j bdis
† djs1H.c.!2JH(

i
Si

csi .

~6!

The Bose operators are subject to the constraint~4! that en-
forces the operatorsdis anddis

† to act only on projected Hil-
bert spaces with one or zero Schwinger bosons, respectiv
Our aim is to absorb theeg spin into the total spin, which
requires to map theeg operatorsdis onto operatorsDis for
the total spin. This is done by comparing the matrix eleme
of the two types of operators. On the one hand, keeping
mind that Hund’s rule enforces the on-site spins to be alw
in a total-spin-symmetric state, the only nonvanishing ma
elements of thedis operators are

^S2 1
2 ,m2 1

2 ud↑uS,m&5A~S1m!/~2S!, ~7!

^S2 1
2 ,m1 1

2 ud↓uS,m&5A~S2m!/~2S!. ~8!

In deriving the above expressions we have used the Cleb
Gordan coefficientŝSc,mc;meuS,m& to decompose the total
spin stateuS,m& into core- andeg-spin statesuSc,mc;me&
with me5↑/↓. These coefficients are given by

K S2 1
2 ,m2

1

2
;↑US,mL 5FS1m

2S G1/2

,

^S2 1
2 ,m1 1

2 ;↓uS,m&5FS2m

2S G1/2

.

On the other hand, the matrix elements of theDis operators
are

^S2 1
2 ,m2 1

2 uD↑uS,m&5A~S1m!, ~9!

^S2 1
2 ,m1 1

2 uD↓uS,m&5A~S2m!. ~10!

All other matrix elements vanish due to the constraint of E
~5!. By comparing Eqs.~7!,~8! with Eqs.~9!,~10! we obtain
the mapping

dis5
1

A2S
Dis .

Hamiltonian~6! can hence be rewritten in terms of total-sp
operatorsDis :

es
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Ht52
1

2S (
^ i j &g

(
sab

tg
ab~ ĉia

† ĉ j bDis
† D js1H.c.!. ~11!

The Hund’s coupling term of Eq.~6! has been dropped her
as its presence is implied by the spin construction emplo
above. This completes the separation of spin from
charge/orbital quantum numbers ofeg electrons.

At low temperatures the magnetic moment of ferroma
netic manganites studied here is almost fully saturated. I
therefore, reasonable to expand Eq.~11! around a ferromag-
netic ground state. Technically this is done by condens
the spin-up Schwinger bosons~assuming the ferromagneti
moment to point along this direction! and by treating spin-
wave excitations around this ground state in the leading
der of 1/S. Introducing magnon operatorsbi , the following
relations hold:

Di↑5A2S2bi
†bi'A2SS 12

1

4S
bi

†bi D ,

Di↓5bi .

This spin representation fixes the number of Schwin
bosons per site to 2S. The essence of the 1/S expansion is to
consider the presence of a hole as a small perturbation w
changes the spin projectionSz but not the spin magnitudeS.
Employing magnon operators, the kinetic-energy Ham
tonian ~11! hence becomes

Ht52 (
^ i j &g

(
ab

tg
abĉia

† ĉ j b1
1

2S (
^ i j &g

(
ab

tg
abĉia

† ĉ j b

3~ 1
2 bi

†bi1
1
2 bj

†bj2bi
†bj !1H.c. ~12!

The first term of Eq.~12! describes the motion of strongl
correlated fermions in a ferromagnetic background. The s
ond term controls the dynamics of spin excitations in
magnetic background and the interaction of these excitat
with the fermionic sector.

At small magnon numbers, i.e., at low temperaturesT
!TC , Eq.~12! can be mapped onto the following expressi
for the magnetic double-exchange bonds:

Ht52 (
^ i j &g

(
ab

tg
abĉia

† ĉ j bF3

4
1

1

4S2
~Si

zSj
z1Si

2Sj
1!G1H.c.

~13!

Equation~13! highlights an important point: The strength
double-exchange bonds is a fluctuating complex quan
Only when treating the orbital and charge sectors on aver
i.e., when replacing the bond operatorsĉia

† ĉib by their mean-

field value ^ĉia
† ĉib&, an effective Heisenberg model as in

conventional mean-treatment of double exchange is
tained:H5JDE(^ i j &SiSj with JDE5(2S2)21(abtg

ab^ĉia
† ĉ j b&.

In Sec. III we investigate in more detail the modification
the mean-field picture by fluctuations in the bond amplitu

It is interesting to turn to the limit of classical spin
shortly. Replacing the spin operators in Eq.~13! by their
classical counterpartsSz5Scosu andS65Ssinue7if, an ef-
fective fermionic model is obtained:
d
e

-
s,

g

r-

r

ch

-

c-
e
ns

y.
e,

b-

.

Ht52 (
^ i j &g

(
ab

t̃ g
abĉia

† ĉ j b1H.c. ~14!

This model exhibits an unconventional phase-depend
hopping amplitude:15

t̃ g
ab5tg

abF3

4
1

1

4
~sinu isinu j1sinu isinu je

i (f i2f j )!G .
A similar result has been discussed in Refs. 16,17 in term
a Berry-phase effect.

B. Superexchange bonds

At low- and intermediate-doping levels, virtual charg
transfer processes across the Hubbard gap becomes o
portance. These superexchange processes establish an
site interaction, which in the limit of a strong Hund’
coupling is described by@see Eq.~2!#:

HJ52JSE(
^ i j &g

~ 1
4 2t i

gt j
g!@SiSj1S~S11!#ninj . ~15!

As mentioned above, superexchange is of ferromagnetic
ture in the orbitally degenerate system with strong ons
correlations. Double exchange and superexchange there
act together in establishing the ferromagnetic exchange l
in metallic manganites.18

Following the discussion on double-exchange bonds
express the spin operators in Eq.~15! in terms of magnon
operatorsbi . This leads to

HJ5SJSE(
^ i j &g

~ 1
4 2t i

gt j
g!ninj

3@~ 1
2 bi

†bi1
1
2 bj

†bj2bi
†bj1H.c.!2~2S11!#.

~16!

Equation~16! describes the interaction between orbital flu
tuations and the magnetic sector of the Hilbert space.19 The
phase dependence exhibited by the double-exchange c
terpart Eq.~12! is absent here. This is due to the fact th
superexchange is a second-order process which depends
the amplitude but not on the phase of the transfer amplitu

III. MAGNON DISPERSION

In the previous section, the role of double-exchange a
superexchange processes in promoting ferromagnetic
change bonds in manganites was discussed. At intermed
doping levels these exchange interactions induce a ferrom
netic ground state in a variety of manganese oxides. We n
turn to analyze the propagation of magnetic excitations
this ferromagnetic phase, namely by deducing the disper
relation of single-magnon excitations.

In a first step, we derive the correct operator for creat
a magnetic excitation in hole-doped double-exchange s
tems. It has to account for the fact that the total on-site s
depends on whether a hole or aneg electron is present at tha
site: The spin number isS2 1

2 in the former andS in the
latter case. This difference in the spin number was neglec
in the 1/S expansion employed in Sec. II. Here this appro
mation is no longer valid, which requires a rescaling of t
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3498 PRB 61G. KHALIULLIN AND R. KILIAN
magnon operatorsbi . In general, a spin excitation is create
by the operatorSi

1 . Expressing this operator in terms o
Schwinger bosonsSi

15Di↑
† Di↓ , condensingDi↑ , and map-

ping Di↓ onto the magnon operatorbi , the following repre-
sentation is obtained:

Si
15HA2S bi , for sites with eg electron,

A2S21 bi , for sites with hole.

AssumingS to be the ‘‘natural’’ spin number of the system
the magnon operatorbi hence has to be rescaled by a fac
@(2S21)/(2S)#1/2 when being applied to hole sites:

Bi5H bi , for sites with eg electron,

A~2S21!/~2S! bi , for sites with hole.

The general magnon operator that automatically probes
presence of aneg electron can finally be written as

Bi5biFni1A2S21

2S
~12ni !G'bi2

1

4S
~12ni !bi ,

whereni is the number operator ofeg electrons.Bi repre-
sents the true Goldstone operator of hole-doped dou
exchange systems. Its composite character comprises
and itinerant spin features which is a consequence of the
that static core and mobileeg electrons together form th
total on-site spin. While the itinerant part ofBi is of order
1/S only, it nevertheless is of crucial importance to ensu
consistency of the spin dynamics with the Goldstone th
rem, i.e., to yield an excitation mode whose energy vanis
at zero momentum.

Having derived the correct magnon operator for dop
double-exchange systems, we now study the propagatio
the magnetic excitations it creates. The link between s
that allows a local excitation to spread throughout the sys
is established by the exchange-bond Hamiltonians~12! and
~16!. At low temperatures the dynamics of spin waves wh
hence develop is captured by the single-magnon dispers
The important question we are interested in is the followi
To which extent is the magnon spectrum affected by fluct
tions in the exchange bonds? To answer this question
express the full magnon spectrumṽp in terms of the conven-
tional mean-field dispersionvp and the magnon self-energ
S(v,p):

ṽp5vp1Re@S~vp ,p!#. ~17!

Fluctuation are considered only on average in the former
are explicitly accounted for in the latter term. The mean-fi
dispersionvp as well as the scattering vertices needed
constructS(v,p) can be derived by commuting the magn
operatorBi with the Hamiltonian. To be specific we explic
itly perform this commutation, for now restricting ourselv
to the double-exchange HamiltonianHt given by Eq.~12!. In
the momentum representation we obtain

@Bp ,Ht#5vpBp1
t

2S (
q

(
ab

Ap
ab~k!ĉka

† ĉk2q,bBp1q .

~18!
r

he

e-
cal
ct

e
-
s
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e
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The two terms on the right-hand side~rhs! of Eq. ~18! cor-
respond to an expansion of the bond operatorsĉia

† ĉ j b around
their average value:

ĉia
† ĉ j b→^ĉia

† ĉ j b&1d~ ĉia
† ĉ j b!.

The mean-field magnon dispersionvp in the first term of Eq.
~18! is of the conventional nearest-neighbor Heisenberg fo

vp5zD~12gp!, ~19!

with the form factor gp5z21(d exp(ipd), z56, and the
spin-wave stiffness constant isD5SJDE. On this mean-field
level the strength of the exchange bonds depends on
orbital and charge degrees of freedom only on average:JDE

5(2S2)21(abtg
ab^ĉia

† ĉ j b&. The second term in Eq.~18! is
the scattering vertex needed to construct the magnon
energyS(v,p). It describes the interaction between ma
nons and orbital/charge fluctuations. The vertex function

Ap
ab~k!5gk

ab2gk1p
ab ,

with the form factorgk
ab5(zt)21(d td

ab exp(ikd). The ver-
tex functionAp

ab(k) vanishes in the limitp→0 in compli-
ance with the Goldstone theorem.

Before we can engage in evaluating the magnon s
energy associated with the scattering vertex in Eq.~18!, the
problem of dealing with the correlated nature of fermion
operatorsĉia

† 5cis
† (12ni) has to be addressed. To handle t

constraint that allows only for oneeg electron per site, we
employ an orbital-liquid scheme:9,10 Orbital and charge de
grees of freedom of theeg electron are treated on separa
footings by introducing ‘‘orbiton’’ and ‘‘holon’’ quasiparti-
cles. To describe an orbitally disordered state in which or
als fluctuate strongly, orbitonsf i are assigned fermionic an
holonshi bosonic statistics.10 The original fermion operators
are hence reexpressed by

cia
† 5 f ia

† hi . ~20!

The local no-double-occupancy constraint is now relaxed
a global one:

ni
f1ni

h51→^ni
f&1^ni

h&51.

The main feature associated with the constrained natur
electrons, namely the separation of energy scales of orb
and charge dynamics, sustains this procedure due to the
that two different types of quasiparticles are being used.
troducing mean-field parameters

x5t21(
ab

tg
ab^ f ia

† f j b&, x5^bi
†bj&, ~21!

wherex is the concentration of holes in the system, orbito
and holons can now be decoupled. We note that the
mean-field parameters in Eq.~21! are approximately related
by x5 1

2 (12x).
Employing representation~20!, we reexpress the commu

tator of Eq.~18! in terms of orbiton and holon operators:
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@Bp ,Ht#5vpBp1
t

2S (
q

(
ab

Cp
ab~k! f ka

† f k2q,bBp1q

1
tx

2S (
q

Dp~k!hkhk2q
† Bp1q . ~22!

The vertex functions are given by

Cp
ab~k!5xAp

ab~k!,

Dp~k!5gk2gk1p .

Orbitons and holons have been decoupled in Eq.~22! by
employing the mean-field parametersx and x of Eq. ~21!.
This yields two different types of scattering vertices, o
describing the interaction of magnons with orbital fluctu
tions, i.e., orbitons, the other of magnons with charge fl
tuations, i.e., holons.

Finally, we include in our treatment the magnetic bon
stemming from superexchange processes as described bHJ
in Eq. ~16!. The effect is twofold: Superexchange enhanc
the spin-wave stiffnessD which now becomes

D5S~JDE1JSE!5tx~x1x0!/~2S!,

with x052xt/U1; further, superexchange processes ren
malize the vertex function of magnon-orbiton scatteri
which becomes

Cp
ab~k!5xAp

ab~k!1x0Bp
ab~k,q!,

with

Bp
ab~k,q!5gk

ab1gk2q
ab 2gk1p

ab 2gk2q2p
ab .

From the two types of scattering vertices in Eq.~22!, two
contributions to the magnon self-energy follow. These
scribe the scattering of magnons on orbitons and on ho
and are depicted in Figs. 4~a! and 4~b!, respectively.

An important piece of physics is still missed in the abo
treatment, namely the Jahn-Teller coupling of orbitals to
lattice.20 In a cubic system there exist two independent Ja
Teller modesQ2 andQ3 which lift the degeneracy of singly
occupiedeg orbitals. The interaction between orbitals a
these two orthogonal lattice modes is described by

HJT52(
i

~g2Q2is i
x1g3Q3is i

z!, ~23!

where the Pauli matricess i
x/z act on the orbital subspace an

the coupling constantsg2'g3. The crystal dynamics is con
trolled by the Hamiltonian

Hph5
K

2 (
i

Qi
21K1 (

^ i j &g

Qi
gQj

g1
1

2M (
i

Pi
2 , ~24!

FIG. 4. Magnon self-energies describing the effect of magn
scattering on~a! orbital fluctuations,~b! charge fluctuations, and~c!
phonons. Solid, dashed, dotted, and wiggled lines denote orb
holon, magnon, and phonon propagators, respectively.
-
-

s

s

r-

-
ns

e
-

with Qi
x/y5(Q3i6A3Q2i)/2, Qi

z5Q3i , and Qi

5(Q2i ,Q3i); Pi denotes the conjugate momentum vec
corresponding to the lattice distortionsQi . The three terms
on the rhs of Eq.~24! account for the crystal deformatio
energy, the correlations between neighboring sites, and
lattice kinetics, respectively. Equation~24! can be diagonal-
ized in the momentum representation, yielding

Hph5(
kn

vk
nakn

† akn ~25!

with index n56 and the phonon dispersions

vk
65v0~k1k6Ak2k

2 1k3k
2 !1/2. ~26!

Here, k1k511k1(cx1cy1cz), k2k5k1hk
(2) , k3k5k1hk

(3)

with k15K1 /K and hk
(2)52A3(cx2cy)/2, hk

(3)5cz2
1
2 cx

2 1
2 cy with ca5coska , andv05AK/M .
While there is no direct coupling between spins a

phonons in the present system, lattice modes neverthe
strongly affect the spin dynamics. The link between spin a
lattice is established via the orbital channel: The coupling
orbitals to the lattice imposes low phononic frequencies o
orbital fluctuations. This acts to enhance the modulation
magnetic exchange bonds; thereby the effect of phonons
tends onto the spin sector. To study this mechanism in m
detail, we construct an effective spin-phonon coupli
Hamiltonian from which we then calculate the phononic co
tribution to the magnon self-energy. Combining the sp
orbital coupling term of the exchange Hamiltonians~12! and
~16! with the orbital-lattice Hamiltonian~23! we obtain~see
Fig. 5!:

Hs-ph52(
pqn

gpq
n ~aqn

† 1aqn!Bp
†Bp1q . ~27!

The coupling constants in Eq.~27! are

gpq
1 5e0S v0

vq
1D 1/2

~lpq
(3)cosQq2lpq

(2)sinQq!,

gpq
2 5e0S v0

vq
2D 1/2

~lpq
(3)sinQq1lpq

(2)cosQq!,

with e05(EJTa0
2v0 /S2)1/2 and lpq

(a)5(hq
(a)2hp

(a)2hp1q
(a) ).

Further

cosQq5
1

A2
S 11

k3q

Ak2q
2 1k3q

2 D 1/2

,

n

n,

FIG. 5. Effective spin-phonon-coupling vertex. The domina
contribution shown on the right stems from a combination of sp
orbital- ~filled dot }t) and orbital-lattice-~open dot}g2) coupling
vertices. The orbital susceptibility depicted by a bubble controls
coupling strength. Solid, dotted, and wiggled lines represent o
ton, magnon, and phonon propagators, respectively.
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sinQq5
1

A2
S 12

k3q

Ak2q
2 1k3q

2 D 1/2

sign~k2q!.

The strength of the spin-lattice interaction is controlled
the orbital susceptibilitŷ ( f i 1z,↑

† f i↑)(s i
z)&v which enters the

parameter a05t(x1x0)^( f i 1z,↑
† f i↑)(s i

z)&v50; the zero-
frequency limit is admissible bearing in mind that the ene
scale of orbital fluctuations exceeds the one of phonons.
phononic contribution to the magnon selfenergy that follo
from Hamiltonian~27! can finally be calculated, the corre
sponding diagram is depicted in Fig. 4~c!.

IV. COMPARISON WITH EXPERIMENT

We are now in the position to evaluate the self-energie
Fig. 4. Charge and orbital susceptibilities are calculated
ing mean-field Green’s functions in slave-bosonhi and fer-
mion f i subspaces. For the spectral density of Jahn-Te
phonons in Fig. 4~c! we employ the expression

r6
ph~v,q!5

1

p

v

vq
6

G

~v2vq
6!21G2

, ~28!

which phenomenologically accounts for the dampingG of
phonons due to their coupling to orbital fluctuations. T
phonon dispersionvq

6 is given by Eq.~26!.
The expressions obtained from the diagrams in Fig. 4 c

tain summations over momentum space which we perfo
numerically using a Monte Carlo algorithm. The result
shown by solid lines in Fig. 6. For comparison, the expe
mental data of Ref. 7 are marked by circles and the b
mean-field dispersionvp is indicated by a dashed line. Th
following parameters are chosen: The hopping amplitudt
50.4 eV is adjusted to fit the spin stiffness
Pr0.63Sr0.37MnO3;7 further we useU154 eV.13 The phonon
contribution depends on the quantitiesEJTa0

2[(g2a0)2/2K
50.004 eV,21 v050.08 eV,22 andG50.04 eV.

The upper solid line in Fig. 6 is obtained fork150. In this
case intersite orbital-lattice correlations in Hamiltonian~24!
are discarded—phonons are dispersionless. A pronoun
softening of magnons at large momenta can be observe
more detailed analysis reveals this effect to be mostly du
fluctuations of the orbital and lattice degrees of freedom
contrast, charge fluctuations are found to play only a mi
role. We attribute this to the fact that the spectral density
charge fluctuations lies well above the magnon band. Orb
and lattice fluctuations, on the other hand, are of rather
frequency (}xt and}v0

ph, respectively! and hence affect the
spin-wave dispersion in a more pronounced way.

The lower solid line in Fig. 6 is obtained fork1520.33
which yields a fit to the experimental data of Ref. 7. T
directional dependence of the magnon renormalization s
in experiment is well reproduced: The effect is stronges
(0,0,j) and (0,j,j) directions. A key observation here is th
crucial role of intersite correlations of orbital-lattic
distortions—these are captured by the phononic disper
being controlled by the parameterk1. In order to reproduce
the experimental data we are forced to assume these cor
tions to be offerrotype, i.e., k1,0. We believe this some
what surprising result to reflect an important piece of n
y
he
s
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-
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physics: Conventionally, one would expectk1.0 associated
with a tendency of the orbital-lattice sector to develop an
ferrotype order.12 In the hole-doped system, however, th
effect competes against charge mobility which prefers a
rotype orbital orientation. The latter minimizes the kine
energy by maximizing the transfer amplitude between si
While Jahn-Teller lattice effects prevail at low doping, w
speculate the kinetic energy to dominate at large enough
concentrations. In fact, low-dimensional ferrotype orbi
correlations~resonatingux22y2&, ux22z2&, uy22z2& planar
configurations! have been observed to evolve in a boso
description of orbital fluctuations.9 The fermionic description
of orbitals employed in the present work emphasizes
modeling a strongly fluctuating orbital-liquid state, but u
derestimates these orbital-lattice instabilities. In order
simulate the competition between Jahn-Teller effect and
netic energy we, therefore, turn to a phenomenological
proach: By tuning the parameterk1 we control the characte
of intersite orbital-lattice correlations. The result for differe
values ofk1 is shown in Fig. 7 whereEJTa0

250.006 eV is
used.

Ferrotype orbital correlations withk1,0 are found to be
most effective in renormalizing the magnon spectrum. T
is ascribed to slowly fluctuating layered orbital configur
tions which effectively reduce the dimensionality of e
change bonds. We note that magnons in the (j,j,j) direction
are sensible to all three spatial directions of the excha
bonds; their dispersion, therefore, remains unaffected by

FIG. 6. Magnon dispersion along (0,0,j), (j,j,0), and (j,j,j)
directions, wherej50.5 at the cubic zone boundary. Experimen
data from Ref. 7 are indicated by circles, the mean-field dispers
vp of Eq. ~19! is marked by a dashed line; the latter is of conve
tional nearest-neighbor Heisenberg form. Solid lines represent

theoretical result for the dispersionṽp defined by Eq.~17!; it in-
cludes charge, orbital, and lattice effects. The upper curve is
tained for dispersionless phonons withk150, the lower one is a fit
to the experimental data withk1520.33 corresponding to ferrotype
orbital-lattice correlations.
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local symmetry breaking induced by low-dimensional orbit
correlations. As an instability towards orbital-lattice order
approached, exchange-bond fluctuations become quasis
In the magnon spectrum this is reflected by a strong enhan
ment of the renormalization effect as is seen in Fig. 7
k1→2 1

3 . The layered orbital structure which evolves at th
point is accompanied by a layered spin structure; the latte
indeed experimentally observed at doping levels of aboux
50.5.23,24

We finally note that the softening of magnons at the zo
boundary leads to a reduction ofTC . Remarkably, the small-

FIG. 7. Magnon dispersion including charge, orbital, and latti
effects. Different values fork1 controlling intersite orbital-lattice
correlations are used. The softening enhances ask1→2

1
3 corre-

sponding to an instability point towards ferrotype orbital-lattice o
der.
m

l

tic.
e-
r

is

e

q spin stiffnessD remains unaffected which explains th
anomalous enhancement of theD/TC ratio in low-TC
manganites.8

V. CONCLUSION

In summary, we have presented a theory of the spin
namics in ferromagnetic manganites. Taking into account
orbital degeneracy and the correlated nature ofeg electrons,
we analyzed the structure of magnetic exchange bonds; th
are established by the intersite transfer of electrons in coh
ent double-exchange and virtual superexchange proces
Orbital and charge fluctuations are shown to strongly mo
late the exchange bonds, leading to a softening of the m
non excitation spectrum close to the Brillouin-zone boun
ary. The presence of Jahn-Teller phonons further enhan
the effect. This peculiar interplay between double-exchan
physics and orbital-lattice dynamics becomes dominant cl
to the instability towards an orbital-lattice ordered state. T
unusual magnon dispersion experimentally observed in lo
TC manganites can hence be understood as a precursor e
of orbital-lattice ordering. While the softening of magnons
the zone boundary is responsible for reducing the value
TC , the small-momentum spin dynamics that enters the sp
wave stiffnessD remains virtually unaffected. This explain
the enhancement of the ratioD/TC observed in low-TC com-
pounds. In general it can be concluded that strong corr
tions and orbital fluctuations play a crucial role in explainin
the peculiar magnetic properties of metallic manganites.
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