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Exact diagonalization of the generalized supersymmetri¢-J model with boundaries
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We study the generalized supersymmetrit model with boundaries in three different gradings: fermionic,
fermionic, bosonic(FFB), bosonic, fermionic, fermioni¢BFF), and fermionic, bosonic, fermioniG=BF).
Starting from the trigonometri® matrix, and in the framework of the graded quantum inverse scattering
method, we solve the eigenvalue problems for the supersymntedrimodel. Detailed calculations are pre-
sented to obtain the eigenvalues and Bethe ansatz equations of the supersytathetadel with boundaries
in three different backgrounds.

[. INTRODUCTION In our previous papel we used the algebraic Bethe an-
satz method to solve the eigenvalue and eigenvector prob-
One-dimensional strongly correlated electron modelslems of the supersymmetrieJ model with reflecting bound-
such as the-J model, have been attracting a great deal ofary conditions in the framework of the graded QISM
interest in the context of high; superconductivity. The [fermionic, fermionic, and bosoni&FB) grading. Here we
Hamiltonian of thet-J model includes the near-neighbor shall extend the results in Ref. 42. We start from the trigo-
hopping(t) and antiferromagnetic exchangd) (2 nometric R matrix proposed by Perk and Schdftzand
change the formulas to the graded case. Three kinds of grad-
L . . . .
_ t ing are imposed, so there are thi@enatrices for different
H _j§=:1 ‘”’0;1 (Cj,oCj+10TH.CIP grading. Solving the graded reflection equation, we give gen-
eral diagonal solutions. There are altogether four kinds of
1 different boundary conditions for each choice of grading.
+J( SiSj+1— Znnnj+1) } . D Using the graded algebraic Bethe ansatz method in three pos-
sible gradings FFB, bosonic, fermionic, fermioniBFF),
It is known that this model is supersymmetric and integrableand fermionic, bosonic, fermioni@BF), we obtain the ei-
for J= = 2t.3* The supersymmetri:J model was also stud- genvalues of the transfer matrix with general diagonal
ied in Refs. 5-9; for a review, see Ref. 10 and referenceboundary matrices.
therein. Essler and Korepin showed that the one-dimensional The graded method was proposed in Ref. 44, and it was
Hamiltonian can be obtained from the transfer matrix of theapplied for the reflection equation in Ref. 19, and later was
two-dimensional supersymmetric exactly solvable latticeapplied to fermionic modef&:?! In this paper, we shall use
model”® They used the graded quantum inverse scatteringhe graded reflection equation to study the supersymmetric
method(QISM) (Refs. 11 and 1Rand obtained the eigenval- t-J model. For the supersymmettic) model, the spin of the
ues and eigenvectors for the supersymmetdcmodel with  electrons and the charge “hole” degrees of freedom play a
periodic boundary conditions in three different backgroundsyery similar role, forming a graded superalgebra with two
for related works, see, for example, Ref. 13. In this paper, wéermions and one boson. The holes obey boson commutation
shall start from the trigonometrig@ matrix which is a gener- relations, while the spinons are fermions; see Ref. 10 and
alization of theR matrix used in Ref. 9. The Hamiltonian is references therein. The graded approach has the advantage of
also a generalization of the supersymmetri¢ model. We making a clear distinction between bosonic and fermionic
shall consider the reflecting boundary condition cases. Bylegrees of freedom. So it is interesting to study the super-
using the graded QISM, we obtain the eigenvalues of theymmetrict-J model with reflecting boundary conditions by
transfer matrix with boundaries in three different back-the graded algebraic Bethe ansatz method. In this paper, we
grounds. give a detailed analysis for the Bethe ansatz in three different
The exactly solvable models are generally solved by im-backgrounds. We should mention that the trigonomeic
posing periodic boundary conditions. Recently, solvablematrix related to the supersymmetticJ model with reflect-
models with reflectingopen boundary conditions have been ing boundary conditions was studied in Refs. 22 and 23 by
extensively studied*° Besides the original Yang-Baxter using the usual reflection equation; the results have also been
equatiorf?®** the reflection equations also play a key role in extended to more general ca$&$> And the thermodynamic
proving the commutativity of the transfer matrices under redimit of the Bethe ansatz was calculated in Ref. 26. The
flecting boundary condition¥:'® The Hamiltonian includes finite-size corrections in the supersymmetrid model with
nontrivial boundary terms which are determined by theboundary fields are presented in Ref. 37. The integrable bulk
boundaryK matrices. Hamiltonian was derived previously by Karowski and Foer-
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ster and by Gonzales-Ruiz? Bariev also showed thatitis It has been proved that for a special vallie2t=2, the
integrable and studied physical properties for the HermitiarHamiltonian of the supersymmetrieJ model can be written
casé’ as the a graded permutation oper&fot

As mentioned in Ref. 9, the formulas and the results for
three different gradings are significantly different, so we N
shall write out in detail the graded algebraic Bethe ansatz for H=— E P 1—2NK. (6)
the generalized supersymmetrid model with four kinds of =M
boundaries.

The paper is organized as follows: In Sec. Il, we reviewHere we have omitted a constant term. The total number
the supersymmetri¢-J model and its generalization. We operatoerEJN:lnj commutes with the Hamiltonian and is

start from the Perk-Shult? model and change it to the gegicated to the chemical potential. We shall also omit the

graded case. In Sec. lll, the general solutions of the reflectioBecond term in the following. The graded permutation opera-
equation are presented. In Sec. IV, in the FFB grading, W§y, can be represented as

use the algebraic Bethe ansatz method to obtain the eigen-
values and eigenvectors of the transfer matrix with bound-

aries. In Secs. V and VI, we study the case of BFF grading Poe= 82d0pc(— 1), (7)
and FBF grading. Section VII includes a brief summary and
some discussions. Here, differently from the nongraded case, we have the

Grassmann paritiese,=1,0 representing fermions and
bosons, respectively. The Hamiltonian can also be repre-

Il. SUPERSYMMETRIC t-J MODEL sented by the generatorswf1|2), su(1|2) is a subalgebra
AND ITS GENERALIZATION of u(1/2),
We first review the supersymmetrieJ model. For con- N
venience, we adopt the notations in Ref. 9. The Hamiltonian _ + +
of the supersymmetrit-J model is given as H= 121 ; (Q+16Qj.0 Q)0 Qj+10)
" t T
ZoZ
H=—t> > [c],(1=n ) 11,(1- N1 ) ~255117 554117 515+ 2TTjvap. ()
j=1 o==* ’ ' ' '
¢l 1 (1N 1) G 10(1- 1) )] The generators of the algebug{1|2) are given by relation

N 1 1 (5) and the following:
32 |58t 5 (S8 S )~ iy,
" Qj,t:(l_nj,I)Cj,tv

2
This form is an equivalent expression of the Hamiltonian
t T Ql.=(1-n ;) Ti=1--n, 9
The operators; , andc; , mean the annihilation and cre- = IR IE I 2

ation operators of electrons with spinon a lattice sitg, and

we assume that the total number of lattice siteBlisr== " The fundamental representations of these operators take the
representing spin down and up, respectively. These operato]rgnowing form:

are canonical Fermi operators satisfying anticommutation re-

lations
! 0 0 ! 0 O
{C;U,ij}:&j&uﬁ.. (3) E E
We denote bynj,(,:c;rygcjyg the number operator for the S= 0 1 ol Ti= 0 1 ol
electron on a sit¢ with spin o, and byn;=%,_.n; , the 2 2
number operator for the electron on a sjteThe Fock 0O 0 O 0 0 1
vacuum statd0) satisfiesc; ,|0)=0. There are altogether
three possible electronic states at a given latticejgiige to
excluding double occupancy: Sk:egla Sl:eliz, Q1= e§21
10), [1)=¢]al0),  [1)j=¢]-4/0). (@)
e bt Ql,lz e5s, Qk,—lzelélv Ql’_lzeﬁ, (10
SJ-Z,Sj ,SJ-T are spin operators satisfyirsg(2) algebra and can
be expressed as where eik- is a 3X3 matrix acting on thekth space with

elements €) ,5= 5,3,
The above Hamiltonian can be obtained from the logarith-
mic derivative at zero spectral parameter of the transfer ma-
(5)  trix constructed by the ration& matrix. In this paper, we

1
_ ot t_ ot ;Lo
S=C1Cj-1,  §=¢-1Cj,,  S=5(Nj17Nj 1)
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shall study the trigonometriB matrix. Let us start from the
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where a still represents the auxiliary space, and the tensor

R matrix of the Perk-Schultz mod&t.The nonzero entries of product is in the graded sense. Explicitly we write

the R matrix are given by

R(\)23=sin( 7+ e,\),
R()\) ab=UJapSIN(N\), a#b,
R(\)2=g sIn@-DA gy ) a#b, (12)
where
1, if a>b,
SgMa=b=1 _; i a<p. (12

As mentioned aboveg, is the Grassman parityg,=0 for
bosons ande,=1 for fermions. We demand,ygy,=1, in
the following, and letq,,=(—)¢. This R matrix of the

IRICSI

- _ b
=LnO) i s (M N La)

X (— 1) -aleat gD e (20)

By repeatedly using the Yang-Baxter relati(i¥), one can
prove easily that the monodromy matrix also satisfies the
Yang-Baxter relation

RON=w) T (M) To(w) =To() Ti (M RN — ). (21)

Perk-Schultz model satisfies the usual Yang-Baxter equation

Ris( A= w)Ryas(M)Ros( 1) = Roa( ) Rys MRy A — M)-(13)

Introducing a diagonal matrixi 9= (—)s, 6.4, we
change the originaR matrix to the following form:

RN =IR(N). (14)

Considering the nonzero elements of fRenatrix RSY, we
have e, + €,+ e.+ €4=0. One can show that the matrix
satisfies the graded Yang-Baxter equation

ROV= 1) 2 2ZROVPIER() 28 (=) oor o),
_ R(M)bzbSR()\)blcaR()\— M)Eizzz( _ )(ea1+ €p,)€n,.

(15
In the framework of the QISM, we can construct thep-
erator from theR matrix as

Lag(M)=Rgq(N), (16)

wherea represents the auxiliary space amdepresents the
guantum space. Thus we have flgeaded Yang-Baxter re-
lation

Rig A=) Li(M)Lo(p) =La(p)Li(N) RN — ). a

For periodic boundary conditions, the transfer matrix
Toeri(N) Of this model is defined as the supertrace of the
monodromy matrix in the auxiliary space. In general case,
the supertrace is defined as

SrT(\) =2 (—1)4T(\)aa (22)

7'peri()\) =

As a consequence of the Yang-Baxter relati@d) and
the unitarity property of th& matrix, we can prove that the
transfer matrices commute with each other for different spec-
tral parameters:

[Tperi()\)v'rperi(/-l’)]zo- (23

Generally in this sense we mean that the model is integrable.
Expanding the transfer matrix in the powers of we can
find conserved quantities; the first nontrivial conserved
equantity is the Hamiltonian.

For the rational R matrix, it has been proved that
the Hamiltonian obtained by taking the first logarithmic
derivative at the zero spectral parameterH
=—i{d In[7(\)Vd\}[y—o=—3}_1Pyxi1, is equivalent to the
Hamiltonian of the supersymmtricJ model®

Here the tensor product is in the sense of the supertensor Here we shall study the trigonometric case. Noting

product defined as

(FRG)PI=FPGY(—)(eat e, (18

In the rest of this paper, all tensor products are in the super-
sense. However, there are two kinds of supertensor product; n=o 1-1

we shall point it out later.
The row-to-row monodromy matriXy(\) is defined as

Rij(0)= —sin(n)P; , the Hamiltonian can be defined as
- din[7(\)] .
=sip)—g—| =2 Hja (29

the matrix product over thé&l operators on all sites of the With H;j,1=P;j;1L{;:1(0).

lattice,

Ta(M)=Lan(M)Lan—12(N) -+ - Laa(N), (19

As an example, we choose fermionic, fermionic, and
bosonic(FFB) grading which means,;=¢€,=1, e3=0. Ex-
plicitly, we can write theR matrix as
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a(N) 0 0 0 0 0 0 0 0

0 b(\) 0 -c_(\) O 0 0 0 0

0 0 b(\) 0 0 0 c_(N) 0 0

0 —ci(N) 0 b(\) 0 0 0 0 0
R(\)= 0 0 0 0 a(\) 0 0 0 o |, (25

0 0 0 0 0 b\ c_(N) 0

0 0 c.(\) 0 0 0 b(\) 0 0

0 0 0 0 0 c.(\) 0 b(\) 0

0 0 0 0 0 0 0 0  w(\)

where

a(\)=sin(A—7), w(\)=sin(A+7), b(N\)=sin(\), c.(A\)=e " sin( 7). (26)

The rational limit of thisR matrix is completely the same as the one used by Essler and Korepin in Ref. 9. In the framework
of the QISM, we define thé& operator as

b(N)—[b(\)—a(\)]el; —c_(\)e); c_(N)ey,
L,(\)= —ci(N)el, b(\)—[b(\)—a(\)]e}, c-(\)e3, : (27
ci(N)els ci(\)eds b(\)—[b(\)—w(\)]e],

Heree}, acts on thenth quantum space.
We denote explicitly the row-to-row monodromy matrix as

A1(N)  A(N)  By(N)
TN =| Aa(N)  Ax(N) Ba(h) |. (29
Ci(N) Cy(N) D)

If we choose the FFB grading, the transfer matrix is then given as

(M) peri= —A11(N) —Ag(N) +D(N). (29
Thus we can write
1-[1-cogn)]ey i sin(7)e;; —isin(n)es
L'(0)= —isin(n)e;, 1-[1—cogn)]ey —isin(n)es, . (30
i sin(77)e13 i sin(77)€z3 1-[1-cogn)]es

With the help of the fundamental representation of algelftd2), we have

Hije1= 2 [Q0Q 10+ QloQyr101— 58] 1= 518 +cos [ — 2SS, + 2T/ T} ]

+20 Sin(p)[ — ST oy + T S7,  + S = SF +T)= Tjaq . (31)

As mentioned in the Introduction, this Hamiltonian was previously obtained by Karowski and Foerster and by
Gonzales-Rui#?23Explicitly, using the fermionic representatio(® and(9), we can write the Hamiltonian of the generalized
supersymmetri¢-J model as follows?23

N
H=20 2 1610 )6 1p(1 N1 o) 4 6 (1Mt - )€ 1011y )]
N N
1 cog 7) o
_2;1 5(S/S+1+§8/.1) + o 7)S[Sf s = —5— NNy | i sm(n);l [Sfnj.1— SNl (32

Here a periodic boundary condition is assumed. We remark that this Hamiltonian is in general not Hermitian.
In this paper, we shall study the reflecting boundary conditions, which may cause nontrivial boundary terms in the

Hamiltonian.
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. INTEGRABLE REFLECTING BOUNDARY Instead of the monodromy matriX(\) for periodic
CONDITIONS AND THE SOLUTIONS boundary conditions, we consider the double-row mono-
OF REFLECTION EQUATION dromy matrix

In this paper, we consider the reflecting boundary condi- .
tion case. At the end of the 1980s, Sklyanin proposed a sys- TN =TM)KM)T*(—N) (38
tematic approach to handle exactly solvable models with re-
flecting (open boundary condition&* which includes a so- for the reflecting boundary conditions. Using the Yang-

called reflection equation proposed by Cherednik: Baxter relation, and considering the bounddfy matrix
which satisfies the reflection equation, one can prove that the
RN — ) K1 (M) Rogs( A+ ) Ko( ) double-row monodromy matri¥(\) also satisfies the reflec-

tion equation
= Ko() R A+ m)K1(MRas(A— ). (33

For the graded case, the above form of the reflection equdR(\ — M)blbzﬂh)ﬁlR()ﬁM)czdlﬂM) ( )€, tec))en,
tion remains the same. We only need to change the usual
tensor product to the graded tensor prodddtve write it b b dod
explicitly as =T(p) RN+ )7 27()\) ROV ) e (— (e, ey,
(39
RN — ,U«)b bZK()\)ElR()\+M)C2dlK(M)gj(_)(Eb1+ec1)€b2
Next, we shall study the properties of tRematrix. We
_ K(M)bzR()\+M)blczK()\)blR()\ M)d2d1( )(eb,+€c))ec, define the supertranspositist as
(34)
(A%Y=Aji(—Dlate, (40)
We limit the discussion to diagonal solutions of the re-
flection equation. Suppos€(\)2=8,.k,(N). Inserting this  As an example, we take the FFB grading, which means
relation into the reflection equation, we find that there is only=€,=1, e3=0. We can rewrite the above relation explicitly

one nontrivial relation to be solved: as
aja: aja
+R(A— ,u)azalR()\+M)ala2k(>\)a2k(ﬂ)a1 Ao Az Ba =\ A Az G2l (4D
cC, C, D -B; —-B, D

=R+ 1) 2ROV )3 22K (1) 2 k(N ), _
We also define the inverse of the supertransposisibias
+ RO+ 1) 2o ROV )31 2K (1) 2 k(N ), {AsYs'=A.
For the R matrix with all three different gradings, FFB,
(35 BFF, and FBF, we can prove directly that tRematrix sat-

Supposea,>a,, and substitute the exact form of the ele- isfies the following unitarity and cross-unitarity relations:

ments of theR matrix into the above relation. We find a )
general diagonal solution R MR (—N)=p(N) Xid.,

KNa, _sin(e+)) @9 p(N)=sin(y+\)sin(7=X), (42)
k(\a, sin(é=N) "

where¢ is an arbitrary parameter. In a special limit we can
see that the identity is also a solution of the reflection equa-
tion. For the cased~FB, BFF, and FBF gradingve study in

this paper, there are two types of solutions to the reflection
equation:

RS 7— MM RENM; E=p(\) X

p(N)=sin(\)sin(7—N\). (43

Here the matrixM is diagonal and is determined by tifre
sin(é+\)e 2 matrix. For three different gradings, the formsMfare dif-
) : ferent. We haveM =diag(e?®”,1,1) for FFB grading,M
K,(\)= sin(¢+x)e 2N ., =diag(1,1e" 2" for BFF grading, and =1 for FBF grad-
SiN(é—\) ing.
In order to construct the commuting transfer matrix with
Sin(é+\)e 2 boundaries, besides the reflection equation, we need the dual
. reflection equation. Generally, the dual reflection equation
Ki(h)= sin(é—\) - which depends on the unitarity and cross-unitrarity relations
sin(é—N\) of the R matrix takes different forms for different models.
(37 For the models considered in this paper, the cross-unitarity
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relation remains the same for three different backgroundsThe commutativity ot(\) can be proved by using unitarity
We can write the dual reflection equation in the following and cross-unitarity relations, the reflection equation, and the

form: dual reflection equation. The detailed proof of the commut-
N . . . ing transfer matrix with boundaries for the suggraded
Riu=MKy (MM "Roa( =M= w)K; (w)M, case can be found, for instance, in Refs. 27,28,42,45, etc.
. . . . We also define the Hamiltonian by a relation
=Ky (WM "Ry 7= A= w)Ky (MM "Rag(—N).
(44) H_1 ~ dInt(\)
One finds that there is an isomorphism between the reflection B Esm( 7) dx ],
equation(33) and the dual reflection equatidd4):
N—-1
KO\ =K (N =MK(=\+7/2). 45 Lsin(n)
(N):— (N) ( 7l2) (45) :Z ij+1|- J+1(0) zsm(g) 1( )
Here we mean that, given a solution of the reflection equa- -
tion (33), we can find a solution of the dual reflection equa- str, KX (0)PyaL.(0)
tion (44). Note, however, that in the sense of the commuting 42 @ Na-Nat =/ (47)
transfer matrix, the reflection equation and the dual reflection str, K2 (0)
equation are independent of each other. ) )
The transfer matrix with boundaries is defined as We still take the FFB grading as an example, and thus
=diag(e?7,1,1). We have two types of the solutions to the
t(N)=strK ¥ (M) 7Z(N). (46) dual reflection equation:
|
Sin(éJr_)\)ei(Z)\Jr n)
K (A= sin(£* —\)el(=7) :
SiN(éF+N—17n)
Sin(§+_)\)ei(2)\+77)
Ky (\)= sin(é"+\—7) : (49
sin(é"+\—17)
|
where&* is also an arbitrary boundary parameter. Since the | sin(n) it sin(7) e sin(7) |

reflection equation and the dual reflection equation are inde- H1= en;, Hy= ni— e'¢s],
pendent of each other, there are altogether four different sin(¢) 23'“5) Sin(¢)
types of boundaries determined by boundergand K * ma-
trices:{K, K"}, {K; K}, {Kyi K}, and{K; K} .

The Hamiltonian of the generalized supersymmetrit Hl— sin(7) G ™
model with boundaries is written as N 2sinet+ ) N

:Z E [Cja'l nj, *O')C]‘Fla'(l Njy1- o)

. HN=— —Sl_n( 7]1 e 1€ ny+ —Sfm( 71) e €', (50
+¢lu 1 (1M1 0)Cis10(1-1j _,)] 2sin(§") sin(¢")
-2 [E(S,TS,‘HJF S 1) +cog7)S'S We remark that there are four types of boundary terms in the
= Hamiltonian.
cog ) N—1 The solution of the graded reflection equation is identical
— T Njq|+isin(z) E [ Njy1— J+ln ] to that of the nongraded reflection equation, because we fo-
cus our attention on the diagonal solutions of the reflection
N-1 equation, and the two cases for graded and nongraded are
—2cog7) 21 nj+e 'n;—e Iny+Hy+Hy, completely the same. The solution of the dual reflection
=

equation for the FFB case is similar to the nongraded case in
(490  Ref. 23 except for a minus in the last diagonal elements. And
the boundary terms appearing in the Hamiltonié#® and
whereH, andH,, are determined by the reflecting matrices. (50) are similar to the previous resufitgthe anisotropic pa-
Explicitly, they are rameter should be redefined gas=— v).
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IV. ALGEBRAIC BETHE ANSATZ METHOD e_Zi)‘Sin(n)
FOR FFB GRADING Ug()\)zk;()\)_m[kf()\ﬁk;()\)], (55)
SI n
In this section, FFB grading is assumed. We shall use the _ _
nested algebraic Bethe ansatz method to obtain the eigenvdtor type I and Il solutions of the dual reflection equation,

ues of the transfer matrix with boundaries defined above. we have

_ Sin(2n— 7)SiIN(ET+ N+ )

A. Commutation relations necessary for the algebraic U (N : for K
Bethe ansatz method s(M) Sin(2\ + 7) ’ o
We write solution of the dual reflection equati&ii and 56
:gﬁosv?#blﬁj—rrr?]\{v monodromy matrid, respectively, in the N SiN(2\ — 7)sin(¢* +\)e'” f o
g form: a(M)= SN2+ 7) - tor K
K*(N)=diagki (N),k3 (N),k3 (N)), (51) (57)
As mentioned above, the double-row monodromy matrix
Ap(N)  Ag(N) Bi(h '
M) 120 Bih) also satisfies the graded reflection equati®®). Setting the
TN =| A2a(N)  Ax(N)  By(M) |. (52)  indices in that relation to be special values, we can find the
Ci(N)  C(N)  D(N) commutation relations which are necessary for the algebraic

Bethe ansatz method. The detailed calculation is tedious and
Instead ofA,,, we shall used,, in the algebraic Bethe complicated, so we do not present it here. The result is
ansatz method so that there will exist only one type wanted

term in the commutation relation. The transformation takes rlz(k—u)ﬂjﬁj
= — .
the form Cay(NCa( 1) == Gn s g Ceal)Ces (V) (58)
AN ap=AN) g+ 8 e *sin(y) Doy, (53
b= b b . Sin(A+ w)sin(A — u—
a a ab'gin 2N + 7) DNyl ) = n( ) sin( M 7])/, (1)DOV)

sin(A+ u+ 7)sin(A —u) @
sin(2p)sin( 7)e'®~#)

So the transfer matrix with boundaries can be rewrite as

E0) = = ki () A kg (V) Az0) +k3 (VD) S sz et )i P
= —k{ (M) AL\ —k; (N A(N)+Uz (MDON), (54 sin(pet+m
where TSt ) b(N) Apgl( ), (59
|
B Mo A+ pt 77);12?21(7\_#)313,; B sin(p)e 1w
Aayy (M) o) = e Gl ey, (W) + o S Tl 2
byt B sin(2u)sin(7)e "4 0,0
)y Con ) o, ()~ e T ) A 2M Wi Co, (VD).
(60)
Here the indices take values 1 and 2, andrtimeatrix is defined as
sin(\—7) 0 0 0
~ 0 sin(\) —sin(n)e 0
M=l “sin(p)ed  sin(\) 0 (62)
0 0 0 SiftA — )

In fact, the elements of thematrix are equal to those of the origir@lmatrix when its indices just take the values 1 and 2.

B. Vacuum state

According to the definition of the double-row monodromy matrix, we write it explicitly as
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An(N)  Ag(N) By(N)
TN = Aaa(N)  An(N) Ba(N) | =T(MKN)T H(=N)
Ci(N)  C(N)  D(N)
Au(N) Ap(N) BN\ [ kiN) O 0 Au(—\) Ap(—\) Bi(—\)
=| Ax(N) Azp(N) Bay(N) 0 ky(\) O Asi(—N) Ax(—N) By(—\) (62)
CiA) Cy(\) D) 0 0 kM/ | C=n) Cy—n) D(—N)

For convenience, we can write the inverse of the row-to-rowActually, we have already used it to obtain the results

monodromy matrix as

To (=N)=L1a(M)Loa(N)- - -Lya(N),

where we have used the unitarity relation of Rimatrix and

a whole factor is omitted.

Define the reference state in théh quantum space and

the vacuum0) as
0

|0>n: 0],
1

|0>:®E:1|0>k-

By use of the definition of the row-to-row monodromy ma-

trix (19) and its inversd€63), we have
Aap(M)]0) = psint'(1)[0),
D(\)[0)=sin(x+ 7)[0),
Ba(\)[0)=0, Ca(M\)[0)#0,
Aab(—N)[0)=8apsin™(M)|0),
D(=N)[0)=sin(\ + 7)|0),

B,(—\)[0)=0, C,(\)|0)#0.

Aap(N\)]0)=0, a#bh.
63) Then, we have
sin(n)e’z”‘
SiN(2\ + 7)

=W, (\)sir?N())|0).

A1(M)[0) = k(X)) —ks(N) sir?N(\)|0)

(69

For the case | and Il reflectini§y matrix, we have the same
W, which takes the form

So, with the help off’s definition relation(62), we can show

that

D(N)]0)y=ka(N)sir?N(\ +7)[0),
Ap(N)]0Y=0, a#b,
B,(\)[0)=0,

Ca(N)]0) 0.

To obtain the actions of operatot,, on the vacuum state,
we use the following relation obtained from the Yang-Baxter

relation:

- b b
[T )‘)]aiR(ZMaiﬁiTmEi( —1)(b, €0 ),

=T()\)21R(2)\)C1b2[1—*l( _ )\)]gi( _ 1)(eal+eb1)6a2_

bya,

(64)
-~ SiN(2N)sin(é+ N+ 7)
for K| and K||: Wl(7\)=e_2”‘ s|n(2)\+77) U
(70)
Similarly, we have
~ sin()e 2]
Gad(M)10) =| kalh) ~ ko) g5 SirP(0)[0)
65
€5 =W,(\)sireN(\)|0). (71)
For the case | and Il reflectinly matrix, W, takes the fol-
lowing forms, respectively:
_ __,p, Sin(2N)sin(§+ N+ 7)
(66) for K;: Wy(\)=e 2\ Si2n+ 7) , (72
. sin(2\)sin(&E—
for K, : Wz()\)=e"’sm( il (73

Sin(2\+ 7)

C. Bethe ansatz

We construct a set of the eigenvectors of the transfer ma-
trix with reflecting boundary conditions as

(67 Cay(11)Ca(12) -+ -Ca () O)F% %0 (7
Here FY1'dn js a function of the spectral parameteis.
Applying the transfer matrix54) on this eigenvector, we
find the eigenvalued (\) of the transfer matrit(\) and a
set of Bethe ansatz equations. This technique is standard for
the algebraic Bethe ansatz method. Apply filsbn the ei-
genvector defined above, use next the commutation relation
(59), consider the value oD acting on the vacuum state

(68) (67). Then we have
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D()\)Cdl(/.bl)cdz(,uz) .. 'Cdn(ﬂn)|0>Fd1' ~d,

n

Sin(\-+ ) SN\ — gz = 7)
—kg(sit v+ [T et B T () (o) Co(mn) OF % ut, 9

where “u.t.” means the unwanted terms.
We actA,,(\) on the assumed eigenveci@®). Using repeatedly the commutation relatid§), we have

.Zaa()\)Cdl(,ul)Cdz(Mz) .. 'Cdn(/-l’n)|0>Fd1' -dy

ol

1
SIN(N — ) Sin(N + i+ 77)

Fo(A+pg+ 77):‘1; (N — Nl)b e roN+pot7) 2c 21

anen

byds
X(N_Mz)bie TNt upt 7])

Summarizing relation$67), (69), and(71), we obtain

o 121N = )" X0C (1) -+ Co (1n) Ag p (V[O)FU it ut, (76)

Ag b, (M]0)= 85, Wa (N)sir?t(1)[0). (77)
We can rewrite the transfer matrix as
tN) = —ky (M) A1(M) —k3 (M) Az M) + U3 (N)D(N)
= —ka (M) Aaa( M)+ U3 (M)DN). (79)
Thus the eigenvalue of the transfer matrix with reflecting boundary condition is written as
t(N)Ca,(121)Ca,(112) - - - Cg ()| 0)F 20

n

—Us(h)kg()\)smz"‘()\jun)n Sin(\ + i) Sin(\ — uj — 77)

SO+ gy ) sinOn— ) HY)

+Cg,(pn)|O)F 2

N c (1))t Cnpdy-dy
+ sir? (x)H | S s g Cea ) Ce () O)DONGE R b ut,
)
wheret®()\) is the so-called nested transfer matrix, and with the help of the reléi®nit can be defined as
OO G = —ka OO{r OV e+ )t g+ )22 T pa k)T
X 8o o Wa, (M 21N = )"0 15 Foa(N = o) 2N = ) 1. (80)
|
We find that this nested transfer matrix can be defined as a sinE =X — 7])925‘
transfer matrix with reflecting boundary conditions corre- KM (X)= L
sponding to the anisotropic case Sin(E"+N—7)
(83

tOO) =strKW* () TOX (i}
~ ~ ~ corresponding t&,” andK,; , respectively. We also have
XKOETOL K ), (8D POREING Ty anEr, Tespeetvey
with the grading e;=e,=1. Here, we denotex=X\
+ql2, E=é+npl2, E =T —9/2, and the same notation KMN)=e"
will be used, for instanceg = u+ 7/2. Explicitly we have

() sin(2\ — 77)3|r‘(§+ )
sin(2\)

Xid., (84)

in .
ei’7> (82 sin(2X — n)ei? [ sin(E+X)e 21t

sin(2X) sinE-%))’
and (85)

KO () =sing™ =R+ ”)eim_”)( KED(X)=
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corresponding tK, andK,,. The row-to-row monodromy ily. Note that the grading ig;= e,=1. Actually, because all
matrix T(l)(xl{ﬁl}) (Corresponding to the periodic boundary grading is fel’mioniC, the graded method is Slmp|y the same

condition is defined as as the usual one. _ o o
We note that the matrix satisfies the unitarity and cross-
Téﬁ)ﬂ(k’{ﬂi})ii? : i: unitarity relations
_ o~ _ o~ _ _ rlz()\)r21(—7\)=SIr‘(77+7\)Sln(77—)\)><Id, (90)
=T\ ) e TN F p2) 202 - TN ) 77
n— n
o o o rSa(2n—M)MPrSIOMP - t=sin(\)sin(2) - 7) Xid.
=L )L N+ ) LN 4 g (86) (91)
The L operator takes the form The matrixM@) is a diagonal matrixM V)= diag(e?”,1).
D~ In order to prove the commutativity of the nested transfer
L) matrices, we need the reflection equation and the dual reflec-
tion equation, which take the following forms:
b(\)—[b(\)—a(\) et —c_(N)eft " 0
- _C+()\)e%2 b()\)_[b()\)_a()\)]eﬁz ' rlZ(}\_/“L)Kl ()\)er()\+/"(‘)K2 (Iu‘)

(87) =KD ()r O+ KBy =), (92
And we also have oKD+ V-1 oy KD -
.y M = MK (NM 15127 —=N— w) K7 ()M,

TO N =1 20X = ) g 0 1

" =KD ()M 27— A= w) KT OOML rog(n—N).

T~ \bd T _~ \ad
X\ = p2)pleTa(N—ma)y (93

L o~ o~ _ By a direct calculation, we can prove that the above-
:L(l) l(—)\+ ) L(l) 1 X . . (1) (1) .
n Mn 2 defined reflecting matricel;”’ andK,;” satisfy the reflec-
Y T~ i ' (1)+ (1)+ gqti
X (= X+ ) LO =X+ ), tion equation, and alsi;~’™ andK};’™ satisfy the dual re-
flection equation.
(88) We know that the following graded Yang-Baxter relation

where we have used the unitarity relation of thenatrix, Is satisfied:

r12(N)ro1(—=N\) =sin(z—N\)sin(n+\) Xid.

In this section, we show that the problem of finding the (94)
eigenvalue of the original transfer matti ) reduces to the
problem of finding the eigenvalue of the nested transfer maTherefore, we also have the Yang-Baxter relation for the
trix t(\). In relation (79), one can see that besides the row-to-row monodromy matrix:
wanted term which gives the eigenvalue, we also have the

(=L OOLED () =L () LPOOr (= p).

unwanted terms which must be canceled so that the assumed rv— ) TEN )T, {wid)
eigenvector is indeed the eigenvector of the transfer matrix. o (1)
With the help of the symmetry propert$8) of the assumed =T3 (DTN (N = ). (95

eigenvector74), we find that, ifuq, ... ,u, satisfy the fol-

; ; _ Since we alreay knovK ! satisfies the reflection equation
lowing Bethe ansatz equations, the unwanted terms will van

(92), we can show that the nested double-row monodromy

ish: matrix
+ . . i N . -
Us (s ksl SIF (a7 TOO{h) =TON s h KDOOTO =X (i}
n (96)
X H Sin(uj+ i) sin(uj— mi—7) also satisfies the the reflection equation

i=1%]

S AD () =12, @9 AW TDOLD O ) T (i)
Here we have used the notatidii)(\) to denote the eigen- =T (v {ir N+ W) THON i1 2 — ).
value of the nested transfer matti®)(\). (97

Thus what we should do next is find the eigenvalue of the .
nested transfer matrité2). Parallel to the procedures presented above, with the help of

unitarity, cross-unitarity relations and the reflection and dual
reflection equations, one can prove that the defined nested
transfer matrix indeed constitutes a commuting family.

We expect that the eigenvalue of the nested transfer ma- Now, let us use again the algebraic Bethe ansatz method
trix can be solved similarly as that of the original transferto obtain the eigenvalugé(*)(\) of the nested transfer matrix
matrix. So we should first prove that the above-defined)(\). We write the nested double-row monodromy matrix
nested transfer matrix indeed constitutes a commuting famas

D. Nested algebraic Bethe ansatz method
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ABN) BBM)
1 =
0= Gy po)

=TON{wH KON TO =N {ui})

_(A“m B(”(A)) Sy
“le®oy p®y) KPD(n)
AD(—)\) §<1>(—>\))
_ _ . (99
c®(=x) DW(—n)

For convenience, we introduce again a transformation

H —2iN
sin(z)e PD(N). (99

A(l)()\)zﬂ(l)()\)— m

Because the nested double-row monodromy matrix satisfies
the reflection equatiof@7), we can find the following com-

mutation relations:

SiN(N—u+ 7)SIN(A+ )

Sin(\ — w)sin(A+u— 1)
sin(2u)sin( 7)el®~#)
Sin(A — p)sin(2u— n)

S”'( n)ei(}\+ﬂ)
Sin(N+up—7)

DWOCH(p)= CH)DDM)

CHNDD(w)

COMN AV (), (100

Sin(N—p—n)sin(A+u—27)
Sin(A — w)sin(A + = 7)

XCO(u) AD(N)
sin( )sin(2x —2p)e 1 #)
Sin(A — w)Sin(2\ — )
X CON)AD(w)

sin(2u)sin(2\ — 2 7)sin( 7)e " A1)
" Sin(\+ w— )sin(2h— 7)sin2— 7)
xCWMDD(p), (102

ADNCB ()=

CHNCD(pw)=cD(u)cHN). (102

As the reference states for the nesting, we choose

0
|0>(k”:(1>, 0 =oi 40}, (103

With the help of the definitio{86) and (88), we know the
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[T sin(X+ ;) 0
| ) 0y,
cOX) 1 sinX+mi—»)
=1
(104)
TOZH =N {wh]0)®
ALY BOY
_[AP®) B (f))low
C(l)()\) D(l)()\)
H X — ) 0
= . 0,
c®X) ljlsin(i—ﬁi—m
(105

Repeating almost the same calculation in the former sec-
tions, we obtain the results of the nested double-row mono-
dromy matrix acting on the nested vacuum stagl):

BON)0)P=0, cHN)0yM=0, (106
DOM®)[0) =M1
X [Sin(X + = 1) sin(X — i — ) ]]0)1).

(107)

Here we use the notatidd,=k$
UZ(X):e—“ZX—v)SWZX_,”)Sjn(mz) (108

sin(2\)
for the K, case and

UZ(X)= e'7sin( 2\ nlsm(g N) (109

Sin(2\)

for the K, case.
Using the Yang-Baxter relation, we also have

ADR)[0)®

actions of the nested monodromy matrix and the inverse of

the monodromy matrix on the reference state:
TON {ui})|0)®

- A(l)(X)

B
b (”)| 0w
C(l)()\)

D(l)()\

=kPR)ADR)AD(=)[0)D+KkP(X)

b(2X)

N ANV A @)X
Xa(ZX)—b(ZX)[A (MATH=M)

DW(-X)DM(X)]|0)
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H —2iN

= O HP R T2
n

X L1 [sin(R-+ i) sin(X — i) 1]0)

sin( 77)e~ 2\

sin2X— 1)

With the help of the transformatiof®9), we find

DMO(N)|0)D, (110

74<1>(X>|0><”=ul(X)[[1 [sin(X + z)sin(X — ) 1]0)®),

(111
where we denote
- - _ sin(2pe 2\
u1<x>=k&”<x)+k<2”<x>M. (112
SiN(2\ — 7n)
Here U, takes the following form explicitly: For
Ki(\), Us(A)=e #rsink+d. For  K;(r), Us(R)
—e '@ Dsin(\+E- 7).
The nested transfer matrix takes the form
tM(N)=strK X)) 7TH(X)
==k X)) ADR) kP (X)DD(X)
=—U; N)ADN)—U; N)DDXN), (113
where we denote); =k{P*,
Sin(77)672|x
+ — 1)+ A (M+
which means the following.
For theK," case,
Us(X)=sin(¢* —X+7), (115
U;(X) sin(2\ —27)sin(&é* —)\+7;) a7
sin(2X\ — )
(116
For theK,, case,
Uy (R)=sinE" —X+ e,
. sinN+E")sin(2xn—2
UE (%)= in(X+¢€")sin( 77) 117

sin(2\ — )
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ABRX)=-UTM)ULN)

xiljl [sin(X + ) sin(X — ;)]

y 11”[ sin(X — u(V—m)sin(X +u{D—27)
sin(X — z(Y)sin(X + (P~ 7)

—U3 (N)U(N)

=1

xiljl [sin(X + ;= 7)sinX — ;= 7)]

T [ sinx — M+ 7)sinx +zY)
x ) @
sin(X — M) sinx + (Y- 7)

1 should satisfy the following Bethe an-

} . (118

wherew{V, ...
satz equation:

Uy () Ua(f?) sin(2uf"—27)
Uz (u{Ua(u{V)  sin2uf?)
T sinufP+ w)sin(uft - )
=1 sin( Y+ i — mysin(ufY = ui— )
Do sinafP = w4 psin(ufM+ k)
=iz sin(pM - w- psinp®+ wM-27)

ji=1,...m. (119

We already know the exact form of(*), so we can change
the former Bethe ansatz equation presented in reld88n
as follows:

UZ (uUa(mj)  sirPN(u;)
U3 (1)) Us(k) sitN(u;+ 7)

o sin(uj—n. Yt m)sin(u + ufY)
=1 sin(u — (M) sin(u + u{D—n)’

i=1,...n. (120

The eigenvalue of the transfer mattiéx) with reflecting
boundary conditior{46) is obtained as

A(N)=Uz (M)Uz(\)sirtN(N+ 7)

+sirtN(\)

r“[ SN\ + w) I — 1 — 77)
=1 SiN(\+ w;+ n)sin(\ — )
1

€N
><i:l SIN(A — i) SIN(A + wi+ 77)A D). (12

=

Following the standard algebraic Bethe ansatz method, we
assume that the eigenvector of the nested transfer matrix Hdere, for convenience, we give a summary of the valles

constructed asC(u{P)C(usM)- - - C(()|0)V. Applying

the nested transfer matrid13) on this eigenvector, using

repeatedly the commutation relatios00) and (101), we
have the eigenvalue

andU™.
Case I:

U; R)=sinE" =X+ 7)e™,
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- sin(2x—27)sin(E" =X\ -
U;()\):SIH( A Si;;);rffm >\+77)e|(zx—n),
SiN(2\— n)SiN(éT+ N+ 7)
Ui 0= Si:’(ZHn) 7 (122
Case II:
Uy (X)=sinE =X + 7)e?,
U§(X)=Sm()\+§ )iln(Z)\—Zn)
Sin(2\ —7n)
SiN(2N— m)sin(éT+\)
Case I:
U, (V) =sin(X +F)e 2,
UZ(X)=e‘i(ZX‘”)Sim2X_.ﬂ)sLin(XJrE),
Sin(2\)
Us(N)=sin(é—\). (124
Case Il:
W(\) 0 0 0
0 b(\) 0 c_(N)
0 0 b(\) 0
0 c.(\) 0 b
RV=| © 0 0 0
0 0 0 0
0 0 ci(N) 0
0 0 0 0
0 0 0 0

The diagonal solutions of the dual reflection equation are

K (\)=

Kii(N)=

sin(&"—\)e' @7

Sin(§+ _ )\)ei(2)\f 7)

where&* is an arbitrary boundary parameter.
We still denote solution of the dual reflection equatki and the double-row monodromy matri respectively, in the

following forms:
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U,(N)=sinX +&— e (@ -7,

Znsin(ZX— 7)sin(€=X\)
sin(2\)
Us(N)=sin(é—N). (125
SinceU andU ™" are independent of each other, there are four
combinations fo{U,U *} such aql,I}, {I,I1}, {II,1}, and
{1},

In the special limitt— —i, the solution of the reflection
equation becomes identity; our result should be reduced to
the results obtained by Foerster and Karowékhnd in the
rational limit, the results are equivalent to the previous
results??37

U,(X)=e

V. ALGEBRAIC BETHE ANSATZ FOR BFF GRADING
A. First-level Bethe ansatz

For the case of BFF grading, the calculations proceed
parallel to the case of FFB. However, for the nested algebraic
Bethe ansatz method, the low-levematrix is BF grading
which is significantly different from the FF gradimgnatrix.
Actually, as we observed in the last section, the graded
method is the same as the usual method for the FF grading
matrix. We shall study the supersymmetrid model in the
BFF grading.

The R matrix is now

0 0 0 0 0

0 0 0 0 0

0 0 c_(\) 0 0

0 0 0 0 0
a(\) 0 0 0 0 (126)

0 b(\) 0 —-c.(\) O

0 0 b(\) 0 0

0 -c,(A\) O b(\) 0

0 0 0 0 a(\)

sin(§+—)\)ei(2*_’7)
sin(éT+N—n)e 27

Sin(¢é"+Xx—17) , (127

sin(éT+N—n)e 27

K*(\)=diagk; (A),k3 (\),k§ (M), (128
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Ap(N) - A(N) - Bi(N)
TN =[ A2a(N)  AzdN)  Ba(N) | (129
Ci(N)  Ca(N)  D(A)
In order to obtain the commutation relations, we need the following transformation:
A(N)ab=A(N)ap— %mm). (130
SiN(2\ — 7n)

Because the double-row monodromy matrix satisfies the reflection equation, we obtain the following commutation relations
after some tedious calculations:

dyd
rlz()\_ﬂ)cjcl

Ca,(M)Cy, ()= m( — 1)t et el () Ce (N, (13D
Sin(N + w)sin(\ — u+ 7) sin(2u)sin( 7)el*~# in( 7)el+ ) N
D(A)cd(m=SMHZ_n)sir(;‘_z)cd(um(x) Slri()\MM)S|n7(72M CD(u)+ sm()i?—i——)cb()\)Abd(“)‘
(132
1d2

oA+ p— 77),31C2r21( _M)b
SiN(N + u—n)sin(A— u)
S|n( n)efi(}\fﬂ)
SiN(\ — w)SiN(2\ — )
sin(2u)sin( 7)e ' x)
SIN(\ + u— n)SIN(2A — )SiIN(2u— n)
Here the indices take values 1 and 2, and the Grassmann parities aeg=BF,¢,=1. Ther matrix is defined as

Aaa,(N)Cq, ()= (— 1) %™ 0, ™ e;%, ™ €0, Ce (1) A p, (M)

€ € € bod ~
—(— 1)) o, P28 = 77) 2 Co, (M) Apa, (1)

+(— 1), " €ay(ea; + €a) r( 2N+ n)dzdicbz(x)p( w). (133

sin(\ + 7) 0 0 0
0 sin\)  sin(y)e " 0
FaM)= 0 sinper  sin\) o | (134
0 0 0 sifA — )

The elements of the matrix are equal to those of the origi- Substituting the exact forms of the reflecting type | and type
nal R matrix when its indices just take values 1 and 2, andll K matrices into the above relation, we have
the Grassmann parities also remain the same as before if we
just take values 1 and 2. Thismatrix hassu(1|1) symme- | | sin(\)sin(é+\— n)e 12
try. Wi =Wo(\) =—— o=

Let the elements of the double-row monodromy matrix
act on the vacuum staté):

sin(2\)sin(é+X—g)e 12\

DV|0) = Us()si (A= 7)]0), Wi =—Gar=m
Aaa(M)[0)=Wa(\)sir?"(1)[0), i _S2NSIE Ve 3
Aap(N)|0)=0, a#b A P B (137

Ba(\)|0)=0, The transfer matrix with boundaries for BFF grading is

written as

Ca(N)[0)#0. (135

Here we have defined () =kg (M) Ana(M) —kg (M) AzAN) —kg (M) D)

B B sin(n)e~ 27 — (= 1)k (N AN UL (NDON), (139
Us0)=ka(N), - WaM) =ka(M)+ o= ko). .

(136  whereU; is defined by
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e—ZiASir( 7])

Uaf()\)Ekg()\)ﬂsz—)\_n)

[ki (M) —kz (V)]
(139

For type | and Il solutions of the dual reflection equations

K™, we have

Us(N)=ks(\)=sin(é"+ —n)e 27, for K|,
(140
Us\)=sinét+r—2n)e 7, for K.
(147

Using the standard algebraic Bethe ansatz method, applying
the above-defined transfer matii¥38) on the ansatz of ei-

genvectorCy,(u1)Cay(i2) -+ -Ca (1n)| O)F%+ ", we have

t()\)cdl(,u,l)cdz(luz) .. 'Cdn(/-Ln)|O>Fd1' -dj

=U3 (M)Ug(\)siN(N—7)

ﬁ SiN(\ + w;)(SiN\ — g + 7)
=1 SIN(\ + pj— 77)Sin(\ — ;)

XCay (1) Co ()| O)F % EntsinPN(1)

2l

1
SIN(N — i) SiN(N + i — 77)

X Co,(m1) -+ Co () [O)EBN) G RISt ut,,

(142

where the nested transfer matti®)(\) is defined as

)G = (=) ke (V)

X{r(N+py— n)zglr(Mer
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Sa b, Wa (M{raa(N— Mn)b" o
_,U«z)b e (N — g blel}

n
><(—1)Z1 (ea *ep) (1t eq), (143

Here we have useé, e, = e.€4 for a nonzero elements of the
r matrix r<3. We also know that for nonzend{, we have

€.t €.= €pt+ €q. Consideringe,+ €,=0, we can write
eai+ebi=eai+26ai+l+~-~+26an_1
+26bn—1+“.+2€bi+1+6bi’
n—i
=jzl(eci+j+edi+j), i=1,...n—1, (144
in which

j—1

2 (€a+€p)(1+ €)= E (ec+ee>2 (1+ee)

j—1

+2 (ed+ee>2 (1+ee).
(145

Thus this nested transfer matrix can still be interpreted as a
transfer matrix with reflecting boundary conditions corre-
sponding to the anisotropic case

tBO) =strkK®* M) TON {mi})
XKON)TO=X (i), (146

with the grading BFel 0,6,=1, where we denota=x

aze, _Lanen —pl2, x=\,u,&E". According to the definition, we have
~a 1%2 TN n)anflcn} nested reflecting matrices
|
sin(2\+ p)sin(E+X) -
W, X+177 _77 ~ e ' nxid,, for case |,
~ Sin(2\)
KON)= = 5 -
1 sin(2x + n)e (3 *n) o -
Wo| A+ =7 — diag(sin(é+X),sin(é—x)e'?"), forcase I,
sin(2\)
(147
and
N
+ — - .~
- k| A 27 sin(ét—X\)e'?xid., for case |,
KO+ (N)= e i e (148
- 1 diag(sin(é—X)e'?*,siné+1X)), forcasell.
k2 )\+E7]

The row-to-row monodromy matriceEV(X,{x;}) andT®~1(—X {;}) are defined, respectively, as
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~ o~ . ~ o~ j—1
T RARDE =r(N+ m)3r (N4 )22 -1 (R ) 1 (—1)3=alee P o)l ree)
n— n

:L(l)(X+7Ll)::(L;j1L(1)(X+7L2)2i§§" LON+ 7y )anen ( 1) P oee +eq)Tio 1(1+€e) (149

TO =X {uh) =raX - Mn)bn (X — Mz) r21()\ Ml)bdl( 1 o€ ee) 311 €g)
LR Rl LR LT e
n-n 272

(150

where we have used the unitarity relation of th@atrix r 15(\)r,1(—\) =sin(»—\)sin(»+X\)Xid. TheL operator is obtained
from ther matrix and takes the form

Ly [ PO~ [E) w0l c-(Vef! "
)= c. (el b(\)—[b(\)—a(\)]eF?)’ e

We find that the supertensor product in the above-defined monodromy matrix is different from the original definition. Nev-
ertheless, as in the periodic boundary condition case, we can define another graded tensor product ds follows:

FoG=FIGY(— 1)t <), (152

Effectively the graded tensor product switches even and odd Grassmann parities. The graded tensor product in the above
monodromy matrices follows the newly defined rule.
The L operator satisfies the following Yang-Baxter relation:

biby (1 c1 (1 c 1 by (1 b cic
PN = 1) 2L OO LB ()2 (= 1) ort el 0= L0 () ZLEN) I (0 = ) 2 (= 1) e o), (153
Multiplying both sides of this Yang-Baxter relation by-()(¢a;" ), we obtain
PO = ) 2L DOV () 2(— 1) o e o) = L ) ZLOO0) 27 (N = )l (— 1ot o) 1 ev)), (154
This is just the graded Yang-Baxter relation in the newly defined graded tensor product. And we have ramattier

r(N)59=(—1)c™or(n)22. (155

For the row-to-row monodromy matrix, we also have
" byb € € €
PN =M 2T i TP O (i) 2~ D)0 ) )
b by
=T ) 2T T (M= Ao)h2 (- Dl )y, (156

In order to prove that the nested monodromy matrix is indeed the transfer matrix with reflecting boundary conditions, we
need to prove that it constitutes a commuting family. As discussed in the last sections, we should pre¥® gad K ()"
satisfy something like reflection equations. One can provekhatandK ()" satisfy the following graded reflection equations
in the newly defined graded sense:

POV =) 222K OO (N ) 20K D) (2= ) (oo o) ()
=KW() 2 (N ) 2K DOV (N = ) 23— ) (oo o) (e, (157
~ b4b ~ d d €p. € €
(=N ) 2K D VP (N = ) 20K () (2= (oo o) (B )
= KO () 20 (=N = ) KO P (= N ) (=) (), (158

We see that the second relation is consistent with the cross-unitarity reﬂ%@(m )\)rStl(A) = —sir?(\) Xid. Thus the nested

transfer matrix is proved to constitute a commuting family. We can still use the graded algebraic Bethe ansatz method to find
its eigenvalue and eigenvector.
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B. Algebraic Bethe ansatz method for the BF six-vertex model with boundaries and the final results for the BFF case

Denote the double-row monodromy matrix as

A(l)()\)
C(l)()\)

7—(1)()\1{#4}) =

For convenience, we need the following transformation:

A(l)(A)I;l(l)()\)—

sm( n)e72i)\

SiN(2x— 7)

B(l)()\)

Py (159

DI(N). (160

Because the nested double-row monodromy matrix satisfies the reflection equation

~ b,b ~ d
FON= )t TR N+ ) 2!

b

by - dod
=T () 2T (N 1) L2 TP (= ) (=) (o o) (),

we have the following commutation relations:
Sin(N— w+ 7)sin(A+ u)
Sin(A — w)sin(A + = 7)
sin(2u)sin( 7)e'®~#)
Sin(A — w)sin(2u—n)

sin(7)e'* 4 -
Sil’\()\+—/j,—77)C(l)()\)A(l)(M)’ (162

DU ()=

CO(w) D)

COMNDD(w)

_sin(A—p+ p)sin(A + )
= SN — w)SinA+ — 7)
sin( 7)sin(2\)e "4
Sin(\ — w)sin(2\ — 7)
sin(2u)sin(2)\)sin(7)e *F#)
SN\ + u— 7)SiN(2\ — 7)siN(2u— 1)

ADON)CD () CO(u)AD(N)

COO)AD ()

xCHMNDD(pw), (163
W@ - SIAZ st D) Ly )
CONCD ()=~ G — SO0,
(164

For the local vacuum stal@)Y=w]_,|0){"), we have
B(l)(X)|0>(l)=0,

cH(N)[0)=o,

Zt<1><X>|0>‘”=ulm__H1 [sin(X + ;)sin(X — x;)]]0)™D),

DOMN)|0YV=U,M ] [sinX+ui—7)
i=1

xsinX— ;= n)][0). (165

Applying the transfer matrix t)(X)=UF (X)AD]X)
—U;(\)DMD(X) on the ansatz of the eigenvector

7{1)(#)22( _ )(eb1+ ecl)(1+ Ebz)

(161)

C() (i) - - -c(n)|0Y®), we find the eigenvalue of
the nested transfer matrix as follows:

ADX) =U; XU ]T IsinX+ ) sinx = )]
=1

sin(X — u(V+ m)sin(X +z(Y)

sin(X — u(Y)sin(X + (- 7)

m
=1
n

—U§<X>uz<i>iljl [sin(X+ i — 7)

X

X sin(X— = 7)]

if

sin(X — u(V+ m)sin(X + u(Y)
X T ) ey () ’
Sin(\ — p ™) sin(N + w1~/ — n)

(166
where (), ... u!Y should satisfy the Bethe ansatz equa-
tions

Us (uf)Us(sf")
Uz (m{MUs({M)

sin(uf"+ i) sin(uf"— i)
=1 sin( Y+ i — psin(ufY = ui— )

=1,

ji=1,...m.

(167)

The eigenvalue of the transfer mattiéa) with reflecting
boundary condition is finally obtained as

AN)==UF (N Us(N)siPN(N— 1)

y H SIN(N+ i) SIN(N = i + )
i=1 SIN(A+ pj— m)SIN(N — i)

+sitNOoO [ ]

M)\
=1 Sin(N— wi)Sin(\N+ wi— 7])A (N),

(168
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anduq, ...,um Should satisfy the Bethe ansatz equations VI. RESULTS FOR FBF GRADING

can analyze it in the same way as the BFF grading. Here we
just present the eigenvalue, the corresponding Bethe ansatz
equation, and the boundary factors. The eigenvalue of the
sirtN(u) U3 (m)Us(ke) transfer matrix with reflecting boundary condition is

sin2ui+ 1) 1 [ sin( e+ pi)sin(uj — wi+ 7)

The last possible grading is FBE;=e3=1, €,=0. We
SIn(2p;— )i=1#1 | Sina;+ i — 7)Sin(; — i — n)]

a sir'IZN(Mj_ 7) Ug (1))Us(u))

ﬁ sin(u; — () + p)sin(u; +Ml’)}
=1 | sin(y— w()sin(u; + uf = 7)

AN ==Uz (M Us(\)sirtN(x = 7)

+sirPN(\)

1_“[ SIN(\ + i) Sin(\ — wi+ 7)
=1 SIN(N + w;— 7)Sin(\ — w;)

=1, ... n, (169 n 1
~ Q)5
wherep=pu—37. x i=1 SIN(N— wi)Sin(A+ i — n)A (M),
Finally, we give a summary df) andU* for BFF grad-
ing.
Case I: 3 -
3 o ADR) = =0 O ULNO T [sink+a)sink — )]
Ui (N)=sin£" —X)e?, B
e o Xﬂ sin(X — = m)sinX + ")
U (x) = SNENSINETZA) ok, sin(X —(Y)sin(X + (Y + 7)
Sin(2\ — 7) s ~
A +U, (MU,(N)
Us(N)=sin(éT+N—n)e 27, (170 .
Case II x L1 [sin(Xo+ i+ m)sinX — i+ )]
Uy (X)=sin&" —X)e?, o [sin(X—}lfl)— n)smm;,(n)] .
o ~ i — 2 Msinx+ oW+ |
U+(X _Sirl()\+§+_77)5in(2)\) Sln()\ M )Slr()\ M 77)
2 - R ~ I
SIN(2\ = 77) wheren{V, ... ! should satisfy the Bethe ansatz equa-
US()=Ssiné +N—27)e 17, a7y Uoms
Case I: u; (Iu(l)) 1(,U~(l))
in(2X _ Uz ({)U({M)
Ul(X =sm(2)\+ )S|n(§+)\) ei26n) U,
sin(2x —
" 7 n i WL Yein (D7,
» sin( ™+ i) sin(u ™ — )
U0 = SN2\ + p)sin(é+3) o i(Fn), =1 sin(p+ i+ psinM -+ g
sin(2\)
Us(A)=sin(£—\). 172 j=1...m, 179
Case II: anduy, ... .u, should satisfy

%)= sin(2X\ + 7)sin(é+X— 7) —|(2>\+n)
sin(2x— 7)

. sirf™(u)) Uz () Ua(1y)

SNy~ m) U3 () Us())

- 2 _— . ~
U,(X)= SN2+ 7)sin( - )\) , H Sln(u-—m )_77)5|n(M'+M|(1))

sin(2X) sin(; — w(W)sin(; + n{V+ 7)

Us(A)=Ssin(é—)\). (173

As beforeU andU ™ are independent of each other, so there
are four combinations for {U,U*} such as
{013, AL}, {1}, and{I1,11}. The boundary factors are as follows.

i=1,...n. (176
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Case I:
Us Q) =sinE-X)e?™,
U;(X):Sin(z-’x)sln(er_x)ei(27\+7]),
SiN(2\ + 7)
Us(N)=sinET+N—17). (177
Case Il:
Us Q) =sinE-X)e?™,
- sinA+E* in(2X
U;()\):sm()w-g ﬂ:n)sm( N)
Sin(2\ + 7)
Us(\)=sin(T+N)e 7, (178
Case I:
Uy(X)=sinE+X)e 120+,
UZ(X)zsm(ZXJF_n)?JrKEJFX)e*i(ZX*’?),
Sin(2\)
Us(N)=sin(é—\). 179
Case Il:
Uy (X)=sinE+X+ y)e A7,
UZ(X):sin(z'w)s;in(‘é—b
Sin(2\)
Us(N)=sin(é—\). (180
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VIl. SUMMARY AND DISCUSSION

We have studied the generalized supersymmettsit
model with boundaries in the framework of the graded quan-
tum inverse scattering method. The trigonomeRienatrix
of the Perk-Shultz model is changed to the graded one. Solv-
ing the reflection equation and the dual reflection equation,
we obtain two types of solutions each for three different
backgrounds FFB, BFF, and FBF. The transfer matrix is con-
structed from theR matrix and the reflectingk matrix. The
Hamiltonian is the the supersymmetricJ model with
boundary terms. Using the graded algebraic Bethe ansatz
method, we obtain the eigenvalues of the transfer matrix for
three possible gradings. The corresponding Bethe ansatz
equations are obtained.

Comparing our results with the previous results in Ref.
23, we find that the form of Bethe ansatz equations for BFF
case in Sec. V is similar to the results obtained in Ref. 23.

It is important to investigate the thermodynamic limit of
the results obtained in this paper. There, we may find some
physical quantities such as free energy, surface free energy,
interfacial tension etc. It is also important to extend the
supersymmetrit-J model to a more general supersymmetric
case.

Recently, boundary impurity problems have attracted con-
siderable interest€ %! Studying the boundary impurities by
using three different grading is interesting and will be left for
a future study.
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