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Modulated phases, magnetic phase diagrams, and the Lifshitz point
in MnP from the mean field theory
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The axial next-nearest-neighbor Heisenb@dNNH) model with orthorhombic magnetocrystalline anisot-
ropy was applied to describe magnetic phases and phase transitions occurring in manganese phosphide in
magnetic fieldH applied along the lattice vectoasb, andc. The ground state of the Hamiltonian was obtained
using analytical methods of Nagamiya’'s theory, augmented by numerical minimization of the energy with
respect to the wave vectgrof the modulated magnetic structurgli, fan, cong The latter procedure leads
to the dependenag(H) for all modulated phases, and explains both the shapes of the magnetization curves for
these phase&onvex for the fan and concave for the cone phasel the weakly first-order nature of the
cone-fan phase transition. The magnetic phase diagrams for the three principal directions of the applied field,
Hlic, Hilb, andHlla, are calculated under the assumption that the ratio of competing nearest-neighbor and
next-nearest-neighbor interactions depends on the temperature. The characteristics of special points in the
phase diagraméLifshitz points, triple point, critical end point, and terminations of critical linesmain in a
semiquantitative accordance with experiment. For the Lifshitz point the deviation from asymptotic scaling laws
was analyzed by calculating the effectiffé-range-dependentvalues for the crossover exponefitthe wave
vector exponeng, , and magnetization discontinuity exponghyt. The results provide an explanation of their
experimental values.

. INTRODUCTION ferromagnetic phas€.Measurements made for MgCa, P,
the disordered homologue of MnP, have shown intriguing
Incommensurate magnetic structures of the orthorhombigovel features such as irreversible behavior in all modulated
metallic compound MnP are among the most thoroughlyphases, additional phases between helimagnetic and fan
studied. Manganese phosphide orders ferromagnetically @tructures®'® and the inverse hysteresis of the cone-fan
293 K and below 47 K it transforms into a helimagnetic transition?° (Inverse hysteresis means that the transition field
phase with spins rotating within the eabg plane’® An  for the increasing field is lower than for decreasing field.
applied magnetic fieltH induces incommensurate structures, These results were not adequately discussed in terms of
of the fan and cone typéFig. 1). The structure of the fan microscopic spin models. In particular, the properties of the
phase and its evolution with the magnitude of the magnetig ifshitz point were interpreted using the results of the renor-
field were investigated using neutron diffracfiohwhereas  malization group theory for a suitable Landau-Ginzburg-
the existence of the cone phase, inferred from macroscopiyilson (LGW) Hamiltonian?*?? (The parameters for the
measurementSawaits direct experimental verification. universality class of this LP am= 3, n=1, andm= 1 where
Mapping the fairly complex magnetic phase diagram ford n, andm denote spatial, order parameter, and wave vector
the external field parallel to the orthorhombic lattice vector ~ dimensionalitieg. However, this theory makes predictions
(a>b>c) has led to the discovetyf the Lifshitz multicriti-  for the asymptotic universal properties of the LP and delivers
cal point(LP) at the confluence of fan, ferromagnetic, andno information on the behavior of the system a finite distance
paramagnetic phases. Although the critical behavior characaway from the LP.
teristic of the proximity to a LP seems to occur for a few  The objective of this work was to obtain the ground-state
helimagnets with a long-wavelength modulati@ng., T9'®,  solution for a realistic spin model of MnP, aiming at calcu-
manganese phosphide in an external magnetic field remairating the mean-field-type characteristics of its magnetic-
the only magnetic system for which the true LP, i.e., with amodulated phases and phase transitions. The mean field cal-
wave vectorq of the modulatedfan) phase going to zero, culation should also help in recognizing the effects of critical
was found and several critical exponents determinéd’~1’  fluctuations, the possible influence of the itineracy of Mn
MnP exhibits other features, which are of interest forelectrons, and the effects introduced by the quenched disor-
phase-transition physics. The fan-para transition is an exder (Mn,_,CaoP).
ample of a critical transition which can be traced down to Localized spin models with the competing nearest-
absolute zero temperature. The transition between cone amgighbor and next-nearest-neighbor interactions remain the
fan phases induced by an external field parallel to the orthasimplest and the most fruitful models for incommensurate
rhombica axis is an uncommon example of a continudois ~ structures? For Ising spins this approach is exemplified by
only weakly discontinuoygphase transition between two or- the axial next-nearest-neighbor ISiG§NNNI) model, well
dered phased=ig. 2). This makes possible the existence of aknown because of its devil's-staircase behavior. Magnetic-
critical end point at the confluence of the cone, fan, andnodulated structures are more realistically described using a
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FIG. 2. Traces of the magnetization vs applied field at 4.2 K for
fields applied parallel to the three principal crystallographic direc-
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o SCR. Qé.) i ' ! ' nal fields. The simple spin-wave theory of the origin of the
1 0 e 1300 heli-ferro transition in MnP was given by Srflitand the

occurrence of the Lifshitz point at its magnetic phase dia-
©) grams was discussed by Yokoi, Countinho-Filho, and
Salinas®® Models and solutions obtained in these works
o make the starting point for the present calculation.
o g MnP X The model Hamiltonian, the method of its solution, and
“, Holte the choice of model parameters are described in Sec. Il. The
Oy PARA. “ classical spin Hamiltonian of the ANNNH type comprises a
D DWFAN??% § minimal set of terms necessary to account for the observed
L cqyg&%%% 4 magnetic phases of MnP. One introduces the competing
E?

(<23
(=]

s nearest-neighbor and next-nearest-neighbor interactidns (
° and J,, respectively acting betweens layers of spins. The
magnetocrystalline anisotropy is described using a lowest-
FERRO. 2 _ order terms, with two anisotropy constarit6 and K?) re-
° quired for the orthorhombic crystal symmetry. The number
- 0] of model parameters is really smaller because the results de-
' . ! L o pend, as usual for the ANNN-like models, on the competi-
100 200 1300 tion ratio k=J,/J;, and only one of two anisotropy con-
T(K) T . .. .
stants is relevant as long as the magnetic field vector is
confined to thebc plane.

FIG. 1. Magnetic phase diagrams of MnP for a magnetic field 10 obtain the ground state of the Hamiltonian we fol-
parallel to three orthorhombic basic vectofa) Hilc (easy axiy lowed approximate methods used in works of the Nagamiya
replotted data of Huber and RidgléRef. 1), (b) HIb (intermediate  group?*~2® Energies of the trial spin structures were mini-
axig), after Shapireet al. (Ref. 11, and(c) Hilb (hard axig, after ~ mized analytically with respect to the modulation ampli-
Shapiraet al. (Ref. 8. tudes. But in contrast to Hyamitzu and Nagamiya we per-

formed the numericalminimization of the energy with
Hamiltonian with the competing interactions betweenrespect to the wave vector @his procedure allows one to
Heisenberg spingaxial next-nearest-neighbor Heisenbergcalculate the dependengéH) in the modulated phases, and
(ANNNH) model augmented with the magnetocrystalline provides a much better approximation for their equilibrium
anisotropy terms depending on the symmetry of the crystatnergy. In addition to spin structures considered in the pre-
lattice. The so-called Nagamiya’s theory of incommensurateious theoretical works 28 we made calculations for the
structure$®?*is basically an analytical method for obtaining elliptical cone structurenecessary to describe properly the
its ground state, i.e., the zero-temperature solution. Inomatghase transition between cone and fan phases and account
and OgucHt® have adapted Nagamiya’s theory to the case ofor the existence of the critical end point.
orthorhombic anisotropy, and Hyamitzu and Nagarfiya  The results of model calculations for three directions of
have made quantitative calculations specific to MnP in exterthe magnetic field Klilb, Hilc, andHIlla) are presented and
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discussed in relation to experiment in Secs. Ill and IV. Cal-tions, irrelevant as long as modulated magnetic structures
culated magnetization curves and phase diagrams reveal fe@main incommensurate with respect to the lattice.

tures which are qualitatively novel with respect to those ob- The helimagnetic spin structure occurs in zero field and
tained forg(H) = const. Magnetic phase diagrams calculatedwhen it is within the easy plane. The direction of tité spin

as functions ok=J,/J; are related to the experimental T is given by

phase diagrams using an assumption that the competition
ratio « varies with the temperature.

Attention is paid(Sec. V) to the characteristics of the
Lifshitz point occurring aH|lb andHIlla phase diagrams. The
calculations allow one to derive three critical exponents andn this equation the first termq defines the regular helix.
the amplitude ratios for the power law describing the phas@he second term with amplitud&, accounts for the distor-
boundaries. Close to the LP they must be the same as prtion of the helimagnetic structure due to an external magnetic
vided by the mean field solution of the LGW Hamiltonian field. (This term is responsible for its finite magnetizatjon.
for the uniaxial LP. The really interesting result is the calcu-The third term describes the effect of the in-plane anisotropy,
lation of the deviation from the power law where the dis- making the moments more crowded near the easis.
tance from the LP is finite. This “mean field correction to This distortion is known as the bunching effect: the ampli-
scaling” is important to interpret the experimental expo-tude ¢,, is named the bunching paramefer.
nents, necessarily derived from the data taken in finite ranges The fan spin structure is stable for a nonzero applied field.

2

NS

dn=ng+ &, sinng+2&,,sin2nq,  60,=

of temperature and magnetic field. The spins oscillate around the direction of the applied field
within the plane for which the anisotropy energy is smaller.
Il. THEORETICAL MODEL AND METHOD For a magnetic field parallel to the axis the direction of
OF ITS SOLUTION moments is defined by
A. Hamiltonian o0, &
The model considers equivaleXtlayers of spinss, (with sin = 5 cosna. ®

unit length, with the spins inside each layer coupled ferro- ] ) )
magnetically. The directions of all the spins in the layer are! he fan phase for other field directionsli(b andHiic) can

assumed to be the same, and consequently the value of tf;?@_defined in an analolgous.manner. The energy is calculated
in-plane coupling constant is irrelevant for the=0 case. USINg & power expansion with respect to the modulation am-
The exchange constants connecting titie layer to the pI|Fude 3 Hencg the qalculatlons are effectively performed
+1)st and 6+ 2nd) layers arel; andJ,, respectively. using the following spin components:

The orthorhombic symmetry of the crystal lattice requires
two second-order terms with anisotropy constat@ndK?. S,=1- Egz cofnq
No higher-order terms are introduced. The first anisotropy 2 '
constant(K) specifies the easy axis and the intermediate
axis in the “easy”bc plane. The second on&f) is relevant
when spins deviate from thac plane. The energy of a given Sy=¢cosnq— §C°§ ng. (4)
spin configuration(per one spin in a laygis given by

3

This model of the fan phase phase, applied in Refs. 24-26, is
) not unique. Another model defined by the spin components
Sin (S,=¢sinnq, S,=1—(£%/2)sin hq) was introduced earlier
by Nagamiya, Nagana, and Kitan®NK).?® For the fan

M =z

N N
E= _lel 5n'3n+1_~]2n§=:l S Sh2tK

n=1

N N structure defined by Eq4) it is the Zeeman term which is
+K2Y, 2 —u> H-S,. (1)  calculated exactly, whereas for the model of NNK the same
n=1 n=1 concerns the anisotropy energy.
The orthorhombic lattice vectotss, c, anda correspond to WO qualitatively different models of the cone phase, oc-
the x,y, andz Cartesian coordinates. curring for Hlla, are considered in this work. The circular
cone is defined, after Hyamitzu and Nagamili),2° as the
. distorted helimagnetic structure
B. Magnetic structures
The total energy of the system is a function of the mag- dn=ng+2¢{,qsin2ng,  6,=const. 5)

netic structure. Minimization of the energy is done by the ) .
trial method, assuming a number of expected phases anth€ cone structure described by EB) transforms continu-
comparing their equilibrium energies. Our analysis considergusly, for 6,— /2, into the “bunched” helimagnetic struc-
an external magnetic fieldl directed a|0ng th$, b, anda ture. Its fundamental deﬁCiency is that the circular cone can-
lattice vectors. The direction of spins in timh layer (as-  Not transform continuously into the fan structure. _
sumed the Samés Specified by the po|ar angm] measured The model of th%l“p“cal cone structurentroduced in
from the a axis, and by the azimuthal angtg, measured this work,
from the c axis in thebc plane. In the following, the spin
coordinates will be written, for simplicity, without the index

n. Also we ignore the phase factor for trigonometric func-

3

Sx=§sinnq—%sin3 na, (6)
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& =J,13;, k=K/J;, kK*=K?*J,, andh=uH/J;. For example,
Sy=¢cosng— §00§ na, for the fan phase this expansion reads
2 2 2,2 - 2
0
S,=1- f?cos? ng— %sinz ng— ngsinz ngcos naq, e(¢,q)=— %+k—h+ fZ[j(O)—j(q)—2k+ h]
describes mathematically the qualitative picture of the cone &
to fan transition given by Shapiret al® The trial structure +5al ~21(0)+3j(q)—j(2a)+6k]. (8)

defined by Eq(6) is a superposition of two fan modulations
[Eq. (4)] shifted w/2 in phase. The cone-to-fan transition
occurs when one of its amplitudes, namelybecomes zero.
The mixed term & £2£?) in the S, component is necessary to
keep the unit length of the spin vector, up to the fourth-order j(mqg)=2 cosmqg+2kxcos2ng, m=0,1,2,3, (9
powers of the modulation amplitudésand ¢.
The elliptical cone phase, in analogy to the fan structurerepresents the dimensionless Fourier transform coefficients
can alternatively be described using the spin componentsf the exchange constants.
Sc=¢&sinng, Sy={ cosngq, S,=1-(&%2)sir’nq Since the energy is a quadratic form of the squares of
—(£%12)cog ng. This model, introduced by Nagamiya, Na- modulation amplitudes, one can write down the formulas for
gata, and Kitang® can also account for the continuous na- the minimum energy in closed forms, which are functions of
ture of the fan-to-cone transition. We checked, however, thaghe wave vector only. Explicit expressions foe(q) for all
its quantitative predictions are numerically less accuratghases are collected in the Appendix. Except for the ellipti-
when compared to those obtained for the cone structure deal cone these formulas are the same as those derived by
fined by Eq.(6). One reason is that for the model of NNK the HN,%® but simplified by ignoring three additional Hamil-
relation S2+ S§+ S2=1 is valid only up to the second pow- tonian terms introduced in the HN work. The minimization
ers of the modulation amplitudes. of the energye(q) with respect toq is performed numeri-
In addition to the incommensurate structures describedally.
above we consider two commensurate magnetic phases, The thus obtained equilibrium values gfare used to
paramagneti¢P) and ferromagneti¢F). They are defined, calculate magnetization curves. The formulasrfiih) may
respectively, as spin structures in which the magnetic mobe derived from Eqs(A1)—(A8) asm= — de/dh.
ments are parallel to the applied field or make a constant Quantitative inaccuracies resulting from both simplifying
angle withH. assumptions were checkgfbr the fan phaseby including
an additional term in the Fourier transform and extending the
C. Approximations calculation up to sixth order in the modulation amplitudes.
Both options are analytically tractable; the formulas are
)g_iven by HN[see Egs(2.12 and(C1)—(C5) in Ref. 26]. A
gwmerical calculation shows that the change inrtif@) and
q(h) curves is about 5%. Having in mind the simplified
character of the Hamiltonian both approximations used in the

The ubiquitous quantity

The energy and magnetization of tReand P phases are
calculated exactly. In the absence of anisotropy and an e
ternal field, the wave vector of the helimagnetic structure i
given by the well-known equation

1 calculations should be considered as reasonably accurate.
CoSGo= "~ 7 (7 Two qualitative drawbacks of the method which was used
should be mentioned. Formulas for the enerdiss)—(A6)
defining its “ideal” valueqq. are valid under the assumption that the period of the modu-

To describe the effect of anisotropy and external field thdated phases is incommensuraf€his ensures a continuous
NNK'’s theory introduces approximations of two kinds. First, distribution of the¢,, angles, making easy the calculation of
the modulated phases are defined using a finite number afie mean values of trigonometric function&.locking of the
parameters. These parameters are the wave vec@md wave vectors into commensurate valuégiven by g
modulation amplitudeg, , &, for the helimagnetici forthe  =27P/Q, whereP,Q are integersmust occur for an exact
fan, andg, ¢ for the elliptical cone structure. Since the modu- solution of Hamiltonian(1) due to the effect of anisotropy
lation of arbitrary shape can be described by the infinite Fouand/or magnetic field. The recent study of Cadorin and
rier series, a finite number of modulation amplitudes isYokoi?® for the ANNNXY model shows that the widths of
equivalent to neglecting the higher-order Fourier terms.  commensurate heli and fan regions are becoming very nar-

The second approximation concerns the method of evaluow for long-period modulated structures. This probably ex-
ating the energy for a given spin structure. The expansion oflains the fact that there is no direct experimental evidence
the spin components in a power series with respect to théor a locking of the wave vector of fan or heli phases in MnP.
modulation amplitudes makes it possible to calculate analytiBecerra, Oliveira, and Shapifaconjectured, however, that
cally the mean values for all terms appearing in the Hamilthe observed behavior of the ac susceptibility of the fan
tonian[Eg. (1)] in the limit N—oo. The power series expan- phase may be understood as a result of jumps between innu-
sion is truncated at the fourth-order powers of modulatiormerable commensurate phases.
amplitudes. Dimensionless energy E/(NJ;) is thus given Obviously any calculation for aa priori chosen set of
as a function of the wave vecta; the modulation ampli- trial structures excludes the possibility of discovering more
tudes, and dimensionless parameters of the Hamiltonian: exotic or unexpected modulated structures. The so-called he-
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lifan and spin-flip structures were discovered via numerical The dimensionless results of the calculations do not de-
minimization of the energy for a model with few hundred pend on the absolute value of the exchange constant

spin planes? Nevertheless, one can estimalg=24 meV from the value
of the H/h ratio given above and the experimental magnetic
moment.
D. Choice of model parameters for MnP Our choice of model parameters and k follows the

; 27

The orthorhombic structure of MnP may be viewed as a]e_1|naly5|s .Of Smit.” The whole.set can be cqmpargd to the
result of a distortion of a more symmetric hexagonal NiAs- amlltqnlan parameters obtained from thg melasyc neutron
scattering measurements on MnP by Tajima, Ishikawa, and

type structure. For the NiAs-type structure the nearestiy, - .33 Jnd Yoshizawa Shapiro, and Komatsub¥rahe
neighbor metal atoms belong to two equivalent planes. S'm'\'/alueJ1=24 meV falls between the estimates given in both

lar “layers” of Mn atoms, with atom locations actually papers® The decrease of thd,/J;| ratio with the tempera-
deviating somewhat off plane, occur for the MnP structure T ) 2711 .
Fure is also confirmed. The combination of the anisotropy

Endhthey corre?pond tod:[]he r?larlldez of Sp'ﬂds mdo;gf mOdeConstantsK andK? can be related to the gap observed in the
xchange constantly andJ, should be considere ec- spin-wave spectrurif

tive interactions acting between nearest-neighbor and next-
nearest-neighbor layers of spins. The real spin structure of
the helimagnetic phase of MnP is of the double-helix type
and it can be obtained as a ground state of the classical spin A. Helimagnetic phase
Hamiltonian with at least five isotropic exchange constéhts.

/le]fe 0 thﬁ lpr;sence” o:‘htwgllayers. Ofl mome(|$l|aaced_by phase in zero field were used to determine model parameters
a/2) for eac atlice cell, tne dimensioniess wave veqtm_ «x andk (Sec. Il D. Nevertheless, one specific prediction can
model calculations corresponds to one-half of the experimen;q gptained from the theory, namely, the amplitude of the

tal value (which is defined in relation to tha lattice con- bunching effect. The value of bunching parameter is given
stan). The experimental value of the modulation vector atby the formula

low temperature(4.2 K) is 2q=0.117(2) (turn angle per

Ill. PROPERTIES OF THE MODULATED PHASES

Two limiting values of the modulation vector of heli

layer, 219. This corresponds, due to Ed7), to = K

—0.268. We assume that this low-temperature value of the Exq=+ TR (10)
competition ratio increases with temperature up ke J(@)=i(39)

—1/4 at the LP temperature. The calculated valug,,=0.013(for k= —0.268) remains in

Considering the MnP structure as a derivative of hexagofough agreement with the experimental value 0.0218

nal “parent” structure is also useful in understanding its . 3"5018" determined by Modrusing neutron diffraction

magnetocrystalline anisotropy. The orthorhomhbidattice  rpe giscrepancy probably reflects the use of a one-sublattice
vector, parallel to the former hexagonal axis, makes the harpnodel for the real double-helix structure

axis of the magnetocrystalline anisotrofgharacterized by As noted before, Eq7) defines the wave vecta, of the

7
thehK H anls_otrdo_py constajt 'I('jhe_ sec_oEdgry effecth of the elimagnetic phase resulting from the sole interplay of com-
ortdorh ombic |s(';(_)rt|gn IS to |sﬂngms e:]ween t eI ®&SY heting exchange interactions. The magnetocrystalline anisot-
and the intermediate axes in the former 1exagonal easy ropy and magnetic field produce only a minor change of the
plane. This in-plane anz|sotropy is characterized byKhen- wave vector(about 1% with respect to this “ideal” value.
Isotropy cpnstantK<K ). This is because the changemWith respect tay, is propor-

If the in-plane anisotropy constarK were zero, the tional to the second powers of bokhand h, cosq—cosdy
second-order heli-ferro transition in zero field would have, 2" 4 cosj—cosgyk2. [A formula forq(k') for the heli-
occurred atk=—1/4. The in-plane anisotropy extends the maénetic phase is given by Inomata and Oguchi. See Eq.

range of the ferromagnetic phase and makes the heIi-ferr&_lQ in Ref. 25] The numerically calculated(h) in the
transition discontinuous. Experimentally this transition Oc'helimagnetic phaselib, is shown in Fig. 3

curs at 47 K, at which temperature the turn angle of the
helimagnetic phase decreases to 19°. Comparison of the
equilibrium energies of helimagnet[&q. (A1)] and ferro-
magnetid Eq. (A7)] phases for the corresponding wave vec-  The high-field paramagnetic phase becomes unstable with
tor g=mx19°/180° allows us to determine the dimension-respect to fan modulation when the multiplicative coefficient
less in-plane anisotropy parameter K/J,=0.0032. in the &2 term of the power expansion, E¢), becomes
The susceptibility of the ferromagnetic phase is inverselynegative. The function(q) [Eq. (9)] has a minimum at
proportional to the anisotropy constdiig. (A8)]. The data  =q,. It follows from these two facts that the critical field of
of Huber and Rigley(Fig. 13 in Ref. 1 indicate that the the second-order para-fan phase transition is given by
anisotropy constark? is about 3 times larger thaf. Hence
we adopted a rounded valké=0.01. hean-p=i(0o) —j(0) +Kk, (1)
The dimensionless magnetic figid= wH/J, is related to
the real applied field, at least at low temperatures, by thend the wave vector equalg at the transition fieldgan.p -
ratio H/h=320T. This last model parameter can be derivedEquation(11) is written down forHllb; for the field direc-
from the data(mentioned abovefor the magnetic suscepti- tions Hllc and Hlla the anisotropy parametérin this equa-
bilities of the ferromagnetic phase. tion should be replaced, respectively, bk andk?.

B. Fan phase
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0.14

The field dependence of the modulation vector of the fan
phase is thus an inherent feature of localized spin models.
The effect is strong when compared to a relatively weak
g(h) dependence for the helimagnetic phase because, as fol-
lows from Eg.(12), the change ofy is linear in (gan.p
—h). Another specific result of the theory is that the wave
vector at the upper limit of the fan phase returns to its initial
value (=qg) in the helimagnetic phase in zero field.

It is surprising that these already existing theoretical
result$>?° for the localized spin model were never used to

. . . . . explain, even qualitatively, the strorgfh) dependence in
0002 0004 0006 0008 0010 0012 the fan phase of MnP, measured in several experimental

h works3~" Obaraet al® have considered the field dependence

of the modulation vector as an indication for the itinerant
character of the magnetism of MnPthey already found a
correlation of the wave vectaywith the extremal area of the
Fermi surface deduced from de Haas—van AlpkeiHvA)
effect]

The numerically calculated(h) is compared in Fig. 3 to
the approximate formula, Eq12), and to experimental re-
sults for 4.2 K. Calculation reproduces the approximately

. . . e . 0, 1 - I-
3). Besides the results obtained by numerical minimizatiorS07° decrease of the wave vector at the first-order heli-fan

of Eq. (A2) (Figs. 3 and 4 the dependencg(h) for the fan transition and its strong increase with field within the fan
phase can be calculated analytically for fields close to th@hase. The experimental wave vector rises at the upper limit

transition fieldhgay.p. This was done first by NNK assum- Of the fan phase above the value measured for the helimag-
ing zero in-plane anisotropy, i.e., for the pure ANNNXY Nnetic phase. Again, this probably reflects the deficiency of
model.[See Eq(3.13 in Ref. 23] Inomata and Oguchi ~ the one-sublattice model of the helimagnetic phase.
extended this calculation for the ANNNXY model with  Standard analysis of Eq12) shows that the derivative
orthorhombic anisotropy. Their formula, after correcting ada/dh goes linearly to zero on approaching the Lifshitz
computational errot® and adapted for thellb case, reads  point, i.e., for k=—1/4. However, this limiting behavior
shows up only very close to the LP. For experimentally rel-
evant values of«x the calculatedq(h) curves are close to
straight lines with the mean slopes only weakly dependent on
the value ofx (Fig. 4). Both features are in agreement with
the neutron diffraction data of Moon, Cable, and Shapira.
This experiment, performed for 89T<111K, shows the

0.08 -

- Hllb

008k /,’ Eq.(12)

0.000

FIG. 3. The calculated and experimental dependejieevs h
for helimagnetic and fan phases fbillb, x=—0.268. The solid
line is calculated via numerical minimization of E¢A2), the
dashed line represents E(L2), and the dotted line denotes the
valueqg /. Experimental points for 4.2 K are derived from Fig. 3
of Ref. 5.

On decreasing the field the wave vector decredbes

COSO = C0S(g

. 2 cog go(1—cosqe)(1+2 cosqp)
(144 cosgy+4 co$ go)(1—cosqg)>+ 6k cosq)

X (hgan-p—h). (12)  linearq(H) dependence with the slope which seems almost
independent of the temperature.
; The calculated magnetization curve fer —0.268, Fig.
0.08 - J,1J,=-0.258 5, compares favorably to experimental one for4.2K,
0.07 | Hilb shown in Fig. 2. For the fan phase calculation reproduces
-0.256 both an about 35% jump of the magnetization at the heli-fan
0.06 - / transition and a decreasing slopenafh) on approaching the
0.05 } /'0'254 second-order fan-para transition. It should be stressed that
' o8 T T T T this curvature is the outcome of using a field-dependé¢h)
£ ooomal T 0k . -0.252 to calculatem(h). When the value of is fixed, atq, or any
T Lo - ek other value, one necessarily obtains, within the approxima-
003 " &1 ! M"::‘ 1 - _0251 tions used, a lineam(h) for all modulated phase§See the
002k Z: oy i calculatedm(h) curves in Ref. 24.
e T T e The magnetization curves fox=—0.264, —0.26, and
0.01 | APPLIED FIELD (k0¢) —0.256 in Fig. 5 represent another sequence of phases, i.e.,
. . . . . ferro-fan-para, occurring in MnP between {17 and 121 K. The
0 0o o003 o004 0005 0006 0007 slope of them(h) curve for the fan phase is clearly smaller
h than in the ferromagnetic phase and this fact accords with

experimental

results

for

the magnetization

and ac

susceptibility®!* The only important feature which cannot
FIG. 4. Calculatedy/p vs h for the indicated values of, HIb. ~ be reproduced by the present mean-field-type calculation is
The inset shows the corresponding experimental data of Moorthe critical divergence of the susceptibility along the second-
Cable, and ShapireRef. 7. order fan-para and ferro-para phase boundafies.
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v r I, = -0.257 012}
150 7 -0.260
cone fan
011 |

1.25

e

o,
1.00 T 010}

E Hlla
0.75 009 | ’
050 ¢ 0.000 0.005 0.010 0.015 0.020 0.025
- Hllb h
025 ? ] FIG. 6. Calculated dependence of the wave vector vs magnetic
: field for the cone and fan phasedli@, J,/J;=—0.268). Solid and
1 1 1 | 1 1

dotted lines correspond to the elliptical cone and circular cone trial

h

FIG. 5. Selected magnetization curves féitb, corresponding exact ground state of thg I—!a_lmlltonlan yvoul_d gently interpo-
fo the phase sequences hefan—para (J,/J,=—0.268) and late between these two Ilmltlng approximations.
ferro—fan—para (J,/J;= —0.264, —0.26, and—0.256. The sub- _The cal_culated_ magnetization curve compares favorably
sequenm(h) curves are, for clarity, vertically shifted. with experiment(Fig. 2). It can explain the upward curvature
of the m(h) curve for the cone phase and its mean slope,
about 2 times larger than that of the fan phase. The ratio of
] ) transition fields hpan.p/hconeran 1S @lso reproduced.

An analysis of the power expansion for the energy of anyjithin the experimental resolution one cannot resolve the
elliptical cone structur¢Eq. (A3)] shows that the fan phase transition hysteresis or see the jump in théh) curve. The
(£2>0, {?=0) becomes unstable with respect to the formaeakly-first-order nature of the cone-fan transition is in line
tion of the cone phasett>0, {?>0) at the transition field ith conclusion of Shapirat al® who describe it as “either

C. Spin structure of the cone phase and the cone-fan transition

given by the equation second order or very weakly first order” below 15 K.
It will be interesting to investigate the evolution of the
db, cone structure with field using neutron diffraction or other
b2_2_a120' (13 microscopic experimental techniques. The necessary mag-

netic field is within the reach of the actually available super-
]c_onducting magnets. Such an experiment requires a careful
alignment of the single-crystal sample.

The results of model calculations may provide a hint at
the explanation of the phenomenon of the cone-fan transition

in which the symbols used denote the field-dependent coe
ficients [Eq. (A4)] in formula (A3) for the energy of the
elliptical cone structure. This condition for the cone-fan tran-
sition was first derived, for a different model of the elliptical
cone, by NNK.(See “note added in proof” in Ref. 28. If
the q value was fixed atyy, the fan-cone transition would
have been of the second-order type. 1.0
An unexpected outcome of the numerical minimization of
the energy with respect tg is that the energy versus wave
vector dependence may have two local minima: hence this
transition may be first order. This occurs for the low-
temperature valuec=—0.268. The discontinuities in the 06}
field dependence of the wave vector and in the magnetization
curve are shown, respectively, in Fig. 6 and Fig. 7. The jump
of magnetization amounts to 0.4¢t the equilibrium transi- 0.4
tion field) and the calculated hysteresis width is merely
0.12% of the transition field: hence the transition may be

0.8

labeled as weakly first order. The evolution of the cone-fan 02r

transition into a continuous one, with thevalue tending to -

—1/4, will be discussed in Sec. IV. 0ok 4 1 oot , 00172 h
The fact that the calculatenh(h) becomes negative for 0.00 0.01 h 0.02 0.03

h— 0 (inspect Fig. 7 is an artifact of the adopted trial struc-

ture for the elliptical cone. The circular cone model provides FIG. 7. Calculated magnetization curve fétla, J,/J;=
results which are numerically better in small and zero fields—0.268, showing the phase sequence elliptical cefe— para.
The functionsg(h) andm(h) calculated using the latter trial The dotted line showm(h) calculated for the circular cone struc-
structure are shown in Figs. 6 and 7 using a dotted line. Theure. The inset shows a zoom-in at the weakly-first-order transition.
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inverse hysteresis observed in pEa, ;P. The experiment 0.005

shows that for increasing field this transition occurs at a field
value lower than the reverse transition for a decreasing field. ;0,1
[The hysteresis width is above 2% at 21 K and decreases to

0.5% at 30 K(Ref. 20 and 3Y] Obviously, inverse hyster-

esis cannot occur when the considered phases remain in a 0003
thermodynamic equilibrium. It can be understood assuming =
that, due to some kind of pinning mechanism and the flatness
of the e(q) dependence for the cone phase, the wave vector

g cannot evolve freely with the change of field. The calcula-
tion shows that the transition from the elliptical cone phase o001}
with g fixed into the fan phase in which can freely relax
should take place in a field which is smaller than that for the 0000 . L . ) X
corresponding equilibrium transition. The very idea of a pin- 02800 0275 0270 0265 0260 0255  -0.250
ning of the wave vector in modulated phases ofyMBo, 4P k=JN

is supported by observations of Fjellvag and KjekShhst z
the g value of its helimagnetic phase in a zero field does not
change with the temperature.

Hilc

0.002
para

ferro

FIG. 8. Calculated magnetic phase diagramHdic. Thick and
thin lines correspond to the first-order and the second-order transi-
tion lines, respectively.
IV. MAGNETIC PHASE DIAGRAMS FOR H ALONG THE

ORTHORHOMBIC AXES tization. Hence the ratibl/h decreases with increasing tem-

Results obtained for=—0.268 were discussed most Perature and this decrease is approximated by
thoroughly because they correspond to experimental results
for 4.2 K, which is obviously a good approximation for the H
ground-state solution. "
Our calculations do not contain explicitly the effect of
finite temperature. The zero-temperature theory presented
may be extended to finite temperatures assuming that thé/e adopted the value af,, which gives the experimentally
model parameters are temperature dependent. A change @pserved 10% decrease of the magnetizdtianthe LP tem-
effective exchange constar(@nd corresponding variation of perature.
the wave vector should occur because of the spin-wave Comparison of the phase diagrams in Fig® @nd 9b)
excitations?”38 illustrates the relation between thex andT-H phase dia-
Smit?’ argues that the effect of spin waves produces @rams for other directions of the applied field and shows the
decrease of the effectivl andJ; acting between the layers features which should appear in any theory describing cor-
of spins, proportional to the decrease of their mean magndectly the effect of temperature. Equatiohd) exemplifies
tization. This decrease is more rapid fty, thus producing the fact that the dependene&T) should be nonlinear in
the necessary 7% change of the competition ratim the  order to have the slopgH/dT of all phase boundaries tend-
temperature range fno 0 K to the Lifshitz point. Other ing to zero at 0 K, as required by the third law of thermody-
model parameters may also be temperature dependent but thamics. On the high-temperature side of the phase diagram
variation of  is the most decisive and it “generates” the the decrease in thd/h ratio[Eq. (15)] gives rise to a down-
phase diagrams becausés close to the critical value-1/4  ward bending of the ferro-fan phase boundad@alculation
and its small change brings about a large variation of thef the ferro-para phase boundary up to the Curie point is
exchange energd/. Since the relation between the model pa-presented by Yoshizawa, Shapiro, and Komatsiiara
rameters and temperature is only barely known, the phase The calculated phase diagram fdiic (Fig. 8 shows that
diagrams were calculatd&igs. 8, 9a), and 14 as functions  only one modulated phaséhelimagneti¢ exists for the
of the dimensionless field and the competition rati@, with  physically relevant range> — 0.268.(The fan phase shows
the anisotropy parameteksand k* kept fixed. The phase up for k<—0.276.) The heli-para transition is discontinu-
diagram forHIlb shown in Fig. 9b) is replotted in physical ous; for k= —0.268 the magnetization jumps at this transi-
coordinatesT andH using Egs.(14) and (15) given below. tion from m=0.015 tom=1. (Compare to Fig. 2.
Approximating the temperature decrease of the The most interesting feature of the phase diagranfdy
magnetizatioft by a classical “3/2 law” AM/M=T%?) one s the Lifshitz point and this issue is discussed in Sec. V. The

()= 1 (T=0)[1-cqT*?. (15

obtains from Smit’s theory phase boundaries at the junction of the heli-ferro-fan regions
cross at sharp angles, as expected for the ordinary triple
k(T)=k(T=0)[1-c,T%?, (149 point. Perhaps the second most interesting special @t

sides the LPPin this phase diagram is the termination of the
in which the coefficientc, was chosen to havec(T, critical phase boundary between the incommensurate fan
=121K)=—-1/4. phase and the paramagnetic phase at absolute zero of tem-
The relation between the real and effective fields is giverperature. It should be interesting to determine experimentally
in our model byH=J.h/u. The effective exchange con- the exponent in a presumably power law dependence
stants are in Smit’s theory proportional to the mean magneHgn.p(T) for T—0, in an analogy to similar investigations
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JJJ
31, My

FIG. 10. Calculated magnetic phase diagrhifta. Thick and
thin solid lines show, respectively, the first-and the second-order
transitions for the elliptical cone structure. LP, TCP, and CEP de-
note the Lifshitz point, the tricritical point, and the critical end
(b) point, respectively. Dotted lines show the change in the phase dia-
gram when the elliptical cone is replaced by the circular cone trial
structure (CEP is then replaced by the triple pojnt.

How is this theory of the cone-fan transition related to the
experiment? The overall phase diagram and in particular the
shape of the cone-fan line and the first-order lines near the
critical end point are in agreement with the experimental
phase diagrams given in Refs. 8 and 18. Different opinions
are presented in these papers on the character of the cone-fan
transition. This transition is described by Shapétzal® as

HM

ferro “either second order or very weakly first order” below 15 K

and “weakly first order” above this temperature. On the

0% a0 % @ % 1m0 contrary Becerrat al*® found the cone-fan boundary to be
T(K) continuous, at least for temperatures close to the CEP.

It is not easy to distinguish experimentally between the
FIG. 9. Calculated magnetic phase diagram iftib using (@)  continuous(but close to first-ord¢rand the weakly discon-
h—J,/J, coordinates an¢b) H-T coordinates. Thick and thin lines tinuous transitions. The conclusion of Ref. 18 is in agree-
are the first-order and the second-order phase boundaries, respenent with the present calculation. The authors of Ref. 8 sug-
tively. LP and TP denote the Lifshitz point and the triple point.  gest the possibility of a triple point at the cone-fan line, but,
contrary to the present calculation, with the weakly-first-

for commensurate antiferromagnété* Assuming that the order transition at higher temperature. Both conclusions were
experimentally observed divergence of the ac susceptibilityjerived from an analysis of the complex ac susceptibility
at the fan-pal’a tl’anSition reSUltS from thermal Critical ﬂUC-data_ The use Of Other experimenta' techniques iS perhaps the

tuations it should diminish on approaching 0 K.~ pest way to shed new light on the nature of the cone-fan
The calculated phase diagram fifia is shown in Fig. ¢ ansition in MnP.

10. The cone-fan phase boundary, which is weakly first order

for x=—0.268 (as_discussed in Sec. ll)Cchanges into a  54reement with experiment, especially when one recalls the
continuous O?Ie ak= _f0'26?15' Asba rezult a tr'cc;'t'ﬁal pomtf fact that they were calculated using few model parameters
appears on the cone-fan phase boundary, and the cone-aty, ., e from the zero-field or the low-field data. The field

ferro triple point is predicted to be the critical end point : : .
(CEP. The phase diagram exhibits the characteristic topolf’31 nd/or temperature coordinates of (11 tota) special points

o o oo
ogy of the CEP, with the second-order line making a shar are reproduced within some 20% accuracy. The exception is

; . F%he factor of 2 discrepancy for the field of the heli-fan-fero
angle with two mutually tangent first-order phase bound-
s Y ang P triple point and the heli-fan transition field &=0 (at Hilb

The behavior of the cone-ferro line in low field is an Phase diagraim The experimentally broader area of the he-
artifact of the elliptical cone model. The true solution of the imagnetic phase may qualitatively be understood as a result
Hamiltonian forh—0 should approach the phase boundaryOf an additional lowering of its energy due to the formation
calculated for the circular conlotted line in Fig. 10 of the double helix.

All three calculated phase diagrams remain in remarkable
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0.0075 which can be derived from the model calculations. Accord-
A ing to the extended scaling hypothesis the same crossover
00070 para t exponentg describes the shape of three phase boundaries:
tean,=Fr P, (16)
0.0065 | A
— p tr.ean=F1p"?,
<
0.0060 te.p=F,p¥%.

Equations(16) imply that one can define two independent
amplitude ratios for the phase boundariés,/F,~ and
F./F,+ . The subscripts indicate that they are related to two
segments\ and\* of the critical line(Fig. 11) and to the
Hilb first-order phase boundary, respectively.

The exponenp, describes the behavior of the wave vec-

. . . tor along the second-order phase boundary between para-

O'OOﬁ.zse -0.254 0252 -0.250 -0.248 magnetic and modulated phase,

39

0.0055

0.0050 | :

1

Aran-p> PP, 17
FIG. 11. The phase diagram fbliib near the Lifshitz point. The

p andt arrows denote asymptotic directions of the scaling axes. The The exponents,, is related to the discontinuity of the

lines of the constant wave vect@for the indicated values af/ ) magnetization along the first-order phase boundéeyro-

are shown inside the domain of the fan phase. fan),

V. LIFSHITZ POINT Amg_pane pYPm, (18

A Lifshitz multicritical point occurs in the magnetic phase Mean field theories of the uniaxial Lifshitz point predigt
diagrams forH|lb and Hlla, at the confluence of ferro, fan, =1/2, By=1/2, andB,=1/2. The amplitude ratios for the
and para phases. In the mean field solution for the ANNNIphase boundaries afe; /F,s=2+6=4.45 andF, /F,«
ANNNXY, and ANNNH Hamiltonians its location is solely =q.
determined by the ratio of exchange constants—1/4. As- The experimentally determined exponents for MnP are
suming that the value ot depends only on the temperature symmarized in Table I. To make use of E¢s6)—(18) one
one can understand the fact that the temperature coordinaé@ould relate the scaling variablgsandt to the physical
of the Lifshitz point is the samel21 K) for both field  fieldsT andH. Since the crossover exponeht: 1, thep axis
directions” (“hard”) is tangent to the phase boundaries, whereas the

For the isotropic ANNNH model the Lifshitz point occurs “weak” t axis cannot uniquely be determined from the
in zero field. It is the magnetocrystalline anisotropy whichshape of the phase diagram alone. It was assumed in all
makes it possible for the Lifshitz point to occur at a nonzeroexperimental works®'*~*’that thet axis is vertical at the
magnetic field. The field coordinate of the LP for the modelH-T phase diagram. Under this assumption thecaling
considered is proportional to the respective anisotropy conyariable depends only on the temperature and can conve-
stant,h; (HIlb) =2k, h (Hlla)=2k". niently be defined ap=(T_—T)/T_. Thus one obtains the

formula

A. Universal parameters for the Lifshitz point in MnP

—_ xpli®

A description of the critical behavior near the LP requires Heanp = He-pancp™™, 19
the use of two scaling variables. One of théinplays the  which makes it possible to determine the crossover exponent
role of temperature; the second offg determines the loca- independently of the direction of theaxis and of the value
tion of the LP at the critical line. Both are functions of physi- of F,/F,« amplitude ratio.
cal fields(the magnetic fieldd and the temperatur®). In a The crossover exponent is the only one which was deter-
small vicinity of the LP the functiong(H,T) andt(H,T) mined for different samples and field directions. However,
can be linearized and under this assumption one may intrdsecause of use of Eq19), no value for the corresponding
duce a set of scaling axgsandt centered at the LEFig. 11).  amplitude ratio=, /F,« is given in the literature. The experi-

The universal parameters of the Lifshitz point can be di-mental value for the second amplitude raffig/F,+ should
vided into two groups. The first comprises the exponefits  be considered to be close to zero because the curvature of the
B, andy, and amplitude ratios defined in the usual mannefferro-para boundary near the LP is sm@ahen compared to
for the measurement taken along tteis, i.e., forp=0. For  the fan-para linpand can be understood as resulting from the
mean-field-theory{MFT-) type models of the Lifshitz point overall curvature of the ferro-para phase boundary.
these exponents have their usual mean field values. The exponenpg,,, related to the discontinuity of the mag-

The second group of the universal parameters, more speetization along the first-order phase boundary, has only
cific to the LP, is related to power laws in which thescal-  been measured for MgCao, 1P. Hysteresis is a nonequilib-
ing variable is involved. We will discuss those exponentsrium phenomenon and is not discussed in this work. Experi-
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TABLE |. Universal parameters of the Lifshitz points in MnP and jM8g, P. The reduced scaling

variables ar@p= (T, —T)/T_ andt=(H —H)/H, .

Universal Range of Value and
parameter System reduced variable error Reference
MnP, Hilb 0.02<p<0.31 0.63-0.03 Ref. 11
MnP, Hilb 0.01<p<0.21 0.605:0.017 Ref. 13
Crossover MnPHIIb 0.01<p<0.13 0.596:0.032 Ref. 32
exponent MnPH_ c, 45° fromb See Ref. 17 0.6t0.02 Ref. 17
& MnP, HLc, 25° fromb See Ref. 17 0.660.02 Ref. 17
MnP, Hlla 0.02<p<0.34 0.64-0.02 Ref. 8
Mngy ¢Cay 4P Hllb 0.03<p<0.25 0.64:0.048 Ref. 16
Wave vector 0.08p<0.26 0.44:0.09 Ref. 7
exponent MnPHIb 0.03<p<0.26 0.49-0.03 Ref. 7
By 0.0 p<1 0.480t0.013 Ref. 12
Magnetization jump MggCoy 1P, Hilb 0.04<p<0.2 0.5+0.05' Ref. 16
exponentB,,
Specific heat MnPHIIb 0.004t<0.2 0.4-0.5 Ref. 14
exponenta
Specific heat MnPHIIb 0.004<t<0.2 0.65:0.05 Ref. 14

amplitude ratio ofA*/A~

#Final value comprising an estimate of the systematic error. The values and standard deviations for individual
least-squares fits are given in the respective papers.

®The estimate from the neutron diffraction data alone.

‘The estimate from the neutron diffraction data combined with the known location of the fan-para phase
boundary at the phase diagram.

dSee the remark given in Ref. 44.

®Value estimate under the assumptiefi=a . For other fit conditions see Ref. 14.

mental data for MpsCao ;P (Ref. 16 show, however, that ponent perpendicular to the applied figlce., m, for Hilb),
the hysteresis width of the ferro-fan transition is also de-patially uniform for the ferromagnetic phase and modulated
scribed by the power law with an exponent close to the valugor the fan phase. For the ferromagnetic phase it can be cal-
of Bm. . ) . culated asm,= J1—(h/h.)? and its value fork=—0.256

The sfpechrflc heat exponery_and corresponding ampli- (cqrresponding top=0.25) at the F-FAN boundary is as
tude ratioA"/A " ‘are the only experimentally determined |50 a5 0.67. Saturation of the order parameter leads to the
universal quantltles_whlch are concerned with a MEeasUr€ct that the ferro-fan line becomes close to straight line at
ment along the scaling axis. both experimental and calculated phase diagréworsH|b)
for T<80K whereas the critical fan-para line remains
curved in the same temperature region.
in the mean field theory The second effect is the nonlinear dependence between

The power law§Egs.(15)—(19)] with classical exponents Hamiltonian parameter; e_1r_1d phy;icql varigbles. For the well-
and amplitude ratios are obeyed by the present model in known example of a blcrlt!cal point in annferromagnets the
close neighborhood of the LP. This provides numerical evichange of the effective anisotropy constéeapearing in the
dence that the used discrete spin model is consistent with tHaamiltonian is proportional to the square of the applied
mean field solution for the relevant LGW Hamiltoniamith ~ magnetic field; hence respective fits of power laws to phase
the order parameter varying continuously in spa¢éow-  boundaries were made ifi vs H?2 coordinate$? For the
ever, the departure from asymptotic behavior is substantigiresent model of MnP the relevant parameiés a nonlinear
for the model parametersandh corresponding to the range function of temperature because the slopex¢T) has to
of temperature§ and magnetic fieldsl actually used in the decrease gradually to zera @ K due to the third law of
experiments. The discrete spin model explains the origin ofhermodynamics.As modeled in this work by Eq14).]
the departure from power laws and allows us to analyze this The last source of limited applicability of Eg&l6), (17),
effect quantitatively. and (18), specific to multicritical points, is the direction of

Three reasons for the departure from asymptotic powethe weak scaling axis. The successful determination of the
laws seem most important. The first, which concerns the orerossover exponent and the related amplitude ratio for bi-
dered phase only, is saturation of the order parameter. Theritical points was possible because of use of an optimum
order parameter for the LP in MnP is the magnetization comscaling direction. The method to determine an optimum di-

B. Departure from the asymptotic critical behavior
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rection of the “weak” scaling axis for the bicritical point T " T " T " v
from other experimental data was given by Fiéhersing
mean field arguments.

The same idea may be applied for the Lifshitz point in
MnP. For the mean field solution of the LGW Hamiltonian
the linesq=const are parallel to theaxis. One of motiva-
tions for the present work was to apply the localized spin
model to calculate the=const lines. If they are parallel
straight lines, then their slope should provide the direction of
the weakt axis. Figure 11 showg=const lines at the cal-
culated phase diagram. Their slope depends on the distancﬂ{.‘:J 04k / F1/ Fk*
to the LP and asymptoticallyp(—~0) the direction ofq )
=const lines coincides with the verticakE — 1/4 line. Thus, i /
unfortunately, we cannot introduce a nonorthogonal scaling /o 43
coordinate system but rather a nonlinear scaling coordinates

The positive slope of thé scaling axis atp=0 is ex- :
pected, for all ANNN-like models, as an effect of the critical -0.258  -0.256 0254  -0.252  -0.250
fluctuations. Thet axis is tangent to so-called disorder J,,
line?®* (in paramagnetic phasavhich is curved due the
Sh|ft Of the LP Coord|nata-l_ to a Value |ess thaH. 1/4 The FIG. 12. Evolution of the effective exponents and amplltude
inclined direction of thet axis has been used in the recent@tio F1/Fy« with the range ofl,/J; .
work for the ANNNI model*® aiming at the estimation of o
some LP exponents using a high-temperature series expaﬁ%“:%*:o b_ecause the ferro-para phase boundary coincides
sion (HTSE) method. As emphasized by Mo and Ferrer “our With the p axis. _ _
estimates are more reliable not only because we have longer 1h€ deviation of effective exponents from mean field
series for a close-packed lattice but also primarily becaus&'€0ry (MFT) values increases, in a nonlinear manner, with

we have analyzed our series along the appropriate scalify) Increasing range of thescaling variable. The sign and
direction.” the value of this deviation are different for various universal

parameters. For example, for the fit range).258< k<
_ _ —1/4, calculated effective values @f By, B, andF/F,x«
C. Calculation of effective exponents deviate, respectively;20%, —2%, +17%, and—36% off
The deviation from asymptotic power laws is quantita-the asymptotic MFT values. This fit range, corresponding to
tively described in this work by calculating the effective ex- (T —T)/T_ =0.3, is typical of many experiment3able ).
ponents. The concept of effective exponents is hardly elegant These deviations become larger when the LP coordinate is
since they depend on the fit range and the conditions of tha variable fitting parameter and/or the transformatiornof
fitting procedure. They can, however, be directly Comparedindh into the experimental variabl&sandH is used. Hence
to experimental exponents, because their calculation mimickig. 12 shows théower limit of the change in the effective
the procedure of fitting the power law to experimental pointsexponent for a given fit range.
in a finite range of temperature. Calculation of the effective
exponents for different fit conditions reveals that the differ- D. Discussion
ence between exact results and the fitted power law with

three free parameters is typllcally smaller than the corre; is of the experimental data the mean-field-type deviation
sponding experimental error in real data. This means th

o ; . . from asymptotic power laws should be considered together
deviation from asymptotic behavior cannot be discerned in ymp b g

. ¢ | ch ¢ o fluctuati with the real change of critical exponents due to critical fluc-
comparison to a real change o exponeme 0 fluctuations tuations. In principle, both effects can be distinguished from
by the sole analysis of the fit qualif§.

. N each other by analyzing the dependence of the fitted expo-
The effective exponer_1t$, By andf shown in Fig. 12 nent on the fit range. However, in many cases such a proce-
were calculated by mgkmg a least-squares fit of the POWE{ure cannot be successful due to the limited range of the
laws, Eqs(17)~(19), with p=«_ — «, 1o the calculated data experimental datdnot much exceeding one decade of the
points equally spaced between the given value aind the

Lp di The f fived h e — reduced temperatur@and their limited accuracy.
1/Z°°r Inater . The former was fixed at the valuq = The value of the wave vector exponent in renormalization

. . . ._group calculationsg,=0.54, shows only a small deviation
Figure 12 also shows the effective amplitude ratiof,m the MFT value of 1/2. This is because the difference
F,/F,« for the phase boundaries. It was calculated using th%rises only in the second order of the expansiorf>4® The
formula conclusion thaiB, remains close to the classical value was
confirmed more recently by HTSE calculatidfisThe accu-
hL—heFan (20 A%y of experiment of Moon, Cable, and Shapisaems in-
sufficient to discriminate between MFT and renormalization
group (RG) values.
which makes it possible to define its effective value indepen- The present calculation explains, in fact, the valuegpof
dently of the value of¢. The second amplitude ratio obtained in this experiment, which were found to be smaller

g
[}
o

ective exponent
o
(8]
|
.h .
amplitude ratio

Calculation of effective exponents shows that in an analy-

LR



PRB 61 MODULATED PHASES, MAGNETIC PHASE DIAGRAMS. .. 3447

than 0.5.(See Table ). On can calculate the valug, tained for Mn (Ca, P.1544
=0.46 by fitting the power lawl7) with the variableT, to For theF,/F,« amplitude ratio the departure from the
the set ofgqean.p Values calculated for the six temperaturesasymptotic value is negative and the largest of all calculated
used in the experimedtQualitatively, this decrease of the universal parameters. Calculation shows that the effective
effective exponent is the combined effect of the nonlinearityF, /F,+ strongly depends on the direction of thaxis. An
of the?(«) function[Eq. (7)] and the nonlinear dependence inspection of Fig. 11 shows that when one uses the inclined
of the competition ratioc on the temperaturgeq. (14)]. t axis with a slope consistent with= const lines one obtains
For the crossover exponent the effect of critical fluctua-F, /F,« values which are more close, but actually higher,
tions predicted by RG theory is substantial. The valtie than the asymptotic MFT value 4.45.
=0.625, obtained using the first-order expansiorf, was The overview of universal parameters related to the
considered the natural explanation for experimental resultscaling variable shows that their experimental values seem
The present calculation reveals that, unfortunately, a similaconsistent with mean field theofwith a possible exception
change in the effective exponefiioth sign and magnitugle for ¢). We do not know whether they are really in conflict
results from classical deviation from asymptotic power lawswith modern theories of critical phenomena because no esti-
We think that the experimental valugs=0.63—0.64%111®  mation for the range of the Lifshitz-type critical behavior
determined in a wide range @f (about 0.3, reflect rather a along thep axis was made.
mean field correction to scaling. This is because the experi- The conclusion that the actually known universal param-
mental determination of strongly relies on the shape of the eters related to the scaling variable are consistent with
ferro-fan phase boundary far away from the LP. This first-classical theory is not easy to understand also because there
order line in the corresponding temperature range is unlikelyare indications that critical fluctuations are active in MnP.
to be influenced by critical fluctuations and is affected by allThe critical behavior with nonclassical values gfand y
discussed MFT-type corrections to scaling. exponents was found around the Curie pdig=291K in a
Experiments of the Sao Paulo grdéy>!’bring actually  rather wide range of temperatures and fiéfti§he observa-
the best data for determination of the crossover exponention of Bindilatti and co-workers—°of the \-shaped diver-
The measurements of the ac susceptibiliigth in phase(’ gence of the longitual susceptibility in the vicinity the Lif-
and out-of-phasg” componentswere made using a spheri- shitz point, making possible a determination of thg
cal sample, the same for which the determination of the exexponent, remains qualitative evidence of the nonclassical
ponenta, was madé? The data points for ferro-fan and nature of the LP in MnP(The present MFT calculation pre-
fan-para transitions were resolved fijr—T as smallas 1 K dicts a finite jump of the magnetic susceptibility
(p=0.01), thus allowing to make fits in a closer neighbor-=dm/dh corresponding tax, =0.)
hood of the LP. The rapid variation of the peak amplitude Manganese phosphide remains the best example of the
along the critical boundary provides the location of the LPLifshitz point in a real physical system and may deliver new
independent of the fit to the phase boundaries. The values oélevant experimental data. The measuremenis, adnd y,
¢ for p<0.21 andp<0.13 quoted in Table | suggest that the exponents seems important because their RG and HTSE
asymptotic value of the crossover exponent is lower than 0.8zalue$**® are very different when compared to the MFT
(This conclusion is supported by the explicitly calculatedvalues. The crucial experiment in ascertaining the nature of
dependence ap on the fit range given in Table | of Ref. 37. the Lifshitz point in MnP should be an investigation of criti-
The question remains as to whether this asymptotic valueal fluctuationg'®>°
remains highefbeyond the limit of errorthan the classical
value 1/2.
For the present model the amplitude r&fip/F,« is zero
and this conclusion is consistent with experiment. The ex- The zero-temperature solution for a simple localized spin
perimental value of this universal quantity is, in our opinion, model explains a set of experimental results of incommensu-
in qualitative disagreement with the valuel provided by rate phases of MnP for which a quantitative theory or even
RG theory!’ qualitative interpretation was lacking. They include the
For both the crossover exponegtand amplitude ratio bunching of moments in the helimagnetic phase, the field
F,/F,+ the available theoretical values from RG theory aredependence of the modulation vector in all three modulated
quite uncertain. Both are known only to the first-ordgr  phases, and the shape of their magnetization curves. The cal-
expansion which is more inaccurate than the standa@®-  culated magnetic phase diagrams for the three principal di-
pansion because =3/2 for the three-dimensional uniaxial rections of applied field remain in semiquantitative agree-
LP. An alternative value for the crossover exponent can benent with experiment.
obtained from the scaling lafs¢= v 4/B and ¢p= v 4(2 For the Lifshitz point occurring at a confluence of fan,
—m4—N\), as a combination of the relatively accurate ferromagnetic, and paramagnetic phases the localized spin
HTSE valué® 41, ,=1.63+0.10 and the remaining expo- model allowed us to calculate the effectiv@it-range-
nents known in the second-ordgr expansion. The thus ob- dependentvalues for the crossover exponehtpropagation
tained estimates o are above 0.7, hence even more diffi- vector exponens,, magnetization jump exponeg,,, and
cult to reconcile with the asymptotic experimental valuetwo amplitude ratios for phase boundaries. Model results

VI. CONCLUSIONS

which seems to be lower than 0.6. concerning the Lifshitz point were thoroughly discussed in
No prediction beyond MFT is available for the magneti- Sec. VD. In general they indicate that to understand the
zation jump exponengB,, and the amplitude rati&, /F« . experimental values of these universal LP parameters the

The present calculation explains the dependexleT) ob-  mean field corrections to scaling should be taken into ac-
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count together with the results of the fluctuational theories.For Hilc and Hlla the anisotropy parametédrin Eq. (A2)

The model predictions which are to be tested experimenshould be replaced by k andk?, respectively.
tally comprise the field dependence of the wave vector in the Elliptical cone (Hlla): The fourth-order power expan-
cone and fan phases fétlla, and the weakly-first-order na- sion for the energy is given by
ture of the cone-fan transition.

The present calculations are limited to an external field e(&,4,q)=c+b 82+ by +a & +ay it +2de2 2,
applied along the three principal orthorhombic directions. (A3)
The zero-temperature solution can also be obtained for an
arbitrary direction of the applied fieft. The resulting topol-  with coefficients
ogy of suitable many-dimensional magnetic phase diagram
contains the line of Lifshitz points for the direction of mag- j(0)
netic field within theab plane(confirmed experimentally by C=- > +k*=h,

Becerra, Brumatto, and Oliveird and the line of tricritical
points for H within the bc plane (discussed by Shapira
et allh). by=z[j(0)—j(@)—2K*+h], by=by— 3Kk,

The results of the simplest zero-temperature solution give
us confidence that the ANNNH model with estimated values _
of the model parameters describes the essential physics of1”
the magnetic phases and phase transitions of MnP. This
Hamiltonian seems simple enough to make practical calcula- 1 ) _
tions beyond MFT using theoretical methodike HTSE or d=gz[—1(0)+j(2a)+h]. (A4)
Monte Carlg which are capable of bringing information on
the nonuniversal effects of critical fluctuations. Different The energy minimized with respect foand ¢ reads
phenomena induced by quenched disorder, observed in
Mno oCay 1P, also await for a theoretical interpretatin. 1 a1b§ n azbf—Zd byb,

e(q)=c—7 a8, 2 : (AS)

52 [—2j(0)+3j(a)—j(20) +6K*], a,=a;+ 35k,
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1
APPENDIX: ENERGY FOR DIFFERENT SPIN e(q)=—5|j()+kt+——
CONFIGURATIONS 2 J(@)=i(3q)
N , . h2
The symbols appearing in Eq&A1)—(A8) are defined in S i _ _ A6
Sec. Il. 2@ j2ajoi2k  AY
Helimagnetic phase
] Ferromagnetic phaséHIb):
SO (C I S
2 2 2[j(q)—j(Ba)] j(0) h
e=———. (A7)

h2 2k } 2 4k

- - - - 1+- -
Z[ZJ(q)_J(ZQ)_l(O)iZK][ J(@)=i(3a) For Hlla the anisotropy parametér should be replaced by
(A1) k%,

The signs+ and — in the symbol= correspond tdd|lb and
Hillc, respectively. )
Fan phase(Hllb): j(0)

GZ—T‘i‘k—h. (A8)

Paramagnetic phaséHI|lb):

o )——@w—h— [i(@)—j(0)+2k—2h]?
VT 3j(a)—j(29)—2j(0)+6k" For theHllc andHIla casesk should be replaced by 0 ahd,

(A2) respectively.
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