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Modulated phases, magnetic phase diagrams, and the Lifshitz point
in MnP from the mean field theory

Andrzej Zieba, Monika Slota, and Mariusz Kucharczyk
Department of Physics and Nuclear Techniques, University of Mining and Metallurgy, Al. Mickiewicza 30, 30-059 Krako´w, Poland

~Received 7 May 1999!

The axial next-nearest-neighbor Heisenberg~ANNNH! model with orthorhombic magnetocrystalline anisot-
ropy was applied to describe magnetic phases and phase transitions occurring in manganese phosphide in
magnetic fieldH applied along the lattice vectorsa, b, andc. The ground state of the Hamiltonian was obtained
using analytical methods of Nagamiya’s theory, augmented by numerical minimization of the energy with
respect to the wave vectorq of the modulated magnetic structures~heli, fan, cone!. The latter procedure leads
to the dependenceq(H) for all modulated phases, and explains both the shapes of the magnetization curves for
these phases~convex for the fan and concave for the cone phase! and the weakly first-order nature of the
cone-fan phase transition. The magnetic phase diagrams for the three principal directions of the applied field,
Hic, Hib, and Hia, are calculated under the assumption that the ratio of competing nearest-neighbor and
next-nearest-neighbor interactions depends on the temperature. The characteristics of special points in the
phase diagrams~Lifshitz points, triple point, critical end point, and terminations of critical lines! remain in a
semiquantitative accordance with experiment. For the Lifshitz point the deviation from asymptotic scaling laws
was analyzed by calculating the effective~fit-range-dependent! values for the crossover exponentf, the wave
vector exponentbk , and magnetization discontinuity exponentbm . The results provide an explanation of their
experimental values.
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I. INTRODUCTION

Incommensurate magnetic structures of the orthorhom
metallic compound MnP are among the most thoroug
studied. Manganese phosphide orders ferromagneticall
293 K and below 47 K it transforms into a helimagne
phase with spins rotating within the easybc plane.1,2 An
applied magnetic fieldH induces incommensurate structure
of the fan and cone type~Fig. 1!. The structure of the fan
phase and its evolution with the magnitude of the magn
field were investigated using neutron diffraction3–7 whereas
the existence of the cone phase, inferred from macrosc
measurements,8 awaits direct experimental verification.

Mapping the fairly complex magnetic phase diagram
the external field parallel to theb orthorhombic lattice vector
(a.b.c) has led to the discovery9 of the Lifshitz multicriti-
cal point ~LP! at the confluence of fan, ferromagnetic, a
paramagnetic phases. Although the critical behavior cha
teristic of the proximity to a LP seems to occur for a fe
helimagnets with a long-wavelength modulation~e.g., Tb!10,
manganese phosphide in an external magnetic field rem
the only magnetic system for which the true LP, i.e., with
wave vectorq of the modulated~fan! phase going to zero
was found and several critical exponents determined.7–9,11–17

MnP exhibits other features, which are of interest
phase-transition physics. The fan-para transition is an
ample of a critical transition which can be traced down
absolute zero temperature. The transition between cone
fan phases induced by an external field parallel to the or
rhombica axis is an uncommon example of a continuous~or
only weakly discontinuous! phase transition between two o
dered phases~Fig. 2!. This makes possible the existence o
critical end point at the confluence of the cone, fan, a
PRB 610163-1829/2000/61~5!/3435~15!/$15.00
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ferromagnetic phase.18 Measurements made for Mn0.9Co0.1P,
the disordered homologue of MnP, have shown intrigu
novel features such as irreversible behavior in all modula
phases, additional phases between helimagnetic and
structures,19,16 and the inverse hysteresis of the cone-f
transition.20 ~Inverse hysteresis means that the transition fi
for the increasing field is lower than for decreasing field.!

These results were not adequately discussed in term
microscopic spin models. In particular, the properties of
Lifshitz point were interpreted using the results of the ren
malization group theory for a suitable Landau-Ginzbu
Wilson ~LGW! Hamiltonian.21,22 ~The parameters for the
universality class of this LP ared53, n51, andm51 where
d,n, andm denote spatial, order parameter, and wave vec
dimensionalities.! However, this theory makes prediction
for the asymptotic universal properties of the LP and deliv
no information on the behavior of the system a finite distan
away from the LP.

The objective of this work was to obtain the ground-sta
solution for a realistic spin model of MnP, aiming at calc
lating the mean-field-type characteristics of its magne
modulated phases and phase transitions. The mean field
culation should also help in recognizing the effects of critic
fluctuations, the possible influence of the itineracy of M
electrons,5 and the effects introduced by the quenched dis
der (Mn12xCoxP).

Localized spin models with the competing neare
neighbor and next-nearest-neighbor interactions remain
simplest and the most fruitful models for incommensur
structures.22 For Ising spins this approach is exemplified b
the axial next-nearest-neighbor Ising~ANNNI ! model, well
known because of its devil’s-staircase behavior. Magne
modulated structures are more realistically described usin
3435 ©2000 The American Physical Society
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Hamiltonian with the competing interactions betwe
Heisenberg spins@axial next-nearest-neighbor Heisenbe
~ANNNH! model# augmented with the magnetocrystallin
anisotropy terms depending on the symmetry of the cry
lattice. The so-called Nagamiya’s theory of incommensur
structures23,24 is basically an analytical method for obtainin
its ground state, i.e., the zero-temperature solution. Inom
and Oguchi25 have adapted Nagamiya’s theory to the case
orthorhombic anisotropy, and Hyamitzu and Nagamiy26

have made quantitative calculations specific to MnP in ex

FIG. 1. Magnetic phase diagrams of MnP for a magnetic fi
parallel to three orthorhombic basic vectors:~a! Hic ~easy axis!,
replotted data of Huber and Ridgley~Ref. 1!, ~b! Hib ~intermediate
axis!, after Shapiraet al. ~Ref. 11!, and ~c! Hib ~hard axis!, after
Shapiraet al. ~Ref. 8!.
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nal fields. The simple spin-wave theory of the origin of t
heli-ferro transition in MnP was given by Smit27 and the
occurrence of the Lifshitz point at its magnetic phase d
grams was discussed by Yokoi, Countinho-Filho, a
Salinas.28 Models and solutions obtained in these wor
make the starting point for the present calculation.

The model Hamiltonian, the method of its solution, a
the choice of model parameters are described in Sec. II.
classical spin Hamiltonian of the ANNNH type comprises
minimal set of terms necessary to account for the obser
magnetic phases of MnP. One introduces the compe
nearest-neighbor and next-nearest-neighbor interactionsJ1
and J2 , respectively! acting betweens layers of spins. Th
magnetocrystalline anisotropy is described using a low
order terms, with two anisotropy constants~K and Kz) re-
quired for the orthorhombic crystal symmetry. The numb
of model parameters is really smaller because the results
pend, as usual for the ANNN-like models, on the compe
tion ratio k5J2 /J1 , and only one of two anisotropy con
stants is relevant as long as the magnetic field vecto
confined to thebc plane.

To obtain the ground state of the Hamiltonian we fo
lowed approximate methods used in works of the Nagam
group.23–26 Energies of the trial spin structures were min
mized analytically with respect to the modulation amp
tudes. But in contrast to Hyamitzu and Nagamiya we p
formed the numericalminimization of the energy with
respect to the wave vector q. This procedure allows one to
calculate the dependenceq(H) in the modulated phases, an
provides a much better approximation for their equilibriu
energy. In addition to spin structures considered in the p
vious theoretical works23–28 we made calculations for the
elliptical cone structure, necessary to describe properly th
phase transition between cone and fan phases and acc
for the existence of the critical end point.

The results of model calculations for three directions
the magnetic field (Hib, Hic, andHia) are presented and

d

FIG. 2. Traces of the magnetization vs applied field at 4.2 K
fields applied parallel to the three principal crystallographic dir
tions, after Ref. 8. For assigning different phases to the respec
segments ofM (H) curves inspect Fig. 1.
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discussed in relation to experiment in Secs. III and IV. C
culated magnetization curves and phase diagrams revea
tures which are qualitatively novel with respect to those
tained forq(H)5const. Magnetic phase diagrams calcula
as functions ofk5J2 /J1 are related to the experimentalH-T
phase diagrams using an assumption that the compet
ratio k varies with the temperature.

Attention is paid~Sec. V! to the characteristics of th
Lifshitz point occurring atHib andHia phase diagrams. Th
calculations allow one to derive three critical exponents a
the amplitude ratios for the power law describing the ph
boundaries. Close to the LP they must be the same as
vided by the mean field solution of the LGW Hamiltonia
for the uniaxial LP. The really interesting result is the calc
lation of the deviation from the power law where the d
tance from the LP is finite. This ‘‘mean field correction
scaling’’ is important to interpret the experimental exp
nents, necessarily derived from the data taken in finite ran
of temperature and magnetic field.

II. THEORETICAL MODEL AND METHOD
OF ITS SOLUTION

A. Hamiltonian

The model considers equivalentN layers of spinsSn ~with
unit length!, with the spins inside each layer coupled ferr
magnetically. The directions of all the spins in the layer a
assumed to be the same, and consequently the value o
in-plane coupling constant is irrelevant for theT50 case.
The exchange constants connecting thenth layer to the (n
11)st and (n12nd) layers areJ1 andJ2 , respectively.

The orthorhombic symmetry of the crystal lattice requir
two second-order terms with anisotropy constantsK andKz.
No higher-order terms are introduced. The first anisotro
constant~K! specifies the easyc axis and the intermediateb
axis in the ‘‘easy’’bc plane. The second one (Kz) is relevant
when spins deviate from thebc plane. The energy of a give
spin configuration~per one spin in a layer! is given by

E52J1(
n51

N

Sn•Sn112J2(
n51

N

Sn•Sn121K (
n51

N

Sx,n
2

1Kz(
n51

N

Sz,n
2 2m (

n51

N

H•Sn . ~1!

The orthorhombic lattice vectorsb, c, and a correspond to
the x,y, andz Cartesian coordinates.

B. Magnetic structures

The total energy of the system is a function of the ma
netic structure. Minimization of the energy is done by t
trial method, assuming a number of expected phases
comparing their equilibrium energies. Our analysis consid
an external magnetic fieldH directed along thec, b, anda
lattice vectors. The direction of spins in thenth layer ~as-
sumed the same! is specified by the polar angleun measured
from the a axis, and by the azimuthal anglefn measured
from the c axis in thebc plane. In the following, the spin
coordinates will be written, for simplicity, without the inde
n. Also we ignore the phase factor for trigonometric fun
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tions, irrelevant as long as modulated magnetic structu
remain incommensurate with respect to the lattice.

The helimagnetic spin structure occurs in zero field a
when it is within the easy plane. The direction of thenth spin
is given by

fn5nq1jq. sinnq12j2q sin 2nq, un5
p

2
. ~2!

In this equation the first termnq defines the regular helix
The second term with amplitudejq accounts for the distor-
tion of the helimagnetic structure due to an external magn
field. ~This term is responsible for its finite magnetization!
The third term describes the effect of the in-plane anisotro
making the moments more crowded near the easyc axis.
This distortion is known as the bunching effect: the amp
tudej2q is named the bunching parameter.2

The fan spin structure is stable for a nonzero applied fie
The spins oscillate around the direction of the applied fi
within the plane for which the anisotropy energy is small
For a magnetic field parallel to thea axis the direction of
moments is defined by

sin
un

2
5

j

2
cosnq. ~3!

The fan phase for other field directions (Hib andHic) can
be defined in an analogous manner. The energy is calcul
using a power expansion with respect to the modulation a
plitude j. Hence the calculations are effectively perform
using the following spin components:

Sz512
1

2
j2 cos2 nq,

Sy5j cosnq2
j3

8
cos3 nq. ~4!

This model of the fan phase phase, applied in Refs. 24–2
not unique. Another model defined by the spin compone
„Sy5j sinnq, Sz512(j2/2)sin 2nq… was introduced earlier
by Nagamiya, Nagana, and Kitano~NNK!.23 For the fan
structure defined by Eq.~4! it is the Zeeman term which is
calculated exactly, whereas for the model of NNK the sa
concerns the anisotropy energy.

Two qualitatively different models of the cone phase, o
curring for Hia, are considered in this work. The circula
cone is defined, after Hyamitzu and Nagamiya~HN!,26 as the
distorted helimagnetic structure

fn5nq12j2q sin 2nq, un5const. ~5!

The cone structure described by Eq.~5! transforms continu-
ously, forun→p/2, into the ‘‘bunched’’ helimagnetic struc
ture. Its fundamental deficiency is that the circular cone c
not transform continuously into the fan structure.

The model of theelliptical cone structureintroduced in
this work,

Sx5j sinnq2
z3

8
sin3 nq, ~6!
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Sy5j cosnq2
j3

8
cos3 nq,

Sz512
j2

2
cos2 nq2

j2

2
sin2 nq2

j2z2

4
sin2 nq cos2 nq,

describes mathematically the qualitative picture of the c
to fan transition given by Shapiraet al.8 The trial structure
defined by Eq.~6! is a superposition of two fan modulation
@Eq. ~4!# shifted p/2 in phase. The cone-to-fan transitio
occurs when one of its amplitudes, namely,z, becomes zero
The mixed term (}j2z2) in theSz component is necessary t
keep the unit length of the spin vector, up to the fourth-or
powers of the modulation amplitudesj andz.

The elliptical cone phase, in analogy to the fan structu
can alternatively be described using the spin compon
Sx5j sinnq, Sy5z cosnq, Sz512(j2/2)sin2 nq
2(z2/2)cos2 nq. This model, introduced by Nagamiya, Na
gata, and Kitano,23 can also account for the continuous n
ture of the fan-to-cone transition. We checked, however,
its quantitative predictions are numerically less accur
when compared to those obtained for the cone structure
fined by Eq.~6!. One reason is that for the model of NNK th
relationSx

21Sy
21Sz

251 is valid only up to the second pow
ers of the modulation amplitudes.

In addition to the incommensurate structures descri
above we consider two commensurate magnetic pha
paramagnetic~P! and ferromagnetic~F!. They are defined
respectively, as spin structures in which the magnetic m
ments are parallel to the applied field or make a cons
angle withH.

C. Approximations

The energy and magnetization of theF andP phases are
calculated exactly. In the absence of anisotropy and an
ternal field, the wave vector of the helimagnetic structure
given by the well-known equation

cosq052
1

4k
, ~7!

defining its ‘‘ideal’’ valueq0 .
To describe the effect of anisotropy and external field

NNK’s theory introduces approximations of two kinds. Fir
the modulated phases are defined using a finite numbe
parameters. These parameters are the wave vectorq and
modulation amplitudesjq , j2q for the helimagnetic,j for the
fan, andj, z for the elliptical cone structure. Since the mod
lation of arbitrary shape can be described by the infinite F
rier series, a finite number of modulation amplitudes
equivalent to neglecting the higher-order Fourier terms.

The second approximation concerns the method of ev
ating the energy for a given spin structure. The expansio
the spin components in a power series with respect to
modulation amplitudes makes it possible to calculate ana
cally the mean values for all terms appearing in the Ham
tonian@Eq. ~1!# in the limit N→`. The power series expan
sion is truncated at the fourth-order powers of modulat
amplitudes. Dimensionless energye5E/(NJ1) is thus given
as a function of the wave vectorq, the modulation ampli-
tudes, and dimensionless parameters of the Hamiltoniak
e
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5J2 /J1, k5K/J1 , kz5Kz/J1 , andh5mH/J1 . For example,
for the fan phase this expansion reads

e~j,q!52
j ~0!

2
1k2h1

j2

4
@ j ~0!2 j ~q!22k1h#

1
j4

64
@22 j ~0!13 j ~q!2 j ~2q!16k#. ~8!

The ubiquitous quantity

j ~mq!52 cosmq12k cos 2mq, m50,1,2,3, ~9!

represents the dimensionless Fourier transform coeffici
of the exchange constants.

Since the energy is a quadratic form of the squares
modulation amplitudes, one can write down the formulas
the minimum energy in closed forms, which are functions
the wave vectorq only. Explicit expressions fore(q) for all
phases are collected in the Appendix. Except for the ellip
cal cone these formulas are the same as those derive
HN,26 but simplified by ignoring three additional Hami
tonian terms introduced in the HN work. The minimizatio
of the energye(q) with respect toq is performed numeri-
cally.

The thus obtained equilibrium values ofq are used to
calculate magnetization curves. The formulas form(h) may
be derived from Eqs.~A1!–~A8! asm52]e/]h.

Quantitative inaccuracies resulting from both simplifyin
assumptions were checked~for the fan phase! by including
an additional term in the Fourier transform and extending
calculation up to sixth order in the modulation amplitude
Both options are analytically tractable; the formulas a
given by HN @see Eqs.~2.12! and ~C1!–~C5! in Ref. 26#. A
numerical calculation shows that the change in them(h) and
q(h) curves is about 5%. Having in mind the simplifie
character of the Hamiltonian both approximations used in
calculations should be considered as reasonably accurat

Two qualitative drawbacks of the method which was us
should be mentioned. Formulas for the energies~A1!–~A6!
are valid under the assumption that the period of the mo
lated phases is incommensurate.~This ensures a continuou
distribution of thefn angles, making easy the calculation
the mean values of trigonometric functions.! A locking of the
wave vectors into commensurate values~given by q
52pP/Q, whereP,Q are integers! must occur for an exac
solution of Hamiltonian~1! due to the effect of anisotropy
and/or magnetic field. The recent study of Cadorin a
Yokoi29 for the ANNNXY model shows that the widths o
commensurate heli and fan regions are becoming very
row for long-period modulated structures. This probably e
plains the fact that there is no direct experimental evide
for a locking of the wave vector of fan or heli phases in Mn
Becerra, Oliveira, and Shapira30 conjectured, however, tha
the observed behavior of the ac susceptibility of the
phase may be understood as a result of jumps between i
merable commensurate phases.

Obviously any calculation for ana priori chosen set of
trial structures excludes the possibility of discovering mo
exotic or unexpected modulated structures. The so-called
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lifan and spin-flip structures were discovered via numeri
minimization of the energy for a model with few hundre
spin planes.31

D. Choice of model parameters for MnP

The orthorhombic structure of MnP may be viewed a
result of a distortion of a more symmetric hexagonal NiA
type structure. For the NiAs-type structure the neare
neighbor metal atoms belong to two equivalent planes. S
lar ‘‘layers’’ of Mn atoms, with atom locations actuall
deviating somewhat off plane, occur for the MnP structu
and they correspond to the planes of spins in our mo
Exchange constantsJ1 andJ2 should be considered aseffec-
tive interactions acting between nearest-neighbor and n
nearest-neighbor layers of spins. The real spin structur
the helimagnetic phase of MnP is of the double-helix ty
and it can be obtained as a ground state of the classical
Hamiltonian with at least five isotropic exchange constant32

Due to the presence of two layers of moments~spaced by
a/2) for each lattice cell, the dimensionless wave vectorq in
model calculations corresponds to one-half of the experim
tal value ~which is defined in relation to thea lattice con-
stant!. The experimental value of the modulation vector
low temperature~4.2 K! is 2q50.117(2) ~turn angle per
layer, 21°!. This corresponds, due to Eq.~7!, to k5
20.268. We assume that this low-temperature value of
competition ratio increases with temperature up tok5
21/4 at the LP temperature.

Considering the MnP structure as a derivative of hexa
nal ‘‘parent’’ structure is also useful in understanding
magnetocrystalline anisotropy. The orthorhombica lattice
vector, parallel to the former hexagonal axis, makes the h
axis of the magnetocrystalline anisotropy~characterized by
the Kz anisotropy constant!. The secondary effect of th
orthorhombic distortion is to distinguish between the easc
and the intermediateb axes in the former hexagonal ea
plane. This in-plane anisotropy is characterized by theK an-
isotropy constant (K,Kz).

If the in-plane anisotropy constantK were zero, the
second-order heli-ferro transition in zero field would ha
occurred atk521/4. The in-plane anisotropy extends th
range of the ferromagnetic phase and makes the heli-f
transition discontinuous. Experimentally this transition o
curs at 47 K, at which temperature the turn angle of
helimagnetic phase decreases to 19°. Comparison of
equilibrium energies of helimagnetic@Eq. ~A1!# and ferro-
magnetic@Eq. ~A7!# phases for the corresponding wave ve
tor q5p319°/180° allows us to determine the dimensio
less in-plane anisotropy parameterk5K/J150.0032.

The susceptibility of the ferromagnetic phase is invers
proportional to the anisotropy constant@Eq. ~A8!#. The data
of Huber and Rigley~Fig. 13 in Ref. 1! indicate that the
anisotropy constantKz is about 3 times larger thanK. Hence
we adopted a rounded valuekz50.01.

The dimensionless magnetic fieldh5mH/J1 is related to
the real applied field, at least at low temperatures, by
ratio H/h5320 T. This last model parameter can be deriv
from the data~mentioned above! for the magnetic suscepti
bilities of the ferromagnetic phase.
l
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The dimensionless results of the calculations do not
pend on the absolute value of the exchange constantJ1 .
Nevertheless, one can estimateJ1524 meV from the value
of the H/h ratio given above and the experimental magne
moment.

Our choice of model parametersk and k follows the
analysis of Smit.27 The whole set can be compared to t
Hamiltonian parameters obtained from the inelastic neut
scattering measurements on MnP by Tajima, Ishikawa,
Obara33 and Yoshizawa, Shapiro, and Komatsubara.34 The
valueJ1524 meV falls between the estimates given in bo
papers.35 The decrease of theuJ2 /J1u ratio with the tempera-
ture is also confirmed. The combination of the anisotro
constantsK andKz can be related to the gap observed in t
spin-wave spectrum.34

III. PROPERTIES OF THE MODULATED PHASES

A. Helimagnetic phase

Two limiting values of the modulation vector of he
phase in zero field were used to determine model parame
k andk ~Sec. II D!. Nevertheless, one specific prediction c
be obtained from the theory, namely, the amplitude of
bunching effect. The value of bunching parameter is giv
by the formula

j2q5
k

j ~q!2 j ~3q!
. ~10!

The calculated valuej2q50.013~for k520.268) remains in
rough agreement with the experimental value 0.02
60.0018, determined by Moon2 using neutron diffraction.
The discrepancy probably reflects the use of a one-subla
model for the real double-helix structure.

As noted before, Eq.~7! defines the wave vectorq0 of the
helimagnetic phase resulting from the sole interplay of co
peting exchange interactions. The magnetocrystalline ani
ropy and magnetic field produce only a minor change of
wave vector~about 1%! with respect to this ‘‘ideal’’ value.
This is because the change ofq with respect toq0 is propor-
tional to the second powers of bothk and h, cosq2cosq0
}h2, and cosq2cosq0}k2. @A formula for q(k) for the heli-
magnetic phase is given by Inomata and Oguchi. See
~2.10! in Ref. 25.# The numerically calculatedq(h) in the
helimagnetic phase,Hib, is shown in Fig. 3.

B. Fan phase

The high-field paramagnetic phase becomes unstable
respect to fan modulation when the multiplicative coefficie
in the j2 term of the power expansion, Eq.~8!, becomes
negative. The functionj (q) @Eq. ~9!# has a minimum atq
5q0 . It follows from these two facts that the critical field o
the second-order para-fan phase transition is given by

hFAN-P5 j ~q0!2 j ~0!1k, ~11!

and the wave vector equalsq0 at the transition fieldhFAN-P .
Equation~11! is written down forHib; for the field direc-
tions Hic andHia the anisotropy parameterk in this equa-
tion should be replaced, respectively, by2k andkz.
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On decreasing the field the wave vector decreases~Fig.
3!. Besides the results obtained by numerical minimizat
of Eq. ~A2! ~Figs. 3 and 4!, the dependenceq(h) for the fan
phase can be calculated analytically for fields close to
transition fieldhFAN-P . This was done first by NNK assum
ing zero in-plane anisotropy, i.e., for the pure ANNNX
model. @See Eq.~3.13! in Ref. 23.# Inomata and Oguchi25

extended this calculation for the ANNNXY model wit
orthorhombic anisotropy. Their formula, after correcting
computational error,36 and adapted for theHib case, reads

cosq5cosq0

1
2 cos2 q0~12cosq0!~112 cosq0!

~114 cosq014 cos2 q0!~12cosq0!216k cosq0)

3~hFAN-P2h!. ~12!

FIG. 3. The calculated and experimental dependenceq/p vs h
for helimagnetic and fan phases forHib, k520.268. The solid
line is calculated via numerical minimization of Eq.~A2!, the
dashed line represents Eq.~12!, and the dotted line denotes th
valueq0 /p. Experimental points for 4.2 K are derived from Fig.
of Ref. 5.

FIG. 4. Calculatedq/p vs h for the indicated values ofk, Hib.
The inset shows the corresponding experimental data of Mo
Cable, and Shapira~Ref. 7!.
n

e

The field dependence of the modulation vector of the
phase is thus an inherent feature of localized spin mod
The effect is strong when compared to a relatively we
q(h) dependence for the helimagnetic phase because, as
lows from Eq. ~12!, the change ofq is linear in (hFAN-P

2h). Another specific result of the theory is that the wa
vector at the upper limit of the fan phase returns to its init
value (>q0) in the helimagnetic phase in zero field.

It is surprising that these already existing theoreti
results23,25 for the localized spin model were never used
explain, even qualitatively, the strongq(h) dependence in
the fan phase of MnP, measured in several experime
works.3–7 Obaraet al.5 have considered the field dependen
of the modulation vector as an indication for the itinera
character of the magnetism of MnP.@They already found a
correlation of the wave vectorq with the extremal area of the
Fermi surface deduced from de Haas–van Alphen~dHvA!
effect.#

The numerically calculatedq(h) is compared in Fig. 3 to
the approximate formula, Eq.~12!, and to experimental re
sults for 4.2 K. Calculation reproduces the approximat
30% decrease of the wave vector at the first-order heli-
transition and its strong increase with field within the f
phase. The experimental wave vector rises at the upper l
of the fan phase above the value measured for the helim
netic phase. Again, this probably reflects the deficiency
the one-sublattice model of the helimagnetic phase.

Standard analysis of Eq.~12! shows that the derivative
dq/dh goes linearly to zero on approaching the Lifsh
point, i.e., for k521/4. However, this limiting behavior
shows up only very close to the LP. For experimentally r
evant values ofk the calculatedq(h) curves are close to
straight lines with the mean slopes only weakly dependen
the value ofk ~Fig. 4!. Both features are in agreement wi
the neutron diffraction data of Moon, Cable, and Shapir7

This experiment, performed for 89<T<111 K, shows the
linear q(H) dependence with the slope which seems alm
independent of the temperature.

The calculated magnetization curve fork520.268, Fig.
5, compares favorably to experimental one forT54.2 K,
shown in Fig. 2. For the fan phase calculation reprodu
both an about 35% jump of the magnetization at the heli-
transition and a decreasing slope ofm(h) on approaching the
second-order fan-para transition. It should be stressed
this curvature is the outcome of using a field-dependentq(h)
to calculatem(h). When the value ofq is fixed, atq0 or any
other value, one necessarily obtains, within the approxim
tions used, a linearm(h) for all modulated phases.@See the
calculatedm(h) curves in Ref. 26.#

The magnetization curves fork520.264, 20.26, and
20.256 in Fig. 5 represent another sequence of phases,
ferro-fan-para, occurring in MnP between 47 and 121 K. T
slope of them(h) curve for the fan phase is clearly small
than in the ferromagnetic phase and this fact accords w
experimental results for the magnetization and
susceptibility.8,11 The only important feature which canno
be reproduced by the present mean-field-type calculatio
the critical divergence of the susceptibility along the seco
order fan-para and ferro-para phase boundaries.13–15

n,
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C. Spin structure of the cone phase and the cone-fan transition

An analysis of the power expansion for the energy of
elliptical cone structure@Eq. ~A3!# shows that the fan phas
~j2.0, z250) becomes unstable with respect to the form
tion of the cone phase (j2.0, z2.0) at the transition field
given by the equation

b22
db1

2a1
50, ~13!

in which the symbols used denote the field-dependent c
ficients @Eq. ~A4!# in formula ~A3! for the energy of the
elliptical cone structure. This condition for the cone-fan tra
sition was first derived, for a different model of the elliptic
cone, by NNK.~See ‘‘note added in proof’’ in Ref. 23.! If
the q value was fixed atq0 , the fan-cone transition would
have been of the second-order type.

An unexpected outcome of the numerical minimization
the energy with respect toq is that the energy versus wav
vector dependence may have two local minima: hence
transition may be first order. This occurs for the low
temperature valuek520.268. The discontinuities in th
field dependence of the wave vector and in the magnetiza
curve are shown, respectively, in Fig. 6 and Fig. 7. The ju
of magnetization amounts to 0.4%~at the equilibrium transi-
tion field! and the calculated hysteresis width is mere
0.12% of the transition field: hence the transition may
labeled as weakly first order. The evolution of the cone-
transition into a continuous one, with thek value tending to
21/4, will be discussed in Sec. IV.

The fact that the calculatedm(h) becomes negative fo
h→0 ~inspect Fig. 7! is an artifact of the adopted trial struc
ture for the elliptical cone. The circular cone model provid
results which are numerically better in small and zero fiel
The functionsq(h) andm(h) calculated using the latter tria
structure are shown in Figs. 6 and 7 using a dotted line.

FIG. 5. Selected magnetization curves forHib, corresponding
to the phase sequences heli→fan→para (J2 /J1520.268) and
ferro→fan→para (J2 /J1520.264,20.26, and20.256!. The sub-
sequentm(h) curves are, for clarity, vertically shifted.
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exact ground state of the Hamiltonian would gently interp
late between these two limiting approximations.

The calculated magnetization curve compares favora
with experiment~Fig. 2!. It can explain the upward curvatur
of the m(h) curve for the cone phase and its mean slo
about 2 times larger than that of the fan phase. The ratio
transition fields hFAN-P /hCONE-FAN is also reproduced
Within the experimental resolution one cannot resolve
transition hysteresis or see the jump in them(h) curve. The
weakly-first-order nature of the cone-fan transition is in li
with conclusion of Shapiraet al.8 who describe it as ‘‘either
second order or very weakly first order’’ below 15 K.

It will be interesting to investigate the evolution of th
cone structure with field using neutron diffraction or oth
microscopic experimental techniques. The necessary m
netic field is within the reach of the actually available sup
conducting magnets. Such an experiment requires a ca
alignment8 of the single-crystal sample.

The results of model calculations may provide a hint
the explanation of the phenomenon of the cone-fan transi

FIG. 6. Calculated dependence of the wave vector vs magn
field for the cone and fan phases (Hia, J2 /J1520.268). Solid and
dotted lines correspond to the elliptical cone and circular cone
structures, respectively.

FIG. 7. Calculated magnetization curve forHia, J2 /J15
20.268, showing the phase sequence elliptical cone→fan→para.
The dotted line showsm(h) calculated for the circular cone struc
ture. The inset shows a zoom-in at the weakly-first-order transit
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3442 PRB 61ANDRZEJ ZIEBA, MONIKA SLOTA, AND MARIUSZ KUCHARCZYK
inverse hysteresis observed in Mn0.9Co0.1P. The experiment
shows that for increasing field this transition occurs at a fi
value lower than the reverse transition for a decreasing fi
@The hysteresis width is above 2% at 21 K and decrease
0.5% at 30 K~Ref. 20 and 37!.# Obviously, inverse hyster
esis cannot occur when the considered phases remain
thermodynamic equilibrium. It can be understood assum
that, due to some kind of pinning mechanism and the flatn
of the e(q) dependence for the cone phase, the wave ve
q cannot evolve freely with the change of field. The calcu
tion shows that the transition from the elliptical cone pha
with q fixed into the fan phase in whichq can freely relax
should take place in a field which is smaller than that for
corresponding equilibrium transition. The very idea of a p
ning of the wave vector in modulated phases of Mn0.9Co0.1P
is supported by observations of Fjellvag and Kjekshus6 that
theq value of its helimagnetic phase in a zero field does
change with the temperature.

IV. MAGNETIC PHASE DIAGRAMS FOR H ALONG THE
ORTHORHOMBIC AXES

Results obtained fork520.268 were discussed mo
thoroughly because they correspond to experimental res
for 4.2 K, which is obviously a good approximation for th
ground-state solution.

Our calculations do not contain explicitly the effect
finite temperature. The zero-temperature theory prese
may be extended to finite temperatures assuming that
model parameters are temperature dependent. A chang
effective exchange constants~and corresponding variation o
the wave vector! should occur because of the spin-wa
excitations.27,38

Smit27 argues that the effect of spin waves produce
decrease of the effectiveJ2 andJ1 acting between the layer
of spins, proportional to the decrease of their mean mag
tization. This decrease is more rapid forJ2 , thus producing
the necessary 7% change of the competition ratiok in the
temperature range from 0 K to the Lifshitz point. Other
model parameters may also be temperature dependent bu
variation of k is the most decisive and it ‘‘generates’’ th
phase diagrams becausek is close to the critical value21/4
and its small change brings about a large variation of
exchange energy.27 Since the relation between the model p
rameters and temperature is only barely known, the ph
diagrams were calculated@Figs. 8, 9~a!, and 10# as functions
of the dimensionless fieldh and the competition ratiok, with
the anisotropy parametersk and kz kept fixed. The phase
diagram forHib shown in Fig. 9~b! is replotted in physical
coordinatesT and H using Eqs.~14! and ~15! given below.
Approximating the temperature decrease of
magnetization39 by a classical ‘‘3/2 law’’ (DM /M}T3/2) one
obtains from Smit’s theory

k~T!5k~T50!@12ckT3/2#, ~14!

in which the coefficientck was chosen to havek(TL
5121K)521/4.

The relation between the real and effective fields is giv
in our model byH5J1h/m. The effective exchange con
stants are in Smit’s theory proportional to the mean mag
d
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tization. Hence the ratioH/h decreases with increasing tem
perature and this decrease is approximated by

H

h
~T!5

H

h
~T50!@12cmT3/2#. ~15!

We adopted the value ofcm which gives the experimentally
observed 10% decrease of the magnetization39 at the LP tem-
perature.

Comparison of the phase diagrams in Figs. 9~a! and 9~b!
illustrates the relation between theh-k andT-H phase dia-
grams for other directions of the applied field and shows
features which should appear in any theory describing c
rectly the effect of temperature. Equation~14! exemplifies
the fact that the dependencek(T) should be nonlinear in
order to have the slopedH/dT of all phase boundaries tend
ing to zero at 0 K, as required by the third law of thermod
namics. On the high-temperature side of the phase diag
the decrease in theH/h ratio @Eq. ~15!# gives rise to a down-
ward bending of the ferro-fan phase boundary.~Calculation
of the ferro-para phase boundary up to the Curie poin
presented by Yoshizawa, Shapiro, and Komatsubara34.!

The calculated phase diagram forHic ~Fig. 8! shows that
only one modulated phase~helimagnetic! exists for the
physically relevant rangek.20.268.~The fan phase show
up for k,20.276.) The heli-para transition is discontin
ous; for k520.268 the magnetization jumps at this tran
tion from m50.015 tom51. ~Compare to Fig. 2.!

The most interesting feature of the phase diagram forHib
is the Lifshitz point and this issue is discussed in Sec. V. T
phase boundaries at the junction of the heli-ferro-fan regi
cross at sharp angles, as expected for the ordinary tr
point. Perhaps the second most interesting special point~be-
sides the LP! in this phase diagram is the termination of th
critical phase boundary between the incommensurate
phase and the paramagnetic phase at absolute zero of
perature. It should be interesting to determine experiment
the exponent in a presumably power law depende
HFAN-P(T) for T→0, in an analogy to similar investigation

FIG. 8. Calculated magnetic phase diagram forHic. Thick and
thin lines correspond to the first-order and the second-order tra
tion lines, respectively.
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for commensurate antiferromagnets.40,41 Assuming that the
experimentally observed divergence of the ac susceptib
at the fan-para transition results from thermal critical flu
tuations it should diminish on approaching 0 K.

The calculated phase diagram forHia is shown in Fig.
10. The cone-fan phase boundary, which is weakly first or
for k520.268 ~as discussed in Sec. III C!, changes into a
continuous one atk520.2665. As a result a tricritical poin
appears on the cone-fan phase boundary, and the cone
ferro triple point is predicted to be the critical end poi
~CEP!. The phase diagram exhibits the characteristic top
ogy of the CEP, with the second-order line making a sh
angle with two mutually tangent first-order phase boun
aries.

The behavior of the cone-ferro line in low field is a
artifact of the elliptical cone model. The true solution of t
Hamiltonian forh→0 should approach the phase bounda
calculated for the circular cone~dotted line in Fig. 10!.

FIG. 9. Calculated magnetic phase diagram forHib using ~a!
h2J2 /J1 coordinates and~b! H-T coordinates. Thick and thin line
are the first-order and the second-order phase boundaries, re
tively. LP and TP denote the Lifshitz point and the triple point.
ty
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How is this theory of the cone-fan transition related to t
experiment? The overall phase diagram and in particular
shape of the cone-fan line and the first-order lines near
critical end point are in agreement with the experimen
phase diagrams given in Refs. 8 and 18. Different opinio
are presented in these papers on the character of the con
transition. This transition is described by Shapiraet al.8 as
‘‘either second order or very weakly first order’’ below 15
and ‘‘weakly first order’’ above this temperature. On th
contrary Becerraet al.18 found the cone-fan boundary to b
continuous, at least for temperatures close to the CEP.

It is not easy to distinguish experimentally between t
continuous~but close to first-order! and the weakly discon-
tinuous transitions. The conclusion of Ref. 18 is in agre
ment with the present calculation. The authors of Ref. 8 s
gest the possibility of a triple point at the cone-fan line, b
contrary to the present calculation, with the weakly-fir
order transition at higher temperature. Both conclusions w
derived from an analysis of the complex ac susceptibi
data. The use of other experimental techniques is perhap
best way to shed new light on the nature of the cone-
transition in MnP.

All three calculated phase diagrams remain in remarka
agreement with experiment, especially when one recalls
fact that they were calculated using few model parame
extracted from the zero-field or the low-field data. The fie
and/or temperature coordinates of 11~in total! special points
are reproduced within some 20% accuracy. The exceptio
the factor of 2 discrepancy for the field of the heli-fan-fe
triple point and the heli-fan transition field atT50 ~at Hib
phase diagram!. The experimentally broader area of the h
limagnetic phase may qualitatively be understood as a re
of an additional lowering of its energy due to the formati
of the double helix.

ec-

FIG. 10. Calculated magnetic phase diagramHia. Thick and
thin solid lines show, respectively, the first-and the second-or
transitions for the elliptical cone structure. LP, TCP, and CEP
note the Lifshitz point, the tricritical point, and the critical en
point, respectively. Dotted lines show the change in the phase
gram when the elliptical cone is replaced by the circular cone t
structure.~CEP is then replaced by the triple point.!
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V. LIFSHITZ POINT

A Lifshitz multicritical point occurs in the magnetic phas
diagrams forHib and Hia, at the confluence of ferro, fan
and para phases. In the mean field solution for the ANN
ANNNXY, and ANNNH Hamiltonians its location is solely
determined by the ratio of exchange constantsk521/4. As-
suming that the value ofk depends only on the temperatu
one can understand the fact that the temperature coord
of the Lifshitz point is the same~121 K! for both field
directions.8

For the isotropic ANNNH model the Lifshitz point occur
in zero field. It is the magnetocrystalline anisotropy whi
makes it possible for the Lifshitz point to occur at a nonze
magnetic field. The field coordinate of the LP for the mod
considered is proportional to the respective anisotropy c
stant,hL(Hib)52k, hL(Hia)52kz.

A. Universal parameters for the Lifshitz point in MnP

A description of the critical behavior near the LP requir
the use of two scaling variables. One of them~t! plays the
role of temperature; the second one~p! determines the loca
tion of the LP at the critical line. Both are functions of phys
cal fields~the magnetic fieldH and the temperatureT!. In a
small vicinity of the LP the functionsp(H,T) and t(H,T)
can be linearized and under this assumption one may in
duce a set of scaling axesp andt centered at the LP~Fig. 11!.

The universal parameters of the Lifshitz point can be
vided into two groups. The first comprises the exponentsaL ,
bL , andgL and amplitude ratios defined in the usual man
for the measurement taken along thet axis, i.e., forp50. For
mean-field-theory-~MFT-! type models of the Lifshitz poin
these exponents have their usual mean field values.

The second group of the universal parameters, more
cific to the LP, is related to power laws in which thep scal-
ing variable is involved. We will discuss those expone

FIG. 11. The phase diagram forHib near the Lifshitz point. The
p andt arrows denote asymptotic directions of the scaling axes.
lines of the constant wave vector~for the indicated values ofq/p)
are shown inside the domain of the fan phase.
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which can be derived from the model calculations. Acco
ing to the extended scaling hypothesis the same cross
exponentf describes the shape of three phase boundarie

tFANP
5Fl* p1/f, ~16!

tF-FAN5F1p1/f,

tF-P5Flp1/f.

Equations~16! imply that one can define two independe
amplitude ratios for the phase boundaries,Fl /Fl* and
F1 /Fl* . The subscripts indicate that they are related to t
segmentsl and l* of the critical line ~Fig. 11! and to the
first-order phase boundary, respectively.

The exponentbk describes the behavior of the wave ve
tor along the second-order phase boundary between p
magnetic and modulated phase,

qFAN-P}pbk. ~17!

The exponentbm is related to the discontinuity of the
magnetization along the first-order phase boundary~ferro-
fan!,

DmF-FAN}p1/bm. ~18!

Mean field theories of the uniaxial Lifshitz point predictf
51/2, bk51/2, andbm51/2. The amplitude ratios for the

phase boundaries areF1 /Fl* 521A654.45 andFl /Fl*
50.

The experimentally determined exponents for MnP
summarized in Table I. To make use of Eqs.~16!–~18! one
should relate the scaling variablesp and t to the physical
fieldsT andH. Since the crossover exponentf,1, thep axis
~‘‘hard’’ ! is tangent to the phase boundaries, whereas
‘‘weak’’ t axis cannot uniquely be determined from th
shape of the phase diagram alone. It was assumed in
experimental works7–9,11–17that thet axis is vertical at the
H-T phase diagram. Under this assumption thep scaling
variable depends only on the temperature and can co
niently be defined asp5(TL2T)/TL . Thus one obtains the
formula

HFAN-P2HF-FAN}p1/f, ~19!

which makes it possible to determine the crossover expon
independently of the direction of thep axis and of the value
of F1 /Fl* amplitude ratio.

The crossover exponent is the only one which was de
mined for different samples and field directions. Howev
because of use of Eq.~19!, no value for the correspondin
amplitude ratioF1 /Fl* is given in the literature. The experi
mental value for the second amplitude ratioFl /Fl* should
be considered to be close to zero because the curvature o
ferro-para boundary near the LP is small~when compared to
the fan-para line! and can be understood as resulting from t
overall curvature of the ferro-para phase boundary.

The exponentbm , related to the discontinuity of the mag
netization along the first-order phase boundary, has o
been measured for Mn0.9Co0.1P. Hysteresis is a nonequilib
rium phenomenon and is not discussed in this work. Exp

e
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TABLE I. Universal parameters of the Lifshitz points in MnP and Mn0.9Co0.1P. The reduced scaling
variables arep5(TL2T)/TL and t5(HL2H)/HL .

Universal
parameter System

Range of
reduced variable

Value and
error Reference

MnP, Hib 0.02,p,0.31 0.6360.03a Ref. 11
MnP, Hib 0.01,p,0.21 0.60560.017 Ref. 13

Crossover MnP,Hib 0.01,p,0.13 0.59660.032 Ref. 32
exponent MnP,H'c, 45° fromb See Ref. 17 0.6160.02 Ref. 17
f MnP, H'c, 25° fromb See Ref. 17 0.6060.02 Ref. 17

MnP, Hia 0.02,p,0.34 0.6460.02a Ref. 8
Mn0.9Co0.1P Hib 0.03,p,0.25 0.6460.04a Ref. 16

Wave vector 0.03,p,0.26 0.4460.05b Ref. 7
exponent MnP,Hib 0.03,p,0.26 0.4960.03c Ref. 7
bk 0.03,p,1 0.48060.013 Ref. 12

Magnetization jump Mn0.9Co0.1P, Hib 0.04,p,0.2 0.560.05d Ref. 16
exponentbm

Specific heat MnP,Hib 0.004,t,0.2 0.440.5e Ref. 14
exponentaL

Specific heat MnP,Hib 0.004,t,0.2 0.6560.05 Ref. 14
amplitude ratio ofA1/A2

aFinal value comprising an estimate of the systematic error. The values and standard deviations for ind
least-squares fits are given in the respective papers.

bThe estimate from the neutron diffraction data alone.
cThe estimate from the neutron diffraction data combined with the known location of the fan-para
boundary at the phase diagram.

dSee the remark given in Ref. 44.
eValue estimate under the assumptiona15a2. For other fit conditions see Ref. 14.
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mental data for Mn0.9Co0.1P ~Ref. 16! show, however, tha
the hysteresis width of the ferro-fan transition is also d
scribed by the power law with an exponent close to the va
of bm .

The specific heat exponentaL and corresponding ampli
tude ratioA1/A2 are the only experimentally determine
universal quantities which are concerned with a meas
ment along thet scaling axis.

B. Departure from the asymptotic critical behavior
in the mean field theory

The power laws@Eqs.~15!–~19!# with classical exponents
and amplitude ratios are obeyed by the present model
close neighborhood of the LP. This provides numerical e
dence that the used discrete spin model is consistent with
mean field solution for the relevant LGW Hamiltonian~with
the order parameter varying continuously in space!. How-
ever, the departure from asymptotic behavior is substan
for the model parametersk andh corresponding to the rang
of temperaturesT and magnetic fieldsH actually used in the
experiments. The discrete spin model explains the origin
the departure from power laws and allows us to analyze
effect quantitatively.

Three reasons for the departure from asymptotic po
laws seem most important. The first, which concerns the
dered phase only, is saturation of the order parameter.
order parameter for the LP in MnP is the magnetization co
-
e
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ponent perpendicular to the applied field~i.e., my for Hib),
spatially uniform for the ferromagnetic phase and modula
for the fan phase. For the ferromagnetic phase it can be
culated asmy5A12(h/hL)2 and its value fork520.256
~corresponding top50.25) at the F-FAN boundary is a
large as 0.67. Saturation of the order parameter leads to
fact that the ferro-fan line becomes close to straight line
both experimental and calculated phase diagrams~for Hib)
for T,80 K whereas the critical fan-para line remai
curved in the same temperature region.

The second effect is the nonlinear dependence betw
Hamiltonian parameters and physical variables. For the w
known example of a bicritical point in antiferromagnets t
change of the effective anisotropy constant~appearing in the
Hamiltonian! is proportional to the square of the applie
magnetic field; hence respective fits of power laws to ph
boundaries were made inT vs H2 coordinates.42 For the
present model of MnP the relevant parameterk is a nonlinear
function of temperature because the slope ofk(T) has to
decrease gradually to zero at 0 K due to the third law of
thermodynamics.@As modeled in this work by Eq.~14!.#

The last source of limited applicability of Eqs.~16!, ~17!,
and ~18!, specific to multicritical points, is the direction o
the weak scaling axis. The successful determination of
crossover exponent and the related amplitude ratio for
critical points was possible because of use of an optim
scaling direction. The method to determine an optimum
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rection of the ‘‘weak’’ scaling axis for the bicritical poin
from other experimental data was given by Fisher42 using
mean field arguments.

The same idea may be applied for the Lifshitz point
MnP. For the mean field solution of the LGW Hamiltonia
the linesq5const are parallel to thet axis. One of motiva-
tions for the present work was to apply the localized s
model to calculate theq5const lines. If they are paralle
straight lines, then their slope should provide the direction
the weakt axis. Figure 11 showsq5const lines at the cal
culated phase diagram. Their slope depends on the dist
to the LP and asymptotically (p→0) the direction ofq
5const lines coincides with the verticalk521/4 line. Thus,
unfortunately, we cannot introduce a nonorthogonal sca
coordinate system but rather a nonlinear scaling coordina

The positive slope of thet scaling axis atp50 is ex-
pected, for all ANNN-like models, as an effect of the critic
fluctuations. Thet axis is tangent to so-called disord
line22,43 ~in paramagnetic phase! which is curved due the
shift of the LP coordinatekL to a value less than21/4. The
inclined direction of thet axis has been used in the rece
work for the ANNNI model,43 aiming at the estimation o
some LP exponents using a high-temperature series ex
sion ~HTSE! method. As emphasized by Mo and Ferrer ‘‘o
estimates are more reliable not only because we have lo
series for a close-packed lattice but also primarily beca
we have analyzed our series along the appropriate sca
direction.’’

C. Calculation of effective exponents

The deviation from asymptotic power laws is quanti
tively described in this work by calculating the effective e
ponents. The concept of effective exponents is hardly eleg
since they depend on the fit range and the conditions of
fitting procedure. They can, however, be directly compa
to experimental exponents, because their calculation mim
the procedure of fitting the power law to experimental poi
in a finite range of temperature. Calculation of the effect
exponents for different fit conditions reveals that the diff
ence between exact results and the fitted power law w
three free parameters is typically smaller than the co
sponding experimental error in real data. This means
deviation from asymptotic behavior cannot be discerned
comparison to a real change of exponent~due to fluctuations!
by the sole analysis of the fit quality.44

The effective exponentsf, bk , andbm shown in Fig. 12
were calculated by making a least-squares fit of the po
laws, Eqs.~17!–~19!, with p5kL2k, to the calculated data
points equally spaced between the given value ofk and the
LP coordinatekL . The former was fixed at the valuekL5
21/4.

Figure 12 also shows the effective amplitude ra
F1 /Fl* for the phase boundaries. It was calculated using
formula

F1 /Fl* 5
hL2hF-FAN

hFAN-P2hL
, ~20!

which makes it possible to define its effective value indep
dently of the value off. The second amplitude rati
n
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Fl /Fl* 50 because the ferro-para phase boundary coinc
with the p axis.

The deviation of effective exponents from mean fie
theory ~MFT! values increases, in a nonlinear manner, w
an increasing range of thep scaling variable. The sign an
the value of this deviation are different for various univers
parameters. For example, for the fit range20.258,k,
21/4, calculated effective values off, bk , bm , andF1 /Fl*
deviate, respectively,120%, 22%, 117%, and236% off
the asymptotic MFT values. This fit range, corresponding
(TL2T)/TL50.3, is typical of many experiments~Table I!.

These deviations become larger when the LP coordina
a variable fitting parameter and/or the transformation ok
andh into the experimental variablesT andH is used. Hence
Fig. 12 shows thelower limit of the change in the effective
exponent for a given fit range.

D. Discussion

Calculation of effective exponents shows that in an ana
sis of the experimental data the mean-field-type deviat
from asymptotic power laws should be considered toget
with the real change of critical exponents due to critical flu
tuations. In principle, both effects can be distinguished fr
each other by analyzing the dependence of the fitted ex
nent on the fit range. However, in many cases such a pr
dure cannot be successful due to the limited range of
experimental data~not much exceeding one decade of t
reduced temperature! and their limited accuracy.

The value of the wave vector exponent in renormalizat
group calculations,bk50.54, shows only a small deviatio
from the MFT value of 1/2. This is because the differen
arises only in the second order of theeL expansion.45,46 The
conclusion thatbk remains close to the classical value w
confirmed more recently by HTSE calculations.43 The accu-
racy of experiment of Moon, Cable, and Shapira7 seems in-
sufficient to discriminate between MFT and renormalizati
group ~RG! values.

The present calculation explains, in fact, the values ofbk
obtained in this experiment, which were found to be sma

FIG. 12. Evolution of the effective exponents and amplitu
ratio F1 /Fl* with the range ofJ2 /J1 .
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than 0.5. ~See Table I.! On can calculate the valuebk

50.46 by fitting the power law~17! with the variableTL to
the set ofqFAN-P values calculated for the six temperatur
used in the experiment.7 Qualitatively, this decrease of th
effective exponent is the combined effect of the nonlinea
of theq2(k) function@Eq. ~7!# and the nonlinear dependenc
of the competition ratiok on the temperature@Eq. ~14!#.

For the crossover exponent the effect of critical fluctu
tions predicted by RG theory is substantial. The valuef
50.625, obtained using the first-ordereL expansion,47 was
considered the natural explanation for experimental resu
The present calculation reveals that, unfortunately, a sim
change in the effective exponent~both sign and magnitude!
results from classical deviation from asymptotic power law
We think that the experimental valuesf50.63– 0.64,8,9,11,16

determined in a wide range ofp ~about 0.3!, reflect rather a
mean field correction to scaling. This is because the exp
mental determination off strongly relies on the shape of th
ferro-fan phase boundary far away from the LP. This fir
order line in the corresponding temperature range is unlik
to be influenced by critical fluctuations and is affected by
discussed MFT-type corrections to scaling.

Experiments of the Sao Paulo group13,15,17bring actually
the best data for determination of the crossover expon
The measurements of the ac susceptibility~both in phasex8
and out-of-phasex9 components! were made using a spher
cal sample, the same for which the determination of the
ponentaL was made.14 The data points for ferro-fan an
fan-para transitions were resolved forTL2T as small as 1 K
(p50.01), thus allowing to make fits in a closer neighbo
hood of the LP. The rapid variation of thex9 peak amplitude
along the critical boundary provides the location of the
independent of the fit to the phase boundaries. The value
f for p,0.21 andp,0.13 quoted in Table I suggest that th
asymptotic value of the crossover exponent is lower than
~This conclusion is supported by the explicitly calculat
dependence off on the fit range given in Table I of Ref. 17!
The question remains as to whether this asymptotic va
remains higher~beyond the limit of error! than the classica
value 1/2.

For the present model the amplitude ratioFl /Fl* is zero
and this conclusion is consistent with experiment. The
perimental value of this universal quantity is, in our opinio
in qualitative disagreement with the value21 provided by
RG theory.47

For both the crossover exponentf and amplitude ratio
Fl /Fl* the available theoretical values from RG theory a
quite uncertain. Both are known only to the first-ordereL
expansion which is more inaccurate than the standarde ex-
pansion becauseeL53/2 for the three-dimensional uniaxia
LP. An alternative value for the crossover exponent can
obtained from the scaling laws45 f5nL4 /bk andf5nL4(2
2hL42l), as a combination of the relatively accura
HTSE value43 4nL451.6360.10 and the remaining expo
nents known in the second-ordereL expansion. The thus ob
tained estimates off are above 0.7, hence even more dif
cult to reconcile with the asymptotic experimental val
which seems to be lower than 0.6.

No prediction beyond MFT is available for the magne
zation jump exponentbm and the amplitude ratioF1 /Fl* .
The present calculation explains the dependenceDM (T) ob-
y
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tained for Mn0.9Co0.1P.16,44

For the F1 /Fl* amplitude ratio the departure from th
asymptotic value is negative and the largest of all calcula
universal parameters. Calculation shows that the effec
F1 /Fl* strongly depends on the direction of thet axis. An
inspection of Fig. 11 shows that when one uses the incli
t axis with a slope consistent withq5const lines one obtains
F1 /Fl* values which are more close, but actually high
than the asymptotic MFT value 4.45.

The overview of universal parameters related to thep
scaling variable shows that their experimental values se
consistent with mean field theory~with a possible exception
for f!. We do not know whether they are really in confli
with modern theories of critical phenomena because no e
mation for the range of the Lifshitz-type critical behavi
along thep axis was made.

The conclusion that the actually known universal para
eters related to thep scaling variable are consistent wit
classical theory is not easy to understand also because
are indications that critical fluctuations are active in Mn
The critical behavior with nonclassical values ofb and g
exponents was found around the Curie pointTC5291 K in a
rather wide range of temperatures and fields.48 The observa-
tion of Bindilatti and co-workers13–15 of the l-shaped diver-
gence of the longitual susceptibility in the vicinity the Li
shitz point, making possible a determination of theaL
exponent, remains qualitative evidence of the nonclass
nature of the LP in MnP.~The present MFT calculation pre
dicts a finite jump of the magnetic susceptibilityx
5dm/dh corresponding toaL50.)

Manganese phosphide remains the best example of
Lifshitz point in a real physical system and may deliver ne
relevant experimental data. The measurements ofbL andgL
exponents seems important because their RG and H
values22,43 are very different when compared to the MF
values. The crucial experiment in ascertaining the nature
the Lifshitz point in MnP should be an investigation of crit
cal fluctuations.49,50

VI. CONCLUSIONS

The zero-temperature solution for a simple localized s
model explains a set of experimental results of incommen
rate phases of MnP for which a quantitative theory or ev
qualitative interpretation was lacking. They include t
bunching of moments in the helimagnetic phase, the fi
dependence of the modulation vector in all three modula
phases, and the shape of their magnetization curves. The
culated magnetic phase diagrams for the three principal
rections of applied field remain in semiquantitative agre
ment with experiment.

For the Lifshitz point occurring at a confluence of fa
ferromagnetic, and paramagnetic phases the localized
model allowed us to calculate the effective~fit-range-
dependent! values for the crossover exponentf, propagation
vector exponentbk , magnetization jump exponentbm , and
two amplitude ratios for phase boundaries. Model resu
concerning the Lifshitz point were thoroughly discussed
Sec. V D. In general they indicate that to understand
experimental values of these universal LP parameters
mean field corrections to scaling should be taken into
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count together with the results of the fluctuational theorie
The model predictions which are to be tested experim

tally comprise the field dependence of the wave vector in
cone and fan phases forHia, and the weakly-first-order na
ture of the cone-fan transition.

The present calculations are limited to an external fi
applied along the three principal orthorhombic directio
The zero-temperature solution can also be obtained fo
arbitrary direction of the applied field.51 The resulting topol-
ogy of suitable many-dimensional magnetic phase diag
contains the line of Lifshitz points for the direction of ma
netic field within theab plane~confirmed experimentally by
Becerra, Brumatto, and Oliveira17! and the line of tricritical
points for H within the bc plane ~discussed by Shapir
et al.11!.

The results of the simplest zero-temperature solution g
us confidence that the ANNNH model with estimated valu
of the model parameters describes the essential physic
the magnetic phases and phase transitions of MnP.
Hamiltonian seems simple enough to make practical calc
tions beyond MFT using theoretical methods~like HTSE or
Monte Carlo! which are capable of bringing information o
the nonuniversal effects of critical fluctuations. Differe
phenomena induced by quenched disorder, observed
Mn0.9Co0.1P, also await for a theoretical interpretation.52
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APPENDIX: ENERGY FOR DIFFERENT SPIN
CONFIGURATIONS

The symbols appearing in Eqs.~A1!–~A8! are defined in
Sec. II.

Helimagnetic phase:

e~q!52
j ~q!

2
1

k

2
2

k2

2@ j ~q!2 j ~3q!#

2
h2

2@2 j ~q!2 j ~2q!2 j ~0!62k# F16
2k

j ~q!2 j ~3q!G .
~A1!

The signs1 and2 in the symbol6 correspond toHib and
Hic, respectively.

Fan phase(Hib):

e~q!52
j ~0!

2
1k2h2

@ j ~q!2 j ~0!12k22h#2

3 j ~q!2 j ~2q!22 j ~0!16k
.

~A2!
Jp

et
.
-
e

d
.
n

m

e
s
of
is

a-

in

al

For Hic and Hia the anisotropy parameterk in Eq. ~A2!
should be replaced by2k andkz, respectively.

Elliptical cone (Hia): The fourth-order power expan
sion for the energy is given by

e~j,z,q!5c1b1j21b2z21a1j41a2z412dj2z2,
~A3!

with coefficients

c52
j ~0!

2
1kz2h,

b15 1
4 @ j ~0!2 j ~q!22kz1h#, b25b12 1

2 k,

a15 1
64 @22 j ~0!13 j ~q!2 j ~2q!16kz#, a25a11 3

32 k,

d5
1

64
@2 j ~0!1 j ~2q!1h#. ~A4!

The energy minimized with respect toj andz reads

e~q!5c2
1

4

a1b2
21a2b1

222db1b2

a1a22d2 . ~A5!

Circular cone(Hia):

e~q!52
1

2 F j ~q!1k1
k2

j ~q!2 j ~3q!

2
h2

2 j ~q!2 j ~2q!2 j ~0!12kG . ~A6!

Ferromagnetic phase(Hib):

e52
j ~0!

2
2

h

4k
. ~A7!

For Hia the anisotropy parameterk should be replaced by
kz.

Paramagnetic phase(Hib):

e52
j ~0!

2
1k2h. ~A8!

For theHic andHia casesk should be replaced by 0 andkz,
respectively.
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