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Ordered phase and scaling inZ, models and the three-state antiferromagnetic Potts model
in three dimensions
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Based on a renormalization-group pictureZgfsymmetric models in three dimensions, we derive a scaling
law for the Z,, order parameter in the ordered phase. An existing Monte Carlo calculation on the three-state
antiferromagnetic Potts model, which has the effectigesymmetry, is shown to be consistent with the
proposed scaling law. It strongly supports the renormalization-group picture that there is a single massive
ordered phase, although an apparently rotationally symmetric region in the intermediate temperature was
observed numerically.

[. INTRODUCTION that there is no finite region of rotationally symmetric phase
which is similar to the ordered phase of tk& model. Un-
The symmetry and the dimensionality are important facfortunately, their paper is apparently not widely known in the

tors to determine the universality class of critical phenom+elated fields. It might be partly because their discussion was

ena. TheD(2) symmetry is the simplest among the continu-very brief and not quite clear.

ous symmetry, and statistical models with th@(2) In fact, there has been a long-standing controversy on the

symmetry has been studied intensively. A natural questiothe three-state antiferromagnetic Potfs=P) model on a

then would be the effect of the symmetry breaking from thesimple cubic lattice, defined by the Hamiltonian

continuousO(2) to the discreteZ,,. A simple spin model

with Z, symmetry is then-state clock model with a Hamil-

tonian

H=+> 6,.,, 2)
x Tk

H=— 2 cod6,— 6, 1)
1.k

whereo;=0,1,2 and(j,k) runs over nearest-neighbor pairs

where(j,k) runs over nearest neighbors afjdakes integral  on a simple cubic lattice. Due to the frustration, the order
multiples of 2z/n. The standarKY model withO(2) sym-  parameter of this model is not evident. However, previous
metry is defined by the Hamiltonian of the same form; thestudies revealed that the low-temperature ordered phase,
only difference is that) takes continuous values. which is called as BSS phase, corresponds to a spontaneous

The Z,, symmetry is fundamentally different fro®(2)  breaking of theZs symmetry? Thus the effective symmetry
because of its discrete nature. On the other hand, for large of this model may be regardgas Zg, although it is not
itis natural to expect th&, symmetry to have similar effects apparent in the model. It is now widely accepted that there is
to that of theO(2) symmetry. Understanding these two ap-a phase transition with critical exponents characterized by
parently contradictory aspects is an interesting problem. Bethe 3D XY universality clas§;*? at temperaturel .~1.23
sides the theoretical motivation, there are some possible exwe set the Boltzmann constakg=1.) On the other hand,
perimental realizations of the effectiv&, symmetry. For according to numerical calculations, there appears to be an
example, the stacked triangular antiferromagnetic I$810)  intermediate phase beloW, and above the low-temperature
model with effectiveZg symmetry may correspond to mate- phase. While there have been various propégélfs)r the
rials such asCsMnl,. intermediate region, most reliable numerical results at

In two dimensions, the phase diagram of #yemodel is  present indicate that the intermediate region appears to be a
well understood in the framework of the renormalization rotationally symmetric phase which is similar to the ordered
group (RG). For n=5, there is an intermediate phase be-phase of the 3DXY model'°~*? However, the “transition”
tween the low-temperature ordered phase with the spontanbetween the intermediate region and the low-temperature
ously brokenZ,, symmetry and the high-temperature disor- phase is not well understood. According to the suggestion in
dered phase. The intermediate phas®(2) symmetric and Ref. 3, the intermediate “phase” would be rather a crossover
corresponds to the low-temperature phase ofXiWenodel. to the low-temperature massive phase.

In the three-dimension4BD) case, Blankschteiet alin On the other hand, there has been a claim of an interme-
1984 proposed an RG picture of tHg models, to discuss diate phas¥ also in the six-state clock6CL) model, which
the STI model. They suggested that the transition betweehas the manifesg symmetry. In a recent detailed numerical
the ordered and disordered phases belongs tq3B¢ XY  study, Miyashitd® found that the intermediate region appears
universality class, and that the ordered phase reflects the have a rotationally symmetric character, as found in the
symmetry breaking t@g in a large enough system. It means AFP model. However, through a careful examination of the
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system size dependence, he concluded that it is just a cross-0). Thus it is natural to expect them to be irrelevant at the
over to the massive low-temperature phase, and that the rorore stable 3DXY fixed point, namelyn.<6. In fact, the
tationally symmetricXY phase does not exist in the thermo- numerical observation of the 3RY universality class in 6CL
dynamic limit. His conclusion is consistent with the and AFP model strongly suggests thatis irrelevant at the
suggestion in Ref. 3. XY fixed point and henca,<6. In the following, we restrict

In this article, based on the RG picture, we derive a scalthe discussion to the irrelevant casen,.
ing law of an order parameter which measures the effect of For the O(2) symmetric case\,=0, low-temperature
symmetry breaking fron©(2) to Z,,. We demonstrate that phaseu<0 is renormalized to the low-temperature fixed
the Monte Carlo results on the AFP model in Ref. 11 ispoint. It describes the massless Nambu-GoldstONG)
consistent with the scaling law, supporting the RG picturemodes on the ground state with the spontaneously broken

with a single phase transition. O(2) symmetry. Let us call the low-temperature fixed point
as NG fixed point. In terms of the field theory, it is described
Il. RENORMALIZATION-GROUP PICTURE by theO(2) sigma modelfree massless boson figld

Since the discussion of the RG picture in Ref. 3 was
rather brief, it would be worthwhile to present the RG picture S= f d3x5(a b)? (5)
here, with some clarifications and more details. We also 2w
make a straightforward extension to general integé&rom _
then=6 case. where ¢ is the angular variablé~|®|e'¢. Namely, only
A genericZ, symmetric model may be mapped, in the the angular mode remains gapless as a NG boson. In three
long-distance limit, to the followingb*-type field theory dimensions, the coupling constakt renormalizes propor-
with the Euclidean action tional to the scald, and goes to infinity in the low-energy
limit. The coupling constant may be absorbed by using the
_ rescaled fieldd= VK (¢— ¢,) so that the action is always
S=J dX[[9,®|?+u|®[*+g|P[*— Ny (P"+P™N] (3)  written as[d>x(d,6)%/2.
Now let us consider effects of the symmetry breaking
) ) ) ) — ) Nn. The symmetry breaking term can be written as
with the complex f|eld1>_ and its conjugate. The\, termis A (" + DM = — N[ d|"cosng. Using the rescaled field
the lowest-order term id which breaks the symmetry from 0. the total effective action at scaldhecomes
0O(2) to Z,. The phase transition corresponds to the vanish-"
ing of (the renormalized value pthe parameten. The tem-

peratureTl in the Z, statistical system roughly corresponds to _ 3 1 ) 3 3 0
uasu~T—T. whereT, is the critical temperature. S=]d Xi(‘?/ﬂ) —AnK® | d”xcog n| ¢o+ \/_R ,
In the absence of the symmetry breakixg, the transi- (6)

tion belongs to the so-called 3®Y universality class. Its
stability .unde.r the gymmetry breakinng is dete;rmined by where the factok3~13 comes from the scale transformation
the scaling dimension of, at the 3DXY fixed point. It may  of the integration measure. In the thermodynamic limit, we
be estimated with the standaeeexpansion method. should takeK— limit. Physically, it means that the(2)

The lowest-order result ia can be easily pbtawged from symmetry is spontaneously broken so that the angle is fixed
the operator product expansid®PE coefficients:® As @ 13 some valuep, in a single infinite system. Then the Taylor

result, we obtain the scaling dimensign of A, in 4—€  eypansion of the cosine it/ K becomes valid:
dimensions as

oo

:,Zo c;K31241, 7)

n 1 n(n—1)
2 10

0
)+O(62). (4) K3C0{n ¢)0+\/_R

Yn=4—n+e

Y, is defined so that the effective strength of the perturbation’{"h‘:*‘re

A (1) at scald is proportional td¥n near thexY fixed point.

The casen=4 is actually the special ca$¢=2 of the “cu- « n2k

bic anisotropy” on the 300(N) fixed point!® Extrapolating Cx=(—1) (2ky1 cos b0,
theO(e) result to 3D €=1), we see that thg, perturbation
is irrelevant at the 3IXY fixed point forn=n;. The thresh-
old n; is estimated to be 4 i®(e) In fact, n=2 andn=3
corresponds to the 3D Ising and three-stdéromagnetic
Potts model, which do not belong Y universality class.
Thusn, is expected to be at least 4. This is consistent withfor a nonnegative integet. The five termsj=1,...5 are
the above result fromO(e). However, extrapolating the relevant perturbations. For any value @f, some of the
lowest-order result ire to 3D (e=1) is not quite reliable; coefficientsc; of these relevant terms are nonvanishing. We
the true value oin. might be larger than 4. On the other therefore conclude that, unlike the 2D case, Zheerturba-
hand, we can make the following observation. Ref6, A,  tion is always relevant for any value of at the NG fixed

is marginal or irrelevant at the 3D Gaussian fixed poimt ( point. We emphasize that this conclusion is universal in three

n2k+1

(sz)!sinnd)o (8)

Coks1=—(—1)¥
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High Temperature Scaling of the order parameter
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FIG. 1. The RG flow diagram of th&, models, projected onto
the two-dimensional parameter space spanneddyd\,,. TheZ, FIG. 2. The order parametéts) taken from Ref. 11. They are
perturbatiom , is irrelevant at the 3IXY fixed point, but is relevant  scaled byx:cLz(TC—T)”|y6|, for various system sizes and tem-
at the NG fixed point. FoT slightly less tharil,, the RG flow is  peratures. The data are consistent with the scaling1&@with the
divided into the three stagés, (ii), and(iii). exponentr|yg|=4.8. They also agree with the approximate scaling
function f(x) =1,(x)/1y(x), for c=0.025.

dimensions and independent of the microscopic mode
Shortly speaking, theZ,, perturbation gives mass to the
pseudo-NG boso#, which would be massless NG boson in
the absence of the perturbation. In contrast, in two dimen-
sions the coupling constaHtof the free boson field theory is
dimensionless, and the above argument does not apply. It is Based on the RG picture, we derive a scaling law on an
related to the absence of a spontaneous breaking of a coorder paramete®,, which characterizes the symmetry break-
tinuous symmetry. ing from theO(2) to Z, symmetry. There are various pos-

We now have a global picture of the RG flow as shown insible definitions of®,. On the 6CL model, Miyashita nu-
Fig. 1. The phase transition between the ordered phase amderically measured an order parameiewhich corresponds
the disordered phase is governed by X¥fixed point. This  to the effective barrier height. On the AFP model, Heilmann,
means that the critical exponents are identical to those of th&/ang, and Swendséhstudied( ), which is the Fourier
XY model. This is consistent with the numerical results. Intransform of the angle distribution density of average spins.
the disordered phase aboWe, there will be no essential The following consideration applies to the both cases.
effect of the Z, perturbation. However, the nature of the FOr large enough andT slightly lower thanT; we divide
ordered phase is more interesting. Theperturbation\, is ~ the RG flow to three stages, as shown in Fig. 2:
eventually enhanced in the ordered phase belgw It ) The' RG ﬂO.W near the 3[XYf|>§ed point. The symme-
means that all regions beloWw. belong to the massive phase try breaklinIgT\n is irelevant, and is renormalized propor-
with the spontaneously broken, symmetry. There is no t|onf_al tol B! at length scalé. .
rotationally symmetric interme(;iate phase, unlike the 2D, (i) The RG flow frpm the'nelghborhoo.d.of the 30Y

. i T . fixed point to the NG fixed point. For simplicity, we assume

case. Onlly a premsel@(zl) symmetnc model witf, =0 'S that the symmetry breaking, is unchanged in this stage.
renormalized to the NG fixed point belol, corresponding

; . (iii) The RG flow near the NG fixed point,, is relevant,
to the rotationally symmetric low-temperature phase. giving a mass to the NG boson.

An interesting aspect of the RG flow diagram is that theTg ength scalé, , at which the crossover from stagékto
Z, perturbation is irrelevant at the 3RY fixed point but is (i) occurs, is given by ~const(T,—T) ", wherev is the
y c c y

relevant at the low-temperature NG fixed point. This couldgqreation length exponent of the 30Y universality class.

be related to a nontnwa} sy'stem size dependgnce found in Phus, at the crossover,

Monte Carlo renormalization-group calculatih.For T

slightly less tharT .., the symmetry breaking perturbatiap

is renormalized to a small value by the RG flow, and remains Nn~constT,—T)" W, ©)
small until the RG flow reaches near the NG fixed point. It

means that the mass of the pseudo-NG bosons is suppressEuis also gives the effective value of the perturbatignat

by the fluctuation effect. At a finite scaléor example, in a the crossover from stagés) to (iii ).

finite-size system the ordered phase ne&g is very similar In the presence of th&, perturbation, the spin configu-
to the low-temperature phase of tK&¥ model. This naturally ration would be dominated by the ordered regions which are
explains the numerical observation of the apparently rotaseparated by domain walls in a large system. The free energy
tionally symmetric “phase” in 6CL or the AFP model. For costed by the domain walls is proportional to their area,
larger n, the mass is more suppressed, and the lowwhich scales as? for the system sizé&. Therefore the ef-
temperature side of the transition appears ta§€) sym-  fective “barrier height” is proportiondf' to L2. Combining
metric until the system size becomes very large. Howeverthis with Eq.(9), we conclude that the order parameter is a
for any finite n, the low-temperature side of the transition function of a single scaling variable

l‘I’<TC is not truly massless ndd(2) symmetric in the ther-
modynamic limit, as already pointed out.

Ill. SCALING LAW IN THE ORDERED PHASE
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On=F(CL3(T,—T)"¥nly, (100  aninaccurate result in the lowest order of thexpansion. It
would be interesting to carry out the calculation to higher
wherec is a constant. The functiofi is universal, but of orders ine, or to estimateyq by other means.
course depends on the definition of . While the scal-
ing by L? was used in Ref. 14, we find that the temperature

dependence of the order parameter is also governed by a V. DISCUSSIONS AND CONCLUSION

scaling. Interestingly, the exponenly,| is completely de- In this article, we clarified a RG picture of phase structure
termined by the 3IXY fixed point. of 3D Z,, symmetric models, which was introduced earlier by
Blankschteiret al2 There is no finite region of intermediate
IV. COMPARISON WITH THE NUMERICAL RESULTS phase with a(spontaneously brokerO(2) symmetry, but

_ only a crossover to a massive phase where the discreteness of

In the numerical study of the AFP model, the authors Z, is relevant. Based on the RG picture, we have derived a
claimed the existence of the intermediate phase_, in which th@caling law of the order parameter in the Zp models. The
order parametef¢s) is very small even for relatively large eyisting Monte Carlo data on the AFP model, which was
lattice (up to L=64). However, we reanalyze their data to ygeq 1o claim the intermediate phase, was shown to be con-
demonstrate the scaling relatioh0), and hence the validity gjstent with the scaling law. Thus we conclude that the RG
of the RG picture. In Fig. 2, we show the data taKefom picture is valid on the AFP model, and there is only one
Fig. 3 of Ref. 11. We chose|ye|=4.8 to give the best yangition atT,~1.23 with the 3DXY universality class.
scaling. The data for various temperature and various system \ye would like to make a few final remarks. First, we note
sizes fall remarkably i2nto a sin |E|3 curve as a function of thepat the RG argument used in the present article does not
scaling variablex=cL*(T.—T)"¥n. This supports the pro- congradict to the transition of other thaxy universality
posed scaling relatioflL.0). Furthermore, if we approximate (jass, because only the local stability of ¥ fixed point
the effective potential by-x cos 6, the scaling function is  \yas discussed. It is possible that a lattice model vidth
given by symmetry is renormalized to anoth@nknown RG fixed

point. Actually, it appears somewhat controversial whether

f de cos(6¢)ex cos (69) the transition of the STI model belongs to tk¥ universality
B ~hi(x) class!®? On the other hand, the available numerical results
- (X))’ 11 strongly supports that the 6CL and AFP models at the critical

f dpe* °s (%) temperature are renormalized into tK¥ fixed point. Once
the transition is known to bXY universality class, the RG
where |, is the modified Bessel function. Choosing  picture and the scaling law discussed in this article should
=0.025, the scaled data agree with this simple functiorapply to the ordered phase, for the temperature slightly be-
rather well. We note that the data appear to deviate from théw the critical point.
scaling law for smallk. This may be due to the insufficient ~ Second, as discussed in Ref. 3, the “bare” valué pfat
system sizd. or the relatively large statistical error. a small length scajemay have opposite sign in some cir-

We emphasize that the present scaling relation is a strongumstances. Namely, the minima and maxima of the poten-
evidence of the single phase transition at the temperaiure tial of ¢ are swapped. In such a case, the ordered phase may
In contrast, the scaling of the “spontaneous magnetization'correspond to the permutationally symmetric sublattice
p=|®|=(T,—T)? does not distinguish our picture and the (PSS phase proposed in Ref. 6 for the AFP model, or the
“intermediate phase” scenario of Ref. 11. incompletely ordered phag¢OP) proposed in Ref. 13 for

On the other hand, the scaling functibfx) for A in Ref. ~ the 6CL model. In the vicinity of the critical point, the tem-

14 is linear inx by definition. The author indeed found that perature dependence of the bargis not essential because

A is scaled byL2. However, he did not discuss the tempera-the leading dependence on the temperature is determined by
ture depedence. We have attempted to analyze the data tine critical effect, as shown in E¢L0). However, it may be
Figs. 6 and 7 in Ref. 14, to find that they are roughly con-important in a wider temperature range. In particular, if the
sistent with our scaling law10) with the exponenty|yg| bare\ , changes sign at some temperattiydower thanT,,

~4. The estimate is difficult because there is only smalwe would have a transitidrat T, . Such a transition would
number of temperature points available in Ref. 14. Accord-be controlled by the NG fixed point. The existing numerical
ing to our picture, the exponemtyg| is a universal quantity data indicates that there is no such phase transition in the
determined by the 3IXY universality class. Considering the standard AFP model on the simple cubic lattice or in the
available data, the above results on AFP and 6CL models aigiandard 6CL model. However, such a transition may be pos-
consistent with the universality hypothesis, although not consible_in some modified modef$?? In fact, Blankschtein
clusive. It would be interesting to obtain more numericaléet al3 argued it to exist in the STI model.

data on these models to check our scaling (a).

The exponentv has been determined as-0.67 for the
3D XY universality class® Combining with the above esti-
mates ofv|yg|, |ye| is estimated as about 6. Unfortunately, | would like to thank Macoto Kikuchi, Ryo Kishi, Seiji
the irrelevant eigenvaluggs has not been much discussed in Miyashita, and Yohtaro Ueno for useful discussions. This
the literature. The lowest-order res@) in the e expansion  work was supported in part by a Grant-in-Aid for Scientific
gives|yg| =3, which is not quite consistent with the numeri- Research from the Ministry of Education, Culture and Sci-
cal estimate. However, it is perhaps not surprising to obtairence of Japan.
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