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Ordered phase and scaling inZn models and the three-state antiferromagnetic Potts model
in three dimensions

Masaki Oshikawa
Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan

~Received 20 July 1999!

Based on a renormalization-group picture ofZn symmetric models in three dimensions, we derive a scaling
law for theZn order parameter in the ordered phase. An existing Monte Carlo calculation on the three-state
antiferromagnetic Potts model, which has the effectiveZ6 symmetry, is shown to be consistent with the
proposed scaling law. It strongly supports the renormalization-group picture that there is a single massive
ordered phase, although an apparently rotationally symmetric region in the intermediate temperature was
observed numerically.
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I. INTRODUCTION

The symmetry and the dimensionality are important f
tors to determine the universality class of critical pheno
ena. TheO(2) symmetry is the simplest among the contin
ous symmetry, and statistical models with theO(2)
symmetry has been studied intensively. A natural ques
then would be the effect of the symmetry breaking from
continuousO(2) to the discreteZn . A simple spin model
with Zn symmetry is then-state clock model with a Hamil
tonian

H52 (
^ j ,k&

cos~u j2uk!, ~1!

where^ j ,k& runs over nearest neighbors andu j takes integral
multiples of 2p/n. The standardXY model withO(2) sym-
metry is defined by the Hamiltonian of the same form; t
only difference is thatu takes continuous values.

The Zn symmetry is fundamentally different fromO(2)
because of its discrete nature. On the other hand, for largn,
it is natural to expect theZn symmetry to have similar effect
to that of theO(2) symmetry. Understanding these two a
parently contradictory aspects is an interesting problem.
sides the theoretical motivation, there are some possible
perimental realizations of the effectiveZn symmetry. For
example, the stacked triangular antiferromagnetic Ising~STI!
model with effectiveZ6 symmetry may correspond to mat
rials such as1 CsMnI3.

In two dimensions, the phase diagram of theZn model is
well understood2 in the framework of the renormalizatio
group ~RG!. For n>5, there is an intermediate phase b
tween the low-temperature ordered phase with the spont
ously brokenZn symmetry and the high-temperature diso
dered phase. The intermediate phase isO(2) symmetric and
corresponds to the low-temperature phase of theXY model.

In the three-dimensional~3D! case, Blankschteinet al.3 in
1984 proposed an RG picture of theZ6 models, to discuss
the STI model. They suggested that the transition betw
the ordered and disordered phases belongs to the~3D! XY
universality class, and that the ordered phase reflects
symmetry breaking toZ6 in a large enough system. It mean
PRB 610163-1829/2000/61~5!/3430~5!/$15.00
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that there is no finite region of rotationally symmetric pha
which is similar to the ordered phase of theXY model. Un-
fortunately, their paper is apparently not widely known in t
related fields. It might be partly because their discussion w
very brief and not quite clear.

In fact, there has been a long-standing controversy on
the three-state antiferromagnetic Potts~AFP! model on a
simple cubic lattice, defined by the Hamiltonian

H51 (
^ j ,k&

ds jsk
, ~2!

wheres j50,1,2 and̂ j ,k& runs over nearest-neighbor pai
on a simple cubic lattice. Due to the frustration, the ord
parameter of this model is not evident. However, previo
studies revealed that the low-temperature ordered ph
which is called as BSS phase, corresponds to a spontan
breaking of theZ6 symmetry.4 Thus the effective symmetry
of this model may be regarded5 as Z6, although it is not
apparent in the model. It is now widely accepted that ther
a phase transition with critical exponents characterized
the 3D XY universality class,8–12 at temperatureTc;1.23
~we set the Boltzmann constantkB51.! On the other hand,
according to numerical calculations, there appears to be
intermediate phase belowTc and above the low-temperatur
phase. While there have been various proposals5–7 for the
intermediate region, most reliable numerical results
present indicate that the intermediate region appears to
rotationally symmetric phase which is similar to the order
phase of the 3DXY model.10–12 However, the ‘‘transition’’
between the intermediate region and the low-tempera
phase is not well understood. According to the suggestio
Ref. 3, the intermediate ‘‘phase’’ would be rather a crosso
to the low-temperature massive phase.

On the other hand, there has been a claim of an inter
diate phase13 also in the six-state clock~6CL! model, which
has the manifestZ6 symmetry. In a recent detailed numeric
study, Miyashita14 found that the intermediate region appea
to have a rotationally symmetric character, as found in
AFP model. However, through a careful examination of t
3430 ©2000 The American Physical Society
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system size dependence, he concluded that it is just a c
over to the massive low-temperature phase, and that the
tationally symmetricXY phase does not exist in the therm
dynamic limit. His conclusion is consistent with th
suggestion in Ref. 3.

In this article, based on the RG picture, we derive a sc
ing law of an order parameter which measures the effec
symmetry breaking fromO(2) to Zn . We demonstrate tha
the Monte Carlo results on the AFP model in Ref. 11
consistent with the scaling law, supporting the RG pictu
with a single phase transition.

II. RENORMALIZATION-GROUP PICTURE

Since the discussion of the RG picture in Ref. 3 w
rather brief, it would be worthwhile to present the RG pictu
here, with some clarifications and more details. We a
make a straightforward extension to general integern from
the n56 case.

A generic Zn symmetric model may be mapped, in th
long-distance limit, to the followingF4-type field theory
with the Euclidean action

S5E d3x@ u]mFu21uuFu21guFu42ln~Fn1F̄n!# ~3!

with the complex fieldF and its conjugateF̄. Theln term is
the lowest-order term inF which breaks the symmetry from
O(2) to Zn . The phase transition corresponds to the vani
ing of ~the renormalized value of! the parameteru. The tem-
peratureT in theZn statistical system roughly corresponds
u asu;T2Tc whereTc is the critical temperature.

In the absence of the symmetry breakingln , the transi-
tion belongs to the so-called 3DXY universality class. Its
stability under the symmetry breaking toZn is determined by
the scaling dimension ofln at the 3DXYfixed point. It may
be estimated with the standarde-expansion method.

The lowest-order result ine can be easily obtained from
the operator product expansion~OPE! coefficients.15 As a
result, we obtain the scaling dimensionyn of ln in 42e
dimensions as

yn542n1eS n

2
212

n~n21!

10 D1O~e2!. ~4!

yn is defined so that the effective strength of the perturba
ln( l ) at scalel is proportional tol yn near theXYfixed point.
The casen54 is actually the special caseN52 of the ‘‘cu-
bic anisotropy’’ on the 3DO(N) fixed point.15 Extrapolating
theO(e) result to 3D (e51), we see that theZn perturbation
is irrelevant at the 3DXYfixed point forn>nc . The thresh-
old nc is estimated to be 4 inO(e) In fact, n52 andn53
corresponds to the 3D Ising and three-state~ferromagnetic!
Potts model, which do not belong toXY universality class.
Thusnc is expected to be at least 4. This is consistent w
the above result fromO(e). However, extrapolating the
lowest-order result ine to 3D (e51) is not quite reliable;
the true value ofnc might be larger than 4. On the othe
hand, we can make the following observation. Forn>6, ln
is marginal or irrelevant at the 3D Gaussian fixed pointg
ss-
ro-
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of

e

s
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-

n

h

50). Thus it is natural to expect them to be irrelevant at
more stable 3DXY fixed point, namelync<6. In fact, the
numerical observation of the 3DXYuniversality class in 6CL
and AFP model strongly suggests thatl6 is irrelevant at the
XYfixed point and hencenc<6. In the following, we restrict
the discussion to the irrelevant casen>nc .

For the O(2) symmetric caseln50, low-temperature
phaseu,0 is renormalized to the low-temperature fixe
point. It describes the massless Nambu-Goldstone~NG!
modes on the ground state with the spontaneously bro
O(2) symmetry. Let us call the low-temperature fixed po
as NG fixed point. In terms of the field theory, it is describ
by theO(2) sigma model~free massless boson field!

S5E d3x
K

2
~]mf!2, ~5!

wheref is the angular variableF;uFueif. Namely, only
the angular modef remains gapless as a NG boson. In thr
dimensions, the coupling constantK renormalizes propor-
tional to the scalel, and goes to infinity in the low-energ
limit. The coupling constant may be absorbed by using
rescaled fieldu5AK(f2f0) so that the action is alway
written as*d3x(]mu)2/2.

Now let us consider effects of the symmetry breaki
ln . The symmetry breaking term can be written
2ln(Fn1F̄n)52lnuFun cosnf. Using the rescaled field
u, the total effective action at scalel becomes

S5E d3x
1

2
~]mu!22lnK3E d3x cosFnS f01

u

AK
D G ,

~6!

where the factorK3; l 3 comes from the scale transformatio
of the integration measure. In the thermodynamic limit,
should takeK→` limit. Physically, it means that theO(2)
symmetry is spontaneously broken so that the angle is fi
to some valuef0 in a single infinite system. Then the Taylo
expansion of the cosine inu/AK becomes valid:

K3 cosFnS f01
u

AK
D G5(

j 50

`

cjK
32 j /2u j , ~7!

where

c2k5~21!k
n2k

~2k!!
cosnf0 ,

c2k1152~21!k
n2k11

~2k11!!
sinnf0 ~8!

for a nonnegative integerk. The five termsj 51, . . . 5 are
relevant perturbations. For any value off0, some of the
coefficientscj of these relevant terms are nonvanishing. W
therefore conclude that, unlike the 2D case, theZn perturba-
tion is always relevant for any value ofn at the NG fixed
point. We emphasize that this conclusion is universal in th
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3432 PRB 61MASAKI OSHIKAWA
dimensions and independent of the microscopic mo
Shortly speaking, theZn perturbation gives mass to th
pseudo-NG bosonu, which would be massless NG boson
the absence of the perturbation. In contrast, in two dim
sions the coupling constantK of the free boson field theory i
dimensionless, and the above argument does not apply.
related to the absence of a spontaneous breaking of a
tinuous symmetry.

We now have a global picture of the RG flow as shown
Fig. 1. The phase transition between the ordered phase
the disordered phase is governed by theXYfixed point. This
means that the critical exponents are identical to those of
XY model. This is consistent with the numerical results.
the disordered phase aboveTc , there will be no essentia
effect of the Zn perturbation. However, the nature of th
ordered phase is more interesting. TheZn perturbationln is
eventually enhanced in the ordered phase belowTc . It
means that all regions belowTc belong to the massive phas
with the spontaneously brokenZn symmetry. There is no
rotationally symmetric intermediate phase, unlike the
case. Only a preciselyO(2) symmetric model withln50 is
renormalized to the NG fixed point belowTc , corresponding
to the rotationally symmetric low-temperature phase.

An interesting aspect of the RG flow diagram is that t
Zn perturbation is irrelevant at the 3DXY fixed point but is
relevant at the low-temperature NG fixed point. This cou
be related to a nontrivial system size dependence found
Monte Carlo renormalization-group calculation.16 For T
slightly less thanTc , the symmetry breaking perturbationln
is renormalized to a small value by the RG flow, and rema
small until the RG flow reaches near the NG fixed point
means that the mass of the pseudo-NG bosons is suppre
by the fluctuation effect. At a finite scale~for example, in a
finite-size system!, the ordered phase nearTc is very similar
to the low-temperature phase of theXYmodel. This naturally
explains the numerical observation of the apparently ro
tionally symmetric ‘‘phase’’ in 6CL or the AFP model. Fo
larger n, the mass is more suppressed, and the lo
temperature side of the transition appears to beO(2) sym-
metric until the system size becomes very large. Howe
for any finite n, the low-temperature side of the transitio

FIG. 1. The RG flow diagram of theZn models, projected onto
the two-dimensional parameter space spanned byu andln . TheZn

perturbationln is irrelevant at the 3DXYfixed point, but is relevant
at the NG fixed point. ForT slightly less thanTc , the RG flow is
divided into the three stages~i!, ~ii !, and~iii !.
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T,Tc is not truly massless norO(2) symmetric in the ther-
modynamic limit, as already pointed out.

III. SCALING LAW IN THE ORDERED PHASE

Based on the RG picture, we derive a scaling law on
order parameterOn which characterizes the symmetry brea
ing from theO(2) to Zn symmetry. There are various pos
sible definitions ofOn . On the 6CL model, Miyashita14 nu-
merically measured an order parameterD which corresponds
to the effective barrier height. On the AFP model, Heilman
Wang, and Swendsen11 studied^f6&, which is the Fourier
transform of the angle distribution density of average spi
The following consideration applies to the both cases.

For large enoughL andT slightly lower thanTc we divide
the RG flow to three stages, as shown in Fig. 2:

~i! The RG flow near the 3DXYfixed point. The symme-
try breaking ln is irrelevant, and is renormalized propo
tional to l 2uynu at length scalel.

~ii ! The RG flow from the neighborhood of the 3DXY
fixed point to the NG fixed point. For simplicity, we assum
that the symmetry breakingln is unchanged in this stage.

~iii ! The RG flow near the NG fixed point.ln is relevant,
giving a mass to the NG boson.
The length scalel c , at which the crossover from stages~i! to
~ii ! occurs, is given byl c;const(Tc2T)2n, wheren is the
correlation length exponent of the 3DXY universality class.
Thus, at the crossover,

ln;const~Tc2T!nuynu. ~9!

This also gives the effective value of the perturbationln at
the crossover from stages~ii ! to ~iii !.

In the presence of theZn perturbation, the spin configu
ration would be dominated by the ordered regions which
separated by domain walls in a large system. The free en
costed by the domain walls is proportional to their are
which scales asL2 for the system sizeL. Therefore the ef-
fective ‘‘barrier height’’ is proportional14 to L2. Combining
this with Eq. ~9!, we conclude that the order parameter is
function of a single scaling variable

FIG. 2. The order parameter^f6& taken from Ref. 11. They are
scaled byx5cL2(Tc2T)nuy6u, for various system sizes and tem
peratures. The data are consistent with the scaling law~10! with the
exponentnuy6u54.8. They also agree with the approximate scali
function f (x)5I 1(x)/I 0(x), for c50.025.
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On5 f „cL2~Tc2T!nuynu
…, ~10!

where c is a constant. The functionf is universal, but of
course depends on the definition of theOn . While the scal-
ing by L2 was used in Ref. 14, we find that the temperat
dependence of the order parameter is also governed
scaling. Interestingly, the exponentnuynu is completely de-
termined by the 3DXY fixed point.

IV. COMPARISON WITH THE NUMERICAL RESULTS

In the numerical study11 of the AFP model, the author
claimed the existence of the intermediate phase, in which
order parameter̂f6& is very small even for relatively large
lattice ~up to L564). However, we reanalyze their data
demonstrate the scaling relation~10!, and hence the validity
of the RG picture. In Fig. 2, we show the data taken17 from
Fig. 3 of Ref. 11. We chosenuy6u54.8 to give the best
scaling. The data for various temperature and various sys
sizes fall remarkably into a single curve as a function of
scaling variablex5cL2(Tc2T)nuynu. This supports the pro
posed scaling relation~10!. Furthermore, if we approximat
the effective potential by2x cos 6f, the scaling function is
given by

f ~x!5

E df cos~6f!ex cos (6f)

E dfex cos (6f)

5
I 1~x!

I 0~x!
, ~11!

where I n is the modified Bessel function. Choosingc
50.025, the scaled data agree with this simple funct
rather well. We note that the data appear to deviate from
scaling law for smallx. This may be due to the insufficien
system sizeL or the relatively large statistical error.

We emphasize that the present scaling relation is a str
evidence of the single phase transition at the temperatureTc .
In contrast, the scaling of the ‘‘spontaneous magnetizatio
r5uFu}(Tc2T)b does not distinguish our picture and th
‘‘intermediate phase’’ scenario of Ref. 11.

On the other hand, the scaling functionf (x) for D in Ref.
14 is linear inx by definition. The author indeed found th
D is scaled byL2. However, he did not discuss the tempe
ture depedence. We have attempted to analyze the da
Figs. 6 and 7 in Ref. 14, to find that they are roughly co
sistent with our scaling law~10! with the exponentnuy6u
;4. The estimate is difficult because there is only sm
number of temperature points available in Ref. 14. Acco
ing to our picture, the exponentnuy6u is a universal quantity
determined by the 3DXY universality class. Considering th
available data, the above results on AFP and 6CL models
consistent with the universality hypothesis, although not c
clusive. It would be interesting to obtain more numeric
data on these models to check our scaling law~10!.

The exponentn has been determined asn;0.67 for the
3D XY universality class.18 Combining with the above esti
mates ofnuy6u, uy6u is estimated as about 6. Unfortunate
the irrelevant eigenvaluey6 has not been much discussed
the literature. The lowest-order result~4! in the e expansion
givesuy6u53, which is not quite consistent with the nume
cal estimate. However, it is perhaps not surprising to ob
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an inaccurate result in the lowest order of thee expansion. It
would be interesting to carry out the calculation to high
orders ine, or to estimatey6 by other means.

V. DISCUSSIONS AND CONCLUSION

In this article, we clarified a RG picture of phase structu
of 3D Zn symmetric models, which was introduced earlier
Blankschteinet al.3 There is no finite region of intermediat
phase with a~spontaneously broken! O(2) symmetry, but
only a crossover to a massive phase where the discretene
Zn is relevant. Based on the RG picture, we have derive
scaling law of the order parameter in the 3DZn models. The
existing Monte Carlo data11 on the AFP model, which was
used to claim the intermediate phase, was shown to be
sistent with the scaling law. Thus we conclude that the R
picture is valid on the AFP model, and there is only o
transition atTc;1.23 with the 3DXY universality class.

We would like to make a few final remarks. First, we no
that the RG argument used in the present article does
contradict to the transition of other thanXY universality
class, because only the local stability of theXY fixed point
was discussed. It is possible that a lattice model withZn
symmetry is renormalized to another~unknown! RG fixed
point. Actually, it appears somewhat controversial whet
the transition of the STI model belongs to theXYuniversality
class.19,20 On the other hand, the available numerical resu
strongly supports that the 6CL and AFP models at the crit
temperature are renormalized into theXY fixed point. Once
the transition is known to beXY universality class, the RG
picture and the scaling law discussed in this article sho
apply to the ordered phase, for the temperature slightly
low the critical point.

Second, as discussed in Ref. 3, the ‘‘bare’’ value ofln ~at
a small length scale! may have opposite sign in some ci
cumstances. Namely, the minima and maxima of the po
tial of f are swapped. In such a case, the ordered phase
correspond to the permutationally symmetric sublatt
~PSS! phase proposed in Ref. 6 for the AFP model, or t
incompletely ordered phase~IOP! proposed in Ref. 13 for
the 6CL model. In the vicinity of the critical point, the tem
perature dependence of the bareln is not essential becaus
the leading dependence on the temperature is determine
the critical effect, as shown in Eq.~10!. However, it may be
important in a wider temperature range. In particular, if t
bareln changes sign at some temperatureTL lower thanTc ,
we would have a transition3 at TL . Such a transition would
be controlled by the NG fixed point. The existing numeric
data indicates that there is no such phase transition in
standard AFP model on the simple cubic lattice or in t
standard 6CL model. However, such a transition may be p
sible in some modified models.21,22 In fact, Blankschtein
et al.3 argued it to exist in the STI model.
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