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We study the phase diagram of a two-leg bond-alternation @gih-1) ladder for two different configura-
tions using a quantum renormalization-group approach. Althaligimensional ferrimagnets show gapless
behavior, we will explicitly show that the effect of the spin mixing and the bond alternation can open the
possibility for observing an energy gap. We show that the gapless phases of such systems can be equivalent to
the one-dimensional half-integer antiferromagnets, besides the gapless ferrimagnetic phases. We therefore
propose a phase transition between these two gapless phases that can be seen in the parameter space.

[. INTRODUCTION transition-metal ions per unit cell and have the general for-
mula ACu(pbaOH)(HO);.2H,0 with pbaOH
Since the seminal work of Haldahgquantum spin chains = 2-hydroxo-propylenebigoxamato and A=Mn, Fe, Co,
have been extensively studied as one of the simplest biNi. They have been characterized as the alterndtiniged)
most typical quantum many-body systems. According tospin chains or ferrimagnet§.it has been shown that one-
Haldane, the one-dimensional integer-spin Heisenberg antdimensional ferrimagnets have two types of excitations in
ferromagnets have a unique disordered ground state with their low-lying spectrum. The lowest one has gapless excita-
finite excitation gap, while half-integer antiferromagnets aretions, i.e., they behave like ferromagnets with quadratic dis-
gapless and criticalsee Ref. 2 and references thejeifhe  persion relation. The other one, which is separated by an
origin of the difference between half-integer and integer spirexcitation gap from the primer one, has antiferromagnetic
chains can be traced back to the topologicél ‘term in the  behavior with linear dispersion relatidh.More precisely,
effective nonlineaw-model description of antiferromagnetic the effective Hamiltonian for the lowest spectrum of a one-
spin chains and is believed to be due to nonperturbative efdimensional Heisenberg ferrimagnet is a one-dimensional
fects. Haldane’s original predictions were based on largeHeisenberg ferromagnet wit=|S,—S,|.*> A spin-wave
spin arguments and although a general rigorous proof is stitudy also shows the similar behavior is seen in two and
lacking, several theoretical developments have helped tthree dimension¥
clarify the situation and there is now strong experimental and Another surprising investigation deals with spin ladders
numerical evidence in support of Haldane's cl&.The that have recently attracted a considerable amount of
massive phase of the integer spin chains, called Haldanattention'® They consist of coupled one-dimensional chains
phase, has been understood as valence-bond-§dB®) and may be regarded as interpolating truly one- and two-
states proposed by Affleckt al.®> wherein each spirBis  dimensional systems. These models are useful to study the
viewed as a symmetrized product o§Zpinors. However properties of the high-, superconductor materials. Theoret-
bond alternation may drastically change the low-energy beical studies have suggested that there are two different uni-
havior of these systems and produce phase transitions. Feersality classes for the uniform-spin ladders, i.e., the anti-
instance a bond-alternation spin-1/2 antiferromagnet chaiferromagnetic spin-1/2 ladders are gapful or gapless,
has a finite-energy gap as opposed to its uniformdepending on whethemn, (the number of legsis even or
counterparf.” It has been also shown that the phase diagranodd® These predictions have been confirmed experimen-
of the S=1 chain decomposes into different phases by addtally by compounds like SrG®; and SgCu;O5. However,
ing bond alternatiofi. again bond alternation changes this universality. It has been
Yet another challenge in this area has led to synthesizinghown that a gapless line that depends on the staggered
quasi-one-dimensional bimetallic molecular magnets. Thdond-alternation(SBA) parametery, divides the gapful
search for molecular ferromagnet has led to the discovery gbhase of a two-leg antiferromagnetic spin-1/2 ladder into two
many interesting molecular magnetic systems. In recentifferent phaset*'® Moreover, there are some other con-
years, quasi-one-dimensional bimetallic molecular magnetdigurations, like the columnar bond alternati6BBA) [see
with each unit cell containing two spins of different spin Fig. 1(a)] that introduces new phases for the antiferromag-
value have been synthesizédhese systems contain two netic ladders®?’ The appearance of the magnetization pla-
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FIG. 1. The ladder realization=1/2 andS=1. (a) Columnar
bond alternatiofCBA), (b) staggered bond alternatid®8BA), (c)
schematic illustration of effective Hamiltonian in SBA configura-
tion at|J’|<J, whereS' =1/2.

teaus for both chaifé and ladder¥ and the appearance of
the new phases for spin laddéPsare also some of the con-
sequences of the bond alternations.

In this paper, we study thieond-alternation ferrimagnetic
ladders(BAFL). This model contains a rich phase diagram.
By making use of a quantum renormalizatiql@RG)

group?® we demonstrate that the combination of both spin
mixing and bond alternation may open the possibility of ob-

serving the energy “gap” in the ground state of these sys

tems. We obtain the phase diagram of BAFL in both SBA
and CBA configurations. The CBA configuration consists of
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N/2
H'lsz,l [(1+9)7(2i —1)-S,(2i)

+(1—9)S,(2i)- 7(2i +1)]

N/2
H'2=Ji§1 [(1+7)S,(2i —1)- 75(2i)

+(1— ) 75(20)- Sy(2i +1)]
N/2
H,:J'__El [71(2i —1)-S,(2i — 1)+ S,(2i) - 7(2i)].
1)

The ladder containl rungs and by assuming the periodic
boundary condition for each leg, we identify the first rung to
the N+ 1th rung. Throughout this paper we assubisg posi-
tive butJ’ can be positive or negative as a tunable param-
eter. Note that for the bond-alternation parameter; —y
amounts to sublattice exchange-~n+1, and therefore we
consider G=y=<1.

By QRG, we divide the Hamiltonian into intrablock )
and interblock HBB) parts. After diagonalizing the first part,

a number of low-energy eigenstates are kept to project the
full Hamiltonian onto the renormalized one. As opposed to
other powerful techniques, such as the density matrix renor-
malization group' (DMRG), the QRG approach is much less
complicated vyielding analytical results, although QRG does
not give as accurate numerical results as DMRG, neverthe-
less its simplicity can give a good qualitative picture of the
phase diagrarf? In this paper four interesting configurations
are in order: positive and negative valueJoffor both CBA

and SBA configurations.

A. CaselJ’'>0

a gapful and two gapless phases, while the SBA one is com- The CBA configuratiodFig. 1(a)] andJ’ >0. Let us first
posed of two gapless phases. The boundary of these phasassider the strong-coupling limitJ(>J). Since the inter-
where phase transition takes place is calculated by QRGction between two sites on each rung is strong, then each
method. By using QRG we have obtained the effectiverung can be considered as the isolated block in the first step

Hamiltonian in both strong- and weak-coupling limits of

of the QRG, i.e. HB=H, . The Hilbert space of each block

BAFL. We have also shown the structure continued in the 7—S) consists of two multiplets whose total spins are 3/2

intermediate region.

and 1/2. The corresponding energies for these two configu-

The paper is organized as follows. In Sec. I, we presentations areJ’/2 and —J'. Therefore we keep th&=1/2

the effective Hamiltonian of CBA configuration by a QRG
method. We show that the phase transition occurs inJthe

multiplet as the basis for constructing the embedding opera-
tor T to project the full Hamiltonian onto the truncated Hil-

<0 region. In Sec. Ill, we then present the SBA configura-bert space K.=THT).2® Finally, the effective Hamil-
tion of ferrimagnetic ladder and discuss the structure of theonian(in which each rung is mapped to a single sitan be

phase diagram in both positive and negativeregion. Sec-
tion 1V is devoted to conclusions.

II. COLUMNAR BOND ALTERNATION

Our model consists of mixed spins=1/2 andS=1 on a
two-leg ladder(see Fig. 1L The Hamiltonian for this system
can be divided into three part$i=H}+H5+H,, where
H'#(,u=1,2) andH, are the exchange interaction of the

obtained

N/2
Hy o= —NJI — =3 [(1+9)S(2i—1)-S'(2i)
i=1

+(1-9)8'(2i)-S'(2i+1)], 2)

whereS’' =1/2 andi is the label of the sites on a new chain
that represents thigh rung of the original ladder. Equation
(2) is the Hamiltonian of a spin-1/@bond-alternationferro-

spins inside theuth leg, and the interaction between differ- magnetic chain. It exhibits gapless excitations as well as the
ent legs, as shown in Fig. 1. The explicit form of the Hamil- ferromagnetic ground state. Equivalently, the original ladder
tonian is exhibits the ferrimagnetic ground state, in the sense that both
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S,(1) 7,2) 5,(3) T,4) S,(5) 1,(6) B. CaseJ’'<0
J J J J J J This configuration has more interesting features. Let us
J J J first consider the strong-coupling limit whetd® is con-
J J J J J structed byH, . Sinced’ is negative the low-energy multip-
(1) S.(2) 7(3) S,(4) 7,(5) S,(6) let has total spin 3/2. Thus this subspace is considered as the
(@) effective Hilbert space for the first step of the QRG. The
effective Hamiltonian M, ) can be obtained by projecting
each operator onto the effective Hilbert space

J

N/2
NJ' . .
S S T T Hyei=——+ =J >, [(1+9)S'(2i—1)-'(2i)
° s 2 94

(b) ) +(1-9)8'(2i)-S'(2i+1)], (5)

_ FIG. 2 @ Dec_:omposition of ladder in_to four-sites blpcks inthe \whereS’ is a spin 3/2. Hamiltoniafs) is a one-dimensional
intermediate regionX~J'), (b) three spin-1 and a spin-1/2¢)  peisenberg spin-3/2 antiferromagnet with alternating bonds.
three spin-1/2 and a spin-1. It is known' that this model is gapful whes> y. and gap-
less otherwise. Although the one-, two-, and three-
magnetization ih=(7)+(S)=0.5) and the staggered one dimensional ferrimagnets show gapless behavior, the combi-
(sm=(S)—(7)="5/6) are nonzero with a gapless excitation. nations of the spin mixing and bond alternations yield the
Now, let us consider the weak-coupling limil’(<J). In  possibility for developing of an energy gap. This can be
this case the stronger bonds, e.d(1+ y), appear on the compared to the spin-1/2 CBA Heisenberg ladtfevehere
legs. They are considered as the isolated blocks. The othéfie model is gapful in the whole range of parameter space
bonds(the weaker ongsare considered ad®®. The QRG  (J,J’,y) except on a critical line, in the region whedé is
procedure leads to the Heisenbeigpin-1/2 ferromagnet negative. In the next step of QR@, « Will be projected to
ladder. In this regime the spectrum of the system is similar t@ spin-1/2 XXZ model in the presence of an external mag-
the strong-coupling limit. netic field (). It is knowrf* that XXZ+h model has the
For the intermediate region whedé=J, the two types of  cyitical line h,=A+1, whereA is the anisotropy in th
blocking that have been considered in the strong- and weaksirection?? If h>h, (h<h,) the model is gapfulgapless

coupling Iimits seems to.be not suitable. In'this regard Weynd the value of gap is proportional to the strength of mag-
have considered a four-sites block that consists of both rungetic field. We find thaty.= 3/7(=0.428) for our model that

and leg interactionfFig. 2&)]. Decomposition of the ladder g cjose to the DMRG results{0.42) for spin-3/2 dimerized

to four-sites blocks leads to two types of building blocks, ;hain? Therefore in the ferromagnetic regiod’&0) and
which are shown in Fig. ®) and Fig. Zc). The lowest-  gyong coupling (3’| J) there is a critical value fop below
energy multiplet of the Hamiltonian in Fig.(® has total which (y< y.) the BAFL is gapless and its ground state has
spin S=5/2 and the corresponding one in FigcRhast'  quasi-long-range ordefquasi-LRQ where bothm and sm
=1/2. The embedding operator is constructed from these tw@re zero and correlations decay algebraically. This is equiva-
multiplets and finally the effective HamiltonianH¢t  lent to the uniform one-dimensional spin-3/2 antiferromag-

=THT) is a(1/2,5/2 ferrimagnetic chain. nets. Fory>y. the model is gapful.
In the weak-coupling limit|J’| <J), the strongest bonds,
9 N/4 e.g.,J(1+ v), of the ladder are considered as building blocks
Hiag= — NI+ =33 [7(2i—1)- &2i) of QRG, and the remaining bonds are treatecH&S. The
8 63 =1 effective Hamiltonian in this case is
+&2i). 7 (2i+1)]. 3) gl N2
Haer=—g— 2 Si(1)-$,(1)

In the next step of QRG procedure the Hamiltonian in Eq.

~ N/2
(3) is projected to &= 2 ferromagnetic Heisenberg cha, 4J(1-vy) 2 2
proJ 9 9 -5 2 3 SU0-S(i+1. ©
= e |

N/4
H ﬁ(§= 2)=— ﬂlNJ_ —OJE §(i)'§(i+1). (4) Here S'=1/2 and we have neglected a constant term. The
€ 72 81 = effective Hamiltonian M3 ¢) is a “double-layer” model of
spin-1/2. Neglecting the intersite terrffer a momeny, each

Thus the magnetizatioim) and staggered magnetization couple of sites hf;‘ss a multiplet of §tate_s with total angular
(sm) of the original ladder in the intermediate regime are:Momentuml =01 where each pair of interlayer spins on
m=0.2292; sm=0.4514, which shows ferrimagnetic order. the two layers behaves like a single-quantum rotor wiere
We therefore find the different regimes have similar structure=S;+S, and n=(S;—S,)/2S. Considering the intralayer
(the ferrimagnetic ground state with the gapless excitationsterms, one may map the Hamiltoniai®) to that one-
as long asl)’ is positive. dimensional quantum rotor mod&l,
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g N I N
Haerm5 > LZ—KX, (i-Nipa+Li-Livy), (D)
2 =1 =1 gapful(VBS)

no-LRO

gay

less

where g=16J'|/9 and K=4J(1—1v)/9. The mean-field
phase diagram of this model is governed by the gapped gapless(QAF)
guantum paramagnet when—1 and the partially polarized quasi-LRO

ferrimag

Y

C

retic order

ferromagnet whery— 0. The dominant term of the first limit
is the antiferromagnetic exchange term along the rungs tha(@)
makes singlets as the base structure for ground state of th
renormalized ladder. Thus the ground state is unique and ha

0 1 i

a finite-energy gap to the first excited state. This gapful
phase occurs in the region whed|/J>1— vy, which is the
continuation of the gapful phase in the strong-coupling limit.
Thus we have no LRO in the ground state of the original
ladder and finite gap in this region. For the latter limit, there
is a competition between the ferromagnetic term and the an-

gapless(QAF)
quasi-LRO

less

nagnetic
fler

tiferromagnetic term in Eq6). Note that the dominant term b) -1 0 1
in Hj o is the ferromagnetic interaction along the legs. Then

the ground state is composed of two ferromagnetic ordered FIG. 3. Phase digram of a bond-alternation ferrimagnetic two-
chains that are aligned oppositely due to antiferromagnetiteg ladder.(a) Columnar bond alternatiofCBA), (b) staggered
interaction (8J'|/9). But this classical antiferromagnetic bond alternation(SBA), solid line is the critical line between gap-

alignment fluctuates along tizeaxis and the magnetization is less and gapful phases and the dashed one shows the critical line
. ; between two gapless phases.
reduced along this direction.
In the intermediate regiofwhere|J’|=J), the ladder is
decomposed to four-sites plaquettesyif~1. Note thatS,
=0 is the unique ground state of any four-site plaquette at

2J=-J'=1 (one may see this after diagonalizing the  The SBA configuration is shown in Fig(H). In this re-

Hamiltonian. But every plaquette is on tf®=0 state, since gjon the effective Hamiltonian shows ferromagnetic behav-

the ladder is disconnected. This ground state is not degeneior [similar to the CBA ('>0) configuration] and the lad-

ate and disordefwith no LRO) and there is a finite-energy der behaves like the gapless ferrimagnets. As an example, we

gap to the first excited state. In other words the whole gapfuinay apply the “snake mechanism” of Ref. 14: choosing

phase of the ladder is in the VBS phase. =1 andJ’ =2J the ladder degenerates into a uniform alter-
On the other extreme case, whens negligible, the gap- nating spin-1/2- 1 ferrimagnetic chain that has gapless exci-

less phase behaves differently in the long-wavelength limittations. More precisely the effective Hamiltoniald { ) in

Let us first supposgl’|>J. In this case, each rung behaves the strong-coupling limitJ'>J) is

as a spin 3/2after the first step of the QRGsince the spins

on the same rung are coupled by the ferromagnetic interac-

tion (J'<0). Hence the whole ladder is identified by a

Heisenberg spin-3/2 antiferromagntic chain. The ground

state is gapless with quasi-LRO, and the correlation func- . o

tions falls off algebraically(the correlation lengtlg is infi- whereS'=1/2 and the block Hamiltonian for QRG proce-

nite). But if |3'|<J the ladder can be considered as tWodure is considered to bel,. In the weak-coupling limit

guantum ferrimagnetic chains that interact via weak ferro—(‘] <J) where the strongest bonds al€l+ ), the QRG

. . . . procedure leads to a strip of triangular lattice as the effective
magneFlc coupling(through the!r rungs 'The correlation Hamiltonian Heg o),
length is small and the correlation functions falls off expo-
nentially. One may naturally expect that|dt|~J a phase SN
transition is observed between two gapless phases. One 4 S 2y
phase is the half-integer quantum antiferromagrietsen s ef= ~NJ(1+y)—3gJ(1- V)MEZI ;1 (1) S, (1+1)
[J']>J) with é&= and quasi-LRO and another phase is the
ferrimagnetic phasévhen|J’|<J) with é~a (a is the lat-
tice spacing The order parameter to specify this phase tran-
sition ism=|m; —m,|, wherem; (, is the magnetization per

site of the 1st(2nd) leg of ladder.m is zero where {'/J)  The effective HamiltoniansH, o,Hs o) are aS=1/2 fer-
<—1 andm=0.5 for (3’/J)>—1. The total magnetization romagnetic Heisenberg model. Thus in both of these cases
(m) and staggered onesfn) are zero on both side of this the model has gapless excitations. Since botandsm are
critical line. This completes the phase diagram of the CBAnot zero, we have ferrimagnetic order in the whole part of the
configuration. It is depicted in Fig.(8). (J'>0) region.

A

I1l. STAGGERED BOND ALTERNATION
A. Casel’'>0

M =z

Hyer= —NJ' — =3, S'(i)-S/'(i+1), (8)

©| ©

=1

4 N
—5¥' 2 [Si)- S+ 8-S+ D] (9
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B. CaseJ'<0 In the CBA configuration, Fig. (B), there exists a gapful

In this region and at the strong-coupling limit)(|>J) (VBS) phase that. Fs se.parated from two diffgrgnt gapless
the ladder is mapped to a uniform Heisenberg spin-3/2 antiPhases by the critical lines. The phase transition between
ferromagnetic chain, where the alternation parameter disag@pless phases takes place whiAJ~—1. For the SBA
pears at the first step of the QRG. Thus the whole range ofonfiguration, Fig. ), the whole phase diagram is gapless.
y(€[0,1]) is gapless and disordered. The system exhibit§ne phase contains the ferrimagnetic behavior and another
quasi-LRO with ¢=c. But when |J'|<J, the effective one is equivalent to the Heisenberg spin-1/2 antiferromag-
Hamiltonian is equivalent to two one-dimensional spin-1/2netic chains. In the latter region, the correlation function falls
ferromagnetic Heisenberg chains. These two chains interadff algebraically. The transition between these two gapless
by an antiferromagnetic coupling on a triangular ladder agphases takes place whétvJ~(y—1).
shown in Fig. 1c). At y=1 the ladder transforms to a one-  Although the(1/2, 1) ferrimagnetic system is considered
dimensional spin-1/2 antiferromagnetic chain that is gaplesas a generic model for allg;,S,) systems, we have found
with quasi-LRO. But aty=0 (where the CBA is equivalent that this is no longer true in ladders if one considers the
to SBA) the ladder is equivalent to two ferromagnetic chainspond-alternation effects, where both spin mixing and bond
that are coupled antiferromagnetically. It represents a ferriajternation may change the quantum phases. The dependence
magnetic phase wherg~a. As we have illustrated above, on ifferent spins and the number of legs should be consid-
the competition between the coupling constants in Fig) 1 greq in future investigations.
leads to one of the above extreme cases. In other words, if
|[J'|/3>1—1y the system is equivalent to the Heisenberg
spin-1/2 antiferromagnetic chains. For another opposite
limit, the system is equivalent to the Heisenberg ferrimag-

netic chains. The dashed line in FigbRthat separates these . . . .
two phases represents the critical line. We would like to thank H. Hamidian, Hsiu-Hau Lin, and

G. Sierra for helpful discussions and useful comments. M.A.
acknowledges support from EPS-9720651 and a grant from
IV. CONCLUSION . .
the Oklahoma State Regents for Higher Education.
In summary, we have obtained the phase digratJ, y) M.A.M.-D. is supported by the DGES Spanish Grant No.
of a two-leg bond-alternatingl/2, 1) ferrimagnetic ladder. PB97-1190.
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