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Phase diagram of ferrimagnetic ladders with bond alternation
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We study the phase diagram of a two-leg bond-alternation spin-~1/2, 1! ladder for two different configura-
tions using a quantum renormalization-group approach. Althoughd-dimensional ferrimagnets show gapless
behavior, we will explicitly show that the effect of the spin mixing and the bond alternation can open the
possibility for observing an energy gap. We show that the gapless phases of such systems can be equivalent to
the one-dimensional half-integer antiferromagnets, besides the gapless ferrimagnetic phases. We therefore
propose a phase transition between these two gapless phases that can be seen in the parameter space.
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I. INTRODUCTION

Since the seminal work of Haldane1 quantum spin chains
have been extensively studied as one of the simplest
most typical quantum many-body systems. According
Haldane, the one-dimensional integer-spin Heisenberg a
ferromagnets have a unique disordered ground state w
finite excitation gap, while half-integer antiferromagnets a
gapless and critical~see Ref. 2 and references therein!. The
origin of the difference between half-integer and integer s
chains can be traced back to the topological ‘‘u ’’ term in the
effective nonlinears-model description of antiferromagnet
spin chains and is believed to be due to nonperturbative
fects. Haldane’s original predictions were based on lar
spin arguments and although a general rigorous proof is
lacking, several theoretical developments have helped
clarify the situation and there is now strong experimental a
numerical evidence in support of Haldane’s claim.2–4 The
massive phase of the integer spin chains, called Hald
phase, has been understood as valence-bond-solid~VBS!
states proposed by Afflecket al.,5 wherein each spinS is
viewed as a symmetrized product of 2S spinors. However
bond alternation may drastically change the low-energy
havior of these systems and produce phase transitions.
instance a bond-alternation spin-1/2 antiferromagnet ch
has a finite-energy gap as opposed to its unifo
counterpart.6,7 It has been also shown that the phase diagr
of the S51 chain decomposes into different phases by a
ing bond alternation.8

Yet another challenge in this area has led to synthesiz
quasi-one-dimensional bimetallic molecular magnets. T
search for molecular ferromagnet has led to the discover
many interesting molecular magnetic systems. In rec
years, quasi-one-dimensional bimetallic molecular magn
with each unit cell containing two spins of different sp
value have been synthesized.9 These systems contain tw
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transition-metal ions per unit cell and have the general f
mula ACu(pbaOH)(H2O)3.2H2O with pbaOH
52-hydroxo-propylenebis~oxamato! and A5Mn, Fe, Co,
Ni. They have been characterized as the alternating~mixed!
spin chains or ferrimagnets.10 It has been shown that one
dimensional ferrimagnets have two types of excitations
their low-lying spectrum. The lowest one has gapless exc
tions, i.e., they behave like ferromagnets with quadratic d
persion relation. The other one, which is separated by
excitation gap from the primer one, has antiferromagne
behavior with linear dispersion relation.11 More precisely,
the effective Hamiltonian for the lowest spectrum of a on
dimensional Heisenberg ferrimagnet is a one-dimensio
Heisenberg ferromagnet withS5uS12S2u.12 A spin-wave
study also shows the similar behavior is seen in two a
three dimensions.12

Another surprising investigation deals with spin ladde
that have recently attracted a considerable amount
attention.13 They consist of coupled one-dimensional cha
and may be regarded as interpolating truly one- and tw
dimensional systems. These models are useful to study
properties of the high-Tc superconductor materials. Theore
ical studies have suggested that there are two different
versality classes for the uniform-spin ladders, i.e., the a
ferromagnetic spin-1/2 ladders are gapful or gaple
depending on whethernl ~the number of legs! is even or
odd.13 These predictions have been confirmed experim
tally by compounds like SrCu2O3 and Sr2Cu3O5. However,
again bond alternation changes this universality. It has b
shown that a gapless line that depends on the stagg
bond-alternation~SBA! parameterg, divides the gapful
phase of a two-leg antiferromagnetic spin-1/2 ladder into t
different phases.14,15 Moreover, there are some other co
figurations, like the columnar bond alternation~CBA! @see
Fig. 1~a!# that introduces new phases for the antiferroma
netic ladders.16,27 The appearance of the magnetization p
343 ©2000 The American Physical Society
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teaus for both chains17 and ladders18 and the appearance o
the new phases for spin ladders,19 are also some of the con
sequences of the bond alternations.

In this paper, we study thebond-alternation ferrimagnetic
ladders~BAFL!. This model contains a rich phase diagra
By making use of a quantum renormalization~QRG!
group,20 we demonstrate that the combination of both s
mixing and bond alternation may open the possibility of o
serving the energy ‘‘gap’’ in the ground state of these s
tems. We obtain the phase diagram of BAFL in both SB
and CBA configurations. The CBA configuration consists
a gapful and two gapless phases, while the SBA one is c
posed of two gapless phases. The boundary of these ph
where phase transition takes place is calculated by Q
method. By using QRG we have obtained the effect
Hamiltonian in both strong- and weak-coupling limits
BAFL. We have also shown the structure continued in
intermediate region.

The paper is organized as follows. In Sec. II, we pres
the effective Hamiltonian of CBA configuration by a QR
method. We show that the phase transition occurs in theJ8
,0 region. In Sec. III, we then present the SBA configu
tion of ferrimagnetic ladder and discuss the structure of
phase diagram in both positive and negativeJ8 region. Sec-
tion IV is devoted to conclusions.

II. COLUMNAR BOND ALTERNATION

Our model consists of mixed spinst51/2 andS51 on a
two-leg ladder~see Fig. 1!. The Hamiltonian for this system
can be divided into three parts:H5H1

l 1H2
l 1Hr , where

Hm
l (m51,2) and Hr are the exchange interaction of th

spins inside themth leg, and the interaction between diffe
ent legs, as shown in Fig. 1. The explicit form of the Ham
tonian is

FIG. 1. The ladder realizationt51/2 andS51. ~a! Columnar
bond alternation~CBA!, ~b! staggered bond alternation~SBA!, ~c!
schematic illustration of effective Hamiltonian in SBA configur
tion at uJ8u!J, whereS851/2.
.
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H1
l 5J(

i 51

N/2

@~11g!tW1~2i 21!•SW 1~2i !

1~12g!SW 1~2i !•tW1~2i 11!#

H2
l 5J(

i 51

N/2

@~11g!SW 2~2i 21!•tW2~2i !

1~12g!tW2~2i !•SW 2~2i 11!#

Hr5J8(
i 51

N/2

@tW1~2i 21!•SW 2~2i 21!1SW 1~2i !•tW2~2i !#.

~1!

The ladder containsN rungs and by assuming the period
boundary condition for each leg, we identify the first rung
theN11th rung. Throughout this paper we assumeJ is posi-
tive but J8 can be positive or negative as a tunable para
eter. Note that for the bond-alternation parameter,g→2g
amounts to sublattice exchangen→n11, and therefore we
consider 0<g<1.

By QRG, we divide the Hamiltonian into intrablock (HB)
and interblock (HBB) parts. After diagonalizing the first par
a number of low-energy eigenstates are kept to project
full Hamiltonian onto the renormalized one. As opposed
other powerful techniques, such as the density matrix ren
malization group21 ~DMRG!, the QRG approach is much les
complicated yielding analytical results, although QRG do
not give as accurate numerical results as DMRG, never
less its simplicity can give a good qualitative picture of t
phase diagram.22 In this paper four interesting configuration
are in order: positive and negative value ofJ8 for both CBA
and SBA configurations.

A. CaseJ8>0

The CBA configuration@Fig. 1~a!# andJ8.0. Let us first
consider the strong-coupling limit (J8@J). Since the inter-
action between two sites on each rung is strong, then e
rung can be considered as the isolated block in the first
of the QRG, i.e.,HB5Hr . The Hilbert space of each bloc
(t2S) consists of two multiplets whose total spins are 3
and 1/2. The corresponding energies for these two confi
rations areJ8/2 and 2J8. Therefore we keep theS51/2
multiplet as the basis for constructing the embedding ope
tor T to project the full Hamiltonian onto the truncated Hi
bert space (Heff5T†HT).23 Finally, the effective Hamil-
tonian~in which each rung is mapped to a single site! can be
obtained

H1 eff52NJ82
8

9
J(

i 51

N/2

@~11g!SW 8~2i 21!•SW 8~2i !

1~12g!SW 8~2i !•SW 8~2i 11!#, ~2!

whereS851/2 andi is the label of the sites on a new cha
that represents thei th rung of the original ladder. Equatio
~2! is the Hamiltonian of a spin-1/2~bond-alternation! ferro-
magnetic chain. It exhibits gapless excitations as well as
ferromagnetic ground state. Equivalently, the original lad
exhibits the ferrimagnetic ground state, in the sense that b
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magnetization (m5^t&1^S&50.5) and the staggered on
(sm5^S&2^t&55/6) are nonzero with a gapless excitatio

Now, let us consider the weak-coupling limit (J8!J). In
this case the stronger bonds, e.g.,J(11g), appear on the
legs. They are considered as the isolated blocks. The o
bonds~the weaker ones! are considered asHBB. The QRG
procedure leads to the Heisenberg~spin-1/2! ferromagnet
ladder. In this regime the spectrum of the system is simila
the strong-coupling limit.

For the intermediate region whereJ8.J, the two types of
blocking that have been considered in the strong- and we
coupling limits seems to be not suitable. In this regard
have considered a four-sites block that consists of both r
and leg interactions@Fig. 2~a!#. Decomposition of the ladde
to four-sites blocks leads to two types of building block
which are shown in Fig. 2~b! and Fig. 2~c!. The lowest-
energy multiplet of the Hamiltonian in Fig. 2~b! has total
spin Ŝ55/2 and the corresponding one in Fig. 2~c! hast8
51/2. The embedding operator is constructed from these
multiplets and finally the effective Hamiltonian (Heff
5T†HT) is a ~1/2,5/2! ferrimagnetic chain.

Hi -eff52
9

8
NJ1

40

63
J(

i 51

N/4

@tW8~2i 21!•ŜW ~2i !

1ŜW ~2i !•tW8~2i 11!#. ~3!

In the next step of QRG procedure the Hamiltonian in E
~3! is projected to aS̃52 ferromagnetic Heisenberg chain,12

Heff~S̃52!52
101

72
NJ2

10

81
J(

i 51

N/4

S̃W ~ i !•S̃W ~ i 11!. ~4!

Thus the magnetization~m! and staggered magnetizatio
(sm) of the original ladder in the intermediate regime a
m.0.2292; sm.0.4514, which shows ferrimagnetic orde
We therefore find the different regimes have similar struct
~the ferrimagnetic ground state with the gapless excitatio!
as long asJ8 is positive.

FIG. 2. ~a! Decomposition of ladder into four-sites blocks in th
intermediate region (J;J8), ~b! three spin-1 and a spin-1/2;~c!
three spin-1/2 and a spin-1.
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B. CaseJ8<0

This configuration has more interesting features. Let
first consider the strong-coupling limit whereHB is con-
structed byHr . SinceJ8 is negative the low-energy multip
let has total spin 3/2. Thus this subspace is considered a
effective Hilbert space for the first step of the QRG. T
effective Hamiltonian (H2 eff) can be obtained by projectin
each operator onto the effective Hilbert space

H2 eff5
NJ8

2
1

4

9
J(

i 51

N/2

@~11g!SW 9~2i 21!•SW 9~2i !

1~12g!SW 9~2i !•SW 9~2i 11!#, ~5!

whereS9 is a spin 3/2. Hamiltonian~5! is a one-dimensiona
Heisenberg spin-3/2 antiferromagnet with alternating bon
It is known7 that this model is gapful wheng.gc and gap-
less otherwise. Although the one-, two-, and thre
dimensional ferrimagnets show gapless behavior, the com
nations of the spin mixing and bond alternations yield t
possibility for developing of an energy gap. This can
compared to the spin-1/2 CBA Heisenberg ladders16 where
the model is gapful in the whole range of parameter sp
(J,J8,g) except on a critical line, in the region whereJ8 is
negative. In the next step of QRG,H2 eff will be projected to
a spin-1/2 XXZ model in the presence of an external m
netic field (h). It is known24 that XXZ1h model has the
critical line hc5D11, whereD is the anisotropy in theẑ
direction.22 If h.hc (h,hc) the model is gapful~gapless!
and the value of gap is proportional to the strength of m
netic field. We find thatgc53/7(.0.428) for our model that
is close to the DMRG results (.0.42) for spin-3/2 dimerized
chain.7 Therefore in the ferromagnetic region (J8,0) and
strong coupling (uJ8u@J) there is a critical value forg below
which (g,gc) the BAFL is gapless and its ground state h
quasi-long-range order~quasi-LRO! where bothm and sm
are zero and correlations decay algebraically. This is equ
lent to the uniform one-dimensional spin-3/2 antiferroma
nets. Forg.gc the model is gapful.

In the weak-coupling limit (uJ8u!J), the strongest bonds
e.g.,J(11g), of the ladder are considered as building bloc
of QRG, and the remaining bonds are treated asHBB. The
effective Hamiltonian in this case is

H3 eff5
8uJ8u

9 (
i 51

N/2

SW 18~ i !•SW 28~ i !

2
4J~12g!

9 (
i 51

N/2

(
m51,2

SW m8 ~ i !•SW m8 ~ i 11!. ~6!

Here S851/2 and we have neglected a constant term. T
effective Hamiltonian (H3 eff) is a ‘‘double-layer’’ model of
spin-1/2. Neglecting the intersite terms~for a moment!, each
couple of sites has a multiplet of states with total angu
momentuml 50,1,25 where each pair of interlayer spins o
the two layers behaves like a single-quantum rotor wherLW

5SW 11SW 2 and nW 5(SW 12SW 2)/2S. Considering the intralaye
terms, one may map the Hamiltonian~6! to that one-
dimensional quantum rotor model,26
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H3 eff5
g

2 (
i 51

N/2

LW i
22K(

i 51

N/2

~nW i•nW i 111LW i•LW i 11!, ~7!

where g[16uJ8u/9 and K54J(12g)/9. The mean-field
phase diagram of this model is governed by the gap
quantum paramagnet wheng→1 and the partially polarized
ferromagnet wheng→0. The dominant term of the first limi
is the antiferromagnetic exchange term along the rungs
makes singlets as the base structure for ground state o
renormalized ladder. Thus the ground state is unique and
a finite-energy gap to the first excited state. This gap
phase occurs in the region whereuJ8u/J@12g, which is the
continuation of the gapful phase in the strong-coupling lim
Thus we have no LRO in the ground state of the origi
ladder and finite gap in this region. For the latter limit, the
is a competition between the ferromagnetic term and the
tiferromagnetic term in Eq.~6!. Note that the dominant term
in H3 eff is the ferromagnetic interaction along the legs. Th
the ground state is composed of two ferromagnetic orde
chains that are aligned oppositely due to antiferromagn
interaction (8uJ8u/9). But this classical antiferromagnet

alignment fluctuates along theẑ axis and the magnetization i
reduced along this direction.

In the intermediate region~where uJ8u.J), the ladder is
decomposed to four-sites plaquettes ifg→1. Note thatSz

50 is the unique ground state of any four-site plaquette
2J52J851 ~one may see this after diagonalizing th
Hamiltonian!. But every plaquette is on theSz50 state, since
the ladder is disconnected. This ground state is not dege
ate and disorder~with no LRO! and there is a finite-energ
gap to the first excited state. In other words the whole gap
phase of the ladder is in the VBS phase.

On the other extreme case, wheng is negligible, the gap-
less phase behaves differently in the long-wavelength lim
Let us first supposeuJ8u.J. In this case, each rung behav
as a spin 3/2~after the first step of the QRG!, since the spins
on the same rung are coupled by the ferromagnetic inte
tion (J8,0). Hence the whole ladder is identified by
Heisenberg spin-3/2 antiferromagntic chain. The grou
state is gapless with quasi-LRO, and the correlation fu
tions falls off algebraically~the correlation lengthj is infi-
nite!. But if uJ8u,J the ladder can be considered as tw
quantum ferrimagnetic chains that interact via weak fer
magnetic coupling~through their rungs!. The correlation
length is small and the correlation functions falls off exp
nentially. One may naturally expect that atuJ8u;J a phase
transition is observed between two gapless phases.
phase is the half-integer quantum antiferromagnets~when
uJ8u@J) with j5` and quasi-LRO and another phase is t
ferrimagnetic phase~when uJ8u!J) with j;a (a is the lat-
tice spacing!. The order parameter to specify this phase tr
sition is m̃5um12m2u, wherem1(2) is the magnetization pe
site of the 1st~2nd! leg of ladder.m̃ is zero where (J8/J)
,21 andm̃50.5 for (J8/J).21. The total magnetization
~m! and staggered one (sm) are zero on both side of thi
critical line. This completes the phase diagram of the C
configuration. It is depicted in Fig. 3~a!.
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III. STAGGERED BOND ALTERNATION

A. CaseJ8>0

The SBA configuration is shown in Fig. 1~b!. In this re-
gion the effective Hamiltonian shows ferromagnetic beh
ior @similar to the CBA (J8.0) configuration# and the lad-
der behaves like the gapless ferrimagnets. As an example
may apply the ‘‘snake mechanism’’ of Ref. 14: choosingg
51 andJ852J the ladder degenerates into a uniform alte
nating spin-1/221 ferrimagnetic chain that has gapless ex
tations. More precisely the effective Hamiltonian (H4 eff) in
the strong-coupling limit (J8@J) is

H4 eff52NJ82
8

9
J(

i 51

N

SW 8~ i !•SW 8~ i 11!, ~8!

whereS851/2 and the block Hamiltonian for QRG proce
dure is considered to beHr . In the weak-coupling limit
(J8!J) where the strongest bonds areJ(11g), the QRG
procedure leads to a strip of triangular lattice as the effec
Hamiltonian (H5 eff),

H5 eff52NJ~11g!2
4

9
J~12g! (

m51

2

(
i 51

N

SW m8 ~ i !•SW m8 ~ i 11!

2
4

9
J8(

i 51

N

@SW 18~ i !•SW 28~ i !1SW 28~ i !•SW 18~ i 11!#. ~9!

The effective Hamiltonians (H4 eff ,H5 eff) are aS51/2 fer-
romagnetic Heisenberg model. Thus in both of these ca
the model has gapless excitations. Since bothm andsm are
not zero, we have ferrimagnetic order in the whole part of
(J8.0) region.

FIG. 3. Phase digram of a bond-alternation ferrimagnetic tw
leg ladder.~a! Columnar bond alternation~CBA!, ~b! staggered
bond alternation~SBA!, solid line is the critical line between gap
less and gapful phases and the dashed one shows the critica
between two gapless phases.
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In this region and at the strong-coupling limit (uJ8u@J)
the ladder is mapped to a uniform Heisenberg spin-3/2 a
ferromagnetic chain, where the alternation parameter dis
pears at the first step of the QRG. Thus the whole rang
g(P@0,1#) is gapless and disordered. The system exhi
quasi-LRO with j5`. But when uJ8u!J, the effective
Hamiltonian is equivalent to two one-dimensional spin-1
ferromagnetic Heisenberg chains. These two chains inte
by an antiferromagnetic coupling on a triangular ladder
shown in Fig. 1~c!. At g51 the ladder transforms to a one
dimensional spin-1/2 antiferromagnetic chain that is gap
with quasi-LRO. But atg50 ~where the CBA is equivalen
to SBA! the ladder is equivalent to two ferromagnetic cha
that are coupled antiferromagnetically. It represents a fe
magnetic phase wherej;a. As we have illustrated above
the competition between the coupling constants in Fig. 1~c!
leads to one of the above extreme cases. In other word
uJ8u/J.12g the system is equivalent to the Heisenbe
spin-1/2 antiferromagnetic chains. For another oppo
limit, the system is equivalent to the Heisenberg ferrima
netic chains. The dashed line in Fig. 2~b! that separates thes
two phases represents the critical line.

IV. CONCLUSION

In summary, we have obtained the phase digram (J8/J,g)
of a two-leg bond-alternating~1/2, 1! ferrimagnetic ladder.
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In the CBA configuration, Fig. 1~a!, there exists a gapfu
~VBS! phase that is separated from two different gapl
phases by the critical lines. The phase transition betw
gapless phases takes place whenJ8/J;21. For the SBA
configuration, Fig. 1~b!, the whole phase diagram is gaples
One phase contains the ferrimagnetic behavior and ano
one is equivalent to the Heisenberg spin-1/2 antiferrom
netic chains. In the latter region, the correlation function fa
off algebraically. The transition between these two gapl
phases takes place whenJ8/J;(g21).

Although the~1/2, 1! ferrimagnetic system is considere
as a generic model for all (S1 ,S2) systems, we have found
that this is no longer true in ladders if one considers
bond-alternation effects, where both spin mixing and bo
alternation may change the quantum phases. The depend
on different spins and the number of legs should be con
ered in future investigations.
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