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Mean-field phase diagram for cubic-based praseodymium compounds
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(Received 10 September 1999

Calculating theexactmean-field free energy from a Heisenberg-like Hamiltonian we determine the magnetic
phase diagram for cubic-based praseodymium compounds with @oublet ground state andlg, triplet
first-excited state. We find lines of first- and second-order phase transitions, separated by a tricritical point. We
also calculate the temperature dependence of the magnetic-order parameter.

[. INTRODUCTION The paper is structured as follows. Section Il presents our
model and the mean-field approximation upon which we

The increasing development of neutron-scattering techbase its analysis. Section Ill then determines the temperature
niques and the advances in chemical separation methodiependence of the order parameter and the stability of the
have honed important tools in the field of rare-eaf®E) resulting solutions is analyzed. Section IV recapitulates our
magnetism. Particular attention has been given to the inteiconclusions.
metallic RE systems, in which conduction electrons hybrid-
ize with incompletef shells'? and among these to the cases Il. MODEL
in which the hybridization is small compared with thkevel

energye; , measured from the Fermi level. In such cases, a Our model combines a crystalline electric field with an

RE ion maintains its atomic character, in spite of the perturiNt€rsite_coupling between the Hund's rule magnetic mo-

bations due to the crystalline-electric fiel€CEF of the MeNts. The cubic symmetry of the former defines our unper-
neighboring ions. The totdHund’s rule angular momentum  turbed Hamiltoniar?

j is then conserved, although the CEF break th@-H2)

degeneracy of the ground state. The energy separation be-  Hcge= >, {BJ(0J+50%) +B2(02-2108)};, (1)
tween the CEF levels, of the order of 1 meV, can be probed !

by inelastic neutron scattering. whereB? andB! are crystal-field parameters and B8 are

The history of the observsation of crystal-field effects in {he stevens operator equivaléfitevaluated at the site as

cubic praseodymium is lorig®. Inelastic neutron-scattering indicated by the index of the curly bracket.

experiments show that the ground state is a nonmagnetic The coupling between magnetic moments is mediated by
doublet ofI'; symmetry and reveal an excitdd, triplet as  he conduction electrons, an instance of the Ruderman-
part of thej =4 multiplet®~> At low temperatures one might Kittel-Kasuya-Yosida mechanisi,and can hence be repre-

thus expect no magnetic ordering. PsAlevertheless under- sented by a Heisenberg exchange Hamiltohtan
goes a transition from a paramagnetic phase to a ferromag-

netic one as the temperature is reduced below 34akear

indication that the Hund'’s rule magnetic moments interact. Hex:_‘]e><<i2j> M;-Mj, @
Other cubic-symmetry Praseodymium compounds also have '
ferromagnetic ground states. whereM; is the magnetic moment operator at siteVe treat

Both the CEF and the ion-ion magnetic interaction areH,, as a perturbation that, added to the CEF term, defines
therefore, important ingredients of the low-temperature physeur model HamiltoniarH = Hcgp+ Hey.
ics of such compounds. This paper analyzes a simple model The unperturbed Hamiltonian is easily diagonalized. The
giving attention to the competition between the nonmagnetieubic symmetry of the CEF breaks the degeneracy ofj the
character of thd’; ground state and the intersite magnetic =4 total angular momentum manifold into four irreducible
coupling. We find a rich mean-field phase diagram displayrepresentations: thE, singlet, thel's doublet, and thd,
ing first- and second-order phase-transition lines, separateshdI's triplets. Since each representation appears only once
by a tricritical point. This feature was found in hexagonalin this list>'3the eigenvectors dfi . cannot depend on the
compounds by Libero and CdMore recently, Ranket al? coefficientsB] or BY. We can therefore set either one equal

reported a tricritical point in a cubic compound. This analy-to zero to obtain theth eigenvector of therth irreducible
sis, however, is based on a Landau expansion and hence Or‘rb,(presentatioml“ B)-g
ap)-

qualitatively valid in the first-order transition. Our work, by

contrast, deals with the full expression for the free energy 5 7

and is uniformly accurate in the entire phase diagram. Leav- IT3p=— \/1:2|0>+ \/;(|4>+|—4>), 3
ing aside PrMg, a compound dominated by quadrupolar in-

tersite interactions for which the model is inappropriate, we 1

are able to predict the order of the phase transition of experi- IT50=—=(]2)+|-2)),
mentally studied cubic symmetry Pr systems. ’ J2
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1
|F4,]>=ﬁ<|3>+ﬁ|—1>),

1
|F4,»=ﬁ<|—3>+ﬁ|1>),

1
|F4,3>=E(|4>—|—4>),

0= \/122|o>+ \/g<|4>+|—4>),

1

Ts)= @<ﬁ|3>—|—1>),
[s)= ! J7|-3)—1
| 5,2>—ﬁ( |=3)—11)),

|r5,3>=%<|2>—|—2>>.

The experimental data for PrAbuggest that th&'; dou-
blet be the ground stafe"? At low temperatures, it suffices
to keep only the first excited state, tfig triplet>'? with
energyA =27.4 K. Inclusion of the next state, thg singlet
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On the basis of the vectof¥ , z), defined in Eq(3), the
diagonalization oH is straightforward. The following eigen-
vectors|E,) and eigenvalue&, (expressed in units of)
result:

Eq=A+bBX,
IEo>=[IF3,1>+XIF4,3>]/W,
E=A,
|E1)=[T32),
E,=A+1+B/2,
|E2>:|F4,2>,
E,=A+1-B/2,
|E3)=[T4),
E,=A—-bBX,

|E4)=[X|T3)— T4/ V1+x7, (6)

whereb=2./7/3. With the shorthandsi=M/(gug) and 7
=4802(gump)?Jex/ A, the constantd, B, andC are given by

A= ym?/(4b?) 7)

and

at 65.8 K, changes the order parameter at 30K by less than

0.5%22 Also for PrRy and PrRh it is sufficient to keep only
the ground and first-excited statésin this approximation,

B=— »m/(2b?),

®

since the eigenvectors do not depend on the crystal-field pavhile C=1+4(bB)? and the mixing coefficient is given

rameterng and B2, only the energyA distinguishes &
=4 compound from the other two.

A. Mean-field Hamiltonian

Even with all states above enerdy neglected, the ex-
change interactioil ., makes it very difficult to diagonalize
the HamiltonianH. Previous work$*'?have shown that the

mean-field approximation describes well the temperature de-

D

pendence of the magnetic order parameter, specific heat, a
resistivity. To implement this approximation, at the Hamil-
tonian level, we first rewrite the magnetizations on the right-
hand side of Eq(2) as sums of their mean values and devia-
tions:

Howm —Jox>, (M+AM)-(M+AN),  (4)

(.0
whereAM,=M;— M.
We next neglect the second-order teA;- AM; on the
right-hand side to obtain the single-particle Hamiltonian

by
x=(1-C)/(2bB). (9)
At each temperature, the magnetizatﬁrmust be computed
self-consistently, as now described.
B. The order parameter

The dimensionless magnetization, a convenient order
rameter, can be extracted from the partition function

Z(ﬁt)zTre*BH. In practice, it is easier to compute the

thermal average

m=(j)=Tr(j,e ")z, (10

where 8=A/kgT=1/t defines the reduced temperattre

From Eq.(6) it is a simple matter to compute the traces on

the right-hand side of Eq10). This yields

—4b%B

efl2 sin)-(%) - sin?( '8—)

B
2
BB

m(t)= . (1)
12 ool BC
_ o e+ 2ef? cosh — | +2 cosh —
Hex==12Je,M 2, (2gpgjzi—M). (5) 2 -
At zero temperature, Eq§7) and (8) then imply that

Here, we have taken advantage of the cubic symmetry of the
crystal, which imposes magnetic ordering along the principal —(pP-1)te
axis z Mo=b——""". (12

n
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FIG. 1. Energy level€,, Eqg. (6), as functions of the dimen- 0-2r
sionless couplingy, at zero temperature. Far<1 the ground state 4] IPAFRFENES EFEFEFENE EFEFS B
is the|T'3) doublet and the excited states is {fig) triplet. For o o1 02, 03 04

>1 the ground state is alwayg,), which is a mixing of the states ) ) .

IT30 and|T49). The inset shows the dependence of the mixing FIG. 2. (8) shows the relative free energy in units Af as

coefficientx=(1—C)/2bB on 7 [see Eqs(6)-(9)]. function of the order parameten=M/(gug), for the dimension-
less couplingp=2.5 and three values of the reduced temperature

We can now substitute the zero-temperature dimensiort=KgT/A. The critical temperature, whefém,t) changes its cur-
less magnetizatiom, on the right-hand side of Eq6) to ~ Vature am=0, ist,=0.42218. Fot>{,, like t;=0.430, the only
obtain the energy leveE, at T=0 as functions of the cou- minimum off(m,t) is atm=0. Fort<t,, like t,=0.421, there is a
pling #. lllustrative results appear in Fig. 1. Far<1, the stable nonzero magnetization corresponding to the minimum of

order parametem vanishes, even at zero temperature. As the (m.1). (b) shows the temperature dependencentf) normalized
inset shows, for such small values gf the mixing coeffi- by their value at zero temperatumaft) goes continuously to zero
cient x also vanishes. so that the statﬁg N and|F32> be- at the critical temperaturg,, characterizing a second-order phase
come degenerate in the ground state, as if there were rfgansition.

exchange.

_ For_t=0 andnp>1, t_h_e ground_ state is alwayg,), fie- Figure Za) shows this dimensionless free-energy as a
fmej%&i).'l’?e m')é'”g coefflf]lent no I(;nger vanishes, fnction of the order parameten, for the couplingy=2.5.
x=\(n—1)/(5+1), and approaches unity foj—c. A:or the same coupling, the temperature dependencg(H)f

At nonzero temperatures, the nonmagnetic first eXCItE‘gppears in Fig. ®). The continuous evolution of the free-

state contributes to the partition function and reduces thener minimum as a function of temperatgewhat is the
magnetization. This in turn reduces the mixing coefficient, so 9y P

that for giveny, the ground statfE,) has a larger projection S@me, the behavior o near the critical temperaturg,
on|I'3y) than at zero temperature. This qualitative picture is= 0.422 18), indicates that the transition is of second _order.
unfortunately insufficient to describe the relatively complex The temperature dependence of the order parametet niear
phase diagram that arises from the interplay between magnwell described bym~ (t.—t)#m, with the usual mean-field
tization and level structure. In Sec. Ill, we therefore turn to aexponents,,= 1/2.

guantitative analysis of Eq11). The couplingn=2 yields a free energy with richer tem-
perature dependence. Figur@)3displays absolute maxima,
absolute minima, and local minima, corresponding to un-
stable, stable, and metastable solutions for the order param-
Numerically, it is straightforward to solve E¢L1) for the  €ter, respectively. Two stable degenerate solutions define the

order parametem(t). To study the stability of the solutions critical temperature.=0.2224, one associated with=0,

at each temperature, for each couplingit is convenient to  the other withm+0. Since the former evolves into the ab-
measure the free-energy from the zero-magnetization freesolute minimum fott>t., while the latter becomes the mini-
energy. We thus define the dimensionless free energshum for t<t., this degeneracy signals a first-order phase
f(ﬁt):t[m Z(0t)—1In z(ﬁt)]_ To compute the partition transition. The resulting discontinuity in the magnetization at
functionsZ, one must evaluate traces involving the energied=t. is shown by the filled circles in Fig.(B). Thermal

Ill. RESULTS

in Eq. (6). This immediately leads to hysteresis appears in the ranget<t,=0.2280.
The computation of the critical temperatugefor various
BC BB couplings leads to the phase diagram in Fig. 4. Ferromag-
eB 2eBI2 COSF(T +2 cosy6 7) netic ordering appears only foy>1. The lines of first-order
f(m,t)=—1n . transitions @) and of second-order one©{ are separated
B (3+2¢eP) ePA by a tricritical point atz,=2.225+0.005, andt,,=0.322

(13 +0.002. The continous line through the open circles is the
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TABLE |. Dimensionless coupling; and Landefactorsg cal-
0.002 i culated from the experimental values of the zero-temperature mag-
netizationM/ug and critical temperaturg, .
- _ Compound M/ g te 7 g
] PrAl, 2.88 1.20 5.7 0.96
td \t, ] PrRy, 1.73 0.73 3.6 0.59
—0.002 - 7 PrRh 1.15 0.27 2.12 0.43

0.8

analytical solution of Eq(11) in the limit E(tatc)eo,

0.8 . . ..
which defines a second-order transitiort at-®

m(t)
0.4

o § W 4 coshiB./2) +exp(—B:/2)

0z os , oz o0z T 2 SNt B 12) + Bl (4b2) ex — Bof2)

FIG. 3. Same quantities as in Fig. 2, but now wijk2.0. At

high temperature, liket;=0.250, the only minimum off(m,t), The three horizontal arrows in the diagram indicate the
which is therefore necessarily stable, is @mt=0. Below t, points along the line corresponding to the critical tempera-
=0.228 13, a metastable minimum and an unstable maximum apures of PrA}, PrRw, and PrRh, respectively:* From this
pear;m=0 remains the only stable solution. At the critical tempera- construction, one expects the first two to undergo second-
turet.=0.2224, that metastable solution degenerates with the stablerder transitions and the third to undergo a first-order transi-
m=0 and also becomes stable. Beltw ast;=0.21, we still have  tion; this agrees with experiment. One might be tempted to
the unstable maximum, the stable nonzero magnetization, but novadd a fourth extensively studied cubic compound, PyMg
m=0 is an unstable minimum. At very low; like t,, f(m,t) the diagram. In this case, however, our model is inadequate,
changes its curvature at=0, which becomes an unstable maxi- SINCe quadrupolar pair interactions are mporﬂﬁr’rﬁ

mum; the metastable solution disappears and we have a stable non- It has been shown that doping of PsAkith La or Y can
zero magnetizatiornot in the scalg All that signals a first-order brln%gthe critical temperature down by a factor larger than
transition att, . (b) shows the temperature dependencengf), for ~ Wo. ™ If further reduction can be achieved, our diagram
the stable @), metastable £), and unstable ®) solutions. This Wwould predict a first-order transition beloty=0.322. For

last vanishes continuously at very low temperature. PrRh, which is a lot closer to the tricritical point, any dis-
turbance, such as stoichiometrical changes, can drive the

transition through the tricritical point. Experimental work
with these two compounds would therefore be able to test the

L I accuracy of our findings.
PrAl, — o'
(*) 1° order
R I e S R
1 (o) 2° order -
t,
PrRu, —,
0.5 .
I Ztricritical point
j~<—PrRh,
ol b
1 2 3 4 5 6
7
. . " Py K N I I I I |
FIG. 4. Phase diagram showing the dependence of the critical 1 12 14 16 18 2 22
temperature. on the dimensionless coupling The points are the n

stable numerical-solutions of E¢L1). The line of first-order tran-

sitions (@) is separated from the one of second-order transitions FIG. 5. Critical temperaturg,, and magnetization discontinuity
(O) by the tricritical point at coordinates,=2.225+0.005t, Am att., obtained from our exact-mean-field calculation divided
=0.322+0.002). The valuey=1 is the minimum coupling to ob- respectively byt , and the correspondingm", obtained from the
tain ferromagnetic ordering. The continuous line is the functionLandau expansion of the free-energy in powers of the order param-
given by Eq.(14). The horizontal arrows indicate the position in the eterm. The ratios show nonuniform and substantial deviations from
critical lines of some cubic Pr compounds wilfiz)-|T,) level unity for coupling in the interval 1< < ,,=0.2225, which cor-
structure, according to their experimental value ofsee Table)l respond to first-order transitions in our phase diagram.
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The construction in Fig. 4 also determines the Lafate IV. SUMMARY
tors, g, for the three praseodymium compounds. For each

. 8 . . ._
compound, given the critical temperatdfewe read the in- In agreement with Ranket al,” we have found a tricriti

. ; L . cal point in the phase diagram of Praseodymium compounds.
ter§|te couplingy off the absgs;sa in the figure. We t.hen plug The essential features of the model are found in a number of
7 in Eq. (12) to calculatemo=M/gug, whereM is the  g,ch compounds: a Heisenberg Hamiltonian with cubic sym-

zero-temperaiure magnetization, which has been determingfetry, a nonmagnetiEs-doublet ionic ground state followed
experimentally** The resulting Landéactors, listed in Table by a I',-triplet excited state and low temperatures. Our

l, are considerably lower than the Hund's rule value of 1.25. 64 field treatment is expected to be valid but in the vicin-
For PrAl, and PrRy, this procedure yields results in agree- iy of the critical temperature and in contrast to that found in

: 19
ment with those found by Ranle al.”” For PrRh, however, 5" recent publicatioB,involves no other approximation. Al-

our result, extracted from an analysis attentive to the order of,,ygh additional theoretical investigations are necessary to

the transition, seems more reliable than the one in Ref. 19.oncompass other systems, such as those significantly affected
Finally, we turn to a comparison between our analysis anqu quadrupolar interactions (PrMg4172-2or instance,
an.alternatl've procedure,. often adopted in 'ghe literaftafe, and to study théadmittedly remotepossibility that the mag-
which consists of expanding the free energy in powers of theyetic pr instability be related to the supression of supercon-
order parameter and retaining only the three leading terms 'Buctivity in Pr-BaCuO materia? our results call for re-

the expansion. This Landau expansion is convenient, for ife\ved experimental work to locate the tricritical point.
leads to simple expressions relating the critical temperature

and the magnetization discontinuity at the critical tempera-
ture to the expansion coefficients. As Fig. 5 shows, however,
in the first-order region of the phase diagramy<( 7, We are very grateful to Professor L. N. Oliveira for his
=2.225), it leads to substantial deviations between the aperitical reading and improvement of our manuscript. We
proximate critical temperature and magnetization discontinuthank also Professor J. R. D. de T and K. Capelle for
ity(tt andAmt, respectively and our exact—mean-field val- encouraging and useful discussions. The project was sup-
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