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Mean-field phase diagram for cubic-based praseodymium compounds
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~Received 10 September 1999!

Calculating theexactmean-field free energy from a Heisenberg-like Hamiltonian we determine the magnetic
phase diagram for cubic-based praseodymium compounds with aG3 doublet ground state and aG4 triplet
first-excited state. We find lines of first- and second-order phase transitions, separated by a tricritical point. We
also calculate the temperature dependence of the magnetic-order parameter.
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I. INTRODUCTION

The increasing development of neutron-scattering te
niques and the advances in chemical separation met
have honed important tools in the field of rare-earth~RE!
magnetism. Particular attention has been given to the in
metallic RE systems, in which conduction electrons hybr
ize with incompletef shells,1,2 and among these to the cas
in which the hybridization is small compared with thef-level
energye f , measured from the Fermi level. In such cases
RE ion maintains its atomic character, in spite of the pert
bations due to the crystalline-electric field~CEF! of the
neighboring ions. The total~Hund’s rule! angular momentum
j is then conserved, although the CEF break the (2j 11)
degeneracy of the ground state. The energy separation
tween the CEF levels, of the order of 1 meV, can be pro
by inelastic neutron scattering.

The history of the observation of crystal-field effects
cubic praseodymium is long3–5. Inelastic neutron-scatterin
experiments show that the ground state is a nonmagn
doublet ofG3 symmetry and reveal an excitedG4 triplet as
part of thej 54 multiplet.3–5 At low temperatures one migh
thus expect no magnetic ordering. PrAl2 nevertheless under
goes a transition from a paramagnetic phase to a ferrom
netic one as the temperature is reduced below 34 K,6 a clear
indication that the Hund’s rule magnetic moments intera
Other cubic-symmetry Praseodymium compounds also h
ferromagnetic ground states.

Both the CEF and the ion-ion magnetic interaction a
therefore, important ingredients of the low-temperature ph
ics of such compounds. This paper analyzes a simple m
giving attention to the competition between the nonmagn
character of theG3 ground state and the intersite magne
coupling. We find a rich mean-field phase diagram displ
ing first- and second-order phase-transition lines, separ
by a tricritical point. This feature was found in hexagon
compounds by Libero and Cox.7 More recently, Rankeet al.8

reported a tricritical point in a cubic compound. This ana
sis, however, is based on a Landau expansion and hence
qualitatively valid in the first-order transition. Our work, b
contrast, deals with the full expression for the free ene
and is uniformly accurate in the entire phase diagram. Le
ing aside PrMg2, a compound dominated by quadrupolar i
tersite interactions for which the model is inappropriate,
are able to predict the order of the phase transition of exp
mentally studied cubic symmetry Pr systems.
PRB 610163-1829/2000/61~5!/3425~5!/$15.00
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The paper is structured as follows. Section II presents
model and the mean-field approximation upon which
base its analysis. Section III then determines the tempera
dependence of the order parameter and the stability of
resulting solutions is analyzed. Section IV recapitulates
conclusions.

II. MODEL

Our model combines a crystalline electric field with a
intersite coupling between the Hund’s rule magnetic m
ments. The cubic symmetry of the former defines our unp
turbed Hamiltonian:9

HCEF5(
i

$B4
0~O4

015O4
4!1B6

0~O6
0221O6

4!% i , ~1!

whereB4
0 andB6

0 are crystal-field parameters and theOm
n are

the Stevens operator equivalents10 evaluated at the sitei, as
indicated by the index of the curly bracket.

The coupling between magnetic moments is mediated
the conduction electrons, an instance of the Ruderm
Kittel-Kasuya-Yosida mechanism,11 and can hence be repre
sented by a Heisenberg exchange Hamiltonian3,12

Hex52Jex(
^ i , j &

MW i•MW j , ~2!

whereMW i is the magnetic moment operator at sitei. We treat
Hex as a perturbation that, added to the CEF term, defi
our model HamiltonianH5HCEF1Hex .

The unperturbed Hamiltonian is easily diagonalized. T
cubic symmetry of the CEF breaks the degeneracy of thj
54 total angular momentum manifold into four irreducib
representations: theG1 singlet, theG3 doublet, and theG4
andG5 triplets. Since each representation appears only o
in this list,9,13 the eigenvectors ofHCEF cannot depend on the
coefficientsB4

0 or B6
0. We can therefore set either one equ

to zero to obtain thebth eigenvector of theath irreducible
representationuGa,b&:9

uG3,1&52A 5

12
u0&1A 7

24
~ u4&1u24&), ~3!

uG3,2&5
1

A2
~ u2&1u22&),
3425 ©2000 The American Physical Society
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uG4,1&5
1

A8
~ u3&1A7u21&),

uG4,2&5
1

A8
~ u23&1A7u1&),

uG4,3&5
1

A2
~ u4&2u24&),

uG1,1&5A 7

12
u0&1A 5

24
~ u4&1u24&),

uG5,1&5
1

A8
~A7u3&2u21&),

uG5,2&5
1

A8
~A7u23&2u1&),

uG5,3&5
1

A2
~ u2&2u22&).

The experimental data for PrAl2 suggest that theG3 dou-
blet be the ground state.3,12 At low temperatures, it suffices
to keep only the first excited state, theG4 triplet,3,12 with
energyD527.4 K. Inclusion of the next state, theG1 singlet
at 65.8 K, changes the order parameter at 30 K by less
0.5%.12 Also for PrRu2 and PrRh2 it is sufficient to keep only
the ground and first-excited states.14 In this approximation,
since the eigenvectors do not depend on the crystal-field
rametersB2

0 and B6
0, only the energyD distinguishes aj

54 compound from the other two.

A. Mean-field Hamiltonian

Even with all states above energyD neglected, the ex-
change interactionHex makes it very difficult to diagonalize
the HamiltonianH. Previous works3,4,12have shown that the
mean-field approximation describes well the temperature
pendence of the magnetic order parameter, specific heat
resistivity. To implement this approximation, at the Ham
tonian level, we first rewrite the magnetizations on the rig
hand side of Eq.~2! as sums of their mean values and dev
tions:

Hex52Jex(
^ i , j &

~MW̄ 1DMW i !•~MW̄ 1DMW j !, ~4!

whereDMW i5MW i2MW̄ .
We next neglect the second-order termDMW i•DMW j on the

right-hand side to obtain the single-particle Hamiltonian

Hex5212JexM̄(
i

~2gmBj zi2M̄ !. ~5!

Here, we have taken advantage of the cubic symmetry of
crystal, which imposes magnetic ordering along the princi
axis ẑ.
an

a-

e-
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-
-

e
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On the basis of the vectorsuGa,b&, defined in Eq.~3!, the
diagonalization ofH is straightforward. The following eigen
vectorsuEn& and eigenvaluesEn ~expressed in units ofD)
result:

E05A1bBx,

uE0&5@ uG3,1&1xuG4,3&]/A11x2,

E15A,

uE1&5uG3,2&,

E25A111B/2,

uE2&5uG4,2&,

E35A112B/2,

uE3&5uG4,1&,

E45A2bBx,

uE4&5@xuG3,1&2uG4,3&]/A11x2, ~6!

whereb52A7/3. With the shorthandsm̄[M̄ /(gmB) andh
548b2(gmB)2Jex /D, the constantsA, B, andC are given by

A5hm̄2/~4b2! ~7!

and

B52hm̄/~2b2!, ~8!

while C5A114(bB)2 and the mixing coefficientx is given
by

x5~12C!/~2bB!. ~9!

At each temperature, the magnetizationM̄ must be computed
self-consistently, as now described.

B. The order parameter

The dimensionless magnetizationm̄, a convenient order
parameter, can be extracted from the partition funct
Z(m̄,t)5Tr e2bH. In practice, it is easier to compute th
thermal average

m̄5^ j z&5Tr~ j ze
2bH!/Z, ~10!

whereb[D/kBT[1/t defines the reduced temperaturet.
From Eq.~6! it is a simple matter to compute the traces

the right-hand side of Eq.~10!. This yields

m̄~ t !5

24b2B

C
eb/2 sinhS bC

2 D2sinhS bB

2 D
eb12eb/2 coshS bC

2 D12 coshS bB

2 D . ~11!

At zero temperature, Eqs.~7! and ~8! then imply that

m̄05b
~h221!1/2

h
. ~12!
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We can now substitute the zero-temperature dimens
less magnetizationm̄0 on the right-hand side of Eq.~6! to
obtain the energy levelsEn at T50 as functions of the cou
pling h. Illustrative results appear in Fig. 1. Forh<1, the
order parameterm̄ vanishes, even at zero temperature. As
inset shows, for such small values ofh, the mixing coeffi-
cient x also vanishes, so that the statesuG3,1& and uG3,2& be-
come degenerate in the ground state, as if there were
exchange.

For t50 andh.1, the ground state is alwaysuE0&, de-
fined in Eq.~6!. The mixing coefficient no longer vanishe
x5A(h21)/(h11), and approaches unity forh→`.

At nonzero temperatures, the nonmagnetic first exc
state contributes to the partition function and reduces
magnetization. This in turn reduces the mixing coefficient,
that for givenh, the ground stateuE0& has a larger projection
on uG3,1& than at zero temperature. This qualitative picture
unfortunately insufficient to describe the relatively compl
phase diagram that arises from the interplay between ma
tization and level structure. In Sec. III, we therefore turn to
quantitative analysis of Eq.~11!.

III. RESULTS

Numerically, it is straightforward to solve Eq.~11! for the
order parameterm̄(t). To study the stability of the solution
at each temperature, for each couplingh, it is convenient to
measure the free-energy from the zero-magnetization f
energy. We thus define the dimensionless free ene
f (m̄,t)5t@ ln Z(0,t)2 ln Z(m̄,t)#. To compute the partition
functionsZ, one must evaluate traces involving the energ
in Eq. ~6!. This immediately leads to

f ~m̄,t !5
21

b
lnF eb12eb/2 coshS bC

2 D12 coshS bB

2 D
~312eb! ebA

G .

~13!

FIG. 1. Energy levelsEn , Eq. ~6!, as functions of the dimen
sionless couplingh, at zero temperature. Forh<1 the ground state
is the uG3& doublet and the excited states is theuG4& triplet. For h
.1 the ground state is alwaysuE0&, which is a mixing of the states
uG3,1& and uG4,3&. The inset shows the dependence of the mix
coefficientx5(12C)/2bB on h @see Eqs.~6!-~9!#.
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Figure 2~a! shows this dimensionless free-energy as

function of the order parameterm̄, for the couplingh52.5.

For the same coupling, the temperature dependence ofm̄(t)
appears in Fig. 2~b!. The continuous evolution of the free
energy minimum as a function of temperature~or what is the
same, the behavior ofm̄ near the critical temperaturetc
50.422 18), indicates that the transition is of second ord
The temperature dependence of the order parameter neatc is
well described bym̄;(tc2t)bm, with the usual mean-field
exponentbm51/2.

The couplingh52 yields a free energy with richer tem
perature dependence. Figure 3~a! displays absolute maxima
absolute minima, and local minima, corresponding to u
stable, stable, and metastable solutions for the order pa
eter, respectively. Two stable degenerate solutions define
critical temperaturetc50.2224, one associated withm̄50,
the other withm̄Þ0. Since the former evolves into the ab
solute minimum fort.tc , while the latter becomes the min
mum for t,tc , this degeneracy signals a first-order pha
transition. The resulting discontinuity in the magnetization
t5tc is shown by the filled circles in Fig. 3~b!. Thermal
hysteresis appears in the rangetc,t,t2[0.2280.

The computation of the critical temperaturetc for various
couplingsh leads to the phase diagram in Fig. 4. Ferroma
netic ordering appears only forh.1. The lines of first-order
transitions (d) and of second-order ones (s) are separated
by a tricritical point ath tp52.22560.005, andt tp50.322
60.002. The continous line through the open circles is

FIG. 2. ~a! shows the relative free energy in units ofD, as

function of the order parameterm̄5M̄ /(gmB), for the dimension-
less couplingh52.5 and three values of the reduced temperat

t[kBT/D. The critical temperature, wheref (m̄,t) changes its cur-

vature atm̄50, is tc50.42218. Fort.tc , like t150.430, the only

minimum of f (m̄,t) is atm̄50. Fort,tc , like t250.421, there is a
stable nonzero magnetization corresponding to the minimum

f (m̄,t). ~b! shows the temperature dependence ofm̄(t) normalized

by their value at zero temperature;m̄(t) goes continuously to zero
at the critical temperaturetc , characterizing a second-order pha
transition.
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FIG. 4. Phase diagram showing the dependence of the cri
temperaturetc on the dimensionless couplingh. The points are the
stable numerical-solutions of Eq.~11!. The line of first-order tran-
sitions (d) is separated from the one of second-order transiti
(s) by the tricritical point at coordinates (h tp52.22560.005,t tp

50.32260.002). The valueh51 is the minimum coupling to ob-
tain ferromagnetic ordering. The continuous line is the funct
given by Eq.~14!. The horizontal arrows indicate the position in th
critical lines of some cubic Pr compounds withuG3&-uG4& level
structure, according to their experimental value oftc ~see Table I!.

FIG. 3. Same quantities as in Fig. 2, but now withh52.0. At

high temperature, liket150.250, the only minimum off (m̄,t),

which is therefore necessarily stable, is atm̄50. Below t2

50.228 13, a metastable minimum and an unstable maximum

pear;m̄50 remains the only stable solution. At the critical tempe
ture tc50.2224, that metastable solution degenerates with the st

m̄50 and also becomes stable. Belowtc , ast350.21, we still have
the unstable maximum, the stable nonzero magnetization, but n

m̄50 is an unstable minimum. At very lowt, like t4 , f (m̄,t)

changes its curvature atm̄50, which becomes an unstable max
mum; the metastable solution disappears and we have a stable
zero magnetization~not in the scale!. All that signals a first-order

transition attc . ~b! shows the temperature dependence ofm̄(t), for
the stable (d), metastable (!), and unstable (s) solutions. This
last vanishes continuously at very low temperature.
analytical solution of Eq.~11! in the limit m̄(t→tc)→0,
which defines a second-order transition attc :15

h5
4 cosh~bc /2!1exp~2bc /2!

2 sinh~bc /2!1bc /~4b2!exp~2bc/2!
. ~14!

The three horizontal arrows in the diagram indicate
points along the line corresponding to the critical tempe
tures of PrAl2 , PrRu2, and PrRh2, respectively.14 From this
construction, one expects the first two to undergo seco
order transitions and the third to undergo a first-order tran
tion; this agrees with experiment. One might be tempted
add a fourth extensively studied cubic compound, PrMg2, to
the diagram. In this case, however, our model is inadequ
since quadrupolar pair interactions are important.16,17

It has been shown that doping of PrAl2 with La or Y can
bring the critical temperature down by a factor larger th
two.18 If further reduction can be achieved, our diagra
would predict a first-order transition belowtc50.322. For
PrRh2, which is a lot closer to the tricritical point, any dis
turbance, such as stoichiometrical changes, can drive
transition through the tricritical point. Experimental wor
with these two compounds would therefore be able to test
accuracy of our findings.

TABLE I. Dimensionless couplingh and Lande´ factorsg cal-
culated from the experimental values of the zero-temperature m
netizationM /mB and critical temperaturetc .

Compound M /mB tc h g

PrAl2 2.88 1.20 5.7 0.96
PrRu2 1.73 0.73 3.6 0.59
PrRh2 1.15 0.27 2.12 0.43

al

s FIG. 5. Critical temperaturetc , and magnetization discontinuity
Dm at tc , obtained from our exact-mean-field calculation divid
respectively bytc

L , and the correspondingDmL, obtained from the
Landau expansion of the free-energy in powers of the order par

eterm̄. The ratios show nonuniform and substantial deviations fr
unity for couplingh in the interval 1,h,h tp50.2225, which cor-
respond to first-order transitions in our phase diagram.
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The construction in Fig. 4 also determines the Lande´ fac-
tors, g, for the three praseodymium compounds. For e
compound, given the critical temperature,14 we read the in-
tersite couplingh off the abscissa in the figure. We then plu
h in Eq. ~12! to calculatem̄0[M /gmB , where M is the
zero-temperature magnetization, which has been determ
experimentally.14 The resulting Lande´ factors, listed in Table
I, are considerably lower than the Hund’s rule value of 1.
For PrAl2 and PrRu2, this procedure yields results in agre
ment with those found by Rankeet al.19 For PrRh2, however,
our result, extracted from an analysis attentive to the orde
the transition, seems more reliable than the one in Ref.

Finally, we turn to a comparison between our analysis a
an alternative procedure, often adopted in the literature8,20

which consists of expanding the free energy in powers of
order parameter and retaining only the three leading term
the expansion. This Landau expansion is convenient, fo
leads to simple expressions relating the critical tempera
and the magnetization discontinuity at the critical tempe
ture to the expansion coefficients. As Fig. 5 shows, howe
in the first-order region of the phase diagram (h,h tp
52.225), it leads to substantial deviations between the
proximate critical temperature and magnetization disconti
ity ( tc

L andDmL, respectively! and our exact–mean-field va
ues (Dm and tc).
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IV. SUMMARY

In agreement with Rankeet al.,8 we have found a tricriti-
cal point in the phase diagram of Praseodymium compoun
The essential features of the model are found in a numbe
such compounds: a Heisenberg Hamiltonian with cubic sy
metry, a nonmagneticG3-doublet ionic ground state followed
by a G4-triplet excited state and low temperatures. O
mean-field treatment is expected to be valid but in the vic
ity of the critical temperature and in contrast to that found
a recent publication,8 involves no other approximation. Al
though additional theoretical investigations are necessar
encompass other systems, such as those significantly affe
by quadrupolar interactions (PrMg2,7,14,17,21–23for instance!,
and to study the~admittedly remote! possibility that the mag-
netic Pr instability be related to the supression of superc
ductivity in Pr-BaCuO materials,24,25 our results call for re-
newed experimental work to locate the tricritical point.
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