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Density of states and localization of electrons in a tight-binding model on the Penrose tiling
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The density of states is studied for periodic and open boundary conditions in the vertex model of the Penrose
tiling. For one gap in the spectrum the gap labeling is done explicitly. Localization of wave functions is studied
by 2p norms in a series of approximants for one value of the energy by means of a contour integration in the
first Brillouin zone. The results show that a surface can smoothen out a spiky density of states. We find
evidence for extended wave functions.

[. INTRODUCTION look at localization of wave functions by calculating partici-
Since the discovery of aperiodic crystals, such as quasipation ratios.

crystals, it has been an important issue how quasiperiodicity In order to obtain the density of states of the Penrose
affects physical properties. Theoretically, efforts have gonailing, Rieth and Schreibét diagonalized the vertex model
into calculating properties of relatively simple model sys-tight-binding Hamiltonian of a PPL with 3571 sites per unit
tems with a quasicrystalline structure and it initio cal-  cell with periodic boundary conditions, and evaluated the
culations of approximants, crystals with large unit cells thatresults as a set of histograms with a resolutivg=5
have the same local atomic structure as a quasicrystal. In thig 10™2 in units of the strength of a bond. They concluded
paper we present calculations for one of the most frequentlyhat the density of states is irregular and strongly fluctuating,
used models with quasicrystalline structure, the two-and that this result is not substantially changed when using
dimensional Penrose tiling with fat and skinny rhombusesopen boundary conditionb initio calculations have shown
We have restricted ourselves to the so-called vertex modethat realistic models for approximant phases of three-
which is a tight-binding model, where one electronic basisdimensional quasicrystals also have a spiky density of
state is positioned on each vertex, and where the edges of tReates® with spikes of width 10—20 me¥’ which are due to
rhombuses represent bonds of equal strength. A few thinggensely distributed almost dispersionless bafidehe flat-
are exactly known for this model. In the center of the specness of these bands has been used in combination with Bolt-
trum, atE=0, a sharp peak in the density of states is presenzmann transport theory to explain exotic experimentally ob-
which after some confusidi was shown to correspond to served transport properties of quasicrystaf® e.g., high
highly degenerate, strictly localized statésvith an exact zero-temperature electrical resistivity. Based on the observa-
lower bound on their abundance of 8507~9.83% of all  tion that the spikes become more dense in higher approxi-
states,® where 7 is the golden meanr=(\/5+1)/2. Be- mants, Fujiwara and co-workéfs® have argued that in the
cause of the bipartite property of the Penrose tiling the speaguasiperiodic limit the density of states is extremely singular
trum is symmetric with respect t&=0. Properties forE with spikes at all energies and of all widths. On the other
#0 are only approximately known througl) studies of hand, Hafner and co-workéfs! have pointed out that the
finite clusters of the Penrose tiling with open or fixed bound-amplitude of the fine structure may decrease in the quasip-
ary conditions;>’~11(ii) approximate studies of the infinite eriodic limit, so that only the most pronounced peaks and
tiling,**** and (iii) studies of periodic Penrose lattices (pseuddgaps remain, a view that is supported by the fact
(PPL’s), a special class of approximants of the Penrose tilthat, with the exception of one tunneling spectroscopy
ing. Where the first method requires huge clusters in order texperimert’ of the decagonal quasicrystal ANi;/Co,,, no
reduce the influence of the surface, which can be looked at apikes have been observ&d?® The following alternative
a line of defects, and where the studies of the infinite tilingexplanations have been brought up for the experimental ab-
need simplifying assumptions, of which the validity is not sence of spikes(1l) Much used techniques, such as photo-
clear, in order to keep the calculations tractable, the thircemission spectroscopy at room temperature or x-ray spec-
method does not have these disadvantages, for there is mmscopy, have a resolution that is too low to observe
approximation other than a slightly modified structure and naspikes?*?® (2) Tunneling experiments, which have a high
surface is present, since periodic boundary conditions can besolution, probe the surface of a material, which may be in
used. Contrary to the infinite Penrose tiling, which satisfiesa different, nonquasicrystalline, phase than the BiI3)
matching rules for the skinny and fat rhombuses everywherelhe local density of states of the first few atomic layers of
a PPL has two violations of the matching rules per unitthe surface might be smeared out by surface states and sur-
cell * from which it follows that the density of mismatches face resonances, since even if the quasicrystalline phase is
is inversely proportional to the number of sites per unit cell.persistent up to the surface, it is known that details of the
By considering PPL’s with ever larger unit cells the structuredensity of states in the energy range of 50 meV depend on
of the Penrose tiling can arbitrarily well be approximated. Inthe atomic order on several inter atomic distarfced) Ab
this paper we study what effects quasiperiodicity may haveénitio calculations and simple model calculations do not take
on the fine structure of the electronic density of states and wito account the effect of electron scattering, which can
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change the density of states on an energy scale of 10—2Gfites per unit cell an exponegt<a<3 was found’’ and
meV 23 (5) Possibly deterministic models like the Penrosewhere by using the ordinary participation rattbe 4-norm
tiling do not realistically describe quasicrystals. Instead, inand finite clusters with up to 4000 sites=0.55 was found?
reality, randomness might be present. This idea is supportegthich was also found in the above-mentioned study of the
by Yamamoto and Fujiwar®,who have calculated the den- wave function of lowest energy.Note that Ref. 27 uses the
sity of states of a PPL with 3571 sites per unit cell with center model of the Penrose tiling, which is not the vertex
random phason strain, by calculating fdupoints in the first  model, so that in principle, there is no reason why these
Brillouin zone, and then using a very simple estimation forresults should be the same. In this paper we study the par-
the density of states, assuming that the bands are so flat, thiigipation ratio and a generalized patrticipation ratio with
it only matters how they overlap with each other. They found= 4 of PPL’s with maximally 64 079 sites per unit cell at
an enormously spiky density of states with many gaps, whiclixed energy, without averaging over an energy range, by
disappear when randomness is introduced. In Sec. Il it willmeans of a method that, to our knowledge, is new. We have
be shown that this extreme spikiness is probably a result diound that the wave functions &=3.0 eV are probably
their calculational method. Nevertheless, the conclusion thagxtended.
randomness can smear out the density of states is probably This paper is organized as follows. In Sec. Il a few com-
correct. Still, it is unclear which explanation should be usedments are made about properties of PPL’s and how they can
to understand the absence of spikes in experiments. This pbe generated through the cut-and-project formalism. In Sec.
per tries to give a partial answer to this problem by calculatdll the method and results are given for the density-of-states
ing the density of states of the Penrose tiling to an accuracgalculations. Also some comments are made about the nu-
that is as high as possible, which gives the possibility tomerical convergence of the density of states. The gap label-
check the reasoning of Hafner and co-work&f$for a con-  ing of a gap aE=2.7 eV is done explicitly. In Sec. IV the
crete case, and by doing a calculation with open boundarynethod and results are given for the calculation of the par-
conditions, which shows that the presence of an unrecorticipation ratio at fixed energy. We conclude in Sec. V.
structed surface can smoothen out the density of states of an
approximant. Il. MODEL

Nothing is rigorously known about the localization of
wave functions in the Penrose tiling, except that there are The Penrose tiling can be obtained with the cut-and-
strictly localized states aE=0. Localization properties Project method? Approximants are usually generated with
have, among other methods, been studied by meangof 2the multigrid method;*?"but in this section we give a recipe

norms!*>?’which are a generalization of participation num- for obtaining PPL's with the cut-and-project formalism,

malized, such thakE,|¢,|2=1, where the sum is over all space the vectors,= (cosémn,sinfzn), n=0,...,4 are ap-
sites in one unit cell of an approximant, the Zorm is  proximated by
defined by
e,=(1,0),
2= 19/, M -1 2
n e]_: 2 ,S|n§’ﬂ'n f
and the generalized patrticipation ratio is defined by
T 2
Iz = - (e Dsing ). @
Pop=— @
2
whereN is the number of sites per unit cell. The generalized e3=< — E,(l— Tg)sin—q-m),
participation ratio, which always lies in the intervid,1], 2 5

gives an indication of the percentage of sites participating
with a substantial amplitude in a wave function. Note that -1 (79— 7 _1)3"3 wn)
p=2 gives the ordinary participation ratio. Considering par- 2 82 5 )
ticipation ratios of a series of approximants, and assumin _

that the same critical wave function(r)o|r|~¢, 1l/p<a gf::ere )/(FTl+ IgF”)ZJFF”)/(F’;r'ldJFF"’l)’ =14 (Fy 1]
<1, is approximated ever better for higher approximants, it- ”5(3F /F nSZV’Vith F Fibonacci numt?ersF :On_é
can be shown that the generalized participation ratiajof :”1”':#?”: e . and it =0, i 0 ot

’ 1 I -1 1

. . . . . . =0,...,4, then an ap-
7 1 [l [
scales in two dimensions with unit-cell siteas proximant of the Penrose pattern is obtained with a unit cell

pzpmN(l_pa)/(p_l)_ 3) t_hat has the_ shape of a fat rhombus &, s+ Fon+1 ver-
tices per unit cell, and that has mirror symmetry in the short
Except for the wave function of the lowest energy in thediagonal of its unit cell. If 7,=1+(F,,1/Fn_1)(Fq
spectrum, which has been studied separately for PPL's with-F,_2)/(Fhi3+Fni1), and m3=(FnistFni2)/(Fhis
up to 167 761 sites per unit céfi,only the average scaling +F,.1), and 7; is the same as above, an approximant is
behavior of groups of wave functions in finite energy inter-obtained with a unit cell that has the shape of a skinny rhom-
vals has been studied. Agreement was found with By.  bus, andF,, 4+ F,.5 vertices per unit cell, and that has
where by using the 8-norm and PPL’s of maximally 1364mirror symmetry in the long diagonal of its unit cell. These

e4:

7,=(Fn-1
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TABLE I. Number of subdiagonal®lg,, of HZ ., for various '

approximants after permutation. 0.098 §(E)

0.4p= Y~ .
N Neven Nsub (J

resolution je

1364 646 72 20 meV
2207 1082 115 03 |
3571 1726 116 10,002
5778 2853 121 £ oo 0,002
9349 4577 190 -
15127 7504 192 209 i
24476 12079 315 s m
39603 19704 301
64079 31781 498

0.1H _
approximants are called periodic Penrose lattices, and the' H
are special because they violate the matching rules of the
Penrose tiling minimally?

In the vertex model, vertices correspond to atoms with 09 0, 1 7 ' 3 1

one electronic basis state and edges of the tiles correspond energy E (&V)
bonds of equal strength. To indicate orders of magnitude, we
choose an edge to have a lengft2d , and thecorrespond- FIG. 1. The density of states of the Penrose tiling, convoluted
ing bonds to have a strength of 1 eV. with a Gaussian of width 20 meV. Thpeak due to strictly local-

ized states aE =0 is not smoothened. The error bar indicates how
much the result, which was obtained by numerical methods, might
deviate from the exact result. Because the density of states is sym-

Because of the bipartite property of the Penrose tiling thenetric with respect t&E=0, only a small part of the negative-

IIl. DENSITY OF STATES

Hamiltonian squared can be written as a direct sum, energy axis is shown. Arrows indicate the two gaps for which the
gap labeling is considered in the text. The density of states does not
H2= Hgven@ Hgdd, (5) vanish completely nedE=2.7 eV due to the smoothening.

whereHZ e, (Haq9 acts only on theNeyen(Nogd coefficients  same calculation with approximately four times fewler
of all even(odd sites, Yeven (Yoad - We diagonalizedH?Z ., points. Comparing Figs.(8) and Zc), which show the den-
after having permuted it to band diagonal form, with asity of states of two different PPL’s, we see that the higher
LAPACK routine?® for a series of approximants and for vari- approximant has spikes with lower amplitude, as was also
ous k points in the asymmetric unit of the first Brillouin observed by Hafner and co-worké&4' Comparing Fig.
zone. Table | gives the number of even lattice points of some(d), which has open boundary conditions in one direction,
approximants and the number of subdiagonalsigf,,after  to Fig. Zc), we see that an unreconstructed surface can
permutation. We obtained the density of states of an approxsmoothen out the density of states.
imant using linear interpolation of its band structure. We When calculating the density of states it is important to
then convoluted the result with a Gaussian of finite width. Inmonitor the numerical error. Some methods converge faster
Fig. 1 we show the density of states of a PPL with 64 07%han other methods, and it is even known that some methods
sites per unit cell that was convoluted with a Gaussian oflo not converge at aif’ Figure 2b), e.g., shows the density
width 20 meV. The normalization is such that the integral ofof states of a PPL with 1364 sites per unit cell, calculated
the density of states equals unity. Orly>>—0.4 eV is  with the method of Yamamoto and Fujiwa&aThe error,
shown since the density of states is symmetric with respeathich was estimated by comparing to a calculation involving
to E=0. The difference between the density of states of Figmorek points, is not shown, since it is greater than 1.0, from
1 and that of one approximant lowéwith 39 603 sites per which it is clear that in the calculations of Yamamoto and
unit cel) gives an indication of how well Fig. 1 approxi- Fujiwar&® no convergence was obtained with respect to the
mates the density of states of the Penrose tiling at the givenumber ofk points. In Table Il we compare the numerical
resolution. The maximum of the absolute value of this dif-errors in the density of states of a PPL with 24 476 sites per
ference is indicated in Fig. 1 as the error. Figure 1 was calunit cell, as calculated by three commonly used methods as a
culated with sevek points in the asymmetric unit of the first function of the number ok points in the asymmetric unit. In
Brillouin zone. It was checked that using only thie@oints  all cases the error shown is the maximum of the absolute
gives the same result up to a difference that is much smalleralue of the difference of the density of states and a refer-
than the indicated error. ence density of states, which was calculated with the same
Figure 2 gives the density of states for approximants oimethod, using 278 points in the asymmetric unit. The three
the Penrose tiling at a ten times higher resolution than Fig. Imethods are(1) counting the number of states in a set of
These results have not converged to those of the infinithistograms of width 20 meV(2) representing each eigen-
Penrose tiling. The indicated error is the maximum of thestate of the Hamiltonian as a Gaussian with full width half
absolute value of the difference between each plot and thmaximum 20 meV, centered at its eigenvalue, &i3)
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(o) (b)

resolution s
2 meV

error_+0.0002 FIG. 2. The density of states of approximants
~—-0.0002 of the Penrose tiling(a), (c), and(d) were con-

voluted with a Gaussian of width 2 meYa) and
(b) give the density of states for a PPL with 1364
sites per unit cell, wheréa) was calculated as
indicated in the text, an¢b) was calculated by
the method of Yamamoto and Fujiwaiaef. 26.

No error is indicated forb), since it is greater
than 1.0.(c) and(d) give the density of states of a
PPL with 24 476 sites per unit cell, whef® has
1.0 resoldtion %] resolution periodic boundary conditions, and) has peri-
meV 2 meV odic boundary conditions in one direction and
open boundary conditions in the other direction,
with two unit cells in between the two surfaces.
The higher approximant studied {n) has spikes
with a lower amplitude thaxa), and these spikes
can partially disappear by introducing a surface,
as is seen irfd).

0.5}

density of states

0.0

+0.001 +0.0025
EImor— 0001 eImor—_0.0025

density of states

ene?gy (&V) ’ 1 enelggy (&V) '
linear Brillouin-zone integration followed by convolution Fm_»
with a Gaussian of width 20 meV. The last method, which IDOS, =1~ F+F. m=17,...,21, (7
m m+

we have used in this paper, is seen to give the best results. It
is important to realize that linear interpolation alone, withoutwherem is defined to ben=2n+2 for approximants with
any smoothening, does not treat Van Hove singularitieskinny unit cells andn=2n+ 1 for fat approximants. Prob-
correctly®® even when arbitrarily mani points are used. ably, the IDOS in the infinite tiling is given by the limit

At E=0.1eV andE=2.7 eV we found gaps in the spectra
of the high approximants. Table Il gives both the widths
of these gaps, which were found by calculating X780ints
in the asymmetric unit of the first Brillouin zone, and the

numerical values of the integrated density of stdtBS), ~ Which is in agreement with the gap labeling theorem for the
which is defined by Penrose tiling, which predictsthat all gaps in the infinite

tiling must be at an IDOS of the forrm{+m~)/20, with n
andm integers. It is unlikely that the limi{8) is not correct,

for Eq. (7) would have to deviate from the given fraction
from a certain approximant on. Imagine that it would happen
From the data of Table Ill it seems likely that both gaps will in the first approximant that we have not calculated, a PPL
be open in the quasiperiodic limi—o. The IDOS atE =  with N=103 682, then the deviation would be of ordeN1/
2.7 eV can be seen to converge rapidly with increasing apFrom Table Il it can be seen that approximately four deci-
proximant sizeN. In fact, since an integer number of bands is

on either side of a gap, the IDOS in the gap of an approxi- TABLE Ill. Width A and IDOS of the gaps at 0.1 eV and 2.7 eV
mant can be written as a fraction. In case of the gag at  for a few approximants.

2.7 eV the results of Table Il are

. 2
lim IDOS, ;= — =

5+ gT, (8)

m— oo

E
IDOSEEJ (density of stateslE. (6)

E=0.1eV E=2.7¢eV
TABLE Il. Comparison of numerical errors of often used meth- N A (meV) IDOS A (meV) IDOS

ods for calculating the density of states.

9349 170.8 0.549 58 14.4 0.894 4272115
Number Error in dens":y of states, using 15127 169.0 0.549 15 19.6 0.894 4271832
of (1) Box (2) Gaussian (3) Linear 24476  170.8 0.549 31 17.4 0.894 4271940
k points counting broadening interpolation 39603 170.7 0.54913 19.9 0.8944271899

64079 a 0.549 21 a 0.894 4271914
1 0.024 0.025 % =0.549 15° 0.894 4271916
3 0.015 0.008 5 0.004 6
7 0.0044 0.000 82 0.000 25 aNot calculated.
21 0.0012 0.000 20 0.000071 bThis value is the exact lower bound 41—25derived from data of
73 0.0003 0.000 05 0.000017 Arai et al. (Ref. 5.

This is —2/5+ (4/5)7, which is derived in the text.
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periodic boundary conditions

’

4 .
.2 mirror
e

FIG. 4. E=3.0 eV contour lines in the unit cell of the reciprocal
lattice of a PPL with 24 476 sites per unit celtl, andk, are nor-
malized such that they are betweerl and 1.

practice, we use#?2,.,of a series of PPL’s, which is more

0 time efficient on a computer, and which immediately gives
Yeven, @nd we obtained the odd part of the wave function by
FIG. 3. The unit cell of a PPL witiN = 76 is shaded. The i/ 4= (H/E) #/oyven. The goal of our method is to obtain con-
dotted line indicates mirror symmetry. Note that thendy direc-  tour linesE(ky,k,) =3.0 eV, so that we can perform contour
tion are not perpendicular. In the direction periodic boundary integrations in the first Brillouin zone. First, we show how
conditions are applied and in tixedirection the unit cell is periodi- e can obtain all possibllex(E,ky), where in they direction
cally repeated, but only those sites are shown that have at least Opriodic boundary conditions are applied, and we search all
bond connecting it to a site within the shaded region. These sites aompatible periodic boundary conditions in tkedirection.
labeled bya, . . . az. Fixed boundary conditions can be applied by \ye exploited the fact that a solution with periodic boundary
Ehoosmg conf;tz;nt V;”es fay . o aZ?]' Inbthg tedXt itis ?Xpla,'”e‘,j conditions can always be written as a linear combination of
ow one can find suca, . . . 8 that the obtained wave functionis, - ¢, tions with fixed boundary conditions. This is illustrated
apart from a phase factor expk,), periodic in thex direction. in Fig. 3, where we have numbered the sites outside the

shaded unit cell by, ... a5, and the corresponding sites

mal places that seemed to have converged numerically in the o it cell bycy, . . . €20, and where the fixed boundary
previous approximant, would have to be changed. For higheg, .- (a,= 1,a- :(’) o 20, {a,=0a,=1a,
a;=0ji=2,...,20, ; A

approximants this becomes even more unlikely. The IDOS al 5i—3 2 tc. f let t B ing f
E=0.1 eV does not converge as rapidly, and therefore we,, t,lhese: .fi.x.e’d %bﬁncdérsrg:)r?dﬁi%nr:s ele sel. By solving for
cannot do the gap labeling for this gap, but the numerica '

values in Table Il are at least consistent with the predicted (H—E)¢=fixed boundary conditions, 9

value of Araiet al>, which is also indicated in Table IIl. where is a column vector containing the coefficients of all

sites in the shaded area including th&s, and wherekE is the
IV. LOCALIZATION constant energyE = 3.0 eV, we obtain the linear depen-

. . S : OIdence
In this section we calculate the participation ratio resolve
density of states dE=3.0 eV for a series of approximants, (o a;
and look how it scales as a function of unit-cell size. The _ .
H H - M : ’ (10)
reason that we restrict ourselves to one value of the energy is
that our method, which works for fixed energy, requires less C20 a0

time and memory on a computer than direct diagonalizatioRyhere thejth column of the matrisM contains the solutions
of Hamiltonian matrices, so that we can calculate participag, for the jth set of fixed boundary conditions. Equati

tion ratios for relatively high approximants. We plan to dis- g 5 system of linear equations, which we have solved with
cuss energy dependence in a later work. The choice to stuqye sparse Harwell Subroutine Librafy(HSL) package
E=3.0 eV is to a certain extent arbitrary: We wanted to\jg48. By using iterative refinement, keeping the results in

study an energf=>2.0 eV because we had seen that theextended precision,M can be obtained in machine
density of states converges more rapidly for those energiegyecision®® By requiring

We choseE=3.0 eV because it lies in the center of the

selected energy range. Cy a;

First we explain our method by showing how it works for i =eim| 1 (11)
the tight-binding HamiltoniarH of a PPL with 76 sites per
unit cell, which is indicated schematically in Fig. 3, but in C10 a10

principle, it works for any tight-binding Hamiltonian, and in and
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resolution k- 1 resolution -f¢
0.002 i 0.002
+0.3
error 14r ! +0.3
T 03 : E emor o3
1 ',A. PPL64079

PPL64079

|WL

[}

£ 2 f

& PPL24476 E 10 N PPL24476
= : :

= = I

g PPLO349 2 8 i PPLO349
£ &

PPL3571 : PPL3571

|
. ! PPL1364 . et M PPL1364
PPL521 M 5 | PRLS21 M
PPL199 A W’\M PPLISS UAM"M )
1

N

8 0.4 0.5 0.6 0.7 8. 0.2 0.3 0. 0.5 0.6
participation ratio generalized participation ratio
FIG. 5. Participation ratio resolved density of state€at3.0 FIG. 6. The 8-norm related generalized participation ratio re-

eV as obtained by contour integration in the unit cell of the recip-gqyed density of states &=3.0 eV for a series of approximants.
rocal lattice for a series of approximants with up to 64 079 sites pefrne same remarks hold as for Fig. 5. The center of nidstied
unit cell. The results have been smoothened by convoluting thernnes) seems to approach a constant value, which indicates that the
with a Gaussian with width equal to the indicated resolution. Foryayve functions are either extended or critical witk: 0.25.
clarity, the zeros of the density-of-states axis of the various plots
have been shifted with respect to each other. The dotted lines indivhere p¢ is the (generalizedl participation ratio along the
cate the centers of mass of each distribution. The normalization igontour as obtained by linear interpolation between calcu-
consistent with that of Sec. Ill, such thaf(density of statéslp  |ated points, and wheréE/dk, and JEl dk, are linearly in-
gives the density of states Bt=3.0 eV. The indicated error is an terp0|ated expectation values of the wave functions, gives
estimation of the maximum error of the highest approximant; allthe density of states resolved for ttgeneralized participa-
other PPL'’s have errors of, at most, 0.06. For high approximantsjs, ratio p(p).
t_he distribution of the participation ratio is a relatively narrow func- Results for the participation ratip and for the 8-norm
tlogaTgi_cgn(tfr ct’f mtﬁsi‘ tsheems tofapptr_oaCh a CO_:'hStam ;/ahr(xje dOf related generalized participation rafig are given in Fig. 5
~0.4. IS Indicates thal € wave tunctions are eltner extenaead o, . . .
critical with @< 0.5. énd Flg. 6. For low approximants (18N <9349) the dis-
tributions of p and pg are quite broad, and they seem to
follow a power-law behavior according to E¢B), but for
Cu an higher approximantsN>24 476) the distributions become
(120  more narrow, and seem to tend to finite values, so that in the
c a quasiperiodic limitp and pg might be well-defined quanti-
20 20 ties, and the wave functions are either extended or critical
with «<<0.25. It is interesting to speculate about the gener-
ality of these results. Clearly, they conflict conclusions of
revious studie$>?” namely that states in the Penrose tiling
re critical, but the reason is obviously that we have been
ble to study higher approximants. They also contradict the
esults of Rieth and Schreibférfor the state of minimum
energy, but, as was already remarked tHethjs state seems
to be quite specific, and it might not reflect a general behav-

‘//(.E’kx’ky)' C_or_ltours can easily be recognlzedq(f 'S qb- ior. More detailed studies will be necessary to test the gen-
tained for sufficiently man, values, and if the two mirror .
Y eral validity of the present results.

planes of a properly chosen unit cell of the reciprocal lattice
are used. Figure 4 gives the contour lines of a PPL with
24 476 atomic sites per unit cell, as an illustration. The con-
tour integration

and substituting Eq10) for thec;’s, we obtain a generalized
eigenvalue problem, which can be solved by LAPAQReT.

29) in a standard way. The generalized eigenvalues of Ecﬁ
(11) give the compatible periodic boundary conditions in the
x direction, and the eigenvectors give the correspondin
fixed boundary conditions. By solving E() again for these

fixed boundary conditions we obtain the wave function

V. OUTLOOK

We found that the density of states of the Penrose tiling is

S(pe—p) less spiky than expectéfa',_27 but due to computational limi-
p(p):J’ 2 P (13  tations we could not obtain a better resolution than 20 meV.
c |ViEl We saw that the density of states of approximants, which can
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easily be calculated with a high resolution, is really spiky,maybe approach finite limiting values, which would indicate
and that higher approximants have a lower amplitude of thehat the Penrose tiling has extended statés=a8.0 eV. This
spikes, as has been noticed in other quasiperiodic systenis surprising’>?” and it would be interesting to repeat the
before?®?* Also we saw that an unreconstructed surface cagame calculation for other energies and higher approximants,

smoothen the density of states through surface states amg see if our results are general for all energies and persistent
surface resonances, in agreement with an earlier predfction.jp, larger systems.

Because of computational limitations we cannot decisively
conclude whether these effects explain the absence of spikes
in experiment£2~2° As already indicated in Sec. I, other ef-
fects, e.g., chemical and structural disorder, may also play a
role. In the future we plan to study the local density of states One of the authordE.S.Z) wants to thank Alexander
at a surface, which might show the effect of surface stateQuandt for nice discussions that led to using HSL. We want
even stronger. to thank the authors I. S. Duff and J. K. Reid of the HSL

For E=3.0 eV we could, by means of contour integra- package ME48. This work has been supported by the “Stich-
tions in the reciprocal space, obtain the density of stategjng voor Fundamenteel Onderzoek der Materig”.0.M.)
resolved for the participation ratipand forpg, of a series of  with financial support of the “Nederlandse Organisatie voor
approximants. For high approximants we found fhandpgs ~ Wetenschappelijk Onderzoek’N.W.O)).
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