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Density of states and localization of electrons in a tight-binding model on the Penrose tiling

E. S. Zijlstra and T. Janssen
Institute for Theoretical Physics, University of Nijmegen, Toernooiveld, NL-6525 ED Nijmegen, The Netherlands

~Received 23 July 1999!

The density of states is studied for periodic and open boundary conditions in the vertex model of the Penrose
tiling. For one gap in the spectrum the gap labeling is done explicitly. Localization of wave functions is studied
by 2p norms in a series of approximants for one value of the energy by means of a contour integration in the
first Brillouin zone. The results show that a surface can smoothen out a spiky density of states. We find
evidence for extended wave functions.
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I. INTRODUCTION

Since the discovery of aperiodic crystals, such as qu
crystals, it has been an important issue how quasiperiod
affects physical properties. Theoretically, efforts have go
into calculating properties of relatively simple model sy
tems with a quasicrystalline structure and intoab initio cal-
culations of approximants, crystals with large unit cells th
have the same local atomic structure as a quasicrystal. In
paper we present calculations for one of the most freque
used models with quasicrystalline structure, the tw
dimensional Penrose tiling with fat and skinny rhombus
We have restricted ourselves to the so-called vertex mo
which is a tight-binding model, where one electronic ba
state is positioned on each vertex, and where the edges o
rhombuses represent bonds of equal strength. A few th
are exactly known for this model. In the center of the sp
trum, atE50, a sharp peak in the density of states is pres
which after some confusion1,2 was shown to correspond t
highly degenerate, strictly localized states3,4 with an exact
lower bound on their abundance of 81250t'9.83% of all
states,5,6 where t is the golden mean,t5(A511)/2. Be-
cause of the bipartite property of the Penrose tiling the sp
trum is symmetric with respect toE50. Properties forE
Þ0 are only approximately known through~i! studies of
finite clusters of the Penrose tiling with open or fixed boun
ary conditions,1,3,7–11~ii ! approximate studies of the infinit
tiling,11–13 and ~iii ! studies of periodic Penrose lattice
~PPL’s!, a special class of approximants of the Penrose
ing. Where the first method requires huge clusters in orde
reduce the influence of the surface, which can be looked a
a line of defects, and where the studies of the infinite tili
need simplifying assumptions, of which the validity is n
clear, in order to keep the calculations tractable, the th
method does not have these disadvantages, for there
approximation other than a slightly modified structure and
surface is present, since periodic boundary conditions ca
used. Contrary to the infinite Penrose tiling, which satisfi
matching rules for the skinny and fat rhombuses everywh
a PPL has two violations of the matching rules per u
cell,14 from which it follows that the density of mismatche
is inversely proportional to the number of sites per unit c
By considering PPL’s with ever larger unit cells the structu
of the Penrose tiling can arbitrarily well be approximated.
this paper we study what effects quasiperiodicity may h
on the fine structure of the electronic density of states and
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look at localization of wave functions by calculating partic
pation ratios.

In order to obtain the density of states of the Penro
tiling, Rieth and Schreiber15 diagonalized the vertex mode
tight-binding Hamiltonian of a PPL with 3571 sites per un
cell with periodic boundary conditions, and evaluated t
results as a set of histograms with a resolutionDE55
31022 in units of the strength of a bond. They conclud
that the density of states is irregular and strongly fluctuati
and that this result is not substantially changed when us
open boundary conditions.Ab initio calculations have shown
that realistic models for approximant phases of thr
dimensional quasicrystals also have a spiky density
states,16 with spikes of width 10–20 meV,17 which are due to
densely distributed almost dispersionless bands.16 The flat-
ness of these bands has been used in combination with B
zmann transport theory to explain exotic experimentally o
served transport properties of quasicrystals,17,18 e.g., high
zero-temperature electrical resistivity. Based on the obse
tion that the spikes become more dense in higher appr
mants, Fujiwara and co-workers17,19 have argued that in the
quasiperiodic limit the density of states is extremely singu
with spikes at all energies and of all widths. On the oth
hand, Hafner and co-workers20,21 have pointed out that the
amplitude of the fine structure may decrease in the qua
eriodic limit, so that only the most pronounced peaks a
~pseudo!gaps remain, a view that is supported by the fa
that, with the exception of one tunneling spectrosco
experiment22 of the decagonal quasicrystal Al73Ni17Co10, no
spikes have been observed.23–25 The following alternative
explanations have been brought up for the experimental
sence of spikes:~1! Much used techniques, such as pho
emission spectroscopy at room temperature or x-ray sp
troscopy, have a resolution that is too low to obser
spikes.24,25 ~2! Tunneling experiments, which have a hig
resolution, probe the surface of a material, which may be
a different, nonquasicrystalline, phase than the bulk.23 ~3!
The local density of states of the first few atomic layers
the surface might be smeared out by surface states and
face resonances, since even if the quasicrystalline phas
persistent up to the surface, it is known that details of
density of states in the energy range of 50 meV depend
the atomic order on several inter atomic distances.23 ~4! Ab
initio calculations and simple model calculations do not ta
into account the effect of electron scattering, which c
3377 ©2000 The American Physical Society
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3378 PRB 61E. S. ZIJLSTRA AND T. JANSSEN
change the density of states on an energy scale of 10–
meV.23 ~5! Possibly deterministic models like the Penro
tiling do not realistically describe quasicrystals. Instead,
reality, randomness might be present. This idea is suppo
by Yamamoto and Fujiwara,26 who have calculated the den
sity of states of a PPL with 3571 sites per unit cell w
random phason strain, by calculating fourk points in the first
Brillouin zone, and then using a very simple estimation
the density of states, assuming that the bands are so flat
it only matters how they overlap with each other. They fou
an enormously spiky density of states with many gaps, wh
disappear when randomness is introduced. In Sec. III it
be shown that this extreme spikiness is probably a resu
their calculational method. Nevertheless, the conclusion
randomness can smear out the density of states is prob
correct. Still, it is unclear which explanation should be us
to understand the absence of spikes in experiments. This
per tries to give a partial answer to this problem by calcu
ing the density of states of the Penrose tiling to an accur
that is as high as possible, which gives the possibility
check the reasoning of Hafner and co-workers20,21 for a con-
crete case, and by doing a calculation with open bound
conditions, which shows that the presence of an unrec
structed surface can smoothen out the density of states o
approximant.

Nothing is rigorously known about the localization
wave functions in the Penrose tiling, except that there
strictly localized states atE50. Localization properties
have, among other methods, been studied by means op
norms,7,15,27which are a generalization of participation num
bers. For a tight-binding eigenstatec that is properly nor-
malized, such that(nucnu251, where the sum is over a
sites in one unit cell of an approximant, the 2p norm is
defined by

ici2p[(
n

ucnu2p, ~1!

and the generalized participation ratio is defined by

p2p[
ici2p

21/(p21)

N
, ~2!

whereN is the number of sites per unit cell. The generaliz
participation ratio, which always lies in the interval@0,1#,
gives an indication of the percentage of sites participat
with a substantial amplitude in a wave function. Note th
p52 gives the ordinary participation ratio. Considering p
ticipation ratios of a series of approximants, and assum
that the same critical wave functionc(r )}ur u2a, 1/p<a
,1, is approximated ever better for higher approximants
can be shown that the generalized participation ratio oc
scales in two dimensions with unit-cell sizeN as27

p2p}N(12pa)/(p21). ~3!

Except for the wave function of the lowest energy in t
spectrum, which has been studied separately for PPL’s w
up to 167 761 sites per unit cell,15 only the average scaling
behavior of groups of wave functions in finite energy inte
vals has been studied. Agreement was found with Eq.~3!,
where by using the 8-norm and PPL’s of maximally 13
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sites per unit cell an exponent3
8 ,a, 5

8 was found,27 and
where by using the ordinary participation ratio~the 4-norm!
and finite clusters with up to 4000 sitesa'0.55 was found,15

which was also found in the above-mentioned study of
wave function of lowest energy.15 Note that Ref. 27 uses th
center model of the Penrose tiling, which is not the ver
model, so that in principle, there is no reason why the
results should be the same. In this paper we study the
ticipation ratio and a generalized participation ratio withp
5 4 of PPL’s with maximally 64 079 sites per unit cell a
fixed energy, without averaging over an energy range,
means of a method that, to our knowledge, is new. We h
found that the wave functions atE53.0 eV are probably
extended.

This paper is organized as follows. In Sec. II a few co
ments are made about properties of PPL’s and how they
be generated through the cut-and-project formalism. In S
III the method and results are given for the density-of-sta
calculations. Also some comments are made about the
merical convergence of the density of states. The gap la
ing of a gap atE52.7 eV is done explicitly. In Sec. IV the
method and results are given for the calculation of the p
ticipation ratio at fixed energy. We conclude in Sec. V.

II. MODEL

The Penrose tiling can be obtained with the cut-an
project method.28 Approximants are usually generated wi
the multigrid method,14,27but in this section we give a recip
for obtaining PPL’s with the cut-and-project formalism
where the notation of Janssen28 is followed. If in the internal

space the vectorsen5(cos2
5pn,sin 2

5pn), n50, . . . ,4 are ap-
proximated by

e05~1,0!,

e15S t121

2
,sin

2

5
pnD ,

e25S 2
t1

2
,~t221!sin

2

5
pnD , ~4!

e35S 2
t1

2
,~12t3!sin

2

5
pnD ,

e45S t121

2
,~t32t221!sin

2

5
pnD ,

where t15(Fn121Fn)/(Fn111Fn21), t25(Fn21
1Fn23)/(Fn1Fn22), and t3511(Fn21 /
Fn11)(F2n /F2n21), with Fi Fibonacci numbers,F050, F1
51, Fi 115Fi1Fi 21, and if g i50, i 50, . . . ,4, then an ap-
proximant of the Penrose pattern is obtained with a unit c
that has the shape of a fat rhombus andF2n131F2n11 ver-
tices per unit cell, and that has mirror symmetry in the sh
diagonal of its unit cell. If t2511(Fn11 /Fn21)(Fn
1Fn22)/(Fn131Fn11), and t35(Fn141Fn12)/(Fn13
1Fn11), and t1 is the same as above, an approximant
obtained with a unit cell that has the shape of a skinny rho
bus, andF2n141F2n12 vertices per unit cell, and that ha
mirror symmetry in the long diagonal of its unit cell. Thes
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PRB 61 3379DENSITY OF STATES AND LOCALIZATION OF . . .
approximants are called periodic Penrose lattices, and
are special because they violate the matching rules of
Penrose tiling minimally.14

In the vertex model, vertices correspond to atoms w
one electronic basis state and edges of the tiles correspo
bonds of equal strength. To indicate orders of magnitude,
choose an edge to have a length of 2 Å , and thecorrespond-
ing bonds to have a strength of 1 eV.

III. DENSITY OF STATES

Because of the bipartite property of the Penrose tiling
Hamiltonian squared can be written as a direct sum,

H25Heven
2

% Hodd
2 , ~5!

whereHeven
2 (Hodd

2 ) acts only on theNeven(Nodd) coefficients
of all even~odd! sites,ceven (codd). We diagonalizedHeven

2 ,
after having permuted it to band diagonal form, with
LAPACK routine29 for a series of approximants and for var
ous k points in the asymmetric unit of the first Brilloui
zone. Table I gives the number of even lattice points of so
approximants and the number of subdiagonals ofHeven

2 after
permutation. We obtained the density of states of an app
imant using linear interpolation of its band structure. W
then convoluted the result with a Gaussian of finite width.
Fig. 1 we show the density of states of a PPL with 64 0
sites per unit cell that was convoluted with a Gaussian
width 20 meV. The normalization is such that the integral
the density of states equals unity. OnlyE.20.4 eV is
shown since the density of states is symmetric with resp
to E50. The difference between the density of states of F
1 and that of one approximant lower~with 39 603 sites per
unit cell! gives an indication of how well Fig. 1 approx
mates the density of states of the Penrose tiling at the g
resolution. The maximum of the absolute value of this d
ference is indicated in Fig. 1 as the error. Figure 1 was
culated with sevenk points in the asymmetric unit of the firs
Brillouin zone. It was checked that using only threek points
gives the same result up to a difference that is much sma
than the indicated error.

Figure 2 gives the density of states for approximants
the Penrose tiling at a ten times higher resolution than Fig
These results have not converged to those of the infi
Penrose tiling. The indicated error is the maximum of t
absolute value of the difference between each plot and

TABLE I. Number of subdiagonalsNsub of Heven
2 for various

approximants after permutation.

N Neven Nsub

1 364 646 72
2 207 1 082 115
3 571 1 726 116
5 778 2 853 121
9 349 4 577 190
15 127 7 504 192
24 476 12 079 315
39 603 19 704 301
64 079 31 781 498
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same calculation with approximately four times fewerk
points. Comparing Figs. 2~a! and 2~c!, which show the den-
sity of states of two different PPL’s, we see that the high
approximant has spikes with lower amplitude, as was a
observed by Hafner and co-workers20,21 Comparing Fig.
2~d!, which has open boundary conditions in one directio
to Fig. 2~c!, we see that an unreconstructed surface
smoothen out the density of states.

When calculating the density of states it is important
monitor the numerical error. Some methods converge fa
than other methods, and it is even known that some meth
do not converge at all.30 Figure 2~b!, e.g., shows the densit
of states of a PPL with 1364 sites per unit cell, calcula
with the method of Yamamoto and Fujiwara.26 The error,
which was estimated by comparing to a calculation involvi
morek points, is not shown, since it is greater than 1.0, fro
which it is clear that in the calculations of Yamamoto a
Fujiwara26 no convergence was obtained with respect to
number ofk points. In Table II we compare the numeric
errors in the density of states of a PPL with 24 476 sites
unit cell, as calculated by three commonly used methods
function of the number ofk points in the asymmetric unit. In
all cases the error shown is the maximum of the abso
value of the difference of the density of states and a re
ence density of states, which was calculated with the sa
method, using 273k points in the asymmetric unit. The thre
methods are:~1! counting the number of states in a set
histograms of width 20 meV;~2! representing each eigen
state of the Hamiltonian as a Gaussian with full width h
maximum 20 meV, centered at its eigenvalue, and~3!

FIG. 1. The density of states of the Penrose tiling, convolu
with a Gaussian of width 20 meV. Thed peak due to strictly local-
ized states atE50 is not smoothened. The error bar indicates h
much the result, which was obtained by numerical methods, m
deviate from the exact result. Because the density of states is s
metric with respect toE50, only a small part of the negative
energy axis is shown. Arrows indicate the two gaps for which
gap labeling is considered in the text. The density of states does
vanish completely nearE52.7 eV due to the smoothening.
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FIG. 2. The density of states of approximan
of the Penrose tiling.~a!, ~c!, and ~d! were con-
voluted with a Gaussian of width 2 meV.~a! and
~b! give the density of states for a PPL with 136
sites per unit cell, where~a! was calculated as
indicated in the text, and~b! was calculated by
the method of Yamamoto and Fujiwara~Ref. 26!.
No error is indicated for~b!, since it is greater
than 1.0.~c! and~d! give the density of states of a
PPL with 24 476 sites per unit cell, where~c! has
periodic boundary conditions, and~d! has peri-
odic boundary conditions in one direction an
open boundary conditions in the other directio
with two unit cells in between the two surface
The higher approximant studied in~c! has spikes
with a lower amplitude than~a!, and these spikes
can partially disappear by introducing a surfac
as is seen in~d!.
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linear Brillouin-zone integration followed by convolutio
with a Gaussian of width 20 meV. The last method, wh
we have used in this paper, is seen to give the best resul
is important to realize that linear interpolation alone, witho
any smoothening, does not treat Van Hove singulari
correctly,30 even when arbitrarily manyk points are used.

At E50.1 eV andE52.7 eV we found gaps in the spect
of the high approximants. Table III gives both the widthsD
of these gaps, which were found by calculating 273k points
in the asymmetric unit of the first Brillouin zone, and th
numerical values of the integrated density of states~IDOS!,
which is defined by

IDOSE[E
2`

E

~density of states!dE. ~6!

From the data of Table III it seems likely that both gaps w
be open in the quasiperiodic limitN→`. The IDOS atE 5
2.7 eV can be seen to converge rapidly with increasing
proximant sizeN. In fact, since an integer number of bands
on either side of a gap, the IDOS in the gap of an appro
mant can be written as a fraction. In case of the gap atE 5
2.7 eV the results of Table III are

TABLE II. Comparison of numerical errors of often used met
ods for calculating the density of states.

Number Error in density of states, using
of ~1! Box ~2! Gaussian ~3! Linear
k points counting broadening interpolation

1 0.024 0.025
3 0.015 0.008 5 0.004 6
7 0.004 4 0.000 82 0.000 25
21 0.001 2 0.000 20 0.000 071
73 0.000 3 0.000 05 0.000 017
. It
t
s

l

p-

i-

IDOS2.7512
Fm22

Fm1Fm12
, m517, . . . ,21, ~7!

wherem is defined to bem[2n12 for approximants with
skinny unit cells andm[2n11 for fat approximants. Prob
ably, the IDOS in the infinite tiling is given by the limit

lim
m→`

IDOS2.752
2

5
1

4

5
t, ~8!

which is in agreement with the gap labeling theorem for
Penrose tiling, which predicts31 that all gaps in the infinite
tiling must be at an IDOS of the form (n1mt)/20, with n
andm integers. It is unlikely that the limit~8! is not correct,
for Eq. ~7! would have to deviate from the given fractio
from a certain approximant on. Imagine that it would happ
in the first approximant that we have not calculated, a P
with N5103 682, then the deviation would be of order 1/N.
From Table III it can be seen that approximately four de

TABLE III. Width D and IDOS of the gaps at 0.1 eV and 2.7 e
for a few approximants.

E50.1 eV E52.7 eV
N D ~meV! IDOS D ~meV! IDOS

9 349 170.8 0.549 58 14.4 0.894 427 211 5
15 127 169.0 0.549 15 19.6 0.894 427 183
24 476 170.8 0.549 31 17.4 0.894 427 194
39 603 170.7 0.549 13 19.9 0.894 427 189
64 079 a 0.549 21 a 0.894 427 191 4
` >0.549 15b 0.894 427 191 0c

aNot calculated.
bThis value is the exact lower bound 41–25t, derived from data of
Arai et al. ~Ref. 5!.

cThis is 22/51(4/5)t, which is derived in the text.
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PRB 61 3381DENSITY OF STATES AND LOCALIZATION OF . . .
mal places that seemed to have converged numerically in
previous approximant, would have to be changed. For hig
approximants this becomes even more unlikely. The IDOS
E50.1 eV does not converge as rapidly, and therefore
cannot do the gap labeling for this gap, but the numer
values in Table III are at least consistent with the predic
value of Araiet al.5, which is also indicated in Table III.

IV. LOCALIZATION

In this section we calculate the participation ratio resolv
density of states atE53.0 eV for a series of approximant
and look how it scales as a function of unit-cell size. T
reason that we restrict ourselves to one value of the energ
that our method, which works for fixed energy, requires l
time and memory on a computer than direct diagonaliza
of Hamiltonian matrices, so that we can calculate partici
tion ratios for relatively high approximants. We plan to d
cuss energy dependence in a later work. The choice to s
E53.0 eV is to a certain extent arbitrary: We wanted
study an energyE.2.0 eV because we had seen that t
density of states converges more rapidly for those energ
We choseE53.0 eV because it lies in the center of th
selected energy range.

First we explain our method by showing how it works f
the tight-binding HamiltonianH of a PPL with 76 sites pe
unit cell, which is indicated schematically in Fig. 3, but
principle, it works for any tight-binding Hamiltonian, and i

FIG. 3. The unit cell of a PPL withN 5 76 is shaded. The
dotted line indicates mirror symmetry. Note that thex andy direc-
tion are not perpendicular. In they direction periodic boundary
conditions are applied and in thex direction the unit cell is periodi-
cally repeated, but only those sites are shown that have at leas
bond connecting it to a site within the shaded region. These site
labeled bya1 . . . a20. Fixed boundary conditions can be applied
choosing constant values fora1 . . . a20. In the text it is explained
how one can find sucha1 . . . a20 that the obtained wave function is
apart from a phase factor exp(ipkx), periodic in thex direction.
he
er
at
e
l

d

d

is
s
n
-

dy

e
s.

practice, we usedHeven
2 of a series of PPL’s, which is more

time efficient on a computer, and which immediately giv
ceven, and we obtained the odd part of the wave function
codd5(H/E)ceven. The goal of our method is to obtain con
tour linesE(kx ,ky)53.0 eV, so that we can perform contou
integrations in the first Brillouin zone. First, we show ho
we can obtain all possiblekx(E,ky), where in they direction
periodic boundary conditions are applied, and we search
compatible periodic boundary conditions in thex direction.
We exploited the fact that a solution with periodic bounda
conditions can always be written as a linear combination
solutions with fixed boundary conditions. This is illustrate
in Fig. 3, where we have numbered the sites outside
shaded unit cell bya1 , . . . ,a20, and the corresponding site
in the unit cell byc1 , . . . ,c20, and where the fixed boundar
conditions $a151,ai50,i 52, . . . ,20%, $a150,a251,ai
50,i 53, . . . ,20%, etc., form a complete set. By solving fo
all these fixed boundary conditions,

~H2E!c5fixed boundary conditions, ~9!

wherec is a column vector containing the coefficients of a
sites in the shaded area including theci ’s, and whereE is the
constant energy,E 5 3.0 eV, we obtain the linear depen
dence

S c1

A

c20

D 5MS a1

A

a20

D , ~10!

where thej th column of the matrixM contains the solutions
ci for the j th set of fixed boundary conditions. Equation~9!
is a system of linear equations, which we have solved w
the sparse Harwell Subroutine Library32 ~HSL! package
ME48. By using iterative refinement, keeping the results
extended precision,M can be obtained in machin
precision.33 By requiring

S c1

A

c10

D 5eipkxS a1

A

a10

D , ~11!

and

FIG. 4. E53.0 eV contour lines in the unit cell of the reciproc
lattice of a PPL with 24 476 sites per unit cell.kx andky are nor-
malized such that they are between21 and 1.
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S c11

A

c20

D 5e2 ipkxS a11

A

a20

D , ~12!

and substituting Eq.~10! for theci ’s, we obtain a generalized
eigenvalue problem, which can be solved by LAPACK~Ref.
29! in a standard way. The generalized eigenvalues of
~11! give the compatible periodic boundary conditions in t
x direction, and the eigenvectors give the correspond
fixed boundary conditions. By solving Eq.~9! again for these
fixed boundary conditions we obtain the wave functi
c(E,kx ,ky). Contours can easily be recognized ifkx is ob-
tained for sufficiently manyky values, and if the two mirror
planes of a properly chosen unit cell of the reciprocal latt
are used. Figure 4 gives the contour lines of a PPL w
24 476 atomic sites per unit cell, as an illustration. The c
tour integration

r~p!5E
C

d~pC2p!

u¹kEu
dl, ~13!

FIG. 5. Participation ratio resolved density of states atE53.0
eV as obtained by contour integration in the unit cell of the rec
rocal lattice for a series of approximants with up to 64 079 sites
unit cell. The results have been smoothened by convoluting th
with a Gaussian with width equal to the indicated resolution. F
clarity, the zeros of the density-of-states axis of the various p
have been shifted with respect to each other. The dotted lines
cate the centers of mass of each distribution. The normalizatio
consistent with that of Sec. III, such that*0

1~density of states!dp
gives the density of states atE53.0 eV. The indicated error is a
estimation of the maximum error of the highest approximant;
other PPL’s have errors of, at most, 0.06. For high approxima
the distribution of the participation ratio is a relatively narrow fun
tion. The center of mass seems to approach a constant valuep
'0.4. This indicates that the wave functions are either extende
critical with a,0.5.
q.

g

e
h
-

where pC is the ~generalized! participation ratio along the
contour as obtained by linear interpolation between cal
lated points, and where]E/]kx and ]E/]ky are linearly in-
terpolated expectation values of the wave functions, gi
the density of states resolved for the~generalized! participa-
tion ratio r(p).

Results for the participation ratiop and for the 8-norm
related generalized participation ratiop8 are given in Fig. 5
and Fig. 6. For low approximants (199,N,9349) the dis-
tributions of p and p8 are quite broad, and they seem
follow a power-law behavior according to Eq.~3!, but for
higher approximants (N.24 476) the distributions becom
more narrow, and seem to tend to finite values, so that in
quasiperiodic limitp and p8 might be well-defined quanti-
ties, and the wave functions are either extended or crit
with a,0.25. It is interesting to speculate about the gen
ality of these results. Clearly, they conflict conclusions
previous studies,15,27 namely that states in the Penrose tilin
are critical, but the reason is obviously that we have be
able to study higher approximants. They also contradict
results of Rieth and Schreiber15 for the state of minimum
energy, but, as was already remarked there,15 this state seems
to be quite specific, and it might not reflect a general beh
ior. More detailed studies will be necessary to test the g
eral validity of the present results.

V. OUTLOOK

We found that the density of states of the Penrose tiling
less spiky than expected,15,27 but due to computational limi-
tations we could not obtain a better resolution than 20 m
We saw that the density of states of approximants, which
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FIG. 6. The 8-norm related generalized participation ratio
solved density of states atE53.0 eV for a series of approximants
The same remarks hold as for Fig. 5. The center of mass~dotted
lines! seems to approach a constant value, which indicates tha
wave functions are either extended or critical witha,0.25.



y
th
te
ca

a
n

el
ik

f-
y

te
te

a-
te

te

e
nts,
tent

r
ant
L

ch-

or

PRB 61 3383DENSITY OF STATES AND LOCALIZATION OF . . .
easily be calculated with a high resolution, is really spik
and that higher approximants have a lower amplitude of
spikes, as has been noticed in other quasiperiodic sys
before.20,21 Also we saw that an unreconstructed surface
smoothen the density of states through surface states
surface resonances, in agreement with an earlier predictio23

Because of computational limitations we cannot decisiv
conclude whether these effects explain the absence of sp
in experiments.23–25 As already indicated in Sec. I, other e
fects, e.g., chemical and structural disorder, may also pla
role. In the future we plan to study the local density of sta
at a surface, which might show the effect of surface sta
even stronger.

For E53.0 eV we could, by means of contour integr
tions in the reciprocal space, obtain the density of sta
resolved for the participation ratiop and forp8, of a series of
approximants. For high approximants we found thatp andp8
v.

.

u

P.

-

,
e
ms
n
nd
.
y
es

a
s
s

s,

maybe approach finite limiting values, which would indica
that the Penrose tiling has extended states atE53.0 eV. This
is surprising,15,27 and it would be interesting to repeat th
same calculation for other energies and higher approxima
to see if our results are general for all energies and persis
in larger systems.
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