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Numerical study of a lattice-gas model for micellar binary solutions
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Two nonperturbative methods such as transfer-matrix finite-size scaling and Monte Carlo simulations are
used to investigate the multicritical behavior of a lattice-gas model proposed by Shnidman and Zia@J. Stat.
Phys50, 839 ~1988!# for studying the micellar binary solutions of water and amphiphile. The phase diagrams
are obtained in both the magnetic field-temperature~H,T! and amphiphile density temperature (rs ,T) for
different values of competing interactions (K0 and K1) and in the presence of the attraction interaction
intermicellar parameter~J!. Our nonperturbative results are compared with previous mean-field ones. Both
methods confirm the absence of the rarefied micelle at high temperature as found previously by mean-field
calculations. Also our phase diagrams present transitions of first- and second-order transitions linked by tri-
critical and multicritical points of higher order. Finally, with the use of finite-size-scaling ideas, the critical
exponents have been calculated. Our results show that this model has a nonuniversal behavior that belongs to
theXYmodel with cubic anisotropy for a certain range of interactions parameters and a universal behavior that
belongs to thed52 Ising model.
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I. INTRODUCTION

In recent years great effort has been made in experime
and theoretical physics to understand the behaviors of p
diagrams of amphiphilic systems.1–16 The amphiphile or a
surfactant molecule is made of two parts having oppos
natures: one is the water soluble~hydrophilic! and the other
is oil soluble~hydrophobic!. The hydrophilic and hydropho
bic parts are linked together by a chemical bond and con
quently cannot phase separate as they would if the two p
were free.

In general, when such molecules are put in water th
prefer the~water-air! surface, and the hydrophilic ‘‘heads
and hydrophobic ‘‘tails’’ lie, respectively, in and out of th
water. Indeed, the amphiphile molecules in water try to
range themselves as to only expose their polar head gr
to the water molecules. For small amount of amphiphil
they practically all lie at the interface and as a conseque
the ~liquid-vapor! surface tension decreases as the concen
tion of amphiphiles increases. Then, at a certain concen
tion @the critical micellar concentration~CMC!# the surface
tension levels off and remains nearly constant. A study
this phenomena8 confirms that the added amphiphiles mo
ecules no longer go preferentially to the surface but rathe
into solution in bulk of the acqueous phase. Then the m
ecules organize themselves as small aggregates ‘‘micel
that are often globular in shape, the tails comprising the
terior and the heads coating the surface and this leads t
isotropic micellar solution ‘‘I.’’

In both the very low-concentration regime, where most
the added molecules are at the surface, and in the hi
concentration case, where aggregates are formed, the p
cal phenomenon responsible for such behavior is referre
as the hydrophobic effect and is due to a subtle balance
PRB 610163-1829/2000/61~5!/3362~10!/$15.00
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tween intermolecular energies and entropies. In particu
when the amphiphile is wholly immersed in water, the m
ecules again try to reduce the area of contact with water
the network of hydrogen bonds between water molecu
reconstructs itself to avoid the region occupied by the hyd
carbon. This constraint on the local structure of water
creases the entropy near the hydrocarbon, and it results i
increase in the free energy of the system.8 For the binary
amphiphilic systems, the aggregation of molecules indu
equilibrium processes controlled by intermoleculer and int
aggregates forces.9 For concentrations of amphiphiles th
exceed the CMC a large variety of structures occur. Mice
aggregates appear in various shapes and sizes. Upon inc
ing further the concentration of amphiphiles, long-range
dered phases may appear, such as lamellar or hexagona
bic states called; ‘‘the lyotropic liquid crystals.’’

This suggests a classification of the aggregates into th
general categories as follows:~1! globular aggregates~zero
dimension! where a spherical micelle is a prototype of th
class;~2! globular aggregates~one dimension! where a cy-
lindrical micelle is the typical example of this class;~3! bi-
layers ~two dimensions! where a disklike aggregate is a
example of this class. The choice among all the poss
shapes is determined by interactions between the hydrop
head groups and geometric packing constraints on the hy
phobic tails, but the transition from one shape to another m
be obtained by changing either the temperature or the
phiphile concentration or by adding a third component.6

Among the experiments study of the structure of t
micellar aggregates are the important work of Deb
and Anacker17 that involved light-scattering studies o
a series n-alkyl trimethyl ammonium bromides
@CnH2n11N~CH3! 3

1Br#. It was concluded that, above th
CMC aggregates appear as the dominant species and th
3362 ©2000 The American Physical Society
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celles underwent a transition from spherical to rodli
aggregates upon increase in amphiphile concentrat
The phase diagram of water andC12E5 system @i.e.,
C12H25~OCH2CH2!5OH] that represents such phenomena
reproduced by Streyet al.13

Several models of the binary mixtures of an amphiph
and water have been proposed in order to reproduce
phases observed experimentally.3,4,18 On the one hand
Gompper and Schick4 and Matsen and Sullivan3 have exhib-
ited within mean-field theory a two-phase coexistence
tween water-rich and amphiphile-rich phases, but at hig
temperatures there is a single disordered phase. On the
hand, within a microscopic approach, Shnidman and Z19

have proposed a lattice-gas model, based on constructi
coarse-grained representation of different types of aggreg
occurring in micellar binary solutions~MBS’s! in terms of
Ising variables. One introduces on a lattice site~i,j! the Ising
variable satisfyingsi , j511 for a micellar section andsi , j
521 describes a region, of comparable size, predomina
occupied by a solvent. A single11 spin completely sur-
rounded by21 spins, is identified with a globular micelle
and a linear chain of11 spins surrounded by21 spins cor-
responds to a rodlike micelle. Finally, a spin11 at the end of
a chain of11 spins surrounded by21 spins, is called an end
cap.19

The two dimensional version of this model has been st
ied within perturbation theory20 and mean-field
approximation21 ~MFA! which yielded rich phase diagram
in the parameter spaceT and h and J, with multicritical
points of higher order. For the three-dimensional version
this model, the phase diagrams obtained within MFA~Ref.
22! describe qualitatively all the states observed experim
tally except the lamellar phase. In order to fill the absence
this latter phase, another term has been added to
Shnidman-Zia Hamiltonian, which reproduce this lamel
phase. The phase diagrams obtained by MFA~Ref. 23! for
this new Hamiltonian show all the lyotropic phases obser
experimentally.

Transfer-matrix methods and Monte Carlo simulations
plied to finite systems and finite-size-scaling theory ha
been used with great success to study the critical prope
of Ising models24–27especially at low spatial dimensions. A
we know these two approaches28–30 include the correlated
fluctuations, which are very strong in two dimensions, a
which are ignored by the mean-field approximation. So i
important to understand this model by using these two p
erful nonperturbative methods such as transfer-matrix fin
size-scaling~TMFSS! calculations and Monte Carlo simula
tions ~MC!. The objectives of this study are~i! to determine
the global phase diagrams in theH-T andrs-T planes,~ii ! to
compare our results with the previous MFA ones,21 ~iii ! to
discuss the critical properties of this rich model from t
exponents calculations.

The remainder of this paper is organized as follows:
Sec. II, we describe the model and the ground-state
grams. Section III contains the formalism of the transf
matrix finite-size-scaling method, and the Monte Carlo sim
lations are described in Sec. IV. Our numerical results for
phase diagrams and the critical exponents are presente
Sec. V. Finally, Sec. VI presents a summary and a con
sion.
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II. MODEL AND GROUND STATE

The Hamiltonian of the two-dimensional proposed mod
is a sum of three terms:

H5Hk1H j1Hh ,

whereHk is effective at the intramicellar length scale, repr
senting many-body interactions responsible for se
association and controlling the size and shape distribution
aggregates, andH j describes an effective short-range co
pling between the aggregates at a larger intermicellar len
scale. Finally,Hh represents the usual chemical potential
controlling the concentration of amphiphiles~micelles! in the
grand canonical formulation.

We assign negative energies2K0 and 2K1 , respec-
tively, for the formation of a spherical micelle and a rodlik
micelle. For an end cap, the average2(K01K1)/2 is cho-
sen.

To write H explicitly, it is convenient to use the lattice
gas variables:

t i , j5~11s i , j !/2, Si , j5~12s i , j !/2.

For further convenience, we define the bilinear products:

ui , j5t i 21 ,t i 11,j ,

v i , j5Si 21,jSi 11,j ,

wi , j5t i 21,jSi 11,j1Si 21,j t i 11,j

and similar ones withi↔ j . In terms of these operators,H is

H52K0( tv iv j2
1
2 ~K01K1!( t~wiv j1v iwj !

2K1( t~uiv j1v iuj !2J( S~ui1uj !2h( ~ t2s!,

~1!

where we have suppressed all except the underlined ind
and the summations are over all sites indices.19

The HamiltonianH is transformed in terms of Ising vari
ables, to the form:

2H5J1(
1

s i1J2(
2

s is j1J3(
3

s is j1J4(
4

s is j

1J5(
5

s is jsk1J6(
6

s is jsk1J7(
7

s is js

1J8(
8

s is jsks l1J9(
9

s is jsks l

1J10(
10

s is jsks lsm . ~2!

The sum runs over all the spins in different sites, bonds
loops, see Fig. 1~a!, and all the interactions parameters a
given by
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J15~25K018J132h!/32,

J252~4K012K118J!/32, J35~2K024K1!/32,

J45~K012K114J!/32,

J55~K012K124J!/32, J65~K022K1!/32,

J75J85K1/32, J95J1052K0/32,

whereK0 , K1 , andJ are positive. We note that the mod
describing the physical situation corresponds to positive
ues ofJ.

Finally the amphiphile density is given by

rs5^t i , j&5 1
2 ~11M !, ~3!

whereM is the total magnetization of the system.
In order to discuss the ground state of this model, it

useful to introduce the ground states of the system,20 which
are defined as follows, see Fig. 1~b!. We denote byG1 the
water ground state~g.s.! which is in the Ising formulation the
disordered state (131) 2

0 @where the subscript~_! designs
that the majority of the spins are downSi521 and the upper

FIG. 1. ~a! Lattice-gas model on a square lattice, shown
crosses, with pairwise interactionsJ2 ,J3 ,J4 ; three-particle interac-
tions J5 ,J6 ,J7 ; four- and five-particle interactionsJ8 , J9 andJ10,
respectively. The zigzag-shaped layersu andv into which the lat-
tice is decomposed for transfer-matrix calculations are indicated
light lines. N design the length of the strip width (N59 in the
figure!. In the upper left-hand corner are shown the numbers 1, 2
4, which labels the four sublattices that define the Monte Ca
order parameters.~b! The states which can be realized as grou
states with the Hamiltonian~1!. The disordered statesG1 andG6 ,
and the ordered statesG2 ,G3 ,G4 ,G5 , which can be reached by
second-order phase transition~Refs. 43 and 44! ~see the text for the
equivalent Ising formulation!.
l-

s

one refer to the associated densityrs from Eq. ~3!#, G2 the
spherical micelles~g.s.! or the antiferromagnetic statec(2
32)2

0.5, G3 the rarefied spherical micelles~g.s.! or the de-
generate structure (232)2

0.25, G4 the infinite rodlike mi-
celles ~g.s.! or the superantiferromagnetic phase~SAF! (2
31)2

0.5, G5 the reversed micelles~g.s.! or the degenerate
structure (232)1

0.75, andG6 the amphiphile~g.s.! which is
the disordered state (131)1

1 .
The phase diagrams at zero temperature of the sys

have been established elsewhere~see Refs. 20 and 21 fo
more details! in the plane~J,h! for all values of the param-
eters,K0 , K1 , such thatK1.K0 and also for the caseK1
,K0 .

III. TRANSFER-MATRIX FINITE-SIZE-SCALING „TMFSS…
CALCULATIONS

Detailed description of the phenomenological finite-siz
scaling method and transfer-matrix formalism on tw
dimensional systems are given in Refs. 31, and 32. In or
to limit the range of the Hamiltonian to only adjacent laye
of the lattice and to accommodate all the interactionsJn , we
define zigzag-shaped layers, as shown in Fig. 1~a!. Also in
our case only even values ofN are considered to avoid th
introduction of interfaces and to preserve the symmetries
all the ground states, the strip widthN must be a multiple of
4 ~we point out that in the case of theG2 ~g.s.! strip widths
which are multiples of 2 could be used! and the system obey
periodic boundary conditions. So withN85N14 the Night-
ingale condition13 for the determination of the critical poin
Kc becomes

jN~Kc!

N
5

jN14~Kc!

N14
, ~4!

wherejN(K) is the correlation length. The symbolK denotes
the set of fieldsK5(T,h). The nature of the transition~first
order or continuous! is determined by examining the finite
size-scaling behavior of the persistence lengthj̃.29,30,33,34If
the scaled persistence lengthj̃/N on the transition line is a
decreasing function ofN then the transition is continuous
otherwise the transition is first order. This method h
proven its accuracy for systems with short-range interacti
that have simple eigenvalue spectrum. In general, when
interactions have long-range strengths, the eigenvalue s
trum becomes more complex to analyze, degeneracies
large finite-size effects may obscure the choice of the per
tence length. An alternative method to identify a first-ord
transition, is to use the exponential divergence withN of the
maximum valuexmax of the nonordering susceptibility. Sinc
this quantity depends only on the derivative of the larg
eigenvalue of the system, it is more robust in the identifi
tion of first-order transition~see Refs. 35–37 for details an
comparison!.

The correlation length and the persistence length are
tained from the largest eigenvalues of the transfer matrix
the transfer-matrix method, the lattice is approximated by
N3` lattice with periodic boundary conditions in the finit
direction.

The full 2N* 2N transfer matrix, which is not symmetri
under transposition, can be block diagonalized using inv

y

3,
o



io
ra

a

e-
he

-
e

ne

ee

ks

er

. F
b

le

ve

a
m
fo
th

ean

er

r is

and

gh-

PRB 61 3365NUMERICAL STUDY OF A LATTICE-GAS MODEL FOR . . .
ance under two-step translation in the transverse direct
TheG1 , G2 , andG6 phases are symmetric under this ope
tion, whereas theG4 phase is antisymmetric and theG3 , G5
states are of mixed symmetries. The symmetric and the
tisymmetric blocks, TS (700* 700 for N512) and TA

(698* 698 for N512), are the only blocks whose symm
tries correspond to ordered phases. We diagonalized t
with real antisymmetric~RAS! library routines ~based on
EISPACK routines! based on IBM 6000. The diagonaliza
tion results in four eigenvalues of interest. The largest eig
value of bothTS and the transfer matrix isl1

S . By virtue of
the Perron-Frobenius theorem, it is positive and nondege
ate. The other three next eigenvalues arel2

S andl3
S , second-

and third-largest eigenvalues ofTS, andl1
A , the largest ei-

genvalue ofTA. These four eigenvalues give rise to thr
important lengths:

j1
S5~ lnul1

S/l2
Su!21 ~5!

is the largest length corresponding toTS. It diverges expo-
nentially with N in the G2 , G4 , G3 , andG5 phases.

j2
S5~ lnul1

S/l3
Su!21 ~6!

is the second largest length corresponding toTS. It remains
small and independent ofN in the ordered phases, but pea
near the transitions.

And finally,

j1
A5~ lnul1

S/l1
Au!21 ~7!

is the largest length corresponding toTA. It diverges expo-
nentially withN in theG4 phase. We note that at the disord
to G4 transitionj1

A>j1
S , with j1

A dominant.
The correlation length exponentv is obtained following

the argument of Nightingale.31

v215 lnS N]jN
21~Kc!/]T

~N11!]jN11
21 ~Kc!/]TD @ ln~N/N11!#21. ~8!

In order to have good estimates ofv we have made dif-
ferentiation that are orthogonal to the phase boundaries
nally the total magnetization is computed from the Gib
free-energy per spin32 as: M52]g1(T,H)/](H) with
g1(T,H)52(T/N)lnul1

Su.

IV. MONTE CARLO SIMULATION

We have performed Monte Carlo simulations to comp
ment transfer-matrix results. The system studied isL* L
square lattice with evenL, containingN5L2 spins, and we
use the well-known Metropolis algorithm38 with periodic
boundary conditions to update the lattice configurations o
one sweep of the entireN spins of the lattice@one Monte
Carlo step~MCS!#. Counted after the system reaches therm
equilibrium. To calculate the physical quantities, we deco
pose the lattice into four sublattices that are appropriate
the description of all the states. Our program calculates
internal energy, the specific heat,

U5
1

L2 ^H&, C5
b2

L2 @^H2&2^H&2# ~9!
n.
-

n-

m

n-

r-

i-
s

-

r

l
-
r
e

with b51/kBT ~wherekB is the Boltzmann constant! and the
sublattice and total magnetizations,Ma (a51,2,3,4) andM,
respectively, by

Ma5
4

L2 K (
i Pa

s i L , a51,2,3,4; M5
1

L2 K (
i

s i L . ~10!

We also measured the order parameters defined as

MG25@M11M42~M21M3!#/4. ~11!

Is the order parameter associated to theG2 phase~antiferro-
magnetic structure!. The order parameter of theG4 phase
~superantiferromagnetic SAF structure!, has two components
defined as

MG4
1 5@M11M22~M31M4!#/4,

MG4
2 5@M11M32~M21M4!#/4. ~12!

Thus the order parameter is defined from the root m
square39 by

MG45@~MG4
1 !21~MG4

2 !2#1/2. ~13!

Finally, for the G3 and G5 structures, the order paramet
has four components to be used;

MG5
1 5@M11M21M32M4#/4,

MG5
2 5@M21M31M42M1#/4,

MG5
3 5@M31M41M12M2#/4,

MG5
4 5@M41M11M22M3#/4. ~14!

And the corresponding root-mean-square order paramete

MG55F (
a51

4

~MG5
a !2G1/2

. ~15!

We shall find useful the measurement of fluctuations~vari-
ance of the order parameter! and the Binder cumulant in the
observableO defined by

x05bL2~^O2&2^O&2!

UL512
^O4&L

3^O2&L
2 , ~16!

whereO designs the sublattice and total magnetizations
the order parameters as defined above.

Finally, we will use finite-size-scaling theory37,39,40 to
analyze our results. Following this approach, in the nei
borhood of the infinite critical pointTc , and by using the
scaled variablex5tL1/v (t5u12T/Tcu), the above quanti-
ties obey for sufficiently largeL;

ML~T!5L2b/v f ~x!,

xLT~T!5Lg/vg~x!,

UL~T!5U0~x!, ~17!
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where in the limit of t→0, x→}, f (x)→Bxb, and g(x)
→Cx2g, so that the infinite lattice critical behavior is reco
ered. If we derive the third equation of~17! with respect to
the temperatureT, we obtain the scaling relation,

UL8~T!5L1/vU08~x!, ~18!

so thatUL8(Tc)5L1/vU08(0). Then we can find the critica
exponentv from the log-log plot ofUL8(Tc) versusL.

V. RESULTS AND DISCUSSION

A. Phase diagrams

For finite temperature, all the phase diagrams in the~h,T!
and (rs ,T) planes are obtained by transfer-matrix finite-siz
scaling calculations withN/N85 4

8 and 8
12. For the Monte

Carlo data, lattices of sizes 8,L,128, but most of the data
are represented withL540. Hereafter we will discuss only
phase diagrams that are different from those of mean-fi
ones.

~i! In the caseK1>K0 and 0<J<K12K0 , (K1 /K0
52.0, J/K050.5), the phase diagram in the~h,T! plane is
obtained by both TMFSS calculations and MC simulatio
as shown in Fig. 2~a!. As seen from Fig. 2~a!, at high tem-
perature, there are two lines of continuous order-disor
transitions,G4↔G1 and G5↔G6 . By decreasing the tem
perature, these transitions change to first order, resultin
two tricritical points C1 (2.3860.001, 1.260.1) and C3
~21.24760.001, 0.460.1). These two ordered structuresG4
and G5 are separated, in the neighborhood ofH50.0, by
lines of first- and second-order transitions at low and h
temperatures respectively, and meeting at a tricritical po
C2 (20.03860.001, 0.560.04). We also note in the phas
diagram, the existence of a multicritical pointB3 where the
three continuous lines intersect. To determine the crit
points we have, on the one hand, for theN/N854/8 and 8/12
TMFSS calculations, used the Nightingale criterion~4! of the
correlation lengths,j1

S for G5↔G6 andj1
A for G4↔G1 ~see

Sec. III!, whereas the nature of the transition is found fro
the behavior of the scaled persistence lengthj2

S . The order-
order critical points and the nature of the transitions ha
been determined from the persistence length30 and the non-
ordering susceptibility where the critical fields are giv
from peaks in these two quantities; the results obtained
both of these methods are consistent with each other. On
other hand, for the MC simulations, the data were obtai
for a lattice of sizeL540 and 100 000 MCS after 50 00
sweeps had been discarded for thermal equilibrium. T
second-order phase boundaries were obtained from pea
the specific heat and along these boundaries neither hy
esis nor discontinuities in the order parameters or the inte
energy was observed. Along the first-order lines strong h
teresis was observed when crossing this line in theH direc-
tion and it is located by using the mixed-start technique.28,30

The tricritical points were determined when the hystere
disappears. We note that the tricritical points have not b
determined with high precision by the MC simulations b
we have applied the Nightingale~4! criterion to the persis-
tence length,24,26,33,34which is more accurate. The results o
tained within these two methods are consistent with e
other, except in the neighborhood ofH50 where finite-size
-
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effects were strong and could be eliminated by using la
strip widths in the TM calculations and finite-size scalin
with extrapolation of the results.29,37 We have also deter
mined from theN/N858/12 TMFSS calculations the phas
diagram in the (rs ,T) plane. The amphiphile densityrs has
been computed at the field corresponding to the maxim
susceptibility. Below the multicritical points the peak in th
susceptibility is exceedingly sharp, and the amphiphile d
sity jumps almost discontinuously. In Fig. 2~b!, we see the
existence of the isotropic micellar phase ‘‘I 1’’ at a low con-
centration of amphiphile. At low temperature, as we incre
the amphiphile concentration we pass to the intermed
phase, which is a coexistence between the isotropic mice
solution and the infinite rodlike micellar solid phase ‘‘G4’’
and then to a pure infinite rodlike micellar solid structu
with long-range order. By increasing the amphiphile conc
trations, we go through coexistences from, infinite rodli
micellar solid phase ‘‘G4’’ with the inverted micellar struc-
ture ‘‘G5 ,’’ and the inverted micellar structure with the iso

FIG. 2. The phase diagram of the model forK1>K0 and 0<J
<K12K0 ~we useK1 /K052 andJ/K050.5): ~a! In theH,T plane,
where the solid and dashed lines design second- and first-o
transitions, respectively, which have been obtained by trans
matrix finite-size-scaling calculations withN/N85

8
12. Monte Carlo

results are also included forL540. ~1! represents critical points
and ~L! indicates first-order transitions. Three tricritical point
C1 , C2 , andC3 occur. ~b! In the equivalentrs ,T plane with the
same parameters interaction as in~a!, here all the data are obtaine
only with TMFSS calculations withN/N85

8
12. At low temperature

the first-order transitions are indicated by coexistence regionsI 1

and I 2 are the isotropic micellar solution with low amphiphile de
sity and the isotropic inverted micellar solution with amphiph
rich density, respectively.
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tropic inverted micellar solution~amphiphile rich phase!
‘‘ I 2’’ to ‘‘ I 2’’ that occurs at very high concentration. At hig
temperature, we pass from the isotropic micellar solutio
‘‘ I 1’’ ~water rich! to the inverted other one ‘‘I 2’’ ~amphiphile
rich! through the pure inverted micellar structure ‘‘G5 .’’ To
compare our results in the~H,T! plane with previous MFA
ones, we see that the latter approximation21 yields large criti-
cal temperature and predicts another ordered phaseG3
phase! at high temperature inside theG5 phase, thus result
ing in wrong topology of the phase diagram~see Refs. 39
and 41 for comparison between these two nonperturba
methods and MFA!. For this purpose, we have spanned,
the H direction, all the region where this phase is suspec
to be, from low-to-high temperatures in order to detect p
sible three peaks in the specific heat and the persiste
length or the nonordering susceptibility. Only two peaks
observed in all the above quantities. Thus confirming
absence of the rarefied micellesG3 at high temperature fo
these values ofK1 /K0 andJ/K0 .

~ii ! In the caseK1<K0/2 andJ.0 (K1 /K050.25,J/K0
51.0) @Fig. 3~a!# in the~h,T! phase diagram there is only on
ordered phase, theG2 phase, which is separated at high te
perature from the disordered phase by a line of criti
points. This line meets, at two tricritical pointsC1
(21.46660.001, 0.760.1) and C2 (1.51160.001, 0.45
60.03), lines of first-order transitions that separate
G1↔G2↔G6 phases at low temperature. The critical poin

FIG. 3. The phase diagram of the model forK1<K0/2 andJ
.0 ~we useK1 /K050.25 andJ/K051.0) based on TMFSS calcu
lations with 8

12 scaling in, ~a! H,T plane where solid and dashe
lines design second- and first-order transitions, respectively. T
tricritical points,C1 andC2 , occur.~b! rs ,T plane where first-order
transitions are indicated by coexistence regions at low tempera
s
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have been obtained by TMFSS calculations withN/N8
58/12 and by applying the Nightingale criterion to the co
relation lengthj1

S . The rs-T phase diagram generated wi
transfer-matrix scaling is shown in Fig. 3~b!. On this phase
diagram one observes that, at low temperatures, a phase
sition from the isotropic micellar solutions (I 1 andI 2) to the
coexistence of the (I 11G2) and (I 21G2) intermediates
phases occurs. Moreover, at high temperatures, a d
phase transition occurs between the isotropic micellar s
tions (I 1 andI 2) and the spherical micellar solid phase. Th
phase diagram has quite a resemblance with that found
perimentally in the C12Na/H2O system.42

Our results are similar but qualitatively better than tho
of MFA ones,21 the main difference is the occurrence of
second tricritical pointC2 at high magnetic field. For this
purpose we have also performed a transfer-matrix study
the scaling behavior of the maximum of the nonorderi
susceptibilityxmax, Fig. 4. We see that the tricritical pointC2
occurs atTt50.4560.03 where a linear behavior is see
MC simulations are also performed in the neighborhood
this value withL550, 60 and our results show discontinu
ties ~continuities! in the order parameter atT50.4 (T
50.5) and are consistent with TMFSS calculations and c
firm the existence of the tricritical point, and so a first-ord
transition at low temperature and a high positive magne
field.

B. Critical behavior

In the preceding section we have concentrated on desc
ing the general characteristics of phase diagrams. To dis
the critical behavior of this model, we have calculated
TMFSS the exponentv from Eq. ~8! with N/N854/8 and
N/N858/12 for all the phase diagrams. For theG4↔G1 and
G5↔G6 transitions, Fig. 2~a!, we have also preformed
detailed MC simulations with finite-size-scaling analysis
the data to extract the exponents and so the universalit

o

re.

FIG. 4. Plots of the maximum of the nonordering susceptibili
xmax for different strip widths as obtained from transfer-matrix r
sults, forK1 /K050.25 andJ/K051.0. The data show at low tem
perature an exponential growth withN that signals a first-order
transition, whereas no exponential growth withN is seen at higher
temperatures indicating a second-order transition. A tricritical po
is located atHt51.5160.01 andTt50.4560.02, where a linear
behavior is seen.
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this model. According to the classification of Shick and c
workers based on Landau-Lifshitz theory, the transitio
G4↔G1 andG5↔G6 belong to the universality class of th
XY model with cubic anisotropy, whereas the disorder-or
G1,6↔G2 and the order-orderG5↔G2 transitions belong to
the Ising universality.43,44 We point out that, in general
when long range interactions are added to the Ising mod
non universal behavior is exhibited by these models.37,39,41

~i! For K1 /K052.0, J/K050.5 to determine the univer
sality of the critical line separating theG4 structure from the
disordered phase, we choose a value ofH far from the cross-
over region,H50.0. We usedH520.4 with long runs and
lattices of size up toL5128. ForL<32 a total of 106 MCS
were used with the runs decreasing in length with increas
L until for L5128 a total of 33105 MCS were kept for the
averages. For the precise determination of the infinite crit
temperature we used the standard cumulant intersec
method.45 Our estimate ofTc from the crossing ofUL for
large L is Tc50.95860.001. With Tc determined, we can
now evaluate the critical exponent of the model. From E
~18! we see that, at the critical temperatureTc , UL8(Tc)
scales asL1/v. Then, from a log-log plot ofUL8(Tc) versusL,
as can be seen in Fig. 5~a!, the best fit to the Monte Carlo
data gives usv50.80660.07. Another way to find the criti-
cal exponentv is to use the location of the specific-heat pe

FIG. 5. log-log plots of Monte Carlo data at the disorder
infinite rodlike micellesG4 , for K1 /K052 and J/K050.5, at H
520.4. The sizes used areL58, 16, 32, 48, 64, 96, and 128.~a!
Size dependence ofUL8(Tc) versusL. The straight line is the best fi
to the data from linear least-squares method, which givesv
50.80660.07. ~b! Size dependence of (TL-Tc) versus L. The
straight line is the best fit to the data from linear least-squa
method, which givesv50.8060.05.
-
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as the finite lattice critical temperatureTc(L), then Tc(L)
2Tc'L21/v. The result obtained, Fig. 5~b!, v50.860.05 is
consistent with the previous one.

Also, for sufficiently large values ofL, the maximum of
the specific heatCmax2C0 with C0 the nondivergent part o
the specific heat and the susceptibilityxmax, should diverge
as La/v and Lg/v, respectively. Finally, atTc the order pa-
rameter should go to 0 asL2b/v. Our results are shown in
Figs. 6~a!–6~c!, the best fits yieldg/v51.71660.035,a/v
50.48660.04 with C0520.6, the value ofC0 used is the
smallest one for which the variation of the entire size ran
appeared linear, which combined with the hyperscaling re
tion dv522a yield v50.804, which is in agreement with
the previous results ofv, andb/v50.13560.02, which is in
agreement with the universal value of 2b/v51/4. We have
also used the same method to find the critical tempera
and the exponents~we do not present the plots here! for the
G5↔G6 transition, we have located the critical temperatu
at Tc51.42760.001, and our best fits givev50.77260.04
from Eq.~18! at Tc andv50.76860.02 from the analysis of
Tc(L)2Tc . For the other quantities our best fits areg/v
51.74860.01, a/v50.62360.02 with C0520.2 andb/v
50.0760.02. In addition, by assuming the values of the e

s

FIG. 6. Finite-size dependence of critical behavior forK1 /K0

52 andJ/K050.5, atH520.4 in log-log plots of:~a! The maxi-
mum of the order-parameter susceptibilityxG4

max versus L. The
straight line is the best fit to the data from linear least-squa
method which givesg/v51.71660.035.~b! The maximum of the
divergent part of the specific heatCG4

max2C0 versusL. The straight
line is the best fit to the data from linear least-squares method w
gives a/v50.48760.04. ~c! The infinite rodlikeG4 order param-
eter at the infinite critical temperatureTc , MG4L(Tc) versusL.
The straight line is the best fit to the data from linear least-squa
method, which givesb/v50.13560.01.
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ponents determined above, we have found good finite-
scaling for large lattices of the specific heat and the susc
tibilities in the ordered phaseG4 , Figs. 7~a!–7~b! ~with v
50.806,a50.388,g51.3855,Tc50.958, andC0520.6),
and also in the other ordered phaseG5 , figures not shown
~with v50.77, a50.478, g51.3476, Tc51.427, andC0
520.2). We note that, we have also performed finite-s
scaling for the different quantitiesC, x, andM by using the
exact values of the exponentv51.0,b50.125,g51.75, and
a50.37 The plots~not shown! we have obtained are wors
than those presented here. All our results, to within the er
in the simulations, are consistent and indicate that these
tinuous transitions are in theXY model with cubic anisot-
ropy. Since our results ofg/v'1.75, this suggest that Suzu
ki’s weak universality whereg/v57/4 @Ref. 46#, holds for
this model.

Transfer-matrix finite-size-scaling results for the therm
exponentv are obtained with strip widthsN/N85 4

8 and 8
12

from Eq. ~8! and are presented in Fig. 8. We note that wh
we approach the crossover region~in the neighborhood of
H50) from both the high and the low field the exponentv is
oscillating and decreasing with the strip widths, so we co
not conclude about the critical behavior in this region a
larger strip widths are needed. Whereas far from this reg
v is varying along these critical lines, even this variation
rather weak. By increasing the magnetic field from bo
sides, the estimates ofv drop to ones that are close to th
Ising tricritical value of 5/9.47–50For the points used for MC

FIG. 7. Finite-size scaling of Monte Carlo data at the disorde
infinite rodlike micellesG4 for K1 /K052 and J/K050.5 and at
H/K0520.4 are shown for~a! the specific heatCG4

and ~b! the
susceptibilityxG4

in the ordered phase. The critical exponents us
arev50.806,a50.388, andg51.3855, withTc50.958.
ze
p-

e

rs
n-

l

n

d
d
n,

simulations, transfer matrix results yield,v50.81860.001 at
H/K0520.4 andv50.7860.001 atH/K051.8. Apart from
the finite-size effects due to the small sizes used here,
TMFSS and MC results are consistent with each other
confirm that the transitionsG4↔G1 andG5↔G6 belong to
the universality class of theXY model with cubic anisotropy
which has nonuniversal variable exponents.

~ii ! For K1 /K050.25, J/K051.0 @Fig. 9# the transfer-
matrix estimate ofv for strip widthsN/N858/12 atH/K0
50.0 is v51.000460.001, which is close to the Ising criti
cal value ofv51 ~Refs. 47–50! and by increasing the mag

o

d

FIG. 8. The critical exponentv, as obtained from transfer
matrix calculations with4

8 and 8
12 scaling@squares forN/N85

4
8 and

plus ~1! for 8
12# for K1 /K052 andJ/K050.5 for the critical tran-

sitions from the disorder to infinite rodlike micelles and revers
micelles, respectively. Only near the tricritical pointsC1 andC3 the
finite-size effects become small, and the8

12 estimates for the tricriti-
cal values ofv ~shown by triangles! are v t1

50.5412 andv t3
50.5325, also Monte Carlo results are shown by stars~* !.

FIG. 9. The critical exponentv, as obtained from transfer
matrix calculations with8

12 scaling~squares! for K1 /K050.25 and
J/K051.0 for the critical transitions from the disorder to spheric
micellesG2 . Our 8

12 estimates for the tricritical values ofv ~shown
by triangles! arev t1

50.574 andv t2
50.566.
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netic field~in absolute value! in both directions, this value o
v persists until the tricritical points are reached where
estimates ofv drop to ones that are close to the Ising tr
ritical value of 5

9. Thus suggesting that the order-disord
transition (G1↔G2↔G6) belongs to the Ising critical and
tricritical universality.

VI. SUMMARY AND CONCLUSION

We have made a thorough study of the multicritical b
havior of a lattice-gas model for micellar binary solutions
water and amphiphile that has been proposed by Shnid
and Zia, by using transfer-matrix finite-size scaling a
Monte Carlo simulations. Apart from the finite-size effec
and the uncertainties in the simulations, the phase diagr
obtained in the magnetic-field-temperature~H,T! plane by
these two nonperturbative methods consist of lines of fi
and second-order transitions with different multicritic
points of higher order and are consistent with each other
are qualitatively better than those obtained by mean-field
proximation MFA.21 The limitation of the MFA is that it
ignores fluctuations that are very strong in two dimensions
predicts the rarefied micelleG3 at high temperature fo
K1 /K052.0 andJ/K050.5, thus resulting in a wrong topo
ogy of the phase diagram. Also the continuous line sepa
ing the disorder from the ordered phaseG2 extends down to
T50 for K1 /K050.25 andJ/K051.0 at a high positive
magnetic field. Our nonperturbative methods~TMFSS and
MC! show the absence of the rarefied micelleG3 for the
former case and the presence of a first-order transition wi
tricritical point for the latter case. We have also determin
the phase diagrams by TMFSS calculations in the a
phiphile concentration-temperature (rs ,T) plane. These
-
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phase diagrams would provide a rich laboratory for expe
mental studies, such as the one of Fig. 3~b! that qualitatively
resemble, the phase diagram of C12Na/H2O system. On the
other hand, these two nonperturbative methods allow u
understand much more this complicated model by compu
the exponents of this model and so to define well its univ
sality class. From TMFSS calculations and large-scale M
simulations, we show that the continuous order-disorder
finite rodlike micelles and reversed micelles to isotropic m
cellar solutions transitions both belong to the universa
class of theXY-model cubic anisotropy, which has nonun
versal variable exponents. Thus confirming the nonuniver
ity scenario of Shnidman for rodlike micelles.51 Also from
TMFSS calculations only, we have shown that the transitio
for the disorder-order isotropic micellar solutions to t
spherical micellar solid phase and the order-order spher
micellar solid phase to reversed micellar phase both bel
to the d52 Ising universality class. All our results are i
good agreement with Schick and co-workers classificat
based on Landau-Lifshitz theory.

Finally, we hope that we have completed the compreh
sion about this rich model and we believe that this Isi
model with multiparticle interactions would be a good ca
didate for describing the experimental micellar phase d
grams and for the determination of the critical exponents
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