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Numerical study of a lattice-gas model for micellar binary solutions
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Two nonperturbative methods such as transfer-matrix finite-size scaling and Monte Carlo simulations are
used to investigate the multicritical behavior of a lattice-gas model proposed by Shnidman ddd Jiat.
Phys50, 839(1988] for studying the micellar binary solutions of water and amphiphile. The phase diagrams
are obtained in both the magnetic field-temperateT) and amphiphile density temperaturpg(T) for
different values of competing interaction&{ and K;) and in the presence of the attraction interaction
intermicellar parametefJ). Our nonperturbative results are compared with previous mean-field ones. Both
methods confirm the absence of the rarefied micelle at high temperature as found previously by mean-field
calculations. Also our phase diagrams present transitions of first- and second-order transitions linked by tri-
critical and multicritical points of higher order. Finally, with the use of finite-size-scaling ideas, the critical
exponents have been calculated. Our results show that this model has a nonuniversal behavior that belongs to
the XY model with cubic anisotropy for a certain range of interactions parameters and a universal behavior that
belongs to thel=2 Ising model.

[. INTRODUCTION tween intermolecular energies and entropies. In particular,
when the amphiphile is wholly immersed in water, the mol-
In recent years great effort has been made in experimentaicules again try to reduce the area of contact with water and
and theoretical physics to understand the behaviors of phaske network of hydrogen bonds between water molecules
diagrams of amphiphilic systemis!® The amphiphile or a reconstructs itself to avoid the region occupied by the hydro-
surfactant molecule is made of two parts having opposingarbon. This constraint on the local structure of water de-
natures: one is the water solulfleydrophilic and the other creases the entropy near the hydrocarbon, and it results in an
is oil soluble(hydrophobig. The hydrophilic and hydropho- increase in the free energy of the systéifor the binary
bic parts are linked together by a chemical bond and conseamphiphilic systems, the aggregation of molecules induces
quently cannot phase separate as they would if the two pargguilibrium processes controlled by intermoleculer and inter-
were free. aggregates forcésFor concentrations of amphiphiles that
In general, when such molecules are put in water theyexceed the CMC a large variety of structures occur. Micellar
prefer the(water-aij surface, and the hydrophilic “heads” aggregates appear in various shapes and sizes. Upon increas-
and hydrophobic “tails” lie, respectively, in and out of the ing further the concentration of amphiphiles, long-range or-
water. Indeed, the amphiphile molecules in water try to ardered phases may appear, such as lamellar or hexagonal cu-
range themselves as to only expose their polar head groupc states called; “the lyotropic liquid crystals.”
to the water molecules. For small amount of amphiphiles, This suggests a classification of the aggregates into three
they practically all lie at the interface and as a consequenceeneral categories as followét) globular aggregate&ero
the (liquid-vapoy surface tension decreases as the concentradimension where a spherical micelle is a prototype of this
tion of amphiphiles increases. Then, at a certain concentralass;(2) globular aggregate®ne dimensionwhere a cy-
tion [the critical micellar concentratiofCMC)] the surface lindrical micelle is the typical example of this clag8) bi-
tension levels off and remains nearly constant. A study ofayers (two dimensions where a disklike aggregate is an
this phenomerfaconfirms that the added amphiphiles mol- example of this class. The choice among all the possible
ecules no longer go preferentially to the surface but rather gshapes is determined by interactions between the hydrophilic
into solution in bulk of the acqueous phase. Then the molhead groups and geometric packing constraints on the hydro-
ecules organize themselves as small aggregates “micellesphobic tails, but the transition from one shape to another may
that are often globular in shape, the tails comprising the inbe obtained by changing either the temperature or the am-
terior and the heads coating the surface and this leads to diphile concentration or by adding a third comporfent.
isotropic micellar solution f.” Among the experiments study of the structure of the
In both the very low-concentration regime, where most ofmicellar aggregates are the important work of Debye
the added molecules are at the surface, and in the high@nd Anacket’ that involved light-scattering studies of
concentration case, where aggregates are formed, the physi- series n-alkyl trimethyl ~ammonium  bromides
cal phenomenon responsible for such behavior is referred t6C,H,n+ 1N(CHg) 3 Br]. It was concluded that, above the
as the hydrophobic effect and is due to a subtle balance b&MC aggregates appear as the dominant species and the mi-
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celles underwent a transition from spherical to rodlike Il. MODEL AND GROUND STATE
aggregates upon increase in amphiphile concentration.
The phase diagram of water an@;,Es system [i.e.,
Cy,H,5(0CH,CH,)sOH] that represents such phenomena is
reproduced by Stregt al®

Several models of the binary mixtures of an amphiphile
and water have been proposed in order to reproduce thghereH, is effective at the intramicellar length scale, repre-
phases observed experimentdff:® On the one hand, senting many-body interactions responsible for self-
Gompper and Schiékand Matsen and Sullivdrhave exhib-  association and controlling the size and shape distribution of
ited within mean-field theory a two-phase coexistence beaggregates, an#i; describes an effective short-range cou-
tween water-rich and amphiphile-rich phases, but at highepling between the aggregates at a larger intermicellar length
temperatures there is a single disordered phase. On the othgtale. FinallyH, represents the usual chemical potential for
hand, within a microscopic approach, Shnidman and%zia controlling the concentration of amphiphilésicelles in the
have proposed a lattice-gas model, based on constructinggrand canonical formulation.
coarse-grained representation of different types of aggregates We assign negative energiesK, and —K;, respec-
occurring in micellar binary solution@VIBS’s) in terms of tively, for the formation of a spherical micelle and a rodlike
Ising variables. One introduces on a lattice $ifp the Ising  micelle. For an end cap, the averagéK,+K,)/2 is cho-
variable satisfyings; j=+1 for a micellar section and, sen.
= —1 describes a region, of comparable size, predominantly To write H explicitly, it is convenient to use the lattice-
occupied by a solvent. A single-1 spin completely sur- gas variables:
rounded by—1 spins, is identified with a globular micelle,
and a linear chain of-1 spins surrounded by 1 spins cor- tij=(1+0 )2, S;=(1-0)]/2.
responds to a rodlike micelle. Finally, a spiri at the end of
a chain of+1 spins surrounded by 1 spins, is called an end For further convenience, we define the bilinear products:
cap®®

The Hamiltonian of the two-dimensional proposed model
is a sum of three terms:

H:Hk+Hj+Hh,

The two dimensional version of this model has been stud- Ui j=ti—1,tivqy,
ied within perturbation theojy and mean-field
approximatioA' (MFA) which yielded rich phase diagrams, Vii=S-1;S.1j,

in the parameter spac€é and h and J, with multicritical

points of higher order. For the three-dimensional version of

this model, the phase diagrams obtained within M@Ref. Wi =tio1jSe1j FSi-gjtivg,
22) describe qualitatively all the states observed experimen—ml similar ones with< . In terms of these operatord, is
tally except the lamellar phase. In order to fill the absence o? ' '
this latter phase, another term has been added to the

Shnidman-Zia Hamiltonian, which reproduce this lamellar j= — k> tviv;— 3 (Ko+ Ky t(Wivj+Viw;)

phase. The phase diagrams obtained by MR&f. 23 for

this new Hamiltonian show all the lyotropic phases observed

experimentally. - K12 t(ujvj+viu;) —JE S(uj+uj)— hE (t—s),
Transfer-matrix methods and Monte Carlo simulations ap-
plied to finite systems and finite-size-scaling theory have 1)

been used with great success to study the critical properties ) o

we know these two approach&s® include the correlated and the summations are over all sites indites. .
fluctuations, which are very strong in two dimensions, and The HamiltonianH is transformed in terms of Ising vari-
which are ignored by the mean-field approximation. So it isables, to the form:

important to understand this model by using these two pow-
erful nonperturbative methods such as transfer-matrix finite-
size-scaling TMFSS calculations and Monte Carlo simula-
tions (MC). The objectives of this study afe to determine
the global phase diagrams in theT andp¢-T planes(ii) to
compare our results with the previous MFA oR&sijii) to
discuss the critical properties of this rich model from the
exponents calculations.

The remainder of this paper is organized as follows: In
Sec. Il, we describe the model and the ground-state dia-
grams. Section Il contains the formalism of the transfer-
matrix finite-size-scaling method, and the Monte Carlo simu-
lations are described in Sec. IV. Our numerical results for the
phase diagrams and the critical exponents are presented Tie sum runs over all the spins in different sites, bonds and
Sec. V. Finally, Sec. VI presents a summary and a concluloops, see Fig. (), and all the interactions parameters are
sion. given by

_H:J]_E O'i+J22 O-io-j+‘]3z UiO'j+J42 O'iO'J'
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FIG. 1. (a) Lattice-gas model on a square lattice, shown by
crosses, with pairwise interactiods,J;,J,; three-particle interac-
tions Jg,Jg,Jd7; four- and five-particle interactiond;, Jg andJqg,
respectively. The zigzag-shaped layarandv into which the lat-
tice is decomposed for transfer-matrix calculations are indicated b
light lines. N design the length of the strip widtiNE9 in the
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one refer to the associated densityfrom Eq. (3)], G, the
spherical micelledg.s) or the antiferromagnetic staig(2
% 2)%% G, the rarefied spherical micelldg.s) or the de-
generate structure (22)%?°, G, the infinite rodlike mi-
celles(g.s) or the superantiferromagnetic pha&@AF) (2
x1)%® Gg the reversed micellegg.s) or the degenerate
structure (22)%"®, andGg4 the amphiphile(g.s) which is

the disordered state &1)%.

The phase diagrams at zero temperature of the system
have been established elsewhésee Refs. 20 and 21 for
more detailg in the plane(J,h) for all values of the param-
eters,Ky, Ky, such thatK,;>K, and also for the cask;
<K,.

I1l. TRANSFER-MATRIX FINITE-SIZE-SCALING
CALCULATIONS

Detailed description of the phenomenological finite-size-
scaling method and transfer-matrix formalism on two-
dimensional systems are given in Refs. 31, and 32. In order
to limit the range of the Hamiltonian to only adjacent layers
of the lattice and to accommodate all the interactidnswe
define zigzag-shaped layers, as shown in Fi@).JAlso in
our case only even values df are considered to avoid the
introduction of interfaces and to preserve the symmetries of
all the ground states, the strip widtkhmust be a multiple of
4 (we point out that in the case of ti®, (g.s) strip widths
which are multiples of 2 could be useaind the system obeys
periodic boundary conditions. So with' =N+4 the Night-
ingale conditioh® for the determination of the critical point

(TMFSS)

figure). In the upper left-hand corner are shown the numbers 1, 2, 3K becomes
4, which labels the four sublattices that define the Monte Carlo

order parametergb) The states which can be realized as ground
states with the Hamiltoniafil). The disordered statg3; and Gg,
and the ordered stat€3,,G5,G,,G5, which can be reached by a
second-order phase transitidRefs. 43 and 44(see the text for the
equivalent Ising formulation

J;=(—5Ko+8J+32h)/32,

Jo=—(4Ko+ 2K, +83)/32, J3=(2Ko—4K,)/32,

Ja=(Ko+ 2K, +43)/32,

J5=(K0+2K1_4J)/32, J6=(K0_2K1)/32,

J7:J8: K1/32, J9:J10: - K0/32,

whereK,, K;, andJ are positive. We note that the model
describing the physical situation corresponds to positive va
ues ofJ.

Finally the amphiphile density is given by

ps=(ti ) =3(1+M),

whereM is the total magnetization of the system.

3

fN(Kc) . §N+4(Kc)
N  N+4

: 4
whereé&y(K) is the correlation length. The symbi§ldenotes
the set of fieldK =(T,h). The nature of the transitiofirst
order or continuousis determined by examining the finite-

size-scaling behavior of the persistence lengfi-303334f

the scaled persistence lengiiN on the transition line is a
decreasing function oN then the transition is continuous,
otherwise the transition is first order. This method has
proven its accuracy for systems with short-range interactions
that have simple eigenvalue spectrum. In general, when the
interactions have long-range strengths, the eigenvalue spec-
trum becomes more complex to analyze, degeneracies and
large finite-size effects may obscure the choice of the persis-
tence length. An alternative method to identify a first-order
transition, is to use the exponential divergence Wtbf the
maximum valuey™®* of the nonordering susceptibility. Since
this quantity depends only on the derivative of the largest
eigenvalue of the system, it is more robust in the identifica-
tion of first-order transitionsee Refs. 35—37 for details and
comparison

The correlation length and the persistence length are ob

In order to discuss the ground state of this model, it istained from the largest eigenvalues of the transfer matrix. In

useful to introduce the ground states of the syst&nhich
are defined as follows, see Figlbl We denote byG; the
water ground statég.s) which is in the Ising formulation the
disordered state (41)° [where the subscrift) designs
that the majority of the spins are dov= — 1 and the upper

the transfer-matrix method, the lattice is approximated by an
NX oo |attice with periodic boundary conditions in the finite
direction.

The full 2V* 2N transfer matrix, which is not symmetric
under transposition, can be block diagonalized using invari-
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ance under two-step translation in the transverse directiorwith 8= 1/kgT (wherekg is the Boltzmann constanand the
TheGq, G,, andGg phases are symmetric under this opera-sublattice and total magnetizationd,, («=1,2,3,4) and\,
tion, whereas th&, phase is antisymmetric and tiB, G5 respectively, by

states are of mixed symmetries. The symmetric and the an-
tisymmetric blocks, TS (700°700 for N=12) and TA 4 D
(698698 for N=12), are the only blocks whose symme- "2~ | 2 i
tries correspond to ordered phases. We diagonalized them .
with real antisymmetric(RAS) library routines(based on We also measured the order parameters defined as
EISPACK routines based on IBM 6000. The diagonaliza-
tion results in four eigenvalues of interest. The largest eigen- Mga=[M1+My=(Ma+Ms)]/4. (11)
value of bOthTS and the transfer matrix |E§ By virtue of Is the order parameter associated to Gﬂpphase(antiferro_
the Perron-Frobenius theorem, it is positive and nondegenemagnetic structute The order parameter of th&, phase
ate. The other three next eigenvalues)afand)\i, second-  (superantiferromagnetic SAF structyrbas two components
and third-largest eigenvalues ®f, and )\ﬁf, the largest ei- defined as

genvalue ofTA. These four eigenvalues give rise to three

>, a=1,2,3,4: M:é<20i>. (10

lea

important lengths: M&s=[M1+Mp—(Ms+My)]/4,

E=>n\I\3]) 7t (5 MZ,=[M;+Mz—(M,y+M,)]/4. (12)
is the largest length corresponding T6. It diverges expo- Thus the order parameter is defined from the root mean
nentially withN in the G,, G,, G;, andGg phases. squaré® by

&=(nAINGH (8) Moa=[(Mga)*+(Mg4)?12 (13

is the second largest length corresponding o It remains  Finally, for the G; and G5 structures, the order parameter
small and independent &f in the ordered phases, but peaks has four components to be used;
near the transitions.

And finally, Mgs=[M1+My+M;z—M,]/4,

&=0n\IN) (7) MZc=[M,+Mg+M,—M,]/4,

is the largest length corresponding T8. It diverges expo-
nentially withN in the G, phase. We note that at the disorder
to G, transition&f= &5, with £, dominant.

The correlation length exponentis obtained following
the argument of Nightinga@.

ME=[M3+M,+M;—M,]/4,

M&s=[M4+M;+M,—M;]/4. (14)
And the corresponding root-mean-square order parameter is
. Na&y (Ke)/oT 112

-1
= N Dag T (KT NN DT (®)

\Y

Mgs= (15

4
;1 (M&s)?

In order to have good estimates wfwe have made dif- \ve shall find useful the measurement of fluctuatiovesi-

ferentiation that are orthogonal to the phase boundaries. Fince of the order parametand the Binder cumulant in the
nally the total magnetization is computed from the GibbsgpservableD defined by

free-energy per spii as: M=—ag,(T,H)/d(H) with

91(T,H)=—(T/N)In]xg. Xo=BL*((0?%)—(0)?)
IV. MONTE CARLO SIMULATION (O
U =1- 3(0%)2" (16)

We have performed Monte Carlo simulations to comple-
ment transfer-matrix results. The system studied.’d  whereO designs the sublattice and total magnetizations and
square lattice with eveh, containingN=_L? spins, and we the order parameters as defined above.
use the well-known Metropolis algorith¥h with periodic Finally, we will use finite-size-scaling thedy?**° to
boundary conditions to update the lattice configurations ovegnalyze our results. Following this approach, in the neigh-

one sweep of the entirdl spins of the latticdone Monte  porhood of the infinite critical poinT.., and by using the
Carlo stepMCS)]. Counted after the system reaches thermakcaled variablex=tL¥ (t=|1—T/T,|), the above quanti-

equilibrium. To calculate the physical quantities, we decom+jes obey for sufficiently largé;
pose the lattice into four sublattices that are appropriate for

the description of all the states. Our program calculates the M (T)=L PVf(x),
internal energy, the specific heat,
XL T(T)=L"g(x),
U= (H c:—B2 H?) —(H)?] (9)
- L2< >' - L2[< > < UL(T)=UO(X), (17)
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where in the limit oft—0, x—o, f(xX)—Bx?, and g(x) 16
—CXx 7, so that the infinite lattice critical behavior is recov- 14

ered. If we derive the third equation ¢I7) with respect to ol

the temperaturd@, we obtain the scaling relation, 1
1.0

U/ (T)=L%™U(x), (189 o8l

. . F oosl

so thatU|(T.)=L"U/(0). Then we can find the critical 08T

exponentv from the log-log plot ofU| (T) versusL. 04T

0.2
V. RESULTS AND DISCUSSION 00l

A. Phase diagrams

For finite temperature, all the phase diagrams in(th€)

1.6 ————T——T——

and (ps, T) planes are obtained by transfer-matrix finite-size- - &% R
scaling calculations witiN/N’=% and 3. For the Monte 141 () AR ]
Carlo data, lattices of sizes<8L <128, but most of the data 12 g’ X -
are represented with=40. Hereafter we will discuss only 10k f; % |
phase diagrams that are different from those of mean-field _ __r ? G Vo
ones. ¥ 0.8 C yp&@ 5 o/o o\o—_
8 [ / 7 S
(i) In the caseK,;=K, and 0<J<K;—Kg, (K;/Kq 06 I S X g 3
=2.0,J/K,=0.5), the phase diagram in tt{a,T) plane is 04 | /o-ofo\ G4/o'°/ % 4 J
obtained by both TMFSS calculations and MC simulations, o2 bo” o & % 1;+G §
as shown in Fig. @). As seen from Fig. @), at high tem- o I+G, ok GI'4+G5 %
perature, there are two lines of continuous order-disorder %8 (>~ o6 o8 10

transitions,G,< G, and G5+ Gg. By decreasing the tem-
perature, these transitions change to first order, resulting in
two tricritical points C; (2.38+0.001, 1.2-0.1) andC; FIG. 2. The phase diagram of the model foy=K, and 0<J
(—1.247+0.001, 0.4-0.1). These two ordered structui@s <K;—K, (we useK, /Ko=2 andJ/K,=0.5): (a) In theH,T plane,
and Gs are separated, in the neighborhoodH#0.0, by  where the solid and dashed lines design second- and first-order
lines of first- and second-order transitions at low and highransitions, respectively, which have been obtained by transfer-
temperatures respectively, and meeting at a tricritical poinnatrix finite-size-scaling calculations with/N’ = 2. Monte Carlo
C, (—0.038+0.001, 0.5-0.04). We also note in the phase results are also included fdr=40. (+) represents critical points
diagram, the existence of a multicritical poiBf where the and (¢) indicates first-order transitions. Three tricritical points,
three continuous lines intersect. To determine the criticalC;, C,, andCj; occur. (b) In the equivalenpg, T plane with the
points we have, on the one hand, for thiN’ =4/8 and 8/12 same parameters interaction aga here all the data are obtained
TMFSS calculations, used the Nightingale criterighof the  only with TMFSS calculations wittN/N’ = 15. At low temperature
correlation Iengthsgf for Gg«>Gg and gll“ for G,~G, (see the first-order transitions are indicated by coexistence regians.
Sec. I, whereas the nature of the transition is found fromand! are the isotropic micellar solution with low amphiphile den-
the behavior of the scaled persistence Ier’@h The order- s_ity and the isotropic inverted micellar solution with amphiphile
o . . ich density, respectively.
order critical points and the nature of the transitions havd
been determined from the persistence leffytnd the non-
ordering susceptibility where the critical fields are giveneffects were strong and could be eliminated by using large
from peaks in these two quantities; the results obtained bgtrip widths in the TM calculations and finite-size scaling
both of these methods are consistent with each other. On theith extrapolation of the resulfS:*” We have also deter-
other hand, for the MC simulations, the data were obtainednined from theN/N’=8/12 TMFSS calculations the phase
for a lattice of sizeL=40 and 100000 MCS after 50000 diagram in the f<,T) plane. The amphiphile densipg has
sweeps had been discarded for thermal equilibrium. Théeen computed at the field corresponding to the maximum
second-order phase boundaries were obtained from peaks $nisceptibility. Below the multicritical points the peak in the
the specific heat and along these boundaries neither hystesusceptibility is exceedingly sharp, and the amphiphile den-
esis nor discontinuities in the order parameters or the internality jumps almost discontinuously. In Fig(l, we see the
energy was observed. Along the first-order lines strong hysexistence of the isotropic micellar phasg," at a low con-
teresis was observed when crossing this line inHhdirec-  centration of amphiphile. At low temperature, as we increase
tion and it is located by using the mixed-start technifft®.  the amphiphile concentration we pass to the intermediate
The tricritical points were determined when the hysteresiphase, which is a coexistence between the isotropic micellar
disappears. We note that the tricritical points have not beerolution and the infinite rodlike micellar solid phas&,”
determined with high precision by the MC simulations butand then to a pure infinite rodlike micellar solid structure
we have applied the Nightingald) criterion to the persis- with long-range order. By increasing the amphiphile concen-
tence lengttt*253334yhich is more accurate. The results ob- trations, we go through coexistences from, infinite rodlike
tained within these two methods are consistent with eaclmicellar solid phase G,” with the inverted micellar struc-
other, except in the neighborhood ldf=0 where finite-size ture “Gg,” and the inverted micellar structure with the iso-

amphiphile density p,
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1.0 - b ?o . sults, forK;/Ky=0.25 andJ/K,=1.0. The data show at low tem-
> 08| 4 G % i perature an exponential growth witk that signals a first-order
= o, ,{ 2 \<>\ I ] transition, whereas no exponential growth wihs seen at higher
06 N o/o o O\o z ] temperatures indicating a second-order transition. A tricritical point
0.4 /0/ \0\ /0/ \o\ N is located atH;=1.51+0.01 andT;=0.45+0.02, where a linear
| & Q O 0, 4 . .
02 K ,+G, \z?/o/ 1,+G, \o\ _ behavior is seen.
0.0 A I ] Y ] . I Ay ) )
0.0 0.2 0.4 0.6 0.8 1.0 have been obtained by TMFSS calculations wikKN'
Amphiphile density p_ =8/12 and by applying the Nightingale criterion to the cor-

relation Iengthgf. The ps-T phase diagram generated with
FIG. 3. The phase diagram of the model #y<Ky/2 andJ  transfer-matrix scaling is shown in Fig(i8. On this phase
>0 (we useK, /Ky=0.25 andl/K,=1.0) based on TMFSS calcu- diagram one observes that, at low temperatures, a phase tran-
lations with 3 scaling in,(a) H,T plane where solid and dashed sition from the isotropic micellar solutions(andl,) to the
lines design second- and first-order transitions, respectively. Tweoexistence of thel{+G,) and (,+G,) intermediates
tricritical points,C,; andC,, occur.(b) ps,T plane where first-order phases occurs. Moreover, at high temperatures, a direct
transitions are indicated by coexistence regions at low temperatur@hase transition occurs between the isotropic micellar solu-
tions (I, andl,) and the spherical micellar solid phase. This
tropic inverted micellar solutionamphiphile rich phase phase diagram has quite a resemblance with that found ex-
“12"to " I," that occurs at very high concentration. At high perimentally in the ¢Na/H,0 systent?
temperature, we pass from the isotropic micellar solutions Qur results are similar but qualitatively better than those
“11" (water rich to the inverted other onel;” (amphiphile  of MFA ones?! the main difference is the occurrence of a
rich) through the pure inverted micellar structur&s.” To  second tricritical pointC, at high magnetic field. For this
compare our results in théd,T) plane with previous MFA  purpose we have also performed a transfer-matrix study of
ones, we see that the latter approximatfoields large criti-  the scaling behavior of the maximum of the nonordering
cal temperature and predicts another ordered ph&g ( susceptibilityy™® Fig. 4. We see that the tricritical poi@,
phasg at high temperature inside ti@s phase, thus result- occurs atT,=0.45+0.03 where a linear behavior is seen.
ing in wrong topology of the phase diagraisee Refs. 39 MC simulations are also performed in the neighborhood of
and 41 for comparison between these two nonperturbativghis value withL =50, 60 and our results show discontinui-
methods and MFA For this purpose, we have spanned, inties (continuities in the order parameter aT=0.4 (T
the H direction, all the region where this phase is suspected- g.5) and are consistent with TMFSS calculations and con-
to be, from low-to-high temperatures in order to detect posfirm the existence of the tricritical point, and so a first-order

sible three peaks in the specific heat and the persistenggansition at low temperature and a high positive magnetic
length or the nonordering susceptibility. Only two peaks areg|(.

observed in all the above quantities. Thus confirming the
absence of the rarefied micell& at high temperature for . )
these values oK, /K, andJ/K. B. Critical behavior

(i) In the caseK;<Ky/2 andJ>0 (K;/Ky=0.25,J/K, In the preceding section we have concentrated on describ-
=1.0)[Fig. 3(@]in the(h,T) phase diagram there is only one ing the general characteristics of phase diagrams. To discuss
ordered phase, th®8, phase, which is separated at high tem-the critical behavior of this model, we have calculated by
perature from the disordered phase by a line of criticaTMFSS the exponent from Eg. (8) with N/N’=4/8 and
points. This line meets, at two tricritical point€; N/N’=8/12 for all the phase diagrams. For Bg«— G, and
(—1.466+0.001, 0.72=0.1) and C, (1.511*+0.001, 0.45 G5+ Gg transitions, Fig. ), we have also preformed a
+0.03), lines of first-order transitions that separate thedetailed MC simulations with finite-size-scaling analysis of
G, G, Gg phases at low temperature. The critical pointsthe data to extract the exponents and so the universality of
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FIG. 6. Finite-size dependence of critical behavior Kor/K,
=2 andJ/Ky=0.5, atH=—0.4 in log-log plots of:(a) The maxi-
mum of the order-parameter susceptibili}é{g'jlx versusL. The

: , : g . straight line is the best fit to the data from linear least-squares
Size dependence &f| (T.) versusL. The straight line is the best fit . - — .
to the data from linear least-squares method, which gives method which givesy/v=1.716+0.035.(b) The maximum of the

—0.806+0.07. (b) Size dependence ofT(-T,) versusL. The c.ilve.rgent part gf the specific he@g‘j‘x—co versusL. The straight .

straight line is the best fit to the data from linear least-squaredne is the best fit to the data from linear least-squares method which

method, which gives =0.80+0.05. gives a/v=0.487=0.04. (c) The infinite rodlikeG, order param-
eter at the infinite critical temperature,, MG4,(T.) versusL.

. . . . The straight line is the best fit to the data from linear least-squares
this model. According to the classification of Shick and €O~ method, which giveg/v=0.135¢0.01.

workers based on Landau-Lifshitz theory, the transitions
G4+ G, andGs+ G belong to the universality class of the as the finite lattice critical temperatui&(L), thenT¢(L)
XY model with cubic anisotropy, whereas the disorder-order— T ~L ¥ The result obtained, Fig.(5), v=0.8+0.05 is
G16— G, and the order-ordeGs«+— G, transitions belong to  consistent with the previous one.
the Ising universality®** We point out that, in general, Also, for sufficiently large values df, the maximum of
when long range interactions are added to the Ising model, the specific hea€™**—C, with C, the nondivergent part of
non universal behavior is exhibited by these modéf§:**  the specific heat and the susceptibiligf® should diverge

(i) For K;/K=2.0, J/IKo=0.5 to determine the univer- asL*V andL”", respectively. Finally, af, the order pa-
sality of the critical line separating ti®, structure from the rameter should go to 0 ds™#"V. Our results are shown in
disordered phase, we choose a valuéidar from the cross-  Figs. §a)—6(c), the best fits yieldy/v=1.716+ 0.035, a/v
over regionH=0.0. We usedH = —0.4 with long runs and  =0.486+0.04 with C,=—0.6, the value ofC, used is the
lattices of size up td.=128. ForL<32 a total of 16MCS  smallest one for which the variation of the entire size range
were used with the runs decreasing in length with increasin@gppeared linear, which combined with the hyperscaling rela-
L until for L=128 a total of 3< 10° MCS were kept for the tion dv=2— « yield v=0.804, which is in agreement with
averages. For the precise determination of the infinite criticajhe previous results of, anda/v=0.135+0.02, which is in
temperature we used the standard cumulant intersectiofgreement with the universal value oB& = 1/4. We have
method’® Our estimate ofT; from the crossing olJ, for  aiso used the same method to find the critical temperature
large L is T,=0.958+0.001. With T, determined, we can and the exponentsve do not present the plots heffer the
now evaluate the critical exponent of the model. From EqGg— G, transition, we have located the critical temperature
(18) we see that, at the critical temperatufe, U/ (T.) at T,=1.427+0.001, and our best fits give=0.772+0.04
scales a&*". Then, from a log-log plot ob/(T.) versusL,  from Eqg.(18) at T, andv=0.768+0.02 from the analysis of
as can be seen in Fig(&, the best fit to the Monte Carlo T.(L)—T.. For the other gquantities our best fits ayév
data gives uy =0.806+0.07. Another way to find the criti- =1.748+0.01, a/v=0.623+0.02 with Cy=—0.2 andg/v
cal exponent is to use the location of the specific-heat peak=0.07+0.02. In addition, by assuming the values of the ex-

FIG. 5. log-log plots of Monte Carlo data at the disorder to
infinite rodlike micellesG,, for K;/Ky=2 andJ/K,=0.5, atH
=—0.4. The sizes used ate=8, 16, 32, 48, 64, 96, and 126)
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1E-3 | 2 96 | matrix calculations withg andlé2 scaling[squares folN/N’ =§-§ and
i " ig ] plus (+) for 3] for K, /K,=2 andJ/K,=0.5 for the critical tran-
slope=-y=-1.387+0.03 sitions from the disorder to infinite rodlike micelles and reversed
micelles, respectively. Only near the tricritical poiig andC; the
Y O S Y N S Y R S finite-size effects become small, and theestimates for the tricriti-
0.1 1 10 cal values ofv (shown by triangles are v, =0.5412 andv,

-t L =0.5325, also Monte Carlo results are shown by sté)s

FIG. 7. Finite-size scaling of Monte Carlo data at the disorder tosimulations, transfer matrix results yield=0.818+ 0.001 at
infinite rodlike micellesG, for K;/Kq=2 andJ/K,=0.5 and at H/Ky=—0.4 andv=0.78+0.001 atH/Ky=1.8. Apart from
H/Ko=—0.4 are shown fofa) the specific heaCg, and (b) the  the finite-size effects due to the small sizes used here, the
susceptibilityx, in the ordered phase. The critical exponents usedTMFSS and MC results are consistent with each other and
arev=0.806,a=0.388, andy=1.3855, withT.=0.958. confirm that the transition&,«+ G, and G5« Gg¢ belong to

the universality class of th&Y model with cubic anisotropy
ponents determined above, we have found good finite-sizethich has nonuniversal variable exponents.
scaling for large lattices of the specific heat and the suscep- (i) For K;/Ky=0.25, J/JKq=1.0 [Fig. 9] the transfer-
tibilities in the ordered phas&,, Figs. 1a—-7(b) (with v matrix estimate ofv for strip widthsN/N’'=8/12 atH/K,
=0.806,a=0.388,y=1.3855,T,=0.958, andCy= —0.6), =0.0 isv=1.0004+0.001, which is close to the Ising criti-
and also in the other ordered phaSe, figures not shown cal value ofv=1 (Refs. 47-5Dand by increasing the mag-
(with v=0.77, «=0.478, y=1.3476, T,=1.427, andC,
=—0.2). We note that, we have also performed finite-size 1 T T T T T 1
scaling for the different quantitieS, y, andM by using the 10 AR RR RS
exact values of the exponent1.0,3=0.125,y=1.75, and - +* +
=03 The plots(not shown we have obtained are worse 09} * .
than those presented here. All our results, to within the errors I + +
in the simulations, are consistent and indicate that these con 44 +
tinuous transitions are in th¥Y model with cubic anisot- > |+ +
ropy. Since our results of/v~1.75, this suggest that Suzu-
ki's weak universality wherey/v=7/4 [Ref. 46, holds for +
this model. |

Transfer-matrix finite-size-scaling results for the thermal
exponentv are obtained with strip width8l/N’=3 and &
from Eg.(8) and are presented in Fig. 8. We note that when 05
we approach the crossover regi@in the neighborhood of
H=0) from both the high and the low field the exponeris 0.4 T S I
oscillating and decreasing with the strip widths, so we could s 1o 08 O‘OH/K 05 10
not conclude about the critical behavior in this region and °
larger strip widths are needed. Whereas far from this region, giG. 9. The critical exponent, as obtained from transfer-
v is varying along these critical lines, even this variation iSmatrix calculations with$ scaling(squaresfor K, /K,=0.25 and
rather weak. By increasing the magnetic field from bothj/k,=1.0 for the critical transitions from the disorder to spherical
sides, the estimates of drop to ones that are close to the micellesG,. Our £ estimates for the tricritical values of (shown
Ising tricritical value of 5/9'"~*°For the points used for MC by triangles arev, =0.574 andv, =0.566.
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netic field(in absolute valugein both directions, this value of phase diagrams would provide a rich laboratory for experi-
v persists until the tricritical points are reached where themental studies, such as the one of Fifh)3hat qualitatively
estimates ofv drop to ones that are close to the Ising tric- resemble, the phase diagram of,;8a/H,O system. On the
ritical value of 2. Thus suggesting that the order-disorderother hand, these two nonperturbative methods allow us to
transition G+ G, Gg) belongs to the Ising critical and understand much more this complicated model by computing

tricritical universality. the exponents of this model and so to define well its univer-
sality class. From TMFSS calculations and large-scale MC
VI. SUMMARY AND CONCLUSION simulations, we show that the continuous order-disorder in-

o finite rodlike micelles and reversed micelles to isotropic mi-
We have made a thorough study of the multicritical be-cellar solutions transitions both belong to the universality
havior of a lattice-gas model for micellar binary solutions of cjass of thexY-model cubic anisotropy, which has nonuni-
water and amphiphile that has been proposed by Shnidmagersal variable exponents. Thus confirming the nonuniversal-
and Zia, by using transfer-matrix finite-size scaling andity scenario of Shnidman for rodlike micellésAlso from
Monte Carlo simulations. Apart from the finite-size effects TMFSS calculations only, we have shown that the transitions
and the uncertainties in the simulations, the phase diagranigr the disorder-order isotropic micellar solutions to the
obtained in the magnetic-field-temperatute,T) plane by  spherical micellar solid phase and the order-order spherical
these two nonperturbative methods consist of lines of firstmjcellar solid phase to reversed micellar phase both belong
and second-order transitions with different multicritical {5 the d=2 Ising universality class. All our results are in

points of higher order and are consistent with each other bijood agreement with Schick and co-workers classification
are qualitatively better than those obtained by mean-field apyased on Landau-Lifshitz theory.

proximation MFA?! The limitation of the MFA is that it Finally, we hope that we have completed the comprehen-
ignores fluctuations that are very strong in two dimensions. Isjon about this rich model and we believe that this Ising
predicts the rarefied micell&; at high temperature for model with multiparticle interactions would be a good can-
K1/K=2.0 andJ/Ko=0.5, thus resulting in a wrong topol- didate for describing the experimental micellar phase dia-

ogy of the phase diagram. Also the continuous line separagrams and for the determination of the critical exponents.
ing the disorder from the ordered phaSe extends down to

T=0 for K;/Ky=0.25 andJ/Ky=1.0 at a high positive
magnetic field. Our nonperturbative methoddvFSS and
MC) show the absence of the rarefied miceBg for the One of the author$S.B) would like to thank the Abdus-
former case and the presence of a first-order transition with 8alam International Center For Theoretical Physics for finan-
tricritical point for the latter case. We have also determinectial support. He also thanks the hospitality and the compu-
the phase diagrams by TMFSS calculations in the amtational resources of the center where this work has been
phiphile concentration-temperaturep(T) plane. These completed.

ACKNOWLEDGMENTS

1K. A. Dawson and Z. Kurtovic, J. Chem. Phya2, 5473(1990. 16p. J. Mitchell, G. J. T. Tiddy, L. Warring, Th. Bostock and M. P.

2J. W. Halley and A. J. Kolan, J. Chem. Ph@8 3313(1988. Mc Donald, J. Chem. Soc., Faraday Trans/9} 975 (1983.
M. W. Matsen and D. E. Sullivan, Phys. Rev.44, 2021(1999.  'P. Debye and E. W. Anacker, J. Phys. Colloid Chéif,. 644
4G. Gompper and M. Schick, Chem. Phys. Ld63 475 (1989. (1951.

18G. Gompper and S. Klein, J. Phys.d) 1725(1992.
19y, Shnidman and R. K. P. Zia, J. Stat. Ph§6, 839(1988.
20A. Benyoussef, L. Laanait, and N. Moussa, Phys. Rev4®
16 310(1993.
2A. Benyoussef, L. Laanait, N. Masaif, and N. Moussa, J. Phys.:

5G. Gompper and M. SchickSelf-Assembling Amphiphilic Sys-
tems in Phase Transitions and Critical Phenomeguited by C.
Domb and J. L. LebowittAcademic, London, 1994 Vol. 16.

5Micelles, Membranes, Microemulsions and Monolayerdited

by W. M. Gelbart, D. Roux, and A. Ben-Sha@pringer-Verlag, Condens. Matte8, 3347(1996.
New York, 1994. 22p. Benyoussef, L. Laanait, N. Masaif, and N. Moussa, J. Phys. |
"N. Jan and D. Stauffer, J. Phy@rance 49, 623(1989. 6, 1043(1996.
8physics of Amphiphiles: Micelles, Vesicles and Microemulsions?N. Moussa, Y. El Amraoui, S. Bekhechi, A. Benyoussef, and L.
edited by V. Degiorgio and M. CortiNorth-Holland, Amster- Laanait, following paper, Phys. Rev. &L, 3372(2000.
dam, 1985 24p_ A. Rikvold, K. Kaski, J. D. Gunton, and M. C. Yalabik, Phys.
°G.J. T. Tiddy, Phys. Refn7, 1 (1980. Rev. B29, 6285(1984.
10G. Gompper and S. Zschocke, Europhys. L&6. 731 (1997). 25W. Kinzel and M. Shick, Phys. Rev. B3, 3435(1981).
113, M. Seddon, Biochim. Biophys. Actt031, 1 (1990. 26N. C. Bartelt, T. L. Einstein, and L. D. Roelofs, Phys. Rev38
124, Hoffmann, Adv. Colloid Interface ScB2, 123(1990. 1616(1986.
18R, strey, R. Schiwker, D. Roux, F. Nallet, and U. Olsson, J. 2’L. D. Roelofs, T. L. Einstein N. C. Bartelt, and J. D. Shore, Surf.
Chem. Soc., Faraday Trar6, 2253(1990. Sci. 176, 295(1986.
14v. Degiorgio, M. Corti, and L. Cantu, Chem. Phys. Ldt61, 349  28J. D. Kimel, S. Black, P. Carter, and Y. L. Wang, Phys. Rev. B
(1988. 35, 3347(1987.

153, N. Israelachvili, D. J. Mitchell, and B. W. Ninham, J. Chem. 2°J. D. Kimel, P. A. Rikvold, and Y. L. Wang, Phys. Rev. 45,
Soc., Faraday Trans. 72, 1525(1976. 7237(1992.



PRB 61

305, Bekhechi and A. Benyoussef, Phys. Rev6@3 13 954(1997),
and references therein.

3IM. P. Nightingale, Physica A3, 561 (1976; Phys. Lett.59A,
486 (1977; M. P. Nightingale, J. Appl. Phy$3, 7927(1982.

32C. Domb, Adv. Phys9, 149 (1960).

33p, D. Beale, Phys. Rev. B3, 1717(1986.

34p. A. Rikvold, W. Kinzel, J. D. Gunton, and K. Kaski, Phys. Rev.
B 28, 2686(1983.

35p_ A. Rikvold, Phys. Rev. B2, 4756(1985.

36p. A. Rikvold, Phys. Rev. B3, 6523(1986.

37T, Aukrust, M. A. Novotny, P. A. Rikvold, D. P. Landau, Phys.
Rev. B41, 8772(1990, and references therein.

38applications of the Monte Carlo Method in Statistical Physics
edited by K. Binder(Springer Verlag, Berlin, 1988

39K. Binder and D. P. Landau, Phys. Rev.2B, 1941 (1080.

“OM. E. Fisher, in Proceedings of the International School of
Physics “Enrico Fermi,” Course LI, Varenna, 1970, edited by

M. S. Green(Academic, New York, 1971 p. 1.

NUMERICAL STUDY OF A LATTICE-GAS MODEL FCR.. ..

3371

4IM. Badehdah, S. Bekhechi, A. Benyoussef, and M. Touzani, Eur.
Phys. J. B4, 431(1998.

42C. Madelmont and R. Perron, Colloid S&54, 581 (1976.

43E. Domany, M. Schick, J. S. Walker, and R. B. Griffiths, Phys.
Rev. B18, 2209(1978.

44M. Schick, Prog. Surf. Scill, 245 (1981).

4SK. Binder, Z. Phys. B43, 1197(1981).

46M. Suzuki, Prog. Theor. Phy$&1, 1992(1974.

4H. E. Stanley,Introduction to Phase Transitions and Critical
PhenomendOxford University Press, Oxford, 1971

48B. M. McCoy and T. T. Wu.The Two-Dimensional Ising Model
(Harvard University Press, Cambridge, MA, 1973

49M. P. M. den Nijs, J. Phys. A2, 1857(1979.

50B. Nienhuis, E. K. Riedel, and M. Schick, J. Phys.18, L189
(1980.

51y, Shnidman, Phys. Rev. Le#6, 201(1986); 56, 2546 (1986);
58, 621(1987.



