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Spin-dynamics simulations of the magnetic dynamics of RbMnF3
and direct comparison with experiment

Shan-Ho Tsai,* Alex Bunker,† and D. P. Landau‡

Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602
~Received 12 May 1999!

Spin-dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of the
classical Heisenberg antiferromagnet in simple cubic lattices with linear sizesL<60. This system is widely
recognized as an appropriate model for the magnetic properties of RbMnF3. Time evolutions of spin configu-
rations were determined numerically from coupled equations of motion for individual spins using an algorithm
implemented by Krechet al., which is based on fourth-order Suzuki-Trotter decompositions of exponential
operators. The dynamic structure factor was calculated from the space- and time-displaced spin-spin correla-
tion function. The crossover from hydrodynamic to critical behavior of the dispersion curve and spin-wave
half-width was studied as the temperature was increased towards the critical temperature. The dynamic critical
exponent was estimated to bez5(1.4360.03), which is slightly lower than the dynamic scaling prediction, but
in good agreement with a recent experimental value. Direct, quantitative comparisons of both the dispersion
curve and the line shapes obtained from our simulations with very recent experimental results for RbMnF3 are
presented.
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I. INTRODUCTION

Heisenberg models are examples of magnetic systems
have true dynamics with the real time dynamics governed
coupled equations of motion. According to the classificat
of the different dynamic universality classes proposed
Hohenberg and Halperin in their work on the theory of d
namic critical phenomena,1 the classical Heisenberg ferro
magnet and antiferromagnet are of class J and G, res
tively. Although both classes have true dynamics, in
former class the order parameter~the uniform magnetization!
is conserved, whereas in the latter the order parameter~the
staggered magnetization! is not a conserved quantity. Th
difference in the dynamic behavior of the Heisenberg fer
magnet and antiferromagnet can already be seen from
linear spin-wave theory, which predicts different low
temperature dispersion curves for the two models. Dyna
critical behavior is describable in terms of a dynamic critic
exponentz which depends on conservation laws, lattice
mension, and the static critical exponents. The static crit
behavior of three-dimensional Heisenberg models have b
studied using a variety of approaches, including a hi
resolution Monte Carlo simulation which determined t
critical temperature and the static critical exponents
simple cubic and body-centered-cubic lattices.2 In contrast,
the theory of the dynamic behavior of Heisenberg model
not so well understood.

A very close realization of an isotropic three-dimension
Heisenberg antiferromagnet is RbMnF3. Early experimental
studies3–5 have shown that in RbMnF3 the Mn21 ions, with
spin S55/2, form a simple cubic lattice structure with
nearest-neighbor exchange constant ofJexp5(0.5860.06)
meV and a second-neighbor constant of less than 0.04 m
@both defined using our convention for the exchange cons
to be shown in Eq.~14!#. Magnetic ordering with antiferro-
magnetic alignment of spins occurs below 83 K, which
PRB 610163-1829/2000/61~1!/333~10!/$15.00
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denote as the critical temperatureTc . In this material, the
magnetic anisotropy was found to be only about 631026 of
the exchange field, and no deviation from cubic symme
was seen atTc .6,7 Both the static properties and the dynam
response of RbMnF3 have been examined through neutro
scattering experiments. The early work of Tucciaroneet al.,8

found that in the critical region the neutron-scattering fun
tion has a central peak~peak at zero frequency transfer! and
a spin-wave peak. Later, the experimental study by C
et al.9 observed a small central peak belowTc as well. The
more recent experiments by Coldeaet al.10 have also found
central peaks forT<Tc , in agreement with previous exper
ments. From the theoretical side, renormalization-gro
~RNG! below Tc ~Ref. 11! predicts spin-wave peaks, and
central peak in the longitudinal component of the neutro
scattering function. However, at the critical temperature b
renormalization-group12 and mode-coupling13 theories pre-
dict only the spin-wave peak, i.e., the central peak has
been predicted by these theories. The central peak is tho
to be due to spin diffusion resulting from nonlinearities
the dynamical equations.8 In their recent experiment, Colde
et al.10 obtained the most precise experimental estimate
the dynamic critical exponent,z5(1.4360.04). The theoret-
ical prediction1,12,13 is z51.5 for class G models in thre
dimensions.

Large-scale computer simulations using spin-dynam
techniques to study the dynamic behavior of Heisenberg
romagnet and antiferromagnet have been carried out by C
and Landau14 and Bunker, Chen, and Landau,15 respectively.
So far, however, there are no direct comparisons of the
persion curve and the dynamic structure line shapes obta
from simulations with the corresponding experimental
sults. In the present work we have carried out large-sc
simulations of the dynamic behavior of the Heisenberg a
ferromagnet on a simple cubic lattice, and make direct co
parisons with experimental data for RbMnF3. Section II of
333 ©2000 The American Physical Society
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this paper contains the definition of the model and introdu
some simulation background. In Sec. III we present and
cuss our simulation results and compare them with exp
ments. Section IV contains some concluding remarks.

II. MODEL AND METHODS

A. Model

The classical Heisenberg antiferromagnetic model is
fined by the Hamiltonian

H5J (
^rr 8&

Sr•Sr8 , ~1!

whereSr5(Sr
x ,Sr

y ,Sr
z) is a three-dimensional classical sp

of unit length at siter and J.0 is the antiferromagnetic
coupling constant between nearest-neighbor pairs of sp
We considerL3L3L simple cubic lattices with periodic
boundary conditions. The time dependence of each spin
be determined from the integration of the equations of m
tion @Eq. ~2! in Ref. 15#, and the dynamic structure facto
S(q,v) for momentum transferq and frequency transferv,
observable in neutron-scattering experiments, is given b

Sk~q,v!5(
r ,r8

exp@ iq•~r2r 8!#

3E
2`

1`

exp~ ivt !Ck~r2r 8,t !
dt

A2p
, ~2!

where Ck(r2r 8,t) is the space-displaced, time-displac
spin-spin correlation function defined, withk5x, y, or z, as

Ck~r2r 8,t !5^Sr
k~ t !Sr8

k
~0!&2^Sr

k~ t !&^Sr8
k

~0!&. ~3!

The displacementr is in units of the lattice unit cell lengtha.
In the case of antiferromagnets, the wave-vectors are m
sured with respect to the (p,p,p) point which corresponds
to the Brillouin zone center.

B. Simulation method

Using a combination of Monte Carlo and spin-dynam
methods,14–16we simulated the behavior of the simple-cub
classical Heisenberg antiferromagnet with 12<L<60 at the
critical temperatureTc51.442 929(77)J2 and belowTc . We
have chosen units such that the Boltzmann constantkB51.

Equilibrium configurations were generated using a hyb
Monte Carlo method in which a single hybrid Monte Car
step consisted of two Metropolis steps and eight overre
ation steps.14,15 Typically 1000 hybrid Monte Carlo step
were used to generate each equilibrium configuration and
coupled equations of motion were then integrated num
cally, using these states as initial spin configurations. N
merical integrations were performed to a maximum tim
tmax, using a time step ofDt. The space-displaced, time
displaced spin-spin correlation functionCk(r2r 8,t) was
computed for time displacements ranging from 0 totcuto f f .
Each of such correlations was calculated from an aver
over between 40 and 80 different time starting points, eve
spaced by 10Dt. Our unit for time is the interaction constan
J defined in Eq.~1!. The parameters used in this work we
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as follows. At T50.9Tc we used lattices sizesL512,
24, 36, 48, and 60, for which the respective tim
parameters were (tmaxJ,tcuto f fJ)5(440,400), ~440,400!,
~480,400!, ~680,600!, and (1080,1000). The respective num
bers of initial configurations used were 7020, 2850, 11
400, and 810. At Tc and lattice sizes L
518, 24, 30, 36, 48 we usedtmaxJ5480 and tcuto f fJ
5400, and forL560 we usedtmaxJ51080 andtcuto f fJ
51000. The number of initial configurations used atTc was
1000 for L518,30,36, whereas forL524, 48, and 60 the
respective numbers were 1125, 715, and 510. Other t
peratures considered, chosen to coincide with experime
values, wereT50.774Tc , 0.846Tc , and 0.936Tc , for which
tmaxJ5480, tcuto f fJ5400, and the number of initial con
figurations used was 120. For lattice sizeL524 at T
50.9Tc the integration was carried out with a time stepDt
50.01J21 using a fourth-order predictor-corrector metho
as in Refs. 14,15. For other lattice sizes and temperatures
used a new algorithm17 based on fourth-order Suzuki-Trotte
decompositions of exponential operators, with a time s
Dt50.2J21 ~except for L512 at T50.9Tc for which Dt
50.1J21). The latter method allowed us to use larger in
gration time steps and thus to carry out the integration
larger tmax, as compared with previous work.14,15 In the
original study of Chen and Landau14 tmax5120J21 and in
the work of Bunkeret al. tmax5200J21. In comparison, in
the present work we have used a largertmax>440J21, more
equilibrium initial spin configurations, and a larger lattic
size, namelyL560. As it is clear from the above, we hav
concentrated our efforts on two cases: one temperature b
Tc , namelyT50.9Tc , and atTc .

We also used the technique of calculating partial s
sums ‘‘on the fly’’14,15which limits us to data in the (q,0,0),
(q,q,0) and (q,q,q) directions with q determined by the
periodic boundary conditions,

q5
2pn

L
, n561,62, . . . ,6~L21!,L. ~4!

Since all three Cartesian spatial directions are equivalen
symmetry, the same operation carried out for the (q,0,0)
direction was also carried out for the other two reciproc
lattice directions (0,q,0) and (0,0,q) and the results were
averaged. Similarly, the same operations carried out for
(q,q,0) and (q,q,q) directions were also carried out for th
equivalent reciprocal-lattice directions and the results w
averaged for each case.

For the ferromagnetic case the total magnetization is c
served and the dynamic structure factorS(q,v) can be sepa-
rated into a component along the axis of the total magn
zation~longitudinal component! and a transverse componen
However, for the antiferromagnet the order parameter is
conserved and separation is not possible. We thus refer to
average

S~q,v!5
1

3
@Sx~q,v!1Sy~q,v!1Sz~q,v!# ~5!

as the dynamic structure factor.
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C. Dynamic finite-size scaling

Two practical limitations on spin-dynamics techniqu
imposed by limited computer resources are the finite lat
size and the finite evolution time. The finite time cutoff c
introduce oscillations inS(q,v), which can be smoothed ou
by convoluting the spin-spin correlation function with a res
lution function in frequency. The finite-size scaling14,18 can
be used to extract the dynamic critical exponentz using

vS̄L
k~q,v!

x̄L
k~q!

5G~vLz,qL,dvLz! ~6!

and

v̄m5L2zV̄~qL,dvLz!, ~7!

where S̄L
k(q,v) is the dynamic structure factor convolute

with a Gaussian resolution function with characteristic p
rameterdv , v̄m is a characteristic frequency, defined as

E
2v̄m

v̄m
S̄L

k~q,v!
dv

2p
5

1

2
x̄L

k~q!, ~8!

and x̄L
k(q) is the total integrated intensity.

For the time cutoffs of at least 400J21 used in the presen
simulations, the oscillations in the dynamic structure fac
due to the finitetcuto f f were not very significant. Thus w
first estimate the dynamic critical exponentz without using a
resolution function, or equivalently, we takedv50. In this
case the analysis is simpler and a value forz can be obtained
from the slope of a graph of ln(vm) vs ln(L) ~wherevm is the
characteristic frequency in the absence of a resolution fu
tion! if the value qL is fixed. It is important to note tha
lattice sizes included in this calculation should be lar
enough to be in the asymptotic-size regime. The approxim
lattice size of the onset of the asymptotic regime can
estimated by looking at the behavior ofvLz for different
lattice sizes using trial values ofz.

The effects of the small oscillations in the dynamic stru
ture factor on the dynamic critical exponentz can be evalu-
ated by repeating the analysis using a resolution funct
For this purpose, we chose

dv50.02F60

L Gz

~9!

so that the functionV̄(qL,dvLz) in Eq. ~7! is a constant if
qL is fixed, yielding

v̄m;L2z. ~10!

Becausedv depends onz, this exponent had to be dete
mined iteratively. We usedn51,2 and several initial value
for z in the iterations, in order to check the stability of th
converged value ofz.

III. RESULTS

A. Numerical data for S„q,v…

For T<Tc our results for the dynamic structure factor,
defined in Eq.~5!, show a spin wave and a central peak.
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Fig. 1 we show line shapes for lattice sizeL560 at T
50.9Tc and wave vectorsq5p/10, p/6, and p/3 in the
@100# direction. We see that asq increases, the central pea
broadens and its relative amplitude increases. Figure 2 sh
line shapes forL560 atTc and wave vectorsq5p/10 and
p/6 in the @100# direction. It is clear from these line shape
that the oscillations due to the finitetcuto f f are indeed negli-
gible; therefore in our analysis of the line shapes we have
convoluted our results with a resolution function.~As ex-
plained in the following section, we later convoluted o
results with a Gaussian resolution function in order to
rectly compare our line shapes with the experiments. T

FIG. 1. Dynamic structure factorS(q,v) from our simulations
for L560 atT50.9Tc and wave vectors~a! q5p/10, ~b! p/6, and
~c! p/3 in the@100# direction. The symbols represent spin dynam
data and the solid line is a fit with the Lorentzian function given
Eq. ~11!. For clarity, error bars are only shown for a few typic
points, i.e., error bars for the data in the neighborhood of each
these points are similar. At high frequencies error bars are of
size of the fluctuations in these data.
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336 PRB 61SHAN-HO TSAI, ALEX BUNKER, AND D. P. LANDAU
reason for this is that there is an intrinsic finite resolution
the experimental data due to the finite divergence of neu
beams.! The width of any structure in the line shapes d
cussed here is much larger than our resolution in freque
Dv51.2p/tcuto f f .

Below Tc , previous theoretical11 and experimental10 stud-
ies motivated us to extract the position and the half-width
the spin wave and central peaks by fitting the line shape
Lorentzian form

S~q,v!5
AG1

2

G1
21v2

1
BG2

2

G2
21~v1vs!

2
1

BG2
2

G2
21~v2vs!

2
,

~11!

where the first term corresponds to the central peak and
last two terms are contributions from the spin-wave creat
and annihilation peaks atv56vs . For T50.9Tc we find
that Lorentzian line shapes fit our results reasonably well
small values ofq, except for the smallest value, namelyq
52p/L, in the @100# direction. The reason is that for eac
lattice sizeL, the dynamic structure factor for the smalle
value of q corresponds to correlations between spins d
placed in space by a distanceL/2, and the effect of the finite
lattice size is particularly prominent in these cases, caus
the line shapes to depart significantly from a Lorentz
form. For large values ofq @approximately q.2p(L/4
22)/L# the Lorentzian form given in Eq.~11! does not fit
the data, especially at large frequency transfer. In gene

FIG. 2. Dynamic structure factorS(q,v) from our simulations
for L560 at T5Tc and wave vectors~a! q5p/10 and~b! p/6 in
the @100# direction. The symbols represent spin dynamics data
the solid line is a fit with the Lorentzian function given in Eq.~11!.
As in Fig. 1, error bars are only shown for a few typical points.
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the fitted parameters varied when different frequency ran
were used in the fit. Although this variation was small, it w
often larger than the statistical error in the fitted parame
obtained from the fit using a single frequency range. The
fore for T50.9Tc we estimated the error in the fitted param
eters by fitting the line shapes using three different range
frequency. The values of the parameters were then avera
and the error bars estimated from the fluctuations. AtTc ,
renormalization-group theory~RNG! ~Ref. 12! predicts a
non-Lorentzian functional form for the spin-wave line shap
which has been used along with a Lorentzian central pea
analyze experimental data.10 Since it is more complicated to
perform fits to this RNG functional form and since the sp
wave peaks obtained from the simulations are more p
nounced than in the experiment, and thus less dependen
the fitted functional, we have fitted the line shapes atTc to
Lorentzians, as given in Eq.~11!. Although obtaining a good
fit to our data atTc was more difficult than belowTc , the
resulting fits at Tc are still reasonable. Unlike forT
50.9Tc , atTc the line-shape parameters used in the analy
below are the values obtained from the fit to only one f
quency range, which was the one that gave the best fit.
should then expect that the actual error in the fitted para
eters atTc is larger~by up to a factor of 5! than the error bars
shown in the figures below.

In addition to the spin-wave and the central peaks,
observed some other peaks on the large frequency tail of
spin-wave peaks. Although these large frequency peaks
very small amplitudes, they could be discerned from
background fluctuations. Using the spin-wave frequencie
the@100#, @110#, and@111# directions we could check that th
position of these extra peaks corresponded to frequencie
two spin-wave addition peaks. These extra structures in
line shapes were particularly visible for the smallest valu
of wave vectors.

Figure 3 shows how the dispersion curve varies as
temperature increases fromT50.774Tc to Tc . The disper-
sion curves illustrated here are for the@100# direction and are
plotted up toq5p/2, which corresponds to one half of th
Brillouin zone. As mentioned before, for larger values ofq
the Lorentzian in Eq.~11! did not yield good fits to the line

d

FIG. 3. Spin-wave dispersion relations forT<Tc , in the @100#
direction. The symbols represent spin-wave positions extrac
from Lorentzian fits to the line shapes from the simulations, and
solid curves are fits of the dispersion relations at different temp
tures to Eq.~13!.
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shapes; however, the spin-wave positions could still be
rectly read off the graphs, but with larger error bars. For
present purpose of observing the approach to the critica
gion as the temperature is raised from belowTc , it suffices
to consider the dispersion curve for wave vectors up toq
5p/2. Well belowTc , the dispersion relation is linear fo
small q; as T→Tc , it changes gradually from linear to
power-law behavior of the form

vs5Asq
x. ~12!

For T50.9Tc and L560 a fit including the smallest fiveq
values of the dispersion curve to Eq.~12! yieldedx51.017
60.003. As we probed further away from the Brillouin zo
center by including larger values ofq in the fit, the exponent
decreased slightly. In order to check how sensitive the fit
exponent is to the particular form of the fitted function, w
have performed new fits to a function which includes a q
dratic term, i.e.,

vs5Asq
x1Bsq

2. ~13!

Fitting the smallest fiveq values of the dispersion curve to
function of the form given by Eq.~13! yielded an exponen
x51.02060.003, which is in good agreement with the val
obtained from the previous fit. When larger values ofq in the
dispersion curve were included in the fits, Eq.~13! tended to
yield smallerx2’s per degree of freedom than Eq.~12!. The
dispersion curve forT5Tc and L560 fitted to Eq. ~12!
yielded an exponent ofx51.3860.01 when the smallest 1
values ofq were included in the fit. As the largerq were
excluded from the fit, the exponent increased slightly, te
ing towardsx.1.40. When only the smallest few values ofq
were included in the fit, the exponent decreased again,
flecting the fact that as we probed correlations between s
separated by larger distances~or equivalently, smallerq) the
finite size of the lattice~and thus of the correlation length! is
revealed, showing that the system is not at criticality. He
the exponentx decreases towards unity. On the other ha
large values ofq correspond to short distance~in the direct
lattice space! spin-spin correlations, and the correlatio
length is much larger than the distance probed. One wo
thus expect the critical behavior of the system to be manif

FIG. 4. Log-log graph of the half-width of the spin-wave pe
extracted from Lorentzian fits to the line shapes obtained fr
simulations forL560 and T50.9Tc in the @100# direction as a
function of q.
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and this is indeed consistent with what we obtained. O
results atTc are in agreement with the recent experimen10

which obtained an exponentx51.4360.04 when the disper-
sion curve atTc was fitted to a power-law relation of th
form given in Eq.~12!. The solid lines in Fig. 3 are fits to Eq
~13!; in general, these fits gave lower values ofx2 per degree
of freedom than fits to Eq.~12!.

In the critical region, dynamic scaling theory predicts th
the half-width of spin-wave peaks behaves as a power l
G2;q1.5,19 whereas for the hydrodynamic regime the pred
tion from hydrodynamic theory isG2;q2.20 The half-width
of the spin-wave peaks atT50.9Tc and L560 from our
simulations is shown in Fig. 4. We observed a crosso
from G25(0.40160.004)q1.4660.06 for larger values of wave
vector toG25(0.4860.02)q1.8660.05 for small values ofq.
The behavior for relatively large wave vectors is in agre
ment with dynamic scaling theory and with the rece
experiment.10 The exponent we obtained by fitting onl
small values ofq is close to the hydrodynamic prediction
Thus for the spin-wave half-width we have observed a cro
over of exponents associated with two different regim
namely, the critical and the hydrodynamic regions. T
crossover is similar to the one observed in the dispers
curve atTc , discussed above. ForT5Tc andL560 the spin-
wave half-width also had a power-law behavior which vari
from approximatelyq1.2 when the 12 smallest values ofq
were included to approximatelyq1.4 when only the smalles
five wave vectors were included in the fit. In their rece
experiment, Coldeaet al.10 obtainedG25Dq1.4160.05 for the
temperature range 0.77Tc<T,Tc , and the coefficientD in-
creased with increasing temperature.

As in the experiments, the dynamic structure factors fr
our simulations had central peaks~zero frequency transfe
peaks! for T<Tc . In contrast, renormalization-group theo
predicts a central peak in the longitudinal component of
dynamic structure factor only belowTc ,11 and none of the
theories predict a central peak atTc .12,13 For T50.9Tc and
L560 fitting the central peak half-width to the formG1
;qx yielded very largex2 per degree of freedom. A muc
improved fit was obtained by using the functionG15A1
1B1qC1, which allows for a nonzero central peak wid
whenq vanishes. In these fits the data for the smallest va

FIG. 5. Finite-size scaling plot forv̄m ~with qL5const,dvLz

5const) for the analysis with and without a resolution function. F
the former case, the data used correspond to the converged v
of z, for n51,2. The error bars were smaller than the symbol siz
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FIG. 6. Comparison of line shapes obtained from fits to simulation data forL560 ~solid line! and experiment~open circles! at T
50.894Tc in the @111# direction:~a! q52p(0.04), ~b! q52p(0.06), ~c! q52p(0.08), and~d! q52p(0.10). The horizontal line segmen
in each graph represents the resolution in energy~full width at half maximum!.
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of q observable inL560, i.e., n51, were not included,
because of the large finite-size effects in them. The fit incl
ing data forq corresponding ton52 until n57 yieldedA1
.0.01360.001, B1.0.12060.005, andC1.2.460.2. As
we systematically included larger values ofq in the fits, these
parameters decreased slightly. AtTc we have also fitted the
central peaks to Lorentzians, according to Eq.~11!; however,
these tended to yield curves with smaller amplitudes than
data, as can be seen in Fig. 2. Since there is no theore
prediction for the central peak, we have also tried to fit th
with a Gaussian form. These latter fits were, neverthel
much worse than the fits with Lorentzians.

The lattice sizes that we used, namelyL512, 24, 36, 48,
and 60, are all multiples of 12; thus there are certain w
vectors which are common to all lattice sizes. This is
advantage in the study of effects due to finite lattices,
cause it allows us to compare line shapes and spin-w
dispersion relations for different lattice sizes at a fixed va
of wave vector. AtT50.9Tc we did not see a significan
finite-size effect forL>24; however, when we superimpose
line shapes atTc for a fixed value ofq, and different values
of L, finite-size effects were noticeable forL524. For the
larger values ofL that we used, the line shapes were t
same within the error bars.

The dynamic critical exponentz was extracted from the
finite-size scaling ofv̄m , as described in a previous sectio
We started the analysis using no resolution function,
equivalentlydv50, andn51,2. As in previous work,15 we
estimated the latticeL530 to be approximately the onset o
the asymptotic-size regime. From the slope of a ln(v̄m) vs
-

e
cal

s,

e
n
-

ve
e

r

ln(L) graph fitted with four data points, namely lattice siz
L530, 36, 48, and 60, we obtainedz51.4560.01 for n
51 andz51.4260.01 for n52. In order to check the ef-
fects of the very small oscillations inS(q,v) due to the finite
cutoff time, we proceeded to estimate the value ofz using a
resolution function withdv given by Eq.~9!. For the itera-
tions, we used several initial values ofz(0), ranging from
z(0)51.31 to 1.59, and in all cases the exponentz converged
rapidly to the final value with at most three iterations bei
necessary. For all the initial values ofz(0) that we used, we
obtained an exponentz51.4360.01 for n51 andz51.42
60.01 forn52. In general, thex2 per degree of freedom in
the fits forn52 were slightly lower than forn51, although
it was reasonable in all cases. Our final estimate for the
namic critical exponent isz51.4360.03, where the error ba
reflects the fluctuations in the different estimates ofz. A
comparison of the characteristic frequencyv̄m as a function
of the lattice sizeL for the analysis with and without a reso
lution function is shown in Fig. 5. For the former case, t
graph shown corresponds to the converged values ofz for
both n51 and 2.

B. Comparison with experiment

In this section we compare our results with the rec
neutron-scattering experiment by Coldeaet al.10 Before pro-
ceeding with the direct comparison, it is necessary to cla
the units and possible normalization factors between sim
tion and experiment.
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The neutron-scattering experiment was done on RbMn3,
which can be described by a quantum Heisenberg Ha
tonian of the form

H5Jexp(
^rr 8&

Sr
Q
•Sr8

Q , ~14!

where Sr
Q are spin operators with magnitudeuSr

Qu25S(S
11) and the interaction strength between pairs of nea
neighbors was determined experimentally5 to be Jexp

5(0.5860.06) meV. In contrast, our simulations were pe
formed on a classical Heisenberg Hamiltonian given in E
~1!. However, quantum Heisenberg systems with large s
values (S>2) have been shown to behave as class
Heisenberg systems, where the spins are taken to be ve
of magnitudeAS(S11) with the same interaction streng
between pairs of nearest neighbors as in the quan
system.21 In our simulations the spins were taken to be ve
tors of unit length. Hence to preserve the Hamiltonian
interaction strengthJ from our simulation has to be norma
ized according to

J5JexpS~S11!. ~15!

Although this choice of normalization for spin vectors a
the interaction strength leaves the Hamiltonian unchange
does modify the equations of motions. The dynamics of
classical system so defined is the same as the quantum

FIG. 7. Comparison of the~a! dispersion curve and the~b! spin-
wave half-width, obtained from simulations forL560 ~open circle!
and the experiment~open triangle! at T50.894Tc , in the @111#
direction. The simulation data shown here correspond to valuesq
accessible withL560, without interpolation to match theq values
from the experiment.
il-

st
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tem defined by the Hamiltonian in Eq.~14! if one rescales
the time, or equivalently, the frequency transfer. We obta

vexp5JexpAS~S11!
v

J
, ~16!

wherevexp is the frequency transfer in the quantum syste
measured experimentally, andv/J is the frequency transfe
in units of J from our simulations. Parenthetically, we no
that the critical temperature of the classical Hamiltonian
Eq. ~1! has been determined from simulations to beTc
51.442 929(77)J.2 Using the normalization for the interac
tion strengthJ given in Eq.~15! and the experimental value5

Jexp5(6.860.6) K we getTc5(85.967.6) K, where the
nine percent error comes from the uncertainty inJexp. The
experimental value of the critical temperature is around 83
which is well within the error bars.

Due to detailed balance, neutron-scattering experime
measure the dynamic structure factor multiplied by a te
perature and frequency dependent population factor.10,22,23

This factor does not appear in the simulations of the class
system for which the dynamic structure factor is compu
directly. For the comparison, we removed the population f
tor from the experimental data.

The finite divergence of the neutron beam gives rise t
resolution function which is usually approximated by
Gaussian in the four-dimensional energy and wave-ve
space. In the experiment,10 the measured resolution widt
along the energy axis was 0.25 meV~full width at half maxi-
mum! for incoherent elastic scattering. In order to direc
compare our results with the experiment, we convoluted
line shapes from our simulation with a Gaussian resolut
function in energy with the experimental value of full widt
at half maximum, normalized according to Eq.~16!. The
standard deviationdv thus obtained for the Gaussian resol
tion function was 0.0619 in units ofJ. As a test of the effects
of the resolution function in the wave-vector space, we ha
also convoluted our line shapes with a three-dimensio
Gaussian function where, for simplicity, we have taken
resolution width in the three wave-vector components to
the same, and equal to the average of the experimental r
lution in the longitudinal and transverse directions. The
fect of this convolution was found to be negligible; thus t
line shapes used in the comparisons shown below do
include the resolution in wave vector.

The experiment10 performed constant wave-vector sca
with both positive and negative energy transfer. The wa
vector transferQ was measured along the@111# direction,
around the antiferromagnetic zone center which in our no
tion is the (p,p,p) point. Note that Ref. 10 defines th
wave-vector transferQ in units such that the antiferromag
netic zone center is (0.5,0.5,0.5); hence to expressQ of Ref.
10 in units of Å21 one has to multiply it by 2p/a, wherea
is the cubic lattice parameter expressed in Å. However
the simulation direct lattice positions are defined in units
the lattice constanta; thus we obtain wave vectors multiplie
by the constanta. Let us emphasize that one has to divide t
wave vectorQ @and alsoq, see Eq.~4!# defined in this paper
by 2p in order to express it in the units used in Ref. 1
In the experiment, measurements were taken for w
vectors Q5(p1q,p1q,p1q), with q52p(0.02),

f
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FIG. 8. Comparison of line shapes obtained from fits to simulation data forL560 ~solid line! and experiment~open circles! at T5Tc in
the @111# direction: ~a! q52p(0.04), ~b! q52p(0.06), ~c! q52p(0.08), and~d! q52p(0.10). The dot-dashed line in~c! is a fit of the
experimental data to the functional form predicted by the RNG theory plus a Lorentzian central peak, and the RNG component of
shown by the long-dashed line. The prediction of Mode Coupling~MC! theory for q52p(0.08) is shown by the dotted line in~c!. The
horizontal line segment in each graph represents the resolution in energy~full width at half maximum!.
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2p(0.04), . . . ,2p(0.12), but unfortunately these values
q are not all observed in our simulations with the particu
lattice sizes that we used. For instance, with a lattice sizL
560 we observe wave vectors withq52p(0.016 66 . . . ),
2p(0.033 33 . . . ), . . . and so on,according to Eq.~4!. Thus
in order to directly compare the line shapes from the sim
lation with the experimental ones, it was necessary to in
polate our results to obtain the sameq values of the experi-
ment. This was done by first fitting our line shapes with
Lorentzian form, as given in Eq.~11!. Since the parameter
B, G2, andvs obtained from these fits behave as power la
of q, we linearly interpolated the logarithm of these para
eters as a function of the logarithm ofq, to obtain new pa-
rameters for the line shapes corresponding to those value
q observed in the experiment. We estimated the uncertain
from this procedure to be less than five percent for the
rameterB, less than three percent for the spin-wave ha
width G2 and the spin-wave positionvs at Tc , and less than
one percent for the spin-wave positionvs at T50.9Tc . Be-
low Tc , the parametersA andG1 associated with the centra
peak were linearly interpolated, yielding new paramet
with uncertainties of approximately five percent. AtTc , the
parameterA was interpolated in the log-log plane~as forB,
G2 , and vs discussed above!, whereasG1 was simply lin-
early interpolated. The uncertainties inA andG1 at Tc were
estimated to be less than ten percent. ForL560, there is one
value ofq, namelyq52p(0.10), which is accessible to bot
r

-
r-

s
-

of
es
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-

s

simulation and experiment. This was the only case for wh
we did not have to interpolate inq.

Below Tc , the simulations are mainly forT50.9Tc which
unfortunately does not coincide with any temperature use
the experiment; however, it is very close toT50.894Tc
which is one of the temperatures for which experimental

FIG. 9. Comparison of the dispersion curve obtained from
simulation for L560 ~open circle! and the experiment~open tri-
angle! at T5Tc , in the@111# direction. In the notation here, the firs
Brillouin zone edge is atu(q,q,q)u.2.72. The simulation data
shown here correspond to values ofq accessible withL560, with-
out interpolation to match theq values from the experiment.
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sults are available. To correct for the slight difference,
made a linear interpolation in temperature, using our res
for L524 atT50.846Tc and atT50.9Tc . We first fitted the
line shapes at these two temperatures to a Lorentzian o
form given by Eq.~11!, then we linearly interpolated th
position and the amplitude of the spin-wave peak at th
temperatures, to obtain the spin-wave position and amplit
corresponding toT50.894Tc . For small values ofq we
found that the frequency of the spin-wave peak atT
50.894Tc was approximately 1.5% larger than atT50.9Tc
and this difference decreased for larger values ofq. The spin-
wave amplitude atT50.894Tc was found to be approxi
mately five percent larger than atT50.9Tc for small values
of q. As for the spin-wave position, the difference in th
amplitudes decreased for larger values of wave vector.

The intensity of the line shapes in the neutron-scatter
experiment was measured in counts per 15 sec. For both
peraturesT50.894Tc and T5Tc the measurements for th
several wave vectors were done with the same experime
setup and conditions. Therefore the relative intensities of
line shapes for the different wave vectors is fixed, and eq
for both temperatures. The intensity of the line shapes
tained in the simulation had to be normalized to the exp
mental value; however, because the relative intensities
different wave vectors is fixed, we have only one indep
dent normalization factor for all the wave vectors at bo
temperatures. The normalization of the intensity was cho
so that the spin-wave peak forT50.894Tc and q
52p(0.08) from the experiment and the simulatio
matched. This same factor was used to normalize the in
sities of the line shapes corresponding to the remaining
ues of wave vectors atT50.894Tc , and for all cases atTc .
The factor used was 70 counts/15 sec, which we multip
to the simulated line shapes for all values ofq at T
50.894Tc and atTc .

The final line shapes forT50.894Tc , L560, and severa
wave vectors are shown in Fig. 6 together with experimen
line shapes for each case. Figures 7~a! and~b! show, respec-
tively, the comparisons of the dispersion curve and the s
wave half-width from the simulation and the experiment
T50.894Tc . The good agreement between our results a
experiment can be seen from either the direct compariso
the line shapes, or the comparisons of the dispersion c
and the spin-wave half-width. There is an agreement
tween the line shape intensities from simulation and exp
ment over two orders of magnitude, fromq52p(0.02) to
q52p(0.10). Figure 8 shows the comparison of line sha
from the simulation and the experiment forT5Tc , L560,
and several values ofq. The dispersion curve obtained from
the simulations atT5Tc , shown in Fig. 9, is systematicall
larger than the experimental values. We would like to e
phasize that the error bars shown for the dispersion cu
obtained from our simulations atTc reflect only the statistica
errors of a best fit of the line shapes with Eq.~11!. For each
wave vector, this fit was done with only one range of fr
quency; hence errors associated with the choice of freque
range and the quality of the fit were not taken into accoun
is reasonable to expect that such sources of error would
crease the error bars by a factor of 5. From the direct co
parison of the simulated and experimental line shapes atTc it
is difficult to determine the difference in the spin-wave fr
e
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quencies, because the spin-wave peaks from the experim
are not very pronounced, and their positions have to be
tracted from the fits of the line shapes. As we mention
before, the experimental data atTc were fitted to a functional
form predicted by RNG theory plus a Lorentzian cent
peak. As an illustration, one such fit is shown in Fig. 8~c! for
q52p(0.08), along with the RNG component of the fit an
the prediction by mode-coupling theory. Finally, eve
though atTc the line-shape intensities from the simulatio
for small frequency transfer tended to be lower as compa
to the experiment, the agreement is still reasonably go
considering the variation of the intensities over almost t
orders of magnitude fromq52p(0.02) toq52p(0.12).

IV. CONCLUSION

We have studied the dynamic critical properties of t
classical Heisenberg antiferromagnet in a simple cubic
tice, using large-scale computer simulations. An interest
time integration technique implemented by Krechet al. al-
lowed us to use a larger time integration step and we w
thus able to extend the maximum integration time to mu
larger values than in previous work.

Below Tc , the dispersion curves were approximately li
ear for wave vectors well within the first Brillouin zone
Increasing the temperature towards the critical tempera
the dispersion curve became a power law, reflecting
crossover from hydrodynamic to critical behavior. Th
power-law behavior of the spin-wave half-width atT
50.9Tc also showed a crossover from critical behavior
large values ofq to hydrodynamic behavior at small value
of q. The dynamic critical exponent was estimated to bez
5(1.4360.03) which is in agreement with the experimen
value of Coldeaet al., and slightly lower than the dynami
scaling prediction.

We made direct, quantitative comparison of both the d
persion curve and the line shapes obtained from our sim
tions with the recent experimental results by Coldeaet al.At
T50.894Tc the agreement was very good. The major diffe
ence was atTc where spin-wave peaks from our simulatio
tended to be at slightly larger frequencies than the exp
mental results. Both atT50.894Tc and atTc the line-shape
intensities varied over almost two orders of magnitude fr
q52p(0.02) toq52p(0.10) and there was good agreeme
between the intensities from simulation and experiment o
the whole range. Thus the simple isotropic nearest-neigh
classical Heisenberg model is very good for describing
dynamic behavior of this real magnetic system, except
small differences in spin-wave frequencies at the criti
temperature.
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