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Spin-dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of the
classical Heisenberg antiferromagnet in simple cubic lattices with linear kiz&9. This system is widely
recognized as an appropriate model for the magnetic properties of RbMitRe evolutions of spin configu-
rations were determined numerically from coupled equations of motion for individual spins using an algorithm
implemented by Kreclet al,, which is based on fourth-order Suzuki-Trotter decompositions of exponential
operators. The dynamic structure factor was calculated from the space- and time-displaced spin-spin correla-
tion function. The crossover from hydrodynamic to critical behavior of the dispersion curve and spin-wave
half-width was studied as the temperature was increased towards the critical temperature. The dynamic critical
exponent was estimated to be (1.43+0.03), which is slightly lower than the dynamic scaling prediction, but
in good agreement with a recent experimental value. Direct, quantitative comparisons of both the dispersion
curve and the line shapes obtained from our simulations with very recent experimental results for;Rio®¥InF
presented.

[. INTRODUCTION denote as the critical temperatufe. In this material, the
magnetic anisotropy was found to be only aboutB ° of

Heisenberg models are examples of magnetic systems thtite exchange field, and no deviation from cubic symmetry
have true dynamics with the real time dynamics governed bwas seen af ..’ Both the static properties and the dynamic
coupled equations of motion. According to the classificationresponse of RoMnfhave been examined through neutron-
of the different dynamic universality classes proposed byscattering experiments. The early work of Tucciarenal.®
Hohenberg and Halperin in their work on the theory of dy-found that in the critical region the neutron-scattering func-
namic critical phenomenkthe classical Heisenberg ferro- tion has a central pealpeak at zero frequency transfeand
magnet and antiferromagnet are of class J and G, respea- spin-wave peak. Later, the experimental study by Cox
tively. Although both classes have true dynamics, in theet al® observed a small central peak beldw as well. The
former class the order parametéire uniform magnetization  more recent experiments by ColdegalX° have also found
is conserved, whereas in the latter the order paranitier central peaks folT<T,, in agreement with previous experi-
staggered magnetizatipis not a conserved quantity. The ments. From the theoretical side, renormalization-group
difference in the dynamic behavior of the Heisenberg ferro{RNG) below T, (Ref. 11 predicts spin-wave peaks, and a
magnet and antiferromagnet can already be seen from thsentral peak in the longitudinal component of the neutron-
linear spin-wave theory, which predicts different low- scattering function. However, at the critical temperature both
temperature dispersion curves for the two models. Dynamigenormalization-grould and mode-coupling theories pre-
critical behavior is describable in terms of a dynamic criticaldict only the spin-wave peak, i.e., the central peak has not
exponentz which depends on conservation laws, lattice di-been predicted by these theories. The central peak is thought
mension, and the static critical exponents. The static criticalo be due to spin diffusion resulting from nonlinearities in
behavior of three-dimensional Heisenberg models have beahe dynamical equatiorfsin their recent experiment, Coldea
studied using a variety of approaches, including a highet all® obtained the most precise experimental estimate of
resolution Monte Carlo simulation which determined thethe dynamic critical exponerz=(1.43+0.04). The theoret-
critical temperature and the static critical exponents forical predictiot'*®is z=1.5 for class G models in three
simple cubic and body-centered-cubic lattiéds. contrast,  dimensions.
the theory of the dynamic behavior of Heisenberg models is Large-scale computer simulations using spin-dynamics
not so well understood. techniques to study the dynamic behavior of Heisenberg fer-

A very close realization of an isotropic three-dimensionalromagnet and antiferromagnet have been carried out by Chen
Heisenberg antiferromagnet is RoMpFEarly experimental and Landatf and Bunker, Chen, and Land&respectively.
studie$~> have shown that in RbMnfthe Mr?* ions, with  So far, however, there are no direct comparisons of the dis-
spin S=5/2, form a simple cubic lattice structure with a persion curve and the dynamic structure line shapes obtained
nearest-neighbor exchange constantJ&f’=(0.58+-0.06) from simulations with the corresponding experimental re-
meV and a second-neighbor constant of less than 0.04 me®sults. In the present work we have carried out large-scale
[both defined using our convention for the exchange constarsimulations of the dynamic behavior of the Heisenberg anti-
to be shown in Eq(14)]. Magnetic ordering with antiferro- ferromagnet on a simple cubic lattice, and make direct com-
magnetic alignment of spins occurs below 83 K, which weparisons with experimental data for RoMpaFSection 1l of
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this paper contains the definition of the model and introduceas follows. At T=0.9T, we used lattices size& =12,
some simulation background. In Sec. Ill we present and dis24, 36, 48, and 60, for which the respective time
cuss our simulation results and compare them with experiparameters were t{,.J,tcutord) = (440,400), (440,400,
ments. Section IV contains some concluding remarks. (480,400, (680,600, and (1080,1000). The respective num-
bers of initial configurations used were 7020, 2850, 1110,

Il. MODEL AND METHODS 400, and 810. At T, and Ilattice sizes L
=18, 24, 30, 36, 48 we used,J=480 and t.,ioied
A. Model =400, and forL=60 we usedt,,,,J=1080 andt,,o
The classical Heisenberg antiferromagnetic model is de=1000. The number of initial configurations usedlgtwas
fined by the Hamiltonian 1000 for L=18,30,36, whereas fdc =24, 48, and 60 the
respective numbers were 1125, 715, and 510. Other tem-
H=3> s-s., (1) peratures considered, chosen to coincide with experimental

(') values, werel =0.774T ., 0.846T ., and 0.936 ., for which
_ _ _ _ - tnad =480, teuord=400, and the number of initial con-
where$=(S{,5/,S)) is a three-dimensional classical spin figurations used was 120. For lattice site=24 at T
of unit length at siter and J>0 is the antiferromagnetic =0.9T, the integration was carried out with a time sté&p
coupling constant between nearest-neighbor pairs of spins. 013-1 ysing a fourth-order predictor-corrector method,
We considerL X LXL simple cubic lattices with periodic 5 jn Refs. 14,15. For other lattice sizes and temperatures, we
boundary conditions. The time dependence of each spin cafseq a new algorithM based on fourth-order Suzuki-Trotter
be determined from the integration of the equations of mogecompositions of exponential operators, with a time step
tion [Eq. (2) in Ref. 15, and the dynamic structure factor a{—g 231 (except forL=12 at T=0.9T, for which At
S(q, ) for momentum transfeq and frequency transfeb,  —g 13-1). The latter method allowed us to use larger inte-
observable in neutron-scattering experiments, is given by gration time steps and thus to carry out the integration to
larger tyay, as compared with previous wotk!® In the
sk(q,w)ZE exdig-(r—r")] original study of Chen and Land%ﬁjtmaxz 12007 and in
rr’ the work of Bunkeret al. ty,,,=20Q) 1. In comparison, in
the present work we have used a lartgr,=440) "%, more

Xfwexp(iwt)ck(r—r’ t)i 2) equilibrium initial spin configurations, and a larger lattice
—o NG size, namel\L=60. As it is clear from the above, we have

K Do , . . concentrated our efforts on two cases: one temperature below

where C (r—r ,t)_ is the _space—_dlsplac_ed, tlme-dlsplaced-l-c, namelyT=0.9T,, and atT,.

spin-spin correlation function defined, wikXx, y, orz, as We also used the technique of calculating partial spin
Kook ok ok K sums “on the fly"**%Swhich limits us to data in theq(,0,0),

CH(r—r",t)=(S/(1)S,(0)) —(S(D))S(0)). () (9,9,0) and @,q,q) directions withq determined by the

The displacement s in units of the lattice unit cell lengta, ~ Periodic boundary conditions,

In the case of antiferromagnets, the wave-vectors are mea-

sured with respect to then( 7, 7) point which corresponds 24

to the Brillouin zone center. qg=——» n= +1,+2,...,x(L-1),L. 4

B. Simulation method Since all three Cartesian spatial directions are equivalent by

Using a combination of Monte Carlo and spin-dynamicssymmetry, the same operation carried out for tlogg0(0)
methods-*~*®we simulated the behavior of the simple-cubic direction was also carried out for the other two reciprocal-
classical Heisenberg antiferromagnet with<I?<60 at the lattice directions (@,0) and (0,0g) and the results were
critical temperaturd .= 1.442 929(77)? and belowT.. We  averaged. Similarly, the same operations carried out for the
have chosen units such that the Boltzmann condgntl. (9,9,0) and @,q,q) directions were also carried out for the

Equilibrium configurations were generated using a hybridequivalent reciprocal-lattice directions and the results were
Monte Carlo method in which a single hybrid Monte Carlo averaged for each case.
step consisted of two Metropolis steps and eight overrelax- For the ferromagnetic case the total magnetization is con-
ation stepg*!® Typically 1000 hybrid Monte Carlo steps served and the dynamic structure facgft, w) can be sepa-
were used to generate each equilibrium configuration and theated into a component along the axis of the total magneti-
coupled equations of motion were then integrated numerization(longitudinal componeftand a transverse component.
cally, using these states as initial spin configurations. NuHowever, for the antiferromagnet the order parameter is not
merical integrations were performed to a maximum timeconserved and separation is not possible. We thus refer to the
tmax, USINg a time step ofAt. The space-displaced, time- average
displaced spin-spin correlation functioB*(r—r’,t) was
computed for time displacements ranging from Ot i@q - 1
Each of such correlations was calculated from an average S(q, )= =[S0, )+ 9(q,0) + g, )] (5)
over between 40 and 80 different time starting points, evenly 3
spaced by 18t. Our unit for time is the interaction constant
J defined in Eq.(1). The parameters used in this work were as the dynamic structure factor.
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C. Dynamic finite-size scaling 40

Two practical limitations on spin-dynamics techniques
imposed by limited computer resources are the finite lattice 30 |
size and the finite evolution time. The finite time cutoff can
introduce oscillations i15(q, w), which can be smoothed out
by convoluting the spin-spin correlation function with a reso-
lution function in frequency. The finite-size scalfig® can
be used to extract the dynamic critical exponenising

wS(q, )
xE(a)

20+

S(q,»)

10

—G(wl?qL,s,L?) (6)

SDO

w/J
and

wn=L"20(qL,s,L?), 7 L=60

wheregﬁ(q,w) is the dynamic structure factor convoluted [100}
with a Gaussian resolution function with characteristic pa- 3l g%

rameters,,, Zm is a characteristic frequency, defined as

S(a.w)

1
f_m Sa0) 5o = 33K, ®)

and;‘ﬁ(q) is the total integrated intensity. .
For the time cutoffs of at least 400" used in the present 0.0 0.5 10 15 20
simulations, the oscillations in the dynamic structure factor ok
due to the finitet,,;ors Were not very significant. Thus we
first estimate the dynamic critical exponenwithout using a
resolution function, or equivalently, we talk®,=0. In this
case the analysis is simpler and a valueZoan be obtained
from the slope of a graph of Ing,) vs In(L) (wherew,, is the
characteristic frequency in the absence of a resolution func-
tion) if the value gL is fixed. It is important to note that
lattice sizes included in this calculation should be large
enough to be in the asymptotic-size regime. The approximate
lattice size of the onset of the asymptotic regime can be
estimated by looking at the behavior afL* for different -
lattice sizes using trial values af %0 10 20 30 10
The effects of the small oscillations in the dynamic struc- wld
ture factor on the dynamic critical exponentan be evalu-

ated by repeating the analysis using a resolution function. FIG. 1. Dynamic structure factd®(q,w) from our simulations
For this purpose, we chose for L=60 atT=0.9T, and wave vector&) q= /10, (b) #/6, and

(c) m/3 in the[100] direction. The symbols represent spin dynamics
60|*
6,=0.02 —

data and the solid line is a fit with the Lorentzian function given in
L ) Eq. (11). For clarity, error bars are only shown for a few typical
points, i.e., error bars for the data in the neighborhood of each of

so that the functiorﬁ(qL,éwLZ) in Eq. (7) is a constant if these fpcr)]int]:'ti are s?milar_. Artl highdfrequencies error bars are of the
qL is fixed, yielding size of the fluctuations in these data.

wn~L "% (100 Fig. 1 we show line shapes for lattice site=60 atT
=0.9T, and wave vectors)j=#/10, 7/6, and #/3 in the
Becauses,, depends org, this exponent had to be deter- [100] direction. We see that agincreases, the central peak
mined iteratively. We used=1,2 and several initial values broadens and its relative amplitude increases. Figure 2 shows
for z in the iterations, in order to check the stability of the |ine shapes fot. =60 at T, and wave vectors|= /10 and
converged value of. /6 in the[100] direction. It is clear from these line shapes
that the oscillations due to the finitg s are indeed negli-

ll. RESULTS gible; therefore in our analysis of the line shapes we have not
convoluted our results with a resolution functio\s ex-
plained in the following section, we later convoluted our

For T<T. our results for the dynamic structure factor, asresults with a Gaussian resolution function in order to di-
defined in Eq.(5), show a spin wave and a central peak. Inrectly compare our line shapes with the experiments. The

A. Numerical data for S(q, )
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oL=24 T=0.774T,
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5 " ¥ FIG. 3. Spin-wave dispersion relations f6< T, in the[100]
L=60 direction. The symbols represent spin-wave positions extracted
4 T=T, (b) from Lorentzian fits to the line shapes from the simulations, and the
solid curves are fits of the dispersion relations at different tempera-
tures to Eq(13).
3
z
w

the fitted parameters varied when different frequency ranges
were used in the fit. Although this variation was small, it was
often larger than the statistical error in the fitted parameters
obtained from the fit using a single frequency range. There-
fore for T=0.9T. we estimated the error in the fitted param-
eters by fitting the line shapes using three different ranges of
ol frequency. The values of the parameters were then averaged
FIG. 2. Dynamic structure factd®(q,») from our simulations and the !arro_r bars estimated from the fluctuatlon_S.T@\I
for L=60 atT=T, and wave vectoréa) q= /10 and(b) /6 in renormalization-group theoryRNG) (Ref. 12 predicts a

the [100] direction. The symbols represent spin dynamics data and'ON-Lorentzian functional form for the spin-wave line shape,
the solid line is a fit with the Lorentzian function given in E41).  Which has been used along with a Lorentzian central peak to

As in Fig. 1, error bars are only shown for a few typical points. analyze experimental dataSince it is more complicated to
perform fits to this RNG functional form and since the spin-
reason for this is that there is an intrinsic finite resolution inwave peaks obtained from the simulations are more pro-
the experimental data due to the finite divergence of neutronounced than in the experiment, and thus less dependent on
beams. The width of any structure in the line shapes dis-the fitted functional, we have fitted the line shaped ato
cussed here is much larger than our resolution in frequencliorentzians, as given in Eg11). Although obtaining a good
Aw=1.27/t o1t fit to our data afT. was more difficult than belowW, the
Below T, previous theoreticht and experiment&f stud-  resulting fits at T, are still reasonable. Unlike foiT
ies motivated us to extract the position and the half-width of=0.9T., at T the line-shape parameters used in the analysis
the spin wave and central peaks by fitting the line shape to below are the values obtained from the fit to only one fre-

Lorentzian form quency range, which was the one that gave the best fit. One
should then expect that the actual error in the fitted param-
Sc0) AI'2 BT BT'3 eters afT is larger(by up to a factor of 5than the error bars
,0)= + + , i i
q F§+w2 l“§+(a)+ws)2 F§+(a)—ws)2 shown in the figures below.

(11) In addition to the spin-wave and the central peaks, we
observed some other peaks on the large frequency tail of the
where the first term corresponds to the central peak and thepin-wave peaks. Although these large frequency peaks had
last two terms are contributions from the spin-wave creatiorvery small amplitudes, they could be discerned from the
and annihilation peaks abt=* wgs. For T=0.9T, we find  background fluctuations. Using the spin-wave frequencies in
that Lorentzian line shapes fit our results reasonably well fothe[100], [110], and[111] directions we could check that the
small values ofg, except for the smallest value, namealy position of these extra peaks corresponded to frequencies of
=2a/L, in the[100Q] direction. The reason is that for each two spin-wave addition peaks. These extra structures in the
lattice sizeL, the dynamic structure factor for the smallestline shapes were particularly visible for the smallest values
value of g corresponds to correlations between spins disof wave vectors.
placed in space by a distancé&?, and the effect of the finite Figure 3 shows how the dispersion curve varies as the
lattice size is particularly prominent in these cases, causingemperature increases from=0.774T; to T.. The disper-
the line shapes to depart significantly from a Lorentziansion curves illustrated here are for fi€0] direction and are
form. For large values ofg [approximatelyq>2w(L/4  plotted up toq= /2, which corresponds to one half of the
—2)/L] the Lorentzian form given in Eq11) does not fit  Brillouin zone. As mentioned before, for larger valuescof
the data, especially at large frequency transfer. In generathe Lorentzian in Eq(11) did not yield good fits to the line
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FIG. 4. Log-log graph of the half-width of the spin-wave peak  FIG. 5. Finite-size scaling plot fow, (with gL=constg,L*
extracted from Lorentzian fits to the line shapes obtained fron=const) for the analysis with and without a resolution function. For
simulations forL=60 and T=0.9T, in the [100] direction as a the former case, the data used correspond to the converged values
function of q. of z, for n=1,2. The error bars were smaller than the symbol sizes.

shapes; however, the spin-wave positions could still be digng this is indeed consistent with what we obtained. Our
rectly read off the graphs, but with larger error bars. For oukegits atT, are in agreement with the recent experim@nt
present purpose of observing the approach to the critical r&ghjch obtained an exponert= 1.43+0.04 when the disper-
gion as the temperature is raised from beldw it suffices  gjon curve atT, was fitted to a power-law relation of the
to consider the dispersion curve for wave vectors Um0 form given in Eq.(12). The solid lines in Fig. 3 are fits to Eq.

=m/2. Well belowT., the dispersion relation is linear for (13). jn general, these fits gave lower values@fper degree
small g; as T—T,, it changes gradually from linear to a of freedom than fits to Eq12).

power-law behavior of the form In the critical region, dynamic scaling theory predicts that
. the half-width of spin-wave peaks behaves as a power law,
ws=A". (120 1,~q5 ¥ whereas for the hydrodynamic regime the predic-

tion from hydrodynamic theory i§,~q?.%° The half-width
of the spin-wave peaks at=0.9T. and L=60 from our
simulations is shown in Fig. 4. We observed a crossover
from I',=(0.401*+ 0.004)3* 6= %% for |arger values of wave
ector toI',=(0.48+0.02)q1 %609 for small values ofq.
he behavior for relatively large wave vectors is in agree-
ment with dynamic scaling theory and with the recent
experiment® The exponent we obtained by fitting only
small values ofg is close to the hydrodynamic prediction.
w=Ag"+ B> (13) Thus for the spin-wave hal_f-width we have o_bserved a cross-
over of exponents associated with two different regimes,
Fitting the smallest five values of the dispersion curve to a namely, the critical and the hydrodynamic regions. This
function of the form given by Eq(13) yielded an exponent crossover is similar to the one observed in the dispersion
x=1.020+0.003, which is in good agreement with the value curve atT, discussed above. Far=T; andL =60 the spin-
obtained from the previous fit. When larger valuegjafi the ~ wave half-width also had a power-law behavior which varied
dispersion curve were included in the fits, E4@) tended to  from approximatelyq'? when the 12 smallest values gf
yield smallery?s per degree of freedom than Ed.2). The ~ were included to approximately** when only the smallest
dispersion curve folT=T, and L=60 fitted to Eq.(12  five wave vectors were included in the fit. In their recent
yielded an exponent of=1.38+0.01 when the smallest 12 experiment, Coldeat al* obtainedl’,=Dq™4* %% for the
values ofq were included in the fit. As the larger were  temperature range 0.T¢<T<T,, and the coefficienD in-
excluded from the fit, the exponent increased slightly, tendereased with increasing temperature.
ing towardsx=1.40. When only the smallest few valuestpf As in the experiments, the dynamic structure factors from
were included in the fit, the exponent decreased again, redur simulations had central peaksero frequency transfer
flecting the fact that as we probed correlations between spirgeaks for T<T,. In contrast, renormalization-group theory
separated by larger distand@s equivalently, smalleq) the  predicts a central peak in the longitudinal component of the
finite size of the latticéand thus of the correlation lengtls ~ dynamic structure factor only beloW,,** and none of the
revealed, showing that the system is not at criticality. Hencéheories predict a central peak Bt.***3 For T=0.9T, and
the exponenk decreases towards unity. On the other hand]l. =60 fitting the central peak half-width to the forin,
large values ofy correspond to short distan¢m the direct ~g* yielded very largex? per degree of freedom. A much
lattice spacg spin-spin correlations, and the correlation improved fit was obtained by using the functidh=A,
length is much larger than the distance probed. One would-B;q°t, which allows for a nonzero central peak width
thus expect the critical behavior of the system to be manifestyhenq vanishes. In these fits the data for the smallest value

For T=0.9T. andL=60 a fit including the smallest fivg
values of the dispersion curve to Ed.2) yieldedx=1.017
+0.003. As we probed further away from the Brillouin zone
center by including larger values qfin the fit, the exponent
decreased slightly. In order to check how sensitive the fitte
exponent is to the particular form of the fitted function, we
have performed new fits to a function which includes a qua
dratic term, i.e.,
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FIG. 6. Comparison of line shapes obtained from fits to simulation datd 080 (solid line) and experimenfopen circles at T
=0.894T in the[111] direction:(a) q=2m(0.04), (b) g=27(0.06), (c) g=27(0.08), andd) g=27(0.10). The horizontal line segment
in each graph represents the resolution in enéfigly width at half maximun).

of g observable inL=60, i.e.,n=1, were not included, In(L) graph fitted with four data points, namely lattice sizes
because of the large finite-size effects in them. The fitincludi =30, 36, 48, and 60, we obtainex=1.45+0.01 for n

ing data forq corresponding tm=2 until n=7 yieldedA; =1 andz=1.42+0.01 forn=2. In order to check the ef-
=0.013£0.001, B,=0.120=0.005, andC,=2.4+0.2. As  fets of the very small oscillations B(q, ) due to the finite
we systematically included larger valuescoh the fits, these ¢ off time, we proceeded to estimate the value aging a
parameters decreased slightly. i we have also fitted the  oqiytion function withs, given by Eq.(9). For the itera-
central peaks to Lorentzians, according to Bd); however, i, “\ve ysed several initial values ), ranging from

these tended to yield curves with smaller amplitudes than thg(o): 1.31 to 1.59, and in all cases the exponecbnverged

data, as can be seen in Fig. 2. Since there is no theoretlc%pidly to the final value with at most three iterations being

rediction for the central peak, we have also tried to fit them L
P b ecessary. For all the initial values o) that we used, we

with a Gaussian form. These latter fits were, nevertheles@, .
much worse than the fits with Lorentzians. obtained an exponert=1.43+0.01 forn=1 andz=1.42

The lattice sizes that we used, nameky 12, 24, 36, 48, iO.Ql forn=2. In gengral, the? per degree of freedom in
and 60, are all multiples of 12; thus there are certain wavdhe fits forn=2 were slightly lower than fon=1, although
vectors which are common to all lattice sizes. This is anit Was reasonable in all cases. Our final estimate for the dy-
advantage in the study of effects due to finite lattices, benhamic critical exponent is=1.43+0.03, where the error bar
cause it allows us to compare line shapes and spin-wawéflects the fluctuations in the different estimateszofA
dispersion relations for different lattice sizes at a fixed valuecomparison of the characteristic frequenEM as a function
of wave vector. AtT=0.9T. we did not see a significant of the lattice sizeL for the analysis with and without a reso-
finite-size effect fol.=24; however, when we superimposed lution function is shown in Fig. 5. For the former case, the
line shapes aT . for a fixed value ofg, and different values graph shown corresponds to the converged values fof
of L, finite-size effects were noticeable for=24. For the bothn=1 and 2.
larger values ofL that we used, the line shapes were the
same within the error bars.

The dynamic critical exponert was extracted from the B. Comparison with experiment

finite-size scaling ofvr,, as described in a previous section. |n this section we compare our results with the recent
We started the analysis using no resolution function, Ol'neutron-scattering experiment by Coldatzal 1° Before pro-
equivalentlys, =0, andn=1,2. As in previous work? we  ceeding with the direct comparison, it is necessary to clarify
estimated the lattice =30 to be approximately the onset of the units and possible normalization factors between simula-
the asymptotic-size regime. From the slope of aoj)(vs  tion and experiment.
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5 - : tem defined by the Hamiltonian in E¢L4) if one rescales
 simulation L=60 the time, or equivalently, the frequency transfer. We obtain
4r sexperiment -
sl T=0.894 T - w®P=J%*P/§(S+1) ? (16)
%E) -
g 2l . - wherew®*P is the frequency transfer in the quantum system,
- measured experimentally, arg J is the frequency transfer
11 . ] in units of J from our simulations. Parenthetically, we note
- (@ that the critical temperature of the classical Hamiltonian in
0 A ‘ Eq. (1) has been determined from simulations to bg
0.0 05 1.0 15 =1.442 929(77).2 Using the normalization for the interac-
q,q,a)! tion strengthl given in Eq.(15) and the experimental valtie
15 , , J&*P=(6.8+0.6) K we getT.=(85.9+7.6) K, where the
nine percent error comes from the uncertaintydfiP. The
o simulation =60 experimental value of the critical temperature is around 83 K
aexperiment K . L
which is well within the error bars.

1.0 T=0.894 T 1 1 Due to detailed balance, neutron-scattering experiments
=3 i measure the dynamic structure factor multiplied by a tem-
E perature and frequency dependent population fa@ttr?®
L:VO.5 I Ly | This factor does not appear in the simulations of the classical

ze system for which the dynamic structure factor is computed
L. ) directly. For the comparison, we removed the population fac-
. . tor from the experimental data.
0.000 d o5 . - The finite divergence of the neutron beam gives rise to a

resolution function which is usually approximated by a
@.0.9) Gaussian in the four-dimensional energy and wave-vector
FIG. 7. Comparison of thé) dispersion curve and th@) spin-  SPace. In the experime?’ﬂ,the measure_d resolution wi.dth
wave half-width, obtained from simulations for=60 (open circlg ~ 2l0ng the energy axis was 0.25 mefll width at half maxi-
and the experimentopen triangle at T=0.894T., in the [111] ~ mum) for incoherent elastic scattering. In order to directly
direction. The simulation data shown here correspond to valugs of COmpare our results with the experiment, we convoluted the
accessible with. =60, without interpolation to match thgvalues  line shapes from our simulation with a Gaussian resolution
from the experiment. function in energy with the experimental value of full width
at half maximum, normalized according to E@.6). The
The neutron-scattering experiment was done on RbjyinF standard deviatiod,, thus obtained for the Gaussian resolu-
which can be described by a quantum Heisenberg Hamiltion function was 0.0619 in units &f As a test of the effects

tonian of the form of the resolution function in the wave-vector space, we have
also convoluted our line shapes with a three-dimensional

H:Jexpz SrQ S?' , (14) Gau35|_an fu_nctlo_n where, for simplicity, we have taken the

() resolution width in the three wave-vector components to be

) ) ) - the same, and equal to the average of the experimental reso-
where S? are spin operators with magnltudsﬂ =S(S  |ution in the longitudinal and transverse directions. The ef-

+1) and the interaction strength between pairs of neareskct of this convolution was found to be negligible; thus the
neighbors was determined experimentalljo be J¥*P jine shapes used in the comparisons shown below do not
=(0.58-0.06) meV. In contrast, our simulations were per-jnclude the resolution in wave vector.
formed on a classical Heis_enberg Hamiltonian_given in Ed.  The experimerf performed constant wave-vector scans
(1). However, quantum Heisenberg systems with large spifith both positive and negative energy transfer. The wave-
values §=2) have been shown to behave as classicalector transferQ was measured along tH@11] direction,
Heisenberg systems, where the spins are taken to be vectgfgound the antiferromagnetic zone center which in our nota-
of magnitudeyS(S+1) with the same interaction strength tion is the (r,7,7) point. Note that Ref. 10 defines the
between pairs of nearest neighbors as in the quantufyave-vector transfe® in units such that the antiferromag-
systen?! In our simulations the spins were taken to be VeC-netic zone center is (0.5,0.5,0.5); hence to expfess Ref.
tors of unit length. Hence to preserve the Hamiltonian thei g in units of A~* one has to multiply it by 2/a, wherea
interaction strengtld from our simulation has to be normal- s the cubic lattice parameter expressed in A. However, in
ized according to the simulation direct lattice positions are defined in units of
_ ex the lattice constard; thus we obtain wave vectors multiplied
I=J"P(S+1). (19 by the constand. Let us emphasize that one has to divide the
Although this choice of normalization for spin vectors andwave vectorQ [and alsag, see Eq(4)] defined in this paper
the interaction strength leaves the Hamiltonian unchanged, iy 27 in order to express it in the units used in Ref. 10.
does modify the equations of motions. The dynamics of thén the experiment, measurements were taken for wave
classical system so defined is the same as the quantum sy&ctors Q=(w+q,7+q,7+q), with q=27(0.02),
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FIG. 8. Comparison of line shapes obtained from fits to simulation data=®0 (solid line) and experimentopen circlesat T=T, in
the[111] direction: (a) q=2#(0.04), (b) g=27(0.06), (c) q=2=(0.08), and(d) g=27(0.10). The dot-dashed line if) is a fit of the

experimental data to the functional form predicted by the RNG theory plus a Lorentzian central peak, and the RNG component of the fit is

shown by the long-dashed line. The prediction of Mode Coup(Mg) theory forq=2(0.08) is shown by the dotted line i). The
horizontal line segment in each graph represents the resolution in efiefigyidth at half maximun).

27(0.04),...,27(0.12), but unfortunately these values of simulation and experiment. This was the only case for which
g are not all observed in our simulations with the particularwe did not have to interpolate i

lattice sizes that we used. For instance, with a lattice size ~ Below T, the simulations are mainly far=0.9T . which
=60 we observe wave vectors with=27(0.0166 . ..), unfortunately does not coincide with any temperature used in
2m(0.0333...), ... and so oraccording to Eq(4). Thus ~ the experiment; however, it is very close 10=0.894T;

in order to directly compare the line shapes from the simuWhich is one of the temperatures for which experimental re-

lation with the experimental ones, it was necessary to inter-
polate our results to obtain the sam&alues of the experi-
ment. This was done by first fitting our line shapes with a
Lorentzian form, as given in Eq11). Since the parameters

B, I'5, andwg obtained from these fits behave as power laws
of g, we linearly interpolated the logarithm of these param-
eters as a function of the logarithm qf to obtain new pa-
rameters for the line shapes corresponding to those values of
g observed in the experiment. We estimated the uncertainties
from this procedure to be less than five percent for the pa-
rameterB, less than three percent for the spin-wave half-
width ', and the spin-wave positioag at T, and less than
one percent for the spin-wave positian at T=0.9T,.. Be-

low T, the parameterd andI'; associated with the central
peak were linearly interpolated, yielding new parameters
with uncertainties of approximately five percent. Bt, the
parameterA was interpolated in the log-log plartaes for B,
I'5, and wg discussed aboyewhereasl’; was simply lin-
early interpolated. The uncertaintiesAnandI’; at T, were
estimated to be less than ten percent. [Fer60, there is one

(meV)

o« simulation L=60
s experiment

0

T=T, - I

1.0
I(g,0,9)!

0.0 0.5

1.5

FIG. 9. Comparison of the dispersion curve obtained from our
simulation forL=60 (open circlg¢ and the experimentopen tri-
angle atT=T,, in the[111] direction. In the notation here, the first
Brillouin zone edge is at(q,q,q)|=2.72. The simulation data
shown here correspond to valuesgpficcessible with =60, with-

value ofqg, namelyg=2(0.10), which is accessible to both out interpolation to match thg values from the experiment.
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sults are available. To correct for the slight difference, wequencies, because the spin-wave peaks from the experiment
made a linear interpolation in temperature, using our resultare not very pronounced, and their positions have to be ex-
for L=24 atT=0.846T, and atT=0.9T.. We first fitted the  tracted from the fits of the line shapes. As we mentioned
line shapes at these two temperatures to a Lorentzian of tHeefore, the experimental datat were fitted to a functional
form given by Eq.(11), then we linearly interpolated the form predicted by RNG theory plus a Lorentzian central
position and the amplitude of the spin-wave peak at thespeak. As an illustration, one such fit is shown in Fi¢c)8or
temperatures, to obtain the spin-wave position and amplitudg=27(0.08), along with the RNG component of the fit and
corresponding toT=0.894T.. For small values ofy we the prediction by mode-coupling theory. Finally, even
found that the frequency of the spin-wave peak Tat though atT. the line-shape intensities from the simulations
=0.894T . was approximately 1.5% larger thanBt0.9T,  for small frequency transfer tended to be lower as compared
and this difference decreased for larger valueg. dthe spin-  to the experiment, the agreement is still reasonably good,
wave amplitude aff=0.894T, was found to be approxi- considering the variation of the intensities over almost two
mately five percent larger than @t=0.9T for small values orders of magnitude from=2(0.02) toq=27(0.12).
of g. As for the spin-wave position, the difference in the
amplitudes decreased for larger values of wave vector. V. CONCLUSION

The intensity of the line shapes in the neutron-scattering . . - .
experment was measured n counts pr 155ec. Fo ot ey, 196, S e Ao el poperis o e
peraturesT=0.894T. and T=T. the measurements for the 9 9 P

. . tice, using large-scale computer simulations. An interesting
several wave vectors were done with the same experiment ) . : .
" - > o Ime integration technique implemented by Kreehal. al-
setup and conditions. Therefore the relative intensities of th . . .
wed us to use a larger time integration step and we were

line shapes for the different wave vectors is fixed, and equal. < able to extend the maximum integration time to much

for both temperatures. The intensity of the line shapes ob- . .
larger values than in previous work.

tained in the simulation had to be normalized to the experi- : : . .
Below T, the dispersion curves were approximately lin-

mental value; however, because the relative intensities foéar for wave vectors well within the first Brillouin zone
different wave vectors is fixed, we have only one indepen- '

dent normalization factor for all the wave vectors at bothIncreasmg the temperature towards the critical temperature

temperatures. The normalization of the intensity was choseWe dispersion curve becam‘? a power law, reﬂgctmg the
. -~ crossover from hydrodynamic to critical behavior. The
so that the spin-wave peak fof=0.894T, and q

=2m(0.08) from the experiment and the simulation gower-law behavior of the spin-wave half-width at
=0.9T, also showed a crossover from critical behavior at

matched. This same factor was used to normalize the inter?élr e values ofy to hydrodynamic behavior at small values
sities of the line shapes corresponding to the remaining val- 9 Y y

ues of wave vectors at=0.894T, , and for all cases &, . of g. The dynamic critical exponent was estimated tozbe

The factor used was 70 counts/15 sec, which we multipliec{f a(ljédfg‘: g.(())l?é)eavé?lgr ';n'g 23rﬁﬁmlegvtlg't{;];Ttﬁépgrgﬁ}gal
to the simulated line shapes for all values gfat T ? gntly y

scaling prediction.
=0.894T; and atT.. : o . .
The final line shapes foF=0.894T ., L =60, and several We made direct, quantitative comparison of both the dis

N . . ersion curve and the line shapes obtained from our simula-
wave vectors are shown in Fig. 6 together with expenmentaﬁ

line shapes for each case. Figurés) and(b) show, respec- ons with the recent experimental results by Coldeal. At

. P . - gut : » resp . T=0.894T . the agreement was very good. The major differ-

tively, the comparisons of the dispersion curve and the spin- ; ) .
. . . . ence was al ;. where spin-wave peaks from our simulations

wave half-width from the simulation and the experiment at ended to be at slightly larger frequencies than the experi-

T=0.894T.. The good agreement between our results ané ghtly farg d P

. : ) . ental results. Both af=0.894T. and atT, the line-shape
experiment can be seen from either the direct comparison o " . :
. . . . Intensities varied over almost two orders of magnitude from
the line shapes, or the comparisons of the dispersion curve

and the spin-wave half-width. There is an agreement bed . 27(0-02) t0q=27(0.10) and there was good agreement

tween the line shape intensities from simulation and experipetween the intensities from simulation and experiment over

ment over two orders of magnitude, froq27(0.02) to the whole range. Thus the simple isotropic nearest-neighbor

q=2(0.10). Figure 8 shows the comparison of line Shapeé:lassmal Heisenberg model is very good for describing the

) ? . dynamic behavior of this real magnetic system, except for
from the simulation and the _experl_ment for=T, !‘:60’ srynall differences in spin-wave fr?aquenci)és at the cﬁtical
and several values a@f. The dispersion curve obtained from

i . g A . : temperature.
the simulations aT =T, shown in Fig. 9, is systematically
larger than the experimental values. We would like to em-
phasize that the error bars shown for the dispersion curve
obtained from our simulations &t reflect only the statistical We are indebted to Professor R. A. Cowley and Dr. R.
errors of a best fit of the line shapes with Efj1). For each  Coldea for very helpful discussions and for sending us ascii
wave vector, this fit was done with only one range of fre-files of their data. We would also like to thank Dr. M. Krech
quency; hence errors associated with the choice of frequenand Professor H. B. Scliter for valuable discussions. Com-
range and the quality of the fit were not taken into account. lputer simulations were carried out on the Cray T90 at the
is reasonable to expect that such sources of error would ir6an Diego Supercomputing Center, and on a Silicon Graph-
crease the error bars by a factor of 5. From the direct comics Origin2000 and IBM R6000 machines in the University
parison of the simulated and experimental line shap@s @t  of Georgia. This research was supported in part by NSF
is difficult to determine the difference in the spin-wave fre- Grant No. DMR-9727714.
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