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Wetting behavior in the Co-Pt system

Y. Le Bouar, A. Loiseau, A. Finel, and F. Ducastelle
Laboratoire d’Etude des Microstructures (LEM), ONERA-CNRSteBBpstale 72, 92322 Clilon Cedex, France
(Received 9 July 1999

In the Co-Pt system, a simple cooling experiment can drive a sample ordered in the_dytstructure
(CusAu type) close to the two-phase region involvihg , and the tetragondll, (CuAu type structure. Using
transmission electron microscopy observations, we show that the antiphase bou(dl@B&s in the L1,
structure are decorated by thd, structure and that the1, variant formed during this wetting process is
related to the characteristics of the APB. Thg, tetragonal axis is normal to the displacement vector of the
APB and the translational variant ensures the continuity of the platinum-rich cubic planes between the bulk and
the wetting structure. To understand this peculiar wetting process, we develop different theoretical approaches
based on a microscopic Ising model on the fcc lattice with interactions up to the second nearest neighbors. At
0 K, the model accounts for the observed selectivity of the wetting process. Then, using a mean field approach,
our model predicts the wetting by thel, structure at finite temperature, with a selectivity similar to that
observed in the Co-Pt samples. Furthermore, the usual logarithmic divergence of the width of the wetting layer
with respect to the excess free energy still holds. Finally, we use a general phenomenological Landau approach,
where the symmetries of the fcc lattice and of thiectoria) order parameter are taken into account, to show
that the width of the wetting layer is very sensitive to the orientation of the APB. This phenomenological
approach makes it clear also that the wetting of the APB inltheg structure by thd_1, phase, although
observed here, is not unavoidable theoretically, which is not the case when the relevant order parameter is
scalar.

I. INTRODUCTION electron microscope techniques we show first that a wetting
layer of L1, structure appears along the APB of thé,

The wetting phenomenon of antiphase boundariephase. Particular attention is paid to the relationship between
(APB’s) by the disordered solid solution has been a focus othe initial configuration of the APB and thel, variant
intensive  research,  both  theoreticalfy and formed by wetting.
experimentally’~’ for general reviews see Refs. 8-10. Much  In the following parts of the paper, we develop different
less is known concerning the wetting phenomenon by afheoretical approaches to understand the latter relationship
ordered phase, where new features are expected due to tAad to test whether the usual qualitative features of the wet-
degeneracy of the ordered structure. Indeed, the system m&yng phenomenon by a disordered solid solution still apply to
choose only one or several variants of the ordered phase tbe peculiar wetting phenomenon observed in the Co-Pt sys-
be formed along the APB. Furthermore, as the width of theem.
wetting layer increases, the accomodation of the elastic strain
due to the misfit between the bulk structure and the variants Il. EXPERIMENTAL PROCEDURE
of the new ordered phase may lead to a nontrivial behavior
of the APB. In this paper, we focus on the very first steps of
such a wetting phenomenon, when the width of the wetting The procedure followed for the sample preparation is the
layer is small enough to neglect the influence of elastisame as that used in previous works on Co-Pt aftdy3.
strains. The consequences of the misfit between the bulk andlloys containing from 61.5 to 63 % at. Pt were prepared by
the wetting structure on the microstructure will be discussednelting pure Co and pure Pt in an arc furnace in the form of
elsewhere. small ingots which were homogenized during two days at

In the first part of this paper, we present the results of @000 °C under partial He pressure. Thin she@tS0 um
wetting phenomenon by an ordered phase in the Co-Pt syshick) were obtained by rolling and discs where punched out
tem. Platinum rich Co-Pt alloys are chemically disordered orof the sheets, sealed in evacuated quartz tubes under partial
a fcc lattice at high temperature and ordered at low temperaHe atmosphere, annealed at 930 °C to remove strains induced
ture according to either a cublcl, structure (CoR) or a by rolling, and water quenched. The discs were then an-
tetragonal 1, structure(CoP9, depending on the alloy con- nealed according to the following procedure: They were first
centration, and there is a narrow concentration range whergeated up to 740 °C and then slowly cooled at a rate of 10 or
the two ordered phases coexist at equilibrium. It has beed0°C/24 h down to the temperature of interest, and finally
shown in a previous work that the two-phase alloys can benaintained at this temperature during two to four weeks and
obtained through different ordering reactions from either thequenched. As shown by Lerowt al,*! this procedure pro-
disordered state, or thel, state, or theL1, state’* We  duces large ordered domains of the different phases at any
focus here on the transformation path corresponding to &mperature. Finally, the samples were thinned to electron
sample initially ordered in the 1, structure. Using different transparency by Ar ion thinning and the surfaces were

A. Sample preparation
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y ' gives rise to extinctions for two beams and the structure fac-
] ] four-fold tor of the third one is larger than thoselof,. As a conse-
. . axis quence, for a giveri120), (210), or (110 DF, aL1l, zone
" " appears either black or brighter than th&, zones, depend-
[ P Lio

ing on the orientation of the tetragonal axis. As shown in
Table I, this contrast rule allows us to distinguish between
the differentL1, orientational variants and thel, phase.
FIG. 1. L1, andL1, structures. For convenience, we have introduced in Table I three levels
of illumination: Black (extinction, gray (L1,), and white
cleaned in aqua regia to remove the damaged areas produc@d ;). This contrast rule has been successfully used to char-
by the ion bombardment. The microstructure studies wer@cterize the microstructures of the two-phasi,+ L1,
performed by transmission electron microsc@pfzM) with  co-pt alloyst®*2
a Jeol 4000FX working at 400 keV. The transmission electron microscopy in superstructure
dark field mode also provides a convenient tool for visualiz-
ing and characterizing the APE. In a dark field image,
) where we have selected the vector of the reciprocal sgace
The Co-Pt binary compounds are ordered at low temperapne ApPB s in contrast unless the displacement veBtdre-
ture on the fcc lattice according to either the simple cubicyyeen the two domains induces a phase sh#2mg-r equal
L1, structure (CyAu type) or the tetragonal 1 structure 14 zer0 modulo 2. The APB is then out of contrast and
(CuAu type. In the perfecL. 1, structure(see Fig. ], the CO  cannot be seen in the selected DF. When the APB is in
atoms occupy the vertices of the cube and the Pt atoms ifsyntrast and the two-beam conditions are achieved, the dy-
face centres. This st_ructure d|s_plays four orde_red variant§amical theory predicts the formation of fringes with a peri-
separated by three kinds of antiphase boundaries APB, thyicity equal to the extinction length corresponding to the
three possible displacement vectors beig=5[011), R, selected beart? In a(110), (210), or (120) dark field image,
=3[101], andR3=3[110]. TheL1, structure is formed by 54 APB in contrast appears as a unique black fringe because
alternating(100) planes of cobalt and platinum. The structure the extinction length corresponding to these superstructure
is tetragonal and three orientational variants can be formeghfiections is larger than the thickness of the Co-Pt sample.
with two possible translational variants for each of them.  The displacement vector is easily determined by comparing
ThelL1, andL1, structures can be distinguished by usingthe APB contrast in three dark field images realized in a
the dark field technique in two-beam conditions involving yyo-beam geometry with the superstructure reflectidis),
superstructure reflections. This technique also allows us t010), and(120), as shown in Table I. A given APB is out of
characterize the displacement vectors of the antiphasgyntrast in only one case and in contrast in the two others. In
boundaries in the puriel, phase. The method is here shortly 5 previous work, it has been shown that the APB of Co-Pt
recalled. More (_:ietalls can pe founq in Refs: 11 and 12. Foélloys perfectly ordered in thé 1, state obey well these
all the observations, the foil was oriented witiG01] cube  contrast rules, and are therefore unambiguously idenfiffed.
axis nearly parallel to the incident beam. This orientation is HREM images of the structures projected along[b@1]
very convenient since the corresponding zone axis displaysypic axis have been used in addition to the dark field im-
the different kinds of superstructure reflections produced byﬂges_ Since the lattice parameter of bath, and L1, is
both L1, and L1, structures, namely(100, (010, and  ahout 3.8 A, we were limited to superstructure images ob-
(110. Three different dark fieldDF) images were obtained tained by selecting thf100} and{110} superstructure reflec-
with the (120), (210, and(110) reflections.(120) and (210  tions with an objective aperture of 9 Amh'* The EMS
reflections were used instead @00 and (010 since they  ¢odé® has been used to simulate the patterns corresponding
are more easily attained in two-beam conditifris. to our imaging conditions. As shown in Fig. 2, for wide
In the kinematic approximation, the DF intensity corre- ranges of thicknes&4—20 nm and (negativé defocus(60—
sponding to a given structure is proportional to the square 0{20 nny, the HREM image of thé 1, structure consists of a
the structure factor. Except for a weak variation of the formpattern formed by intense bright dots located on the Co-rich
factor between th€120), (210 beams and th€110 beam,  ¢olumns. HREM images of k1, structure with a fourfold
these three beams have similar structure factors inLthe  axis normal to the incident beam show regularly spaced
phase. On the other hand, for a given orientation variant ofsinges normal to the fourfold axis, and located above the
the L1, structure, the specific form of the structure factor cq-rich planes for the same range of thickness and defocus.

B. Structures and imaging conditions

TABLE I. Contrasts in dark field images using superstructure reflections(@®@8 zone.

L1, structure L1, APB in theL1, structure
X Y z R=31[011] R=3[101] R=1[110]
(120 DF white black black gray no contrast black black
(210 DF black white black gray black no contrast black

(110 DF black black white gray black black no contrast
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FIG. 3. Dark field images of APB in the GoPt, 5 aged at
690 °C:(a) (120, (b) (210, and(c) (110. The arrows indicates a
junction of three APB, each one being decorated by a diffdrdgt
orientation variant.

60 70 80 90 100 110 120 : (210, and(120) of a[001] zone axis, we see that the APB
Defocus (nm) obey exactly the contrast rules farly-type ordering; an
APB now appears with a dark contrast in two given DF and
FIG. 2. Simulation maps of HREM images as a function of with a strong white contrast in the third one. The width of the
thickness and of the absolute value of the negative defocud: 1, layer is about 4 nm. Furthermore, the dark field tech-
L1,(CoPt) structure(top) andL1,(CoPt) structurgbottom. For  njque allows us to link the nature of the orientatiohal,
the L1, the tetragonal axis is alor{@10] (vertical axis. variant decorating the APB to the displacement vector of this
. ) . . APB. The results are summarized in Table Il. It is clear from
This type of HREM images provides therefore a direct analyyhis table that the fourfold axis of thel, phase is always
sis of both the structure and the type of variant. normal to the displacement vector of the APB. This relation-
ship has always been observed whatever the orientation of
ll. EXPERIMENTAL RESULTS the APB. This is not enough to fully characterize thé,
. . 1 variant that appears along the APB. We have also to deter-
The phase diagram determined by Leroexal:” was .. " . one, among the two possible translational vari-

used to choose the alloy concentrations and annealing tem-

. . ."ants, is formed. A very convenient way to get such an infor-
peratures. Numerous samples with an atomic concentration

. . 0
qf platinum r_anglng from 61.5 to 63 /o_ were prepared and TABLE II. Relation between the vector shift and the tetragonal
first ordered in thé.1, state. The annealing temperature was__. .

. axis of the wetting layer.
then progressively reduced down to a temperature close to
the limit of the L1,+L1, stability region. Thus, for

Displacement vector Tetragonal axis
Co3g P15 COsaPle ,0%7'?"63 the temperature at thg end of between thd_1, variants of the L1, structure
the procedure described in Sec. Il A were respectively 690,
600 and 550 °C. 11011 [100]
. . . . 2

Images of a typical microstructure are shown in Fig. 3. L [010]
The microstructure consists @fl, domains separated by 2[109]
antiphase boundaries, but the antiphase boundaries are deco-  1[110] [oo1]

rated. Indeed, by comparing the three dark fie({d40),
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a) b)
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FIG. 4. () HREM image of a Cg; Pt 5 sample showing an o ) )
APB (displacement vectdR=1/2011]) decorated by the 1, vari- FIG. 6. PrOJecthn of the first nearest neighbor tetrahgdja
ant having its tetragonal axis alofig00] (horizontal axis. Note ~ Ll2; (0)—(d) L1, with a tetragonal axis alonf00], [010], and
that the variant is such that t&00) platinum-rich planes are con- [001], respectively.
tinuous fromL1, to L1,. (b) Mean field simulation of a flat APB
normal to[110] with R=1/2011], T=4.5],/kg and h—h.)/J; A. Microscopic model at 0 K with interactions
=7.110°¢, up to second nearest neighbors

The Ising model applies quite naturally to binary alloys
mation is to take HREM images of the decorated APB withwhere the two-valued spin variable denotes the nature of the
the foil normal oriented along thg001] direction. An ex- atom at each site. The choice of such a Hamiltonian can be
ample of a HREM image is presented in Fig. 4. We havdustified from the electronic structure of the alloy by using
compared our images with simulations patterns obtainethe so-called generalized perturbation methb®ur ap-
with the EMS code. The result of our analysis is that theproach is limited to a perfect fcc lattice with interactions up
translational variant of th& 1, structure formed during the to second nearest neighbors. The grand-canonical ertergy
wetting process is such that its platinum rich cubic planes arean then be written as
also platinum rich planes of thel, structure. This result is
sketched in Fig. 5. So both rotational and translational vari- 1 1
ants of thel 1, structure are determined by the type of APB E= 5312 TnOmt 5322 Thom—h> oy, (4D
between the twd.1, variants. nm nm "

Finally, let us point out that in the first step of wetting in
the Co-Pt system shown in Fig. 3, the APB are decorated bt
remain isotropic. Because the coherency strain between
tetragonal precipitatel(1,) in a cubic matrix {1,) is highly

anisotropic, this persistent isotro roves that our assum . ) :
P b Py P The fcc lattice can be decomposed into tetrahedra built on

tion of a low strain energy is reliable, and that the main t neiahb A tional 2D tati f thi
features of the wetting phenomenon in the Co-Pt system Ca}p]eares neighbors. A conventiona representation or this

be described using a theoretical approach based on sho fittice Is a projection along th@o.l] direction of two suc-
ranged chemical interactions only cessive(100 atomic planes. The first nearest-neighbor tetra-

hedra are then represented by squares. All possible tetrahedra
are listed in Fig. 6. Let us consider an APB between hvig
variants wetted by the 1, structure. We first consider a flat
APB normal to a cubic direction. The question is to know
In this section, we develop different theoretical ap-whichL1, variant provides the minimum energy for a given
proaches in order to understand the origin of the selection oAPB. Within our simple approach limited to second nearest
a single orientational and translational variant of thg,  neighbors, the occurrence of a phase diagram involving the
structure along the antiphase boundaries, and to describe tHid, and L1, phasegas observed in the Co-Pt systene-
peculiar wetting phenomenon. quires a positivel; and a negativel,. The homogeneous
ground states of this model are well knovgee for example
Ref. 17. The results are recalled in Fig. 7. Because we are

hereo,=1 when siten is occupied by an atom of cobalt
do,=—1 otherwise. The first and second sums run over
the first and second nearest neighbors, respectively,hand
Fp_lays the part of a chemical potential difference.

IV. THEORETICAL MODELS

Li1o L1o L1o

[ X JoN NoX J
oooooo-—— -J2/d1

® 0 eeee00000 0 \ \
—000 [eNsXoXNe] cNoNeoNoNeNe) | | Disordered
e0e® ooooooooooT Lo L1z | FCC
| |
Platinum rich f | | >
cubic planes 0 4 12 h/J4
=-2J1+3J2 E=3J2-h/2 E=6J1+3J2-h

FIG. 5. Schematic representation of the decorated APB as ob-
served in the Co-Pt samples from HREM images. Sketch of an APB FIG. 7. Ground states and associated energies per site for the fcc
in theL1, phase wetted by thel, structure. lattice (J;>0, J,<0).
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FIG. 8. Excess energy cost akf differentL 1, APB configu- Mo 7
rations wetted by the 1, phase.(a)—(c) correspond to the same _ -
non conservative APB(d), (e) illustrate the case of a conservative My >
APB. Energies are given per site of(200) plane parallel to the X

APB. (a) and(d) are the ground state structures for the translation

- FIG. 9. Typical evolution of the free energy and of the order
vectors 1/2101] and 1/2011], respectively.

parameter during a wetting process for a first order transition. In the
wetting limit, the widthl of the wetting layer is much larger than
only interested in thé 1,+ L1, stability region, the chemi- the intrinsic width¢ of the partial interfaces.
cal potentialh should be equal th.=4J;.

As shown in Fig. 8, we have introduced a sliceldf, +oo
between twd_1, domains. We have then calculated the en- AF:J AF(x)dx=2F pg+16F + e exp(—1/§),
ergies of the twd.1,/L 1, interfaces. All the possibilities for o 4.2
the L1, variant and for the position of the APB have been
investigated. Only a few examples are shown in Fig. 8. It is
easy to find a lower bound for the excess energy. Indeedvherel is the width of the wetting layer andis the corre-
eachL1,/L1, interface induces an energy cost of at leastlation length in the wetting structuré,eg and 5F denote the
—J, per site of a(100) plane parallel to the APB. The total interface energy and the excess fre_e energy be_tween the pulk
free energy of an APB is then higher thar2J,. A com- and the wetting structures, respectively. The right hand side
plete enumeration of the different configurations shows that(,)'c Eq. (4.2) can be analyzgd as the sum of threg tersa
for a given displacement vector between the tisb, do- constant term equal to twice the energy of an mtgrface be-
mains, this minimum is attained for a single com‘igurationtWeen the bulk structure and the wetting structGig an

(see, for example, Fig)8Any other configuration presents a attractive term due to the excess free enefgyof the struc-
' p'€, Mg. y . g P ture created during the wetting procegs) a repulsive term
J, defect of higher energy and, in some cases, evelj a

. ) o due to the overlap of the two interfaces tails. It is easy to
defect which has a high contribution to the excess energy. TQhow that within a Ginzburg-Landau approach, this term is
test the influence of the APB orientation upon wetting, theproportional to exptl/é).

same kind of analysis has been performed for an APB nor-  \iinimization of the free energy with respect to the width
mal to a[110] direction. The minimum energyt 8 K is still | gives the well known wetting lawi~ ¢ In 8F. Even if the

provided by a uniqué-1, variant. These results are in full g | js the most natural parameter, it is not the easiest one
agreement with our experimental observations in the Co-Bfy .aiculate. When the wetting layer is large enough, the

system. excess concentratioc of the minority species due to the

We cznclude that at Iowdtemgerature,dakl)n APIB betweeniorface is proportional tb. As Ac is very easily obtained
two L1, domains is expected to be wetted by only one typgom the numerical simulations, we have preferred to study

of L1, variant, whatever the value df, andJ, (provided e eyolution of this quantity. It is worth mentioning that
thatJ,>0 andJ,<0). This variant has its fourfold axis nor- yithin this model, wetting is unavoidable because of the one-
mal to the displacement vector and is exactly the one obgimensional character of the order parameter. As discussed
served experimentally. below, the relevant order parameter in our situation has in
fact three components.

To analyze the thermodynamical behavior of the APB, we
now start from our microscopic Ising model with interactions

Many theoretical studies have been devoted to the wettingp to second nearest neighbors and use a mean field ap-
of interfaces. In the case of a scalar order parameter, a simppgoach. We work within a grand-canonical ensemble; this is
argument can be put forward to account for the wetting benecessary to insure that the concentration within ltHg
havior. We recall it briefly>°In Fig. 9 are drawn the typical domains is asymptotically equal to its bulk value far away
evolutions of the free energy and of the order parameter from the interface and then to calculate excess concentrations
close to the two-phase stability region. The excess free erdue to this interface. The mean field internal enetgys
ergy associated with a domain wall is written given by

B. Wetting behavior: Mean field simulations
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FIG. 10. Phase diagram for the fcc lattice obtained within the g5 11 Logarithmic divergence of the excess concentration
mean field approximation and for interactions up to second nearesfs 5 function of i—ho)/J;
RINIE

neighbors.J,/J; is equal to—0.2. The arrow indicates the path
followed in the mean field simulation to reach the wetting regime.

¥=—26{—sinhﬁhﬁﬁ+<an>cosh,3hﬁﬁ}, (4.4
1 1
u= E‘]l% (Tn){om) + E‘]anm <U“><Um>_h; {n), where the local effective fieldh®" is equal to h
(4.3  —J12n(om)—JI22 (o), the sums running over the first
and second nearest neighbors of siteespectively.
where the concentration of the minority species at siis These kinetic equations lead to a path along which the

ch=(1+(o,))/2. The numerical value al, is set equal to free energy is decreasing. Indeed, it is easy to show that Eq.
—3,/5 (J;>0), because in most binary alloys, first neigh- (4-4 implies
bors are expected to interact more strongly than second dF ¢
neighbors. M$O (4.5
The corresponding phase diagram is shown in Fig. 10. For dt '
temperatures abov€,=4J,/kg, the only stable structures
areL1,, L1, and the disordered fcc. The structure, which
is of no interest here, can only be stabilized for temperatures
below Ty.1” This mean field phase diagram is of course F=U+kgT{ > cylogc,+(1—cy)log(l-cy)t,
known to be fairly inaccurate, but since we are interested in " 46
the vicinity of theL1,— L1, transition line, this is not a real (4.6
problem here in consideration of the advantage of using and U is given by Eq.(4.3. It is then straightforward to
simple scheme. Using more accurate methods as the CVM adntegrate the kinetic equatioi.4), using a discrete time al-
Monte Carlo simulations would not change qualitatively thegorithm. We have used a first order scheme, which has the
results described belotv. advantage of simplicity and, more importantly, to conserve
The wetting phenomenon of antiphase boundaries in théhe property(4.5).
L1, structure by thé 1, structure is expected to occur when  We have first imposed translational invariance along the
the system is brought closer and closer to ltHg stability ~ [010] and[001] directions. As the kinetic mean field equa-
region. Provided that the system is kept inside ltig sta-  tions conserve these invariances, the APB is necessarily nor-
bility region, the precise nature of the path followed to reachmal to the[100] direction and flat. We can then reduce the
a point of the two-phase region is irrelevant. For conve-computational box to a one-dimensional box of typically
nience, we have chosen a constant temperatufe (200X2X2 cubes. It is worth mentioning that this procedure
=4.5], /kg), and we have varied the chemical potential. Theprevents the occurrence of transverse fluctuations. So, this
corresponding path is sketched by an arrow in the phasapproach is only reasonable at low enough temperature, i.e.,
diagram of Fig. 10. below the roughening transitidi,where the transverse fluc-
The common way to proceed is to impose the presence dfiations are small. In order to use periodic boundary condi-
an APB within the simulation box and to minimize the free tions, we have introduced in the computational box two APB
energy by using a second order algorithm. In the preserssociated with opposite displacement vectors.
paper, we have preferred to use a kinetic approach that con- Our simulations show that the APB may indeed be wetted
sists in following the temporal evolution of an initially sharp by theL1, phase whatever the displacement vector between
APB. The corresponding kinetic mean field equations lead athe twoL1, domains. As can be seen in Fig. 11, our mean
long times to the equilibrium state. Particular attention hadield results for a[100] APB defined by the displacement
also been paid to the layering effect. Using a spin-flipvector 1/2[110] and forT=4.5], /kg show a definite loga-
dynamics with a transition probability’V given by W  rithmic divergence of the excess concentratido in the
= g exp(—BAE/2), whered is a flipping rate andAE the  APB as a function off—h.). Furthermore, thé& 1, variant
energy cost of a spin flip, the evolution of the mean magneformed along the APB is found to be in full agreement with
tization (o) is given by(see, for example, Ref. 18 the experimental observations in the Co-Pt system, i.e., the

whereF ({{op)},t) is the mean field free energy:
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tetragonal axis of th& 1, structure is always normal to the [111]
displacement vector and the selected translational variant in- . [001]
sures the continuity of the “pure planes” from one structure :
to the other. v

Finally, in order to evaluate the influence of the APB ‘ - >
orientation on the wetting process, we have simulated do- [010]
main walls in(110) planes. Due to the translational invari- _ [100]
ance along the[001] direction, a two-dimensional 100 (117] M

X 100X 2 box can again be used. Periodic boundary condi-
tions are chosen in th@01] direction. Along the other two a) b)
cubic axis, the boundary conditions correspond to an infinite
series of regularly spacel10 domain walls. As in the
[100] case, we observe a wetting phenomenon byt gvari-

ant[see Fig. 4b)]. The rules governing the nature of thé, _ _
variant are found similar for APB oriented {fi10) and cubic V:Vge;?a[oléxl] 2:)1&1([7710(3]7, . ;( Ys tzhzl?#(r)el e?-]élim e?lrsuijon arzor-
. X y Ll Z

planes. As observed experimentally in the Co-Pt systemder parameter. Becauss, has to be positive and smaller

these rules seem to be independent of the orientation of th[ an one, should belong to the polyhedron defined by the
antiphase boundary. . , " following inequalities:
As mentioned previously, a first order transition leads al-

ways to a wetting phenomenon when the order parameter
associated with this transition is scalar. This is not the case
for the L1,—L1, transition, as explained below. Yet, our
mean field simulations show that the wetting phenomenon
does occur, and that the divergence of the width of the wet- —c=— et ny—m=(1-c), 4.9
ting layer is still logarithmic. The type of variant formed
along the APB is the same for APB parallel to {i®0 and
(110 planes and corresponds exactly to the experimental ob-

FIG. 12. Sketch of the three-dimensional order paramééer.
L1, structure,(b) L1, structure.

—C=nt oyt n,<(1l-c),

—Csn— 1y n,<(1l-c),

—Ces—n— 1yt m,<(1-c).

servations in the Co-Pt system. In this formalism, the origin =0) represents the disor-
dered phase, where all sites are occupied with the same prob-
C. Continuum model ability. The six possible1, variants correspond to the six

) ] . ) cubic semiaxes:yp= =+ 5[ 100], = »[010], = 5[ 001]. Simi-
The wetting behavior can be described using a phenomgyy the four translational variants of thel, structure
enological model where the local order parameter and th@yjith the same stoichiometrA;B) are represented by

local concentration are treated within a Landau approach. - : 7.4
This high temperature model will clearly demonstrate that 7[111], 7[111], 5[111], andy[111] in 7 space.’* A

4 . representation of thel, andL 1, variants in thelong range
the wetting of the APB in th& 1, structure by the. 1, phase orde parameter space is shown in Fig. 12.

is not' u_nav0|dable. Finally, belng able to desgrlbe any flat One can therefore describe the variants af and L1,
APB, it incorporates automatically the symmetries of the un-

. : . . structures within the same formalism, using the three-
derlying fcc lattice and will be used to test the anisotropy of . . S
. dimensional order parametey. The rules determining the
the wetting phenomenon.

L1, variant formed during the wetting process appear also

quite naturally in this order parameter space. The direction of

the order parameter characterizing thetational and trans-
Since thel 1, andL 1, structures are respectively fourfold |ationa) variant of thelL1, structure lies indeed just in be-

and sixfold degenerated, the description of the domain wallgveen the directions of the order parameters characterizing

requires a multidimensional order parameter. A very convethe twol 1, bulk structures.

nient method consists in introducing the concentration wave

formulation which takes advantage of the superstructure 2. Landau expansion for an homogeneous system

periodicity?! If cg denotes the concentration of the minority

species at sit® of the binary alloy, one can write

1. Order parameter for the I, and L1, structures

Within the Landau theory, we compare the free endfgy
of an ordered state with that of the disordered state and per-
form an expansion as a function of the components of the

Cr=C+ >, cxexpiK-R), (4.7y  order parameter, taking due account of the cubic symmetry.
K#0
. . . 1 2 1 2\2
wherec is the mean concentration akdis a vector of the 5Fhom=§r§k7lk+W7I17727ls+ ZU(Ekﬂk)

reciprocal lattice vector belonging to the first Brillouin zone
of the fcc structure. To describe thd, andL 1, structures, 1 4
onl)éztheK vectors of typg100] need to be considered, so + ZVEkﬂk+“‘- (4.10
thal
A fourth order expansion is sufficient to describe the,
Cr=C+ 775 cogK,-R)+ 5, cogky-R)+ 5, cogk,-R), —L1, first order transition. With the requirementstv
(4.8 >0, 3u+v>0, andr<0, the local minima of the free en-
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ergy expansion correspond indeed either toltlie or to the
L1, phase. An expansion up to sixth order willtv<0

would be necessary to describe the first order transition be-
tween theL 1, and the fcc solid solution.

2 2 2 3
mMyd? 7, /dXP=1 9+ W s+ Un( 95+ 5+ 15) + V3,

Mod® 7,/ dX2 =1 79+ W 3+ Uma( 9 + M5+ 75) +V 7,
(4.13

3. Ginzburg-Landau functional for an heterogeneous system 5 9 s 2 3

. . . madypz/dX =rn3+Wnim+Uns( i+ 5+ n3) + Vs,

We focus here on the specific heterogeneity of a flat in-

terface between two differemtl, domains. From a thermo- With proper boundary conditions, this set of non-linear

dynamical point of view, a planar domain wall forced by coupled differential equations completely defines the evolu-

appropriate boundary conditions is stable. Then, by compation of the order parameter across the APB. As is well known

ing with an homogeneous system, the excess interface frage underlying mathematics of the minimization of the func-

energy, entropy, etc., can be defined properly. Let us contonal (4.11) are equivalent to a classical mechanic problem

sider a flat interface normal to the vecfar The problem is if we identify 1/25 ,m,(d»,/dx)? with a kinetic energy and

to determine the profiled(x) = $[c(x), n(x)] wherexisthe ~ —F,  with a potential energ§t Within this analogy,x

coordinate normal to the interface. We then assumecthgt  plays the part of timey of the position andn,, of the diag-

varies much more slowly thag(x) and neglect its spatial onal mass tensor. Finally, the first integral of the system

dependence. The definition of,(x) requires some coarse (4.13 corresponding to the conservation of the total energy

grain average, so that the order parameter is only defined ag given by

a scale large enough compared to the relevant unit cell. It is

therefore assumed that,(x) does not vary too rapidly. As a

consequence, a first local contribution to the heterogeneous

free energy is simply the energy calculated for the local

value of n,(x). On the other hand, the spatial variation of (4.19

the order parameter has an energy cost and the simplest ap-

proximation is to include first order derivatives only, which However, since the potential energy is of the opposite sign of

yields the well-known Landau-Ginzburg free energy func-From, the equilibrium values ofp(x) correspond here to

1
Ezama(d na/dx)z_ Fhon{ 771(X)7 772(X)1 773(X)]

=~ Fhonl Neq» Meq: neq)-

tional 72021 maxima and not to minima of this potential energy. The pro-
file of an APB between twd. 1, domains is thus equivalent
+ee 1 to the path followed by a ball of massng,m,,m3) rolling
— — 2 s 12,113
7= ffx dx/a) FhorlX) + 2 ; Ma(d774/dX)7, on the hypersurface-f( 7y, 7,,73). The shape of this hy-

persurface is shown in Fig. 13 where we have assumed
=y for simplicity. The ball starts from the top of the hill
corresponding to the equilibrium bulk order parameter
?neqrneqa 7eq With an infinitesimal velocity and rolls up to
the top of the §eq, — 77eq, — 7e9 hill. The highest hills cor-
;}zbspond to the stable phakd,, whereas the other repre-
sents the metastable phasg,. Near theL1, stability re-

gion in the phase diagram, the difference between the heights
of theL1, andL 1, hills is small. In that case, if the ball rolls
close to the top of thé 1, hill, it will slow down and a

(4.11

where them,, are positive constants. This phenomenological
model can also be derived as a continuous limit of the mea
field free energy(4.6). The link between these two ap-
proaches allows us to express the phenomenological para
eters of the Ginzburg Landau free energy functional expre
sion in terms ofc, T, the microscopic interactions and the
lattice parametea:

1 1 1
r= 16[ (—4J,+6J3,)+ 1 kgT < + E) , wetting phenomenon will occur, but the ball may also follow
a path which avoids thé 1, hill. As a consequence, the
1 1 wetting phenomenon of an APB may not occur when the
w= _4kBT(_2_ W) order parameter has several components.
c —-C
1 5. Equilibrium antiphase boundary in the L1structure
u=4kgT ?+ W) , (4.12 Without loss of generality, we consider an APB between
two ordered domains shifted by a vect@ppg=1/21011].
2 We impose the following boundary conditions:
V=— § u,

71(X) =+ Neqs 72(X)— = Neqs 73(X) — = 7eq
m,=8a%(J1p3—J,), when x— —,

where thep, are the coordinates of the vectprnormal to

the interface.

4. Equilibrium equations and mechanical analogy

Taking the functional derivative of E¢4.11) with respect

71(X)— + Neq» 72(X)— + Neq» 73(X)— + Neq
(4.19

where = 7¢{1,1,1) is an equilibrium value for the order

when x— + o,

to the order parameters gives the equilibrium equations foparameter of th& 1, phase. Solutions of E@4.13 in which

these parameters or APB profiles(x):

7, and 3 are odd functions ok, and n, is even satisfy
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with conditions (4.16). In our work, the initial values of
75(0) and73(0) are computed with an accuracy better than
1078,

We have investigated the case of a flat conservative APB,
i.e., an APB for which the vectoR,pg=1/24011] lies
within the plane of the APB. So the second and third coor-
dinates of the vectgp normal to the flat APB are equal. The
relation(4.12 implies thatm,=m3 and the governing equa-
tions are now symmetric with respect to the interchange
1, n3. Because the boundary conditions do not break this
symmetry, the syster®.13 has a stationary solution where
17,(X) = 13(X). In this case, only one initial value has to be

2nd and 3rd components
o

-0.15 guessed and the shooting algorithm is more efficient. More-
0 0o o over, the path across the ARB the order parameter space
i ’ ) ) can easily be visualize(Fig. 13.
First component of the LRO parameter We have first performed a series of calculations for the
1 [100] APB. All coefficients of the free energy functional are

selected using the continuum limit of the mean field model
(4.12. To compare this continuum approach with the mean
field results of the previous section, we have chosen the same
interaction coefficientd, andJ,= —J,/5. The concentration
is set equal to 0.4. The critical temperature below which the
L1, phase is stable ikgT./J;=4.2919. The concentrations
of the four cubic sublattices and the corresponding path in
the order parameter space wheg(T—T.)/J;=1.077
% 102 are shown in Fig. 13. It can be seen that an interven-
ing L1,-like layer begins to form along the APB. The width
| of this layer increases wheh—T,. decreases. As in the
scalar order parameter case, we expdotdiverge as IrF,
or equivalently that the internal enerdy,pg diverges as
In(T—T,). We have found this logarithmic divergence of the
internal energy fokg(T—T.)/J; in the range 10*-105.
Attempts to calculate the profile of the APB closerTp
leads to thicker layers together with a lower accuracy. In
sponding to a flat APB normal {d.00] is indicated. The continu- fa_c_t, the sho_o_tlng method is a_m_ !teratlve_p_roces,s which am-
ous, dashed, and long-dashed curves in the lower part are the coRI-Ifles the initial error on the initial coefficientg,(0) and
centration profiles of the four sublattices, c,, andc,=cs across ~ 73(0). We found that the accuracy of I8 for the initial
the APB. coefficients leads to a relevant profile on only 50 atomic
planes. More detailed investigations would require using an-
these conditions. The equilibrium equations can then b@ther type of algorithm such as the “relaxation” mettdd.

Concentration

0 | 1 | I | | L

-20 -15 -10 -5 0 5 10 15 20
Position (in atomic planes)

FIG. 13. Shape of the free energy hypersurface wdve0.4 and
T—T.=1.077x10 2 (upper part of the figuje The path corre-

solved on the semi-infinite intervdD,+o[ with the new Finally, the influence of the orientation of the flat APB on
boundary conditions the wetting behavior has been investigated. The continuum
model presented in this section has the advantage that the

7,(0)=0, 7,(0)=0, 75(0)=0, anisotropy is introduced in a natural way and that it incorpo-

rates correctly the crystal symmetry of the fcc lattice. Since
the continuous limi{4.12) gives an analytical expression for
71(X) =+ Neqs 72(X) =+ Neqs 73(X) = + 7¢q the gradient coefficients,(p), the profile of an APB can
be easily computed for any orientation. Under the same con-
when x— +eo. 418 Gitions[c=0.4, ke(T—T.)/J,=7.745 10°5], we have mea-
sured the width of the wetting layer defined as the distance
The systen{4.13 with these boundary conditions is then between the two inflection points of thg (x) curve. While
solved using a “shooting” algorithri® The first step con- theL1, layer is only 7 atomic planes wide far=[100], it
sists in guessing values foy;,(0) and 54(0). Thevalue of  grows up to 13, 19, and 22 planes for 1], [111], and
71(0) is computed with the conservation of energyl4. [011] orientations, respectively. Our results show a strong
Then the equilibrium equations are solved numerically withanisotropy of the wetting behavior of an APB in thd,
a Runge-Kutta algorithm. If the computed solution does nophase by the_1, ordered phase. This result is similar to
fulfill conditions (4.16), the initial guesses are corrected. previous investigations on the fcc lattice where the wetting
Then, the equilibrium equations are solved once again, andf the APB in theL 1, phase by the disordered solid solution
this procedure is iterated up to reach a satisfactory agreemewas also shown to be highly anisotropfc.
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From the previous discussion it is clear that the wetting Although detailed investigations remain to be made, the
behavior of the APB in the.1, phase by thd.1, ordered anisotropy of the wetting phenomena predicted by the latter
structure is not unavoidable. Nevertheless, in our computaapproach has not been observed till now. It might be that the
tions atc=0.4 for several orientationslal layer is formed  microscopic model with only first and second neighbor inter-
and the classical wetting law ,pg~In(T—T,) still holds.  actions is not accurate enough here.

Finally, because the above continuum model reproduces cor- Complementary investigatiofiswill be presented else-
rectly the inherent anisotropy of the fcc lattice, the wettingwhere. For example, it has been observed that elastic effects
behavior by thel1, ordered phase was shown to be highly become important for thicknesses of th&, wetting layers
anisotropic. above 5 nm. These layers transform into platelets with well-
defined orientations; this can be understood by taking elastic
V. CONCLUSION strains into account, the analysis being similar to that used to
) ) _  describe the chessboard patterns observed in Co-Pt samples

To summarize, the microscopic model based on the Isingnnealed within thé 1,— L1, two-phase field® Preliminary
model as well as the more general Landau-Ginzburg aptheoretical studies also indicate that the APB should behave
proach do account for the observed wetting byltfig phase ditferently at higher temperature, close to the triple point
of APB in L1, close to theL1,—L1, two-phase field. This gseparating.1,,L1, and the disordered phases where wetting

justifies in a precise manner the widespread statement thgt, | 1, and by the disordered phase compete.
new phases nucleate preferentially at defects. Actually, the

Landau-Ginzburg approach shows that _tr_ns is not always ACKNOWLEDGMENTS
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