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Magnetic properties of chains in cuprate superconductors studied by the Luttinger-liquid model
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Mapping the one-dimensional Hubbard model into the Luttinger-Tomonaga model, we have calculated the
temperature dependencies of the chain copper nuclear magnetic spin-lattice relaxation rate and Knight shift for
the normal state of the superconducting materials YBa2Cu3O7 and YBa2Cu4O8. The dynamic spin suscepti-
bility has been obtained by using a bosonization technique and results of the renormalization group analysis for
one-dimensional quantum systems. A comparison of our results with experiment shows that the model is able
to reproduce the main features of the spin dynamics in both materials.
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One of the essential structural elements of hig
temperature superconductor~HTSC! compounds such a
YBa2Cu3O7 ~Y123! and YBa2Cu4O8 ~Y124!, are single and
double Cu-O chains, respectively. However, in spite of
tensive experimental and theoretical studies, no establis
consensus has been reached for the chains’ ground stat
their low energy excitation spectrum.1–3 The Cu-O chains
present a good example of an one-dimensional~1D! quantum
system. It is known that in 1D the Fermi-liquid paradigm
based on the quasi-particle picture, breaks down and
then leads to the anomalies of the magnetic properties
probed by nuclear magnetic resonance~NMR! or nuclear
quadrupole resonance~NQR!, chains do not exhibit simple
metallic behavior as demonstrated, e.g., by the Cu Kn
shift4 and the spin-lattice relaxation rate, 1/T1.5–7

It is believed that the Luttinger-liquid approach is mo
appropriate for the description of the properties of 1D qu
tum systems.8 The notion of a ‘‘Luttinger liquid’’ was coined
by Haldane9 to describe the universal low-energy propert
of 1D quantum systems, and to emphasize the principle
ference between Luttinger-liquid and Fermi-liquid picture
Using the Luttinger liquid concept, some qualitative analy
of the temperature dependence of the nuclear spin-lattice
laxation in 1D systems has been done by Ren
Anderson,10 but only that contribution to 1/T1 has been con-
sidered which is due to the scattering processes with tran
momentum;2kF ~Kohn anomaly!. However, as shown by
NMR and NQR measurements on chains in Y123 and Y1
this contribution to 1/T1 is small and thus a more detaile
theoretical analysis of NMR and NQR data is required.

In this Brief Report, we present, based on the Lutting
Tomonaga model, the theory of the Cu magnetic spin-lat
relaxation and the Knight shift at the chain copper sit
Cu~1!, in Y123 and Y124. Using the bosonization techniqu
we calculate the spin correlation functions and the dyna
spin susceptibility. The temperature dependence of the
namic spin susceptibility is evaluated on the basis of
scaling theory for the 1D interacting electron gas.

Our starting point for describing the charge and spin
namics in the chains of HTSC is the 1D Hubbard mode11

with its Hamiltonian

H5t (
^ i j &,s
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1 cj s1U(
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Here,cis
1 is the fermionic operator that creates an electr

with spin s, at sitei. t is the hopping integral andU is the
value of the one-site Coulomb repulsion of electron
Haldane9 realized that the low-energy properties in many 1
models, in particular the Hubbard model, can be descri
within the Luttinger-liquid approach. Then, Eq.~1! simplifies
and, in the continuum limit, reduces to the Luttinge
Tomonaga or, in other words, to the Gaussian model10,12

HLT5 (
n5r,s

E
0

L

dxFpynKn

2
Pn

21
yn

2pKn
~¹Fn!2G . ~2!

The sum runs over all charge and spin degrees of freedomr
and s. We did not include the umklapp scattering ter
which is ineffective when the band is not half-filled, and w
have taken into account that the backward scattering term
renormalized to zero in the long-wavelength limit.8

In Eq. ~2!, the integration runs over a chain of lengthL. yr

andys represent the charge and spin velocities, respectiv
In the limit of large U (t/U!1), which is realized in
HTSC,13 these velocities can be calculated using the Be
ansatz14

yr52t sin~pc!, ys5
Jp

2 F11
sin~2pc!

2p~12c!G , ~3!

wherec is the concentration ofextra holes, due to doping
per Cu~1! if one assumes that all copper in the chain a
Cu21,15 and the exchange coupling constant,J, is given by
J54t2/U. The parametersKr andKs in Eq. ~2! describe the
long-distance properties of the system. In particular,Kr de-
termines the long-distance decay of all correlation functio
of the Luttinger-Tomonaga model. At first order int/U, the
parameterKr takes the value16

Kr5
1

2
2

4t ln2

pU
cos

pc

2
,

and spin-rotational invariance requiresKs51.17

The phase fields in Eq.~2! are defined as9

Pn~x!5
1

L (
pÞ0

e2(aupux/21 ipx)@np12np2#1
Jn

L
, ~4!
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Fn~x!5
p

iL (
pÞ0

e2(aupux/21 ipx)

p
@np11np2#2Nn

px

L
,

~5!

whereJn is the current operator andNn and Ñn are number
operators. In the thermodynamical limit,L→`, these opera-
tors do not contribute to correlation functions.17

It is convenient, for later purposes, to define the ph
field9

Qn~x!5
ip

L (
pÞ0

e2(aupux/21 ipx)

p
@np12np2#1Ñn

px

L
.

~6!

In Eqs.~4!–~6!, the limit a→0 should be taken.18

The Fourier components of the charge- and spin-den
operators for the right- (r 51) and left- (r 52) going fer-
mions, r r(p) and s r(p), respectively, obey the Bose-lik
commutation relations: @rpr ,rp8r 8#5@spr ,sp8r 8#
52d r ,r 8dp,p8(rpL/2p).

Now, we calculate the copper Knight shift and relaxati
rate. The hyperfine coupling of the Cu nuclei, with spinI, to
the neighboring Cu electron spins is given by the Mila-R
Hamiltonian19

H5(
a

F I aS AaS0
a1B(

i
Si

aD G , ~7!

whereS0 is the spin at the same nuclear site andA is the
on-site hyperfine field; the nearest neighbor Cu spins,Si ,
produce the transferred field,B.

In case of an 1D system, Eq.~7! leads to the following
formula for the spin part components of the magnetic s
tensor:

Kz5Korb
z 1

Az12B

gNge
xS . ~8!

Here, xS is the static spin susceptibility andz denotes the
crystal axesa, b, c with b lying along the chains andc per-
pendicular to the CuO2 planes;Korb

z is the orbital contribu-
tion to the total shift. NMR and NQR experiments4,5 show
that for both Y123 and Y124 compounds, the hyperfi
fieldsAz are almost isotropic and we replaceAz by the single
valueA.

The static susceptibility,xS , is derived in a standard way
Adding the Zeeman term to the HamiltonianHLT and taking
the second derivative of the ground state energy with res
to the magnetic field, we have (mB51)

xS5
2

pys
, ~9!

which agrees with the exact result of Shiba14 for the 1D
Hubbard model.

The spin-lattice relaxation rate of the Cu~1! nuclei as
measured by NQR, (1/T1)NQR, is given by the Moriya for-
mula:

S 1

T1
D

NQR

53gN
2 T(

q
~A12B cosq!2

x9~q,vQ!

vQ
, ~10!
e

ty

ft

e

ct

x9~q,vQ!5ImS i E
0

`

dteivQt^@Sq
2~ t !,S2q

1 ~0!#& D . ~11!

Here,^•••& denotes the thermodynamical average,vQ is the
NQR frequency, andSq

1 ,S2q
2 represent the Fourier compo

nents of the spin one-half operators which, in the continu
limit, are Sq

65(1/AL)*0
LdxeiqxS6(x).

To calculate the spin correlation function in Eq.~11!, we
use the pseudofermionic representation of the spin opera

S1~x!5c↑
1~x!c↓~x!, S2~x!5„S1~x!…* . ~12!

c1(x),c(x) are the fundamental fermionic operators whi
are related to the operators of the right- and left-going f
mions as9

cs~x!5
1

L (
kr

u~kr !E
0

L

dx8eik(x2x8)c rs~x8!. ~13!

The remaining task is to construct the representation
the fermionic operators,c rs , in the basis of the bosonic op
erators. This has been accomplished by Luther a
Peschel;18 we are using the more precise formulation
Haldane:9

c rs~x!5
eixr (kF2p/L)

A2pa
Urs

1exp@2D rs~x!#, ~14!

D rs~x!5
i

A2
@rFr~x!2Qr~x!1s„rFs~x!2Qs~x!…#.

Here,Urs
1 is the ladder operator which increases by unity t

number of fermions with the projection of spins on branchr;
s stands fors5(1,2)→(↑,↓), and kF5p(12c)/2 is the
Fermi wave vector. Equations~12!–~14! tell us that the spin
correlation function̂ @Sq

2(t),S2q
1 #& in Eq. ~11! represents the

thermal average of exponentials of linear combinations
bosonic operators. It is a major advantage of the boso
representation that such expressions can be evaluated
simply using the relation

^eCeD&5e^(C1D)2&/2e[C,D]/2, ~15!

which is valid for a form linear in boson operators who
exponential is averaged with the harmonic oscillator Gau
ian Hamiltonian of Eq.~2!. Then, diagonalizing the Hamil
tonian HLT by the Bogoliubov transformation8,17 yields
eSHLTe2S→(p,nynupun(p)n(2p), eSFne2S→FnAKn, and
eSQne2S→Qn /AKn.

Using Eqs.~12!–~15!, we finally get

S 1

T1
D

NQR

5R01R2kF
, ~16!

with the two contributions

R05
3p~A12B!2gN

2 T

4
xS

2 , ~17!

R2kF
5

3~A12B cos2kF!2gN
2

p2ys
S T

yr
D Kr

Lar , ~18!
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with

Lar5 lim
a→0

S 2

ap~Kr11! D
12Kr p

sin~pKr/2!G~Kr!
,

whereG(z) is the gamma function.
There are two channels of magnetic relaxation,R0 and

R2kF
, induced by quasiparticles with wave vectorsq;0 and

q;2kF , respectively. In the limita→0, Eq. ~18! diverges.
Such a singularity reflects very large momentum excitati
in the Luttinger liquid, which do not occur in a real syste
with finite bandwidth.18 Therefore, following Luther and
Peschel,18 we replacea by the finite value;1/pmax;1/p,
wherepmax is the momentum cutoff for finite bandwidth. Th
contributionR2kF

is proportional toTKr and thus agrees with
results of Ren and Anderson.10 Our estimations show that
for both Y123 and Y124,R2kF

is much smaller thanR0 for

all temperatures aboveTc .
Our theory is not complete yet since the Gaussian mo

we used predicts a temperatureindependentbehavior ofxS
that disagrees with the Monte Carlo results20 for the 1D Hub-
bard model. We can improve our theory using the results
the renormalization group analysis for the 1D Hubba
model.21 In first order, the temperature dependent screen
of backward scattering is given by the expression21 g(T)
5U/@11U ln(E0/2T)/pys#. Then, the static susceptibility
xS

Hub, can be calculated using the random pha
approximation:22

xS
Hub5xS@12g~T!/2pys#21. ~19!

In all equations above, we now replacexS by xS
Hub.

Equation~19! can also be reproduced by other metho
For example, Ogata and Shiba23 showed that for the 1D Hub
bard model in the limit of largeU, the Bethe-Ansatz function
can be written as a product of a Slater determinant of s
less fermions and the spin wave function of the 1DS51/2
Heisenberg model. This implies that the temperature beh
ior of xS

Hub should be qualitatively similar to that of th
Heisenberg model susceptibility. Using the conformal fie
theory for 1D S51/2 Heisenberg antiferromagnet, on
finds24

xS
Heis5

2

pys
S 11

1

2 ln~T0 /T! D1O„~ ln T!23
…

that perfectly agrees with our result forxS
Hub in the case of

low temperatures, that is for lnE0/2T@1, if one identifiesT0
asE0/2. The parameterE0 is the band width energy cut-off
It acts as the ultraviolet regulator of the perturbation the
for the weakly interacting electron gas. In the limit of larg
U, however, the meaning ofE0 is unclear because of lack o
any exact analytical results in this limit. Therefore, in o
theoryE0 is a variational parameter whose value is obtain
by comparison with experiment.

We now will fit our expressions for the Cu magnetic sh
@Eq. ~8!# and relaxation rate@Eq. ~16!# to experimental data
There are seven parameters entering the equations to b
ted: A,B,U,t,c,T0 and Korb

c . We will fix the parameters
A,B,U,t, andc by using values known either from exper
ment or calculations. In the chains of Y123, the one-s
s

el

f

g

e

.

-

v-

y

d

fit-

e

hyperfine field isA'30 kOe/mB , while the transferred field
is B'55 kOe/mB .19 For the hopping integral,t, and the one-
site Coulomb repulsion,U, we use the valuest50.43 eV,
U55.4 eV which are valid for the plane.25 Given the many
structural similarities between the chains in Y123 and Y1
we used the same parametersA,B,U,t for both compounds.
The c values are known from photoemission experime
with chains:c'0.6 for Y123~Ref. 26! andc'0.23 for Y124
~Ref. 27!. Because of the double chains, each Cu in Y1
has four nearest copper neighbors, hence the transferred
pling contains two contributions: a contributionB from cop-
per sites within the same chain and a second one, whic
approximately 2B/3,28 from copper sites of the neare
chain. Therefore, the transferred fieldB in Y124 should be
replaced by 2B/3.

Accepting this point of view, we have fitted Eqs.~8! and
~16!, with T0 and Korb

c as the only free parameters, to th
experimental NQR relaxation rate of both Y123 and Y1
and to the Knight shift in Y124~Fig. 1!. We did not consider
the temperature dependence of the Knight shift in Y1
chains because they are controversial. All three fits are v
satisfactory which we take as evidence for the reliability
the Luttinger-liquid picture. The best fit yields the followin
parameters:E051800 K for Y123 andE053200 K, Korb

c

50.125% for Y124. Using now our parameters and Eq.~8!,
we found a valueKc(T5100)50.41% for the Y123 chains
This result is close to the experimental value ofKexpt

c (100)
50.33460.01%.5

FIG. 1. Top: The calculated temperature dependences of
chain Cu spin-lattice relaxation rate, (1/T1)NQR ~full lines!, fitted to
experimental data for Y123~closed circles, from Ref. 5! and Y124
~open circles, from Ref. 6!. Bottom: The calculated temperatur
dependence of the componentKc of the chain Cu magnetic shif
tensor~full line! fitted to experimental data for Y124~open squares,
from Ref. 4!.
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However, one faces a problem in Y124. According to F
1 ~bottom!, the experimental value of the orbital shift atT
50 is Korb

expt(T50)'0.24%, if we assume the spin part o
the Knight shift to be completely suppressed due
proximity-induced superconductivity in the CuO chains. Th
value disagrees with our fit result,Korb

c 50.125%. On the
other hand, (1/T1)NQR below Tc is only slightly affected by
the onset of superconductivity@see Fig. 1~top!#.

We see two possible explanations for the disagreem
betweenKorb

expt(0) and Korb
c . One could be that, belowTc ,

some fraction of the spin excitations is not suppressed
superconductivity and hence, these excitations will provid
finite spin contribution to the Knight shift atT50. The other
explanation is that, at temperatures belowTc , the interchain
interaction becomes important and the Luttinger-liquid d
.

o

nt

y
a

-

scription breaks down. More experiments are needed
clarify this problem.

In summary, based on the hypothesis of a ‘‘Luttinger li
uid’’ ground state within the 1D Hubbard model, the tem
perature and concentration dependences of the nuclear s
lattice relaxation and the Knight shift of the chain Cu~1!
nuclei in the normal states of Y123 and Y124 compoun
were calculated. The experimental results are well fitted
the predictions of the Luttinger-Tomonaga model and t
renormalization group theory. The fit yields paramete
which are reasonable for both compounds.

We would like to acknowledge T. M. Rice for helpfu
discussions.
*Present address: Department of Physics, Chiba University, C
263, Japan.
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