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Magnetic properties of chains in cuprate superconductors studied by the Luttinger-liquid model
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Mapping the one-dimensional Hubbard model into the Luttinger-Tomonaga model, we have calculated the
temperature dependencies of the chain copper nuclear magnetic spin-lattice relaxation rate and Knight shift for
the normal state of the superconducting materials XBgO,; and YBgCu,Og. The dynamic spin suscepti-
bility has been obtained by using a bosonization technique and results of the renormalization group analysis for
one-dimensional quantum systems. A comparison of our results with experiment shows that the model is able
to reproduce the main features of the spin dynamics in both materials.

One of the essential structural elements of high-Here,c;' is the fermionic operator that creates an electron,
temperature superconduct¢HTSC) compounds such as with spin o, at sitei. t is the hopping integral and is the
YBa,Cu;0; (Y123) and YBgCu,Og (Y124), are single and  value of the one-site Coulomb repulsion of electrons.
double Cu-O chains, respectively. However, in spite of in-Haldané realized that the low-energy properties in many 1D
tensive experimental and theoretical studies, no establishadlodels, in particular the Hubbard model, can be described
consensus has been reached for the chains’ ground state apiihin the Luttinger-liquid approach. Then, Ed) simplifies
their low energy excitation spectruln® The Cu-O chains and, in the continuum limit, reduces to the Luttinger-
present a good example of an one-dimensi¢hB) quantum  Tomonaga or, in other words, to the Gaussian mddél
system. It is known that in 1D the Fermi-liquid paradigm,
based on the quasi-particle picture, breaks down and this L
then leads to the anomalies of the magnetic properties. If Hir= _2 dx
probed by nuclear magnetic resonan®MR) or nuclear vepe 20

quadrupole resonand®QR), chains do not exhibit simple e gym runs over all charge and spin degrees of freedom,
metallic behavior as demonstrated, e.g., by the Cu Knight .4 .~ \we did not include the umklapp scattering term

. . . . 7
shift' and the spin-lattice relaxation rateT1/ which is ineffective when the band is not half-filed, and we

It is believed that the Luttinger-liquid approach is mostpaye taken into account that the backward scattering term is
appropriate for the description of the properties of 1D quanyenormalized to zero in the long-wavelength lihit.

tum system$.The notion of a “Luttinger liquid” was coined In Eq. (2), the integration runs over a chain of lengthy,
by Haldané to describe the universal low-energy properties v, represent the charge and spin velocities, respectively.
of 1D quantum systems, and to emphasize the principle diff,, ha Jimit of large U (t/U<1), which is realized in

ference between Luttinger-liquid and Fermi-liquid pictures. \T5-13 these velocities can be calculated using the Bethe
Using the Luttinger liquid concept, some qualitative analySiSansati:“
of the temperature dependence of the nuclear spin-lattice re-

laxation in 1D systems has been done by Ren and I
Anderson'® but only that contribution to T/; has been con- v, =2tSIN(7C), v,= 5
sidered which is due to the scattering processes with transfer 2

momentum-~ 2k (Kohn anomaly. However, as shown by wherec is the concentration oéxtra holes, due to doping,

NMR and NQR measurements on chains in Y123 and Y124per Cul) if one assumes that all copper in the chain are
this contribution to Iy is small and thus a more detailed PP

+ 15 . . .
theoretical analysis of NMR and NQR data is required. Cu?",™ and the exchange coupling constaiitjs given by

2 . .
In this Brief Report, we present, based on the Luttinger-‘J At'/U. The parameters., andK,, in Eq. (2) describe the

Tomonaga model, the theory of the Cu magnetic spin-lattic%mg'.dIStance properties of the system. In partlpum,;,de-_
relaxation and the Knight shift at the chain copper Sites’ermlnes the long-distance decay of al! correlathn functions
Cu(1), in Y123 and Y124. Using the bosonization technique,Of the Luttlnger-Tomonagziﬂénodel. At first order tifl), the
we calculate the spin correlation functions and the dynami@aramete'KP takes the val
spin susceptibility. The temperature dependence of the dy-
namic spin susceptibility is evaluated on the basis of the _1 4“”2COS7T_C
scaling theory for the 1D interacting electron gas. r2 U 2
Our starting point for describing the charge and spin dy- ) _ ) ) ) 17
namics in the chains of HTSC is the 1D Hubbard métel @nd spin-rotational invariance requirkg=1.

v, K,

2

vy

2
J’_
It ok,

(Vo,)%.

sin(2mc)

o= ©

with its Hamiltonian The phase fields in Eq2) are defined &s
H=t > c¢ic,+UX 1 T (x) = ~ S e alphizripx) by,
=t 2 CipCigt U2 Nighyy . D ()=1 2 e [vpr—vp-1t 10 4
<|J>r‘7 1 p#0
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T e—(a|p|x/2+ipx) X
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whereJ, is the current operator arld, andN, are number
operators. In the thermodynamical limit;—«, these opera-
tors do not contribute to correlation functiot's.
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X”(q,wQ)=Im<ij:dtei“’Q%[S;(t),S+q(0)]> . (11

Here,(- - -) denotes the thermodynamical average,is the
NQR frequency, an(ﬂsar ,S_, represent the Fourier compo-
nents of the spin one-half operators which, in the continuum
limit, are S; = (LA/L) f§dxe™*S™(x).

It is convenient, for later purposes, to define the phase To calculate the spin correlation function in EGl), we

field®

; —(a|p|x/2+ipx)
(rs e
0,(x)=—
( ) L ;0 P

mX
VT‘
(6)

[vp+—vp,]+N

In Egs.(4)—(6), the limit «— 0 should be takelf

The Fourier components of the charge- and spin-density

operators for the right-r(= +) and left- { = —) going fer-

mions, p,(p) and o,(p), respectively, obey the Bose-like

commutation relations:
= — 5r‘r/5p’p/(rp|_/277) .

[ppr -pp’r’]:[o'pr aa'p’r']

Now, we calculate the copper Knight shift and relaxation

rate. The hyperfine coupling of the Cu nuclei, with shimo

the neighboring Cu electron spins is given by the Mila-Rice

Hamiltoniart®

H=>, [I“(A“S{HBZ st |, 7

where S, is the spin at the same nuclear site ahds the
on-site hyperfine field; the nearest neighbor Cu sp8s,
produce the transferred fiel8,

In case of an 1D system, E7) leads to the following

use the pseudofermionic representation of the spin operators:

ST)=¢; (P (), ST)=(ST(xDN*. (12

U (x),(x) are the fundamental fermionic operators which
are related to the operators of the right- and left-going fer-
mions a$

1 L . ,
500 =7 3 otk [ ax ey 0. g

kr

The remaining task is to construct the representation of
the fermionic operators),s, in the basis of the bosonic op-
erators. This has been accomplished by Luther and
Peschel® we are using the more precise formulation by
Haldane?

X (ke — /L)

V2ma

(14)

Urs(X) = U:—seXF{_Ars(X)],

Ars(X)= I—[r<I>p(X)—p(X)ﬂLS(IFCPU(X)—(90(X))]-

V2

Here, U, is the ladder operator which increases by unity the

formula for the spin part components of the magnetic shifinumber of fermions with the projection of spron branctr;

tensor:

A.+2B
YNYe

K=K ot

orb Xs- 8
Here, x5 is the static spin susceptibility angl denotes the
crystal axes, b, ¢ with b lying along the chains and per-
pendicular to the CuPplanes;K¢ ,, is the orbital contribu-
tion to the total shift. NMR and NQR experimeftsshow

s stands fors=(+,—)—(T1,]), andkg=m(1—c)/2 is the
Fermi wave vector. Equation(d¢2)—(14) tell us that the spin
correlation functior([Sg(t),qu]) in Eq. (11) represents the
thermal average of exponentials of linear combinations of
bosonic operators. It is a major advantage of the bosonic
representation that such expressions can be evaluated quite
simply using the relation
<eCeD>:e((C-%—D)Z)IZe[C,D]/z’

(15

that for both Y123 and Y124 compounds, the hyperfine

fieldsA, are almost isotropic and we replage by the single
valueA.

which is valid for a form linear in boson operators whose
exponential is averaged with the harmonic oscillator Gauss-

The static susceptibilityys, is derived in a standard way. 1@n Hamiltonian of Eq(2). Then, diagonalizing the Hamil-

Adding the Zeeman term to the Hamiltoniéd + and taking

tonian H 1 by the Bogoliubov transformatii’ yields

the second derivative of the ground state energy with respe€@HLte =2 ,v,plv(p) v(—p), €30 e 5—®,K,, and

to the magnetic field, we haveug=1)

2 9
Xs= 9
which agrees with the exact result of Shibdor the 1D
Hubbard model.
The spin-lattice relaxation rate of the @u nuclei as
measured by NQR, (T4)ngr. IS given by the Moriya for-
mula:

1 n ,
(—) —32TS (A+2B cosq)? X ®2Q) 4
Tl NOR q w

e%0 e 5-0,/K,.
Using Egs.(12)—(15), we finally get

3

= =R+ Ry, (16)

(Tl NOR F

with the two contributions

3m(A+2B)2yAT

Ro= 2 X5 (17)
3(A+2Bcoskp)?y3 [ T\ Xe
2kF: 2 - Aap ) (18)
T Vs Yp
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with
1—KIJ T

sin(7K /2T (K,)’

A4p=lim

(aTr(Kp-i- 1)

a—0

There are two channels of magnetic relaxati®g, and
Rok, induced by quasiparticles with wave vectors 0 and
g~ 2kg, respectively. In the limitk—0, Eq.(18) diverges.
Such a singularity reflects very large momentum excitations
in the Luttinger liquid, which do not occur in a real system 0
with finite bandwidth!® Therefore, following Luther and T(K)
Peschet® we replacea by the finite value~ 1/pya~ 1/, '
wherepaxis the momentum cutoff for finite bandwidth. The 0.34} ]
contributionR2kF is proportional toT%» and thus agrees with M
results of Ren and Andersdh.Our estimations show that, 2
for both Y123 and Y124Ry. is much smaller tham, for ¢~ 030 o 1

all temperatures abovE;.
Our theory is not complete yet since the Gaussian model o

we used predicts a temperatirelependenbehavior ofyg 026/ o

that disagrees with the Monte Carlo restfifer the 1D Hub- e

bard model. We can improve our theory using the results of

the renormalization group analysis for the 1D Hubbard 0.22; 100 200 300

model?! In first order, the temperature dependent screening T(K)

of backward scattering is given by the expresston(T)

= UL+ UIn(Ey2T)/mv,]. Then, the static susceptbiity, o % T o 8 e o (e ited 1o

Hub : - ) )
Xs - can ntz)ze calculated using  the  random phaseexperimental data for Y12R&losed circles’\fo?om Ref.)5and Y124
approximatior. (open circles, from Ref. )6 Bottom: The calculated temperature

@
£
o
wherel'(z) is the gamma function. g
-
S~

%)

Hub_ _ -1 dependence of the componekt of the chain Cu magnetic shift
Xs xsl1=g(Mf2mv,] . (19 tensor(full line) fitted to experimental data for Y123épen squares,
In all equations above, we now replagg by x5°. from Ref. 4.

Equation(19) can also be reproduced by other methods. . . i
For example, Ogata and Shiahowed that for the 1D Hub- hyperfine field |SA19~ 30 kOejug, while the transferred field
bard model in the limit of large), the Bethe-Ansatz function 1S B~55 kOefug ™ For the hopping integrat, and the one-
can be written as a product of a Slater determinant of spinSite Coulomb repulsionl), we use the values=0.43 eV,
less fermions and the spin wave function of the $81/2 ~ U=5.4 eV which are valid for the pIaﬁé.Qven the many
Heisenberg model. This implies that the temperature behatructural similarities between the chains in Y123 and Y124,

ior of 2 should be qualitatively similar to that of the We used the same parametés,U,t for both compounds.

Heisenberg model susceptibility. Using the conformal fieldThe ¢ values are known from photoemission experiments
theory for 1D S=1/2 Heisenberg antiferromagnet, one with chains:c~0.6 for Y123(Ref. 26 an_dcw0.23 for Y_124
find< (Ref. 27. Because of the double chains, each Cu in Y124
has four nearest copper neighbors, hence the transferred cou-

Heis 1 L, pling .contai.ns. two contribution.s: a contributi@from cop-

s <1+m +O((InT) ™) per sites within the same chain and a second one, which is

7 0 approximately —B/3,2® from copper sites of the nearest
that perfectly agrees with our result fg"* in the case of chain. Therefore, the transferred fieidin Y124 should be
low temperatures, that is for B/2T>1, if one identifiesT,  replaced by B/3.
asEy/2. The parameteE, is the band width energy cut-off. Accepting this point of view, we have fitted E¢8) and
It acts as the ultraviolet regulator of the perturbation theory(16), with Tq and K¢, as the only free parameters, to the
for the weakly interacting electron gas. In the limit of large experimental NQR relaxation rate of both Y123 and Y124
U, however, the meaning & is unclear because of lack of and to the Knight shift in Y124Fig. 1). We did not consider
any exact analytical results in this limit. Therefore, in ourthe temperature dependence of the Knight shift in Y123
theoryEy is a variational parameter whose value is obtainedchains because they are controversial. All three fits are very
by comparison with experiment. satisfactory which we take as evidence for the reliability of
We now will fit our expressions for the Cu magnetic shift the Luttinger-liquid picture. The best fit yields the following

[Eq. (8)] and relaxation ratEEq. (16)] to experimental data. parametersE,=1800 K for Y123 andE,= 3200 K, K¢,
There are seven parameters entering the equations to be f#0.125% for Y124. Using now our parameters and 8,
ted: A,B,U,t,c, Ty and K¢,,. We will fix the parameters we found a valu&K(T=100)=0.41% for the Y123 chains.
A,B,U,t, andc by using values known either from experi- This result is close to the experimental vaIueIQﬁXm(loo)
ment or calculations. In the chains of Y123, the one-site=0.334+0.01%"°
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However, one faces a problem in Y124. According to Fig.scription breaks down. More experiments are needed to

1 (bottom), the experimental value of the orbital shift &t
=0 is K&P(T=0)~0.24%, if we assume the spin part of

clarify this problem.
In summary, based on the hypothesis of a “Luttinger lig-

the Knight shift to be completely suppressed due touid” ground state within the 1D Hubbard model, the tem-
proximity-induced superconductivity in the CuO chains. Thisperature and concentration dependences of the nuclear spin-

value disagrees with our fit resulk;,,=0.125%. On the
other hand, (V1) yor below T, is only slightly affected by

the onset of superconductivifgee Fig. 1(top)].

lattice relaxation and the Knight shift of the chain (Cu
nuclei in the normal states of Y123 and Y124 compounds
were calculated. The experimental results are well fitted by

We see two possible explanations for the disagreemenhe predictions of the Luttinger-Tomonaga model and the

betweenK&(0) andKE,. One could be that, below,,

renormalization group theory. The fit yields parameters

some fraction of the spin excitations is not suppressed bynhich are reasonable for both compounds.
superconductivity and hence, these excitations will provide a

finite spin contribution to the Knight shift &i=0. The other
explanation is that, at temperatures beldow the interchain

We would like to acknowledge T. M. Rice for helpful

interaction becomes important and the Luttinger-liquid de-discussions.
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