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Ground state of a two-level system with phonon coupling
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The ground state of a two-level system coupled to a dispersionless phonon bath is studied using both a
connected moments expansion and a truncated Lanczos tridiagonal scheme. We consider the spin-boson

Hamiltonian,Ĥ52dosx1(k\vkak
†ak1(kgk(ak

†1ak)sz, whered0 is the bare tunneling matrix element and
gk represents the coupling to thek phonon modes. Such systems have found relevance in applications to
molecular polaron formation, exciton motion, and attenuation of sound in glasses. Our results are then com-
pared to those of variational methods as well as an exact numerical diagonalization.
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The problem of simple quantum-mechanical systems w
two degrees of freedom has been the focus of a great de
attention recently.1 Such ‘‘two-state systems’’ have foun
application to molecular polaron formation, exciton motio
chaos in quantum systems, spin-phonon relaxation,2 attenua-
tion of sound in glasses,3 the motion of defects in certain
crystalline solids and also in condensed-matter phy
wherein the dissipative effect of a bath on quantum tunne
on a two-state system is of interest. In this work we wish
study the ground-state of a quantum-mechanical two-le
system coupled to a dispersionless phonon bath.4–12 Re-
cently, Wong and Lo have applied a coupled-cluster met
~CCM! to this system with great success.13 For a particle
with small tunneling probability, a dissipative two-level sy
tem may serve as a first-order approximation. The sp
boson Hamiltonian can be written in second quantized fo
as

Ĥ52dosx1(
k

\vk ak
†ak1(

k
gk ~ak

†1ak! sz . ~1!

Herea†(a) is the boson creation~annihilation! operator and
thes ’s are the Pauli spin matrices. The bare tunneling ma
element is given byd0, while gk represents coupling to thek
phonon modes. When the bare tunneling matrix elemen
set to zero, Eq.~1! represents a set of harmonic oscillato
whose displacement is dependent on which of the two le
is occupied by the tunneling system. When the system
uncoupled (gk50) the spin states combine both symmet
cally and antisymmetrically with energiesE56d0 . Al-
though there exists a competition between the localiza
inherent in the interaction with the phonons and the delo
ization inherent in the tunneling, it is clear that this syste
represents a true many-body problem in that a finite num
of particles~in this case electrons! is coupled to an essen
tially infinite number of degrees of freedom arising from t
phonon modes.
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Lo and Wong14 have improved upon recent variation
treatments of this problem, by obtaining an exact solution
the case of a dispersionless phonon bath, through a co
nation of unitary transformations and numerical diagonali
tion and by applying the coupled cluster method15–18~CCM!
in a systematic fashion. An advantage of the CCM is t
each level of approximation may be controlled in a man
which is dictated by the physics of the problem. The ru
ments of the method are as follows. For any quantu
mechanical Hamiltonian operatorĤ, there exists a true
ground-state wave functionuc& and its corresponding eigen
valueE. If Ĥ is partitioned in such a way that it contains
noninteracting partĤ0 with ground-state wave functionuf&,
then one may relate these two wave functions by

uc&5eluf&. ~2!

The philosophy of the CCM is, in essence, to compute
quantityl as a sum(nln , where the operatorsln describe
the excitation of a cluster ofn particles~excitations above
uf&). Expansion of the exponential in Eq.~2! yields a se-
quence of terms which represents successive collection
particle-hole excitations. The energy eigenvalue equation

Ĥuc&5Ĥeluf&5E0uc&5E0eluf& ~3!

may be multiplied on the left-hand side bye2l to yield a
transformed Hamiltonian operatorH̃ according to

H̃uf&5e2lĤeluf&5e2lE0eluf&5E0uf&, ~4!

which has the virtue that it is of finite order in the amplitud
ln .14 A truncation scheme for Eq.~4! yields, for the un-
known amplitudesln , a set of coupled nonlinear equation
which are of finite order.

Following the prescription of equation Eq.~4! and choos-
ing l52(kgk(ak

†2ak), Lo and Wong14 arrive at the fol-
lowing transformed Hamiltonian:
3184 ©2000 The American Physical Society
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TABLE I. Ground-state energy calculated by different methods forS50.02.ECCA represents the result o
the coupled-cluster approximation~Ref. 13!, EEXACT is the exact result~Ref. 14!.

S50.02
d0 /S ECCA /S EEXACT /S ELanczos(33 3)/ S ECMX(3)/S EAMX(3) /S

0.01 21.009605 21.009608 21.009414 21.009600 21.009590
0.04 21.038429 21.038434 21.038240 21.038403 21.038362
0.07 21.067257 21.067263 21.067069 21.067208 21.067138
0.1 21.096087 21.096094 21.095901 21.096016 21.095917
0.4 21.384535 21.384553 21.384366 21.384252 21.383871
0.7 21.673244 21.673272 21.673089 21.672763 21.672124
1 21.962204 21.962242 21.962064 21.961538 21.960663
4 24.864013 24.864106 24.863967 24.862069 24.859701
7 27.783804 27.783913 27.783802 27.781250 27.778347
10 210.717092 210.717200 210.717111 210.714286 210.711294
as

e

e
ub

re
ion
e

H̃52dosx1(
k

ak
†ak1~sz21!(

k
qk~ak

†1ak!

1S~122sz!. ~5!

Here S5(kgk
2 and units are chosen such that\vk5\v0

51 ~for all k). We shall use the transformed Hamiltonian
given by Eq. ~5! for our Lanczos calculations.19–23 The
method is as follows: Choosing an initial trial stateuc0&, an
orthogonal set of statesucn& is generated according to th
scheme

Ĥucn&5en,n21ucn21&1en,nucn&1en,n11ucn11&, ~6!

where a tridiagonal energy matrixẼ, with matrix elements
en,m5^cnuĤucm&, is also generated. Hereen,m is nonzero
only for n5m or n5m61. An estimate of the ground-stat
energy is obtained by the direct diagonalization of any s
matrix of Ẽ. It may be shown that stateucn& is given recur-
sively by23

ucn&5
~Ĥ2en21,n21!ucn21&2en21,n22ucn22&

en,n22
, ~7!

where each of the statesucn& is related to the initial trial ket
uc0& through a polynomial of the Hamiltonian operator
-

ucn&5 p̂n~Ĥ !uc0& ~8!

and

en,m5^c0u p̂n~Ĥ !Ĥ p̂m~Ĥ !uc0&. ~9!

With the notation̂ Ĥn&[^c0uĤnuc0& the diagonal matrix el-
ementsen,n are related to powers of the Hamiltonian^Ĥn&
and, to leading order, vary as^Ĥ& for the 131 truncation,

^Ĥ3& for the 232 truncation,̂ Ĥ5& for the 333 and so forth.
Another method of calculation which we shall compa

results with is that of the connected moments expans
~CMX!.1 The derivation of the CMX expression for th
ground-state energy has been given elsewhere.24–27The gen-
eral expression to any order may be written as27

E0
(CMX)52

S2,1
2

S3,1
H 11

S2,2
2

S2,1
2 S3,2

F11
S2,3

2

S2,2
2 S3,3

3X11•••S 11
S2,m

2

S2,m21
2 S3,m

D •••CG J , ~10!

whereSk,15I k , k52,3, . . . , andSk,i 115Sk,iSk12,i2Sk11,i
2 .

This may be written explicitly to third order as
TABLE II. Ground-state energy calculated forS52.0.

S52.0
d0 /S ECCA /S EEXACT /S ELanczos(33 3)/ S ECMX(3)/S EAMX(3) /S

0.01 21.000029 21.000212 20.745727 20.971538 20.749238
0.04 21.000470 21.001204 20.749580 20.902069 20.565450
0.07 21.001438 21.002728 20.754338 20.851250 20.527121
0.1 21.002935 21.004789 20.759994 20.814286 20.519989
0.4 21.047042 21.055737 20.863116 20.784615 20.684991
0.7 21.144520 21.164368 21.036099 20.963158 20.920463
1 21.295572 21.330803 21.255278 21.200000 21.178257
4 24.059590 24.067174 24.065555 24.058824 24.058081
7 27.035658 27.037131 27.036839 27.034483 27.034327
10 210.025166 210.025673 210.025575 210.024390 210.024334



3186 PRB 61BRIEF REPORTS
TABLE III. Ground-state energy calculated forS5200.

S5200
d0 /S ECCA /S EEXACT /S ELanczos(33 3)/ S ECMX(3)/S EAMX(3) /S

0.01 21.000025 21.000025 20.117091 20.210000 20.031778
0.04 21.000401 21.000401 20.122915 20.098824 20.061906
0.07 21.001227 21.001227 20.135064 20.104483 20.093077
0.1 21.002503 21.002503 20.152081 20.124390 20.119670
0.4 21.040051 21.040051 20.413028 20.406211 20.406117
0.7 21.122654 21.122659 20.706274 20.703559 20.703541
1 21.250266 21.250336 21.003880 21.002494 21.002488
4 23.991809 24.000732 24.000798 24.000625 24.000625
7 26.998948 27.000387 27.000384 27.000357 27.000357
10 29.999807 210.000264 210.000262 210.000250 210.000250
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(CMX)5I 12

I 2
2

I 3
2

1

I 3

~ I 2I 42I 3
2!2

~ I 5I 32I 4
2!

2•••. ~11!

The coefficients of expansionI k are just the connecte
moments of the Hamiltonian:

I k5^c0uĤkuc0&2 (
i 50

k22 Fk21

i G I i 11^c0uĤk2 i 21uc0&.

~12!

Recently28 a related moments expansion was introduc
the alternate moments expansion~AMX !. To third order, we
have

E0
(AMX) 5I 12

I 2I 3

I 4
2

1

I 4

~ I 2I 52I 3I 4!~ I 3I 62I 4I 5!

~ I 4I 72I 5I 6!
2 . . . .

~13!

We note that the CMX scheme is computationally mo
tractable than the AMX. This is evident by comparing equ
tions ~11! and ~13!, where it is seen that, to second orde
CMX requires the computation of~to leading order! the third
connected momentI 3, whereas the AMX expression require
the evaluation ofI 4 which involves ^Ĥ4&. It is clear that
since both the Lanczos tridiagonal scheme and the CMX
AMX expansions all involve moments of the Hamiltonia

^Ĥn&, they are related. This relationship has been giv
elsewhere.23,29

In this work we take the ground-state wave function to

uc0&5
1

A2
~ u↑&1u↓&) uvac&, ~14!

where u↑& and u↓& denote the spin-up and spin-down sta
respectively, anduvac& denotes the vacuum state of all th
phonon modes. In Tables I, II, and III, we present our resu
Here we have followed Lo and Wang13,14 by evaluating the
ground-state energy for different values of the bare tunne
matrix element:S50.02, 2.0, and 200. Also, in accordan
with Lo and Wong, we have taken the phonon energy\v0 to
equal unity. Comparisons of the ground-state energy us
the Lanczos (333), CMX~3!, and AMX~3! truncations are
,

-
,

d

n

e

s

s.

g

g

made with the exact14 as well as the coupled-cluster results13

of Lo and Wong. In the limit ofd0 ‘‘small’’ wherein the
system consists essentially of a set oscillators, our sim
two-level system is dominated by interactions with the ph
non bath and the energy may be approximated asE0'2S.
In the opposite extreme withd0 ‘‘large,’’ that is, in the re-
gime where the bare tunneling matrix element dominates,
have E0'2d0. This also agrees with the results of Re
13,14. In the intermediate regime our results are also in
markable agreement with the exact ones, even though we
utilizing the truncated-bases method to model the proper
of an essentially infinite~phonon-bath! system.

In Figs. 1–3 we have plotted the magnitude of t
ground-state energy scaled byS in a log-log representation a
a function ofd0 /S with S50.02, 2.0, and 200, respectively
For S50.02 our results using the Lanczos (333) truncation
as well as the CMX~3! and AMX~3! series are in excellen
agreement with the exact results. As the value ofS is in-
creased~strong-coupling limit! we find that our results using
these truncated-bases methods, though qualitatively in ag
ment with the exact results, diverge for small values of
ratio d0 /S.

In terms of the physics of the approximation scheme
should be noted that in the CCM the transformed wave fu

FIG. 1. Ground-state energy of the two-level system withS
50.02, plotted in a log-log representation.
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tion uf̃& which yields a value for the ground-state energyE0
does not necessarily provide an upper bound for the
value of the energy. On the other hand, both the CMX a
AMX schemes rely on an ‘‘educated’’ guess for the trivi
ground-state wave function which, hopefully, maximizes
overlap with the true ground state and hence is dictated
the physics of the given Hamiltonian. In such mome
schemes, an essentially infinite system is approximated
finite matrix truncation. This is valid so long as the system
question is dominated by the low-energy part of the sp
trum. For the present spin-boson Hamiltonian this is inde
the case, whenS is ‘‘small’’ and our results are in excellen

FIG. 2. Ground-state energy of the two-level system withS
52.0, plotted in a log-log representation.
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agreement with more elaborate and calculationally m
complex methods.

We see that the agreement with exact results14 for both
the 333 Lanczos truncation and for the third-order AM
expansion are excellent. As a numerical method of eva
tion, we believe that the Lanczos scheme is calculation
much simpler than the coupled-cluster method which
quires solving a number of coupled, and in general nonlin
equations. By the same token, the AMX expansion is als
fairly straightforward method that is both systematic a
simple to program.

FIG. 3. Ground-state energy of the two-level system withS
5200, plotted in a log-log representation.
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