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Ground state of a two-level system with phonon coupling
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The ground state of a two-level system coupled to a dispersionless phonon bath is studied using both a
connected moments expansion and a truncated Lanczos tridiagonal scheme. We consider the spin-boson
Hamiltonian,H = — 8,0+ =i w@tag+ = ge(al + a) o, Whered, is the bare tunneling matrix element and
gk represents the coupling to the phonon modes. Such systems have found relevance in applications to
molecular polaron formation, exciton motion, and attenuation of sound in glasses. Our results are then com-
pared to those of variational methods as well as an exact numerical diagonalization.

The problem of simple quantum-mechanical systems with Lo and Wond* have improved upon recent variational
two degrees of freedom has been the focus of a great deal tieatments of this problem, by obtaining an exact solution for
attention recently. Such “two-state systems” have found the case of a dispersionless phonon bath, through a combi-
application to molecular polaron formation, exciton motion, nation of unitary transformations and numerical diagonaliza-
chaos in quantum systems, spin-phonon relaxatiattenua- tion and by applying the coupled cluster methtd® (CCM)
tion of sound in glassesthe motion of defects in certain in a systematic fashion. An advantage of the CCM is that
crystalline solids and also in condensed-matter physiceach level of approximation may be controlled in a manner
wherein the dissipative effect of a bath on quantum tunnelingvhich is dictated by the physics of the problem. The rudi-
on a two-state system is of interest. In this work we wish toments of the method are as follows. For any quantum-

study the ground-state of a quantum-mechanical two-levehechanical Hamiltonian operatdd, there exists a true
system coupled to a dispersionless phonon beith Re- sround—state wave functidns) and its corresponding eigen-
cently, Wong and Lo have applied a coupled-cluster methogl, .o £ i [ js partitioned in such a way that it contains a

(CCM) to this system with great succeSsFor a particle ) _ S with q funcii
with small tunneling probability, a dissipative two-level sys- Noninteracting partl, with ground-state wave functida),
then one may relate these two wave functions by

tem may serve as a first-order approximation. The spin:
boson Hamiltonian can be written in second quantized form 1) =€ b) @)
The philosophy of the CCM is, in essence, to compute the

as
- " " quantity\ as a sun,\,,, where the operators, describe
H= _500'x+; h oy akak"_; Ok(actaw) oz. (1) the excitation of a cluster afi particles(excitations above
|#)). Expansion of the exponential in E) yields a se-

" ] ) o quence of terms which represents successive collections of
Herea'(a) is the boson creatiofannihilation) operator and - particle-hole excitations. The energy eigenvalue equation
theo’s are the Pauli spin matrices. The bare tunneling matrix
element is given by, while g, represents coupling to the . o |y = |:|eA| B)=Eo| ) =Eoe"| ¢) 3)
phonon modes. When the bare tunneling matrix element is
set to zero, Eq(1) represents a set of harmonic oscillatorsmay be multiplied on the left-hand side ley * to yield a
whose displacement is dependent on which of the two levelgansformed Hamiltonian operatét according to
is occupied by the tunneling system. When the system is
uncoupled ,=0) the spin states combine both symmetri- Hlg)=e*Ae) ¢)=e  Ee"|¢)=Eo|¢), (4)
cally and antisymmetrically with energieB==*§,. Al-
though there exists a competition between the localizationvhich has the virtue that it is of finite order in the amplitude
inherent in the interaction with the phonons and the delocalX,.** A truncation scheme for Eq4) yields, for the un-
ization inherent in the tunneling, it is clear that this systemknown amplitudes\,,, a set of coupled nonlinear equations
represents a true many-body problem in that a finite numbewhich are of finite order.

of particles(in this case electrofnds coupled to an essen-  Following the prescription of equation E@t) and choos-
tially infinite number of degrees of freedom arising from theing A= —Ekgk(aﬁ—ak), Lo and Wong* arrive at the fol-
phonon modes. lowing transformed Hamiltonian:
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TABLE I. Ground-state energy calculated by different methodsSfe0.02. E-c4 represents the result of
the coupled-cluster approximatigRef. 13, Egyact IS the exact resultRef. 14.

S=0.02
60!S EccalS Eexact/S Blanczos(a 3 S Ecvxa)/S Eamx(3)/S
0.01 —1.009605 —1.009608 —1.009414 —1.009600 —1.009590
0.04 —1.038429 —1.038434 —1.038240 —1.038403 —1.038362
0.07 —1.067257 —1.067263 —1.067069 —1.067208 —1.067138
0.1 —1.096087 —1.096094 —1.095901 —1.096016 —1.095917
0.4 —1.384535 —1.384553 —1.384366 —1.384252 —1.383871
0.7 —1.673244 —1.673272 —1.673089 —1.672763 —1.672124
1 —1.962204 —1.962242 —1.962064 —1.961538 —1.960663
4 —4.864013 —4.864106 —4.863967 —4.862069 —4.859701
7 —7.783804 —7.783913 —7.783802 —7.781250 —7.778347
10 —10.717092 —10.717200 —10.717111 —10.714286 —10.711294
~ =n.(H 8
H:_600-X+§ alak+(a-z_ 1); qk(al_l_ ak) |¢n> pn( )|¢0> ( )
and
+S(1-20,). (5)
Here S=3,gZ and units are chosen such thiai,=7%wq €nm={ %ol Pa(H)HPm(H)|#0o).- 9

=1 (for all k). We shall use the transformed Hamiltonian as
given by Eq.(5) for our Lanczos calculations-2® The
method is as follows: Choosing an initial trial statg), an

With the notation(H"y=(yo|H"|40) the diagonal matrix el-
ementse, , are related to powers of the HamiltonidA ")

orthogonal set of statels),,) is generated according to the and, to leading order, vary g$l) for the 1x 1 truncation,

scheme

H | ¢n>: en,nfll ‘/’nfl> + 6n,n| ‘//n> + 6n,n+1| ¢n+1>: (6)

(H3) for the 2x 2 truncation{ A®) for the 3x 3 and so forth.
Another method of calculation which we shall compare
results with is that of the connected moments expansion

(CMX).! The derivation of the CMX expression for the

where a tridiagonal energy matrkx, with matrix elements ground-state energy has been given elsewHeféThe gen-

enm={¥nlH| ), is also generated. Here, , is nonzero

eral expression to any order may be writteR’as

only forn=m or n=m=1. An estimate of the ground-state

energy is obtained by the direct diagonalization of any sub- 2 2 2
. ~ . . (CMX) _ SZ,l 82,2 82,3
matrix of E. It may be shown that state,) is given recur- Ep =——"41 5 1+ —
sively by?® Sa1 S51Ss2l  S5533
- 522

| _(H_En—l,n—1)|¢n—1>_En—l,n—2|¢n—2> 7) X 1+--- 1+2—,m , (10

l/’n) - €nn-2 ’ SZ,m—ls3,m
where each of the statég,) is related to the initial trial ket whereS, ;=1,, k=23, ..., anciSk,Hl:Sk,iSkQ’i—SﬁH’i .

| o) through a polynomial of the Hamiltonian operator

This may be written explicitly to third order as

TABLE Il. Ground-state energy calculated 8k 2.0.

S=2.0

60!S EccalS Eexact/S Blanczos(x 3/ S Ecvxa)/S Eamx(3)/S

0.01 —1.000029 —1.000212 —0.745727 —0.971538 —0.749238
0.04 —1.000470 —1.001204 —0.749580 —0.902069 —0.565450
0.07 —1.001438 —1.002728 —0.754338 —0.851250 —-0.527121
0.1 —1.002935 —1.004789 —0.759994 —0.814286 —0.519989
0.4 —1.047042 —1.055737 —0.863116 —0.784615 —0.684991
0.7 —1.144520 —1.164368 —1.036099 —0.963158 —0.920463
1 —1.295572 —1.330803 —1.255278 —1.200000 —1.178257
4 —4.059590 —4.067174 —4.065555 —4.058824 —4.058081
7 —7.035658 —7.037131 —7.036839 —7.034483 —7.034327
10 —10.025166 —10.025673 —10.025575 —10.024390 —10.024334
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TABLE lll. Ground-state energy calculated &= 200.

S=200
6o!S EccalS Eexact/S ELanczos(3< 3)/ S ECMX(S)/S EAM><(3) IS
0.01 —1.000025 —1.000025 —0.117091 —0.210000 —0.031778
0.04 —1.000401 —1.000401 —0.122915 —0.098824 —0.061906
0.07 —1.001227 —1.001227 —0.135064 —0.104483 —0.093077
0.1 —1.002503 —1.002503 —0.152081 —0.124390 —0.119670
0.4 —1.040051 —1.040051 —0.413028 —0.406211 —0.406117
0.7 —1.122654 —1.122659 —0.706274 —0.703559 —0.703541
1 —1.250266 —1.250336 —1.003880 —1.002494 —1.002488
4 —3.991809 —4.000732 —4.000798 —4.000625 —4.000625
7 —6.998948 —7.000387 —7.000384 —7.000357 —7.000357
10 —9.999807 —10.000264 —10.000262 —10.000250 —10.000250
121 (I,1,—12)?2 made with the exatt as well as the coupled-cluster restits
B =11- 1o Ta(ld—12 (1))  of Lo and Wong. In the limit ofs, “small” wherein the
3 13 (Isls—14) system consists essentially of a set oscillators, our simple

two-level system is dominated by interactions with the pho-
non bath and the energy may be approximate&gs — S.
In the opposite extreme with, “large,” that is, in the re-
gime where the bare tunneling matrix element dominates, we
2ol T2 ). have Eg~ — 6,. This also agrees with the results of Refs.
13,14. In the intermediate regime our results are also in re-
(12 markable agreement with the exact ones, even though we are
utilizing the truncated-bases method to model the properties
of an essentially infinitéphonon-bath system.
In Figs. 1-3 we have plotted the magnitude of the
ground-state energy scaled 8yn a log-log representation as
a function of 55/S with S=0.02, 2.0, and 200, respectively.
i L For S=0.02 our results using the LanczosX3) truncation
a4 (I4l7—15le) as well as the CMX3) and AMX(3) series are in excellent
(13 agreement with the exact results. As the valueSaé in-

We note that the CMX scheme is computationally mc)recreasec{strong-coupling limit we find that our results using

tractable than the AMX. This is evident by comparing equa-these tr_uncated-bases method_s, though qualitatively in agree-
ment with the exact results, diverge for small values of the

tions (11) and (13), where it is seen that, to second order, 10 515
CMX requires the computation dfo leading orderthe third ra II(r)1 tgrm.s of the physics of the approximation schemes it
nn momert, wher he AMX expression requir ;
connected . omes, _e e?St € A4e P ?SSO equires should be noted that in the CCM the transformed wave func-
the evaluation ofl , which involves(H®). It is clear that
since both the Lanczos tridiagonal scheme and the CMX anc 1o
AMX expansions all involve moments of the Hamiltonian, Ecncr
(H"), they are related. This relationship has been given I e Lanczos 3x3
elsewhere?2° | o CMX3
In this work we take the ground-state wave function to be v AMX3

The coefficients of expansioh, are just the connected
moments of the Hamiltonian:
k-2

|k:<l/fo||:|k|'lfo>_go

Recently® a related moments expansion was introduced
the alternate moments expansi@MX ). To third order, we
have

cowng_, _12la 1 (als= 13l (ale=lals)
0 1

IEVS

1
|tl/o>=ﬁ(|T>+|l>) vag, (14

where|7) and||) denote the spin-up and spin-down states
respectively, andvac denotes the vacuum state of all the
phonon modes. In Tables |, I, and Ill, we present our results. ¢
Here we have followed Lo and Wahty* by evaluating the -
ground-state energy for different values of the bare tunneling .1 0.1 1 10
matrix elementS=0.02, 2.0, and 200. Also, in accordance 5/

with Lo and Wong, we have taken the phonon enérgy, to °

equal unity. Comparisons of the ground-state energy using FIG. 1. Ground-state energy of the two-level system vth
the Lanczos (X 3), CMX(3), and AMX(3) truncations are =0.02, plotted in a log-log representation.
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FIG. 2. Ground-state energy of the two-level system wth FIG. 3. Ground-state energy of the two-level system véth
=2.0, plotted in a log-log representation. =200, plotted in a log-log representation.

tion |¢) which yields a value for the ground-state eneEgy  agreement with more elaborate and calculationally more
does not necessarily provide an upper bound for the trugomplex methods.

value of the energy. On the other hand, both the CMX and We see that the agreement with exact resfilisr both

AMX schemes rely on an “educated” guess for the trivial . .
ground-state wave function which, hopefully, maximizes the"€ 3X3 Lanczos truncation and for the third-order AMX

overlap with the true ground state and hence is dictated b§*Pansion are excellent. As a numerical m_ethod of gvalua-
the physics of the given Hamiltonian. In such momentton, we believe that the Lanczos scheme is caIcuIaFlonaIIy
schemes, an essentially infinite system is approximated by ®uch simpler than the coupled-cluster method which re-
finite matrix truncation. This is valid so long as the system induires solving a number of coupled, and in general nonlinear
question is dominated by the low-energy part of the specequations. By the same token, the AMX expansion is also a
trum. For the present spin-boson Hamiltonian this is indeedairly straightforward method that is both systematic and
the case, whesis “small” and our results are in excellent simple to program.
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