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Mechanically stable effective isotropic media for all crystal classes:
Construction of the third-order elastic constants

A. Duda and T. Paszkiewicz
Institute of Theoretical Physics, University of Wrocław, PL-50-204 Wrocław, Poland
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The simplest kind of mutual interactions of long-wavelength acoustic phonons in crystalline elastic media is
characterized by sets of components of tensors of the third-order elastic constants. Averaging these components
over all directions of axes of a laboratory frame we obtained elastic constants for effective isotropic media
corresponding to anisotropic media that belong to all crystal classes. In regions of stability of anisotropic media
the corresponding tensors of effective second-order elastic constants are positive, i.e., effective isotropic media
are mechanically stable. The obtained sets of elastic constants for effective isotropic media can be used in
computer experiments on nonequilibrium gases of long-wavelength acoustic phonons.
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I. INTRODUCTION

With the advent of the experimental technique of h
pulses the evolution of nonequilibrium states of phon
gases becomes intensively studied both experimentally
theoretically. These pulses are used as a useful tool for
investigation of many other properties of crystalline solid1

In most experiments beams of long-wavelength acou
phonons are used. They propagate in crystalline media
various symmetries. Characteristics of such phonons, nam
frequencies, phase and group velocities, polarization vec
as well as shapes of slowness surfaces, are defined by a
independent componentsCi j ,kl ( i , j ,k,l 51,2,3) of the ten-
sor of second-order elastic constantsC2. This tensor belongs
to the class@V2#2. The number of its independent comp
nents n2 varies from 18 for triclinic to 2 for isotropic
media.2,3

At ambient temperatures much lower than the Debye te
perature, the density of thermal phonons is so low that
can neglect the phonon merging processes and consequ
only processes of the spontaneous decay should be
counted for. Characterization of even the simplest kinds
such phonon-phonon processes, that is three-phonon a
monic spontaneous decay processes, needs familiarity
second-order elastic constants~via frequencies! and also with
the whole set of third-order elastic constantsCi j ,kl,mn , which
are components of the sixth-rank tensorC3. TensorC3 be-
longs to the class@V2#3. The numbern3 of independent elas
tic constants varies from 56 to 3.3–5 Together with scattering
by lattice imperfections, mutual phonon interactions det
mine the evolution of the spectral composition of noneq
librium phonon systems. Such evolution is studi
analytically6 as well as in computer simulations~cf. Refs.
7–10!.

Due to their complexity, even spontaneous decay p
cesses are studied, usually in equivalent effective isotro
media~EIM’s!.7 For such studies it is indispensable to kno
elastic constants of the second and third order for the rel
EIM’s, i.e., the components ofC 2

(e f) andC 3
(e f) , respectively.

For cubic elastic media these components were calculate
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Tamura,7 who used the method invented by Fedorov for t
second-order elastic constants.2 Using the method of averag
ing of components of tensors of elastic constants over
orientations of axes of the laboratory frame we calcula
elements ofC 2

(e f) for all crystal classes.11 Hence, we shall not
reproduce here these results and confine ourselves only t
discussion of stability of these linear EIM’s~cf. Sec. III!.
The same method is used here for derivation of express
for the third-order elastic constants of EIM’s for all cryst
classes~Sec. II!.

Additionally, for cubic and transversely isotropic med
we already proved that our method of obtaining EIM’s r
duces complicated spectra of relaxation rates related to
elastic scattering in anisotropic media to simple, purely d
crete spectrum, which is characteristic for all isotrop
media.12

II. TENSORS OF THIRD-ORDER ELASTIC CONSTANTS

For isotropic media the tensorC3 depends on three param
etersa, b, andg.13 It can be expressed in terms of the un
second-rank tensorI 2 with the componentsda,b ,

Ca1m1 ,a2m2,a3m3
5ada1 ,m1

da2 ,m2
da3 ,m3

1b@da1 ,m1
~da2 ,a3

dm2 ,m3
1da2 ,m3

dm2 ,a3
!

1da2 ,m2
~da1 ,a3

dm1 ,m3
1da1 ,m3

dm1 ,a3
!

1da3 ,m3
~da1 ,a2

dm1 ,m2
1da1 ,m2

dm1 ,a2
!#

1g@dm1 ,m3
~da1 ,a2

dm2 ,a3
1da1 ,m2

da2 ,a3
!

1da1 ,m3
~dm1 ,a2

dm2 ,a3
1dm1 ,m2

da2 ,a3
!

1dm1 ,a3
~da1 ,a2

dm2 ,m3
1da1 ,m2

da2 ,m3
!

1da1 ,a3
~dm1 ,a2

dm2 ,m3
1dm1 ,m2

da2 ,m3
!#.

Description of an elastically anisotropic medium is mo
complicated. It is characterized by orientation of crystal
graphical axese18 ,e28 ,e38 with respect of axes of a laborator
3180 ©2000 The American Physical Society
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coordinate system. In the case of lowest symmetry clas
these axes may not be orthogonal, hence one introduce
thogonal ‘‘crystallographic’’ systems of axese1 ,e2 ,e3

related to e18 ,e28 ,e38 imposing some conditions on elast
constants~cf. for example, textbook by Sirotin and Shasko
skaya, Ref. 3 Sec. 52!. We shall consider tensorsC3 in such
orthogonal crystallographic coordinate systems. Consid
rotationV of crystallographic axes with respect to laborato
axes through three Euler anglesf, u, and c ~0<f,2p,
0<u<p, 0<c,2p!.14 Denote suitable rotation matrix with
matrix elementsVab by Ṽ(f,u,c).

Suppose that we deal with a rotated elastic anisotro
medium the nonlinear properties of which are characteri
by the tensorC3(V) with componentsCab,gd,mn(V),

Cab,gd ,lr~V!5 (
a8,b8,g8,d8,l8,r851

3

Vaa8Vbb8

3Vgg8Vdd8Vll8Vrr8Ca8b8,g8d8,l8r8 .

~1!

To find the tensor elastic constantC 3e f
( is) for an effective iso-

tropic elastic medium corresponding to the chosen an
tropic medium, we allow for all possible orientations of cry
talline axes with respect to the laboratory coordinate syst
i.e., we shall integrate all elementsCab,gd,lr(V) of C3(V)
over all allowed values of Euler angles,

Cab,gd,lr
(e f) 5^Cab,gd,lr~V!&

5 (
a8,b8,g8,d8,l8r851

3

Ca8b8,g8d8,l8r8

3Raa8bb8gg8dd8,ll8rr8 , ~2!

whereCab,gd,lr
(e f) is a component ofC 3e f

( is)(V) and

Raa8bb8gg8dd8ll8rr8[~R6!aa8bb8gg8dd8ll8rr8

5^Vaa8Vbb8Vgg8Vdd8Vll8Vrr8&.

For any functionA of Euler anglesf, u, c,

^A~f,u,c!&5
1

8p2E0

2p

dfE
0

p

du sinuE
0

2p

dcA~f,u,c!.

~3!

The unweighted mean value of the produ
(Vaa8Vbb8Vgg8Vdd8Vll8Vrr8) depends only on element
of the unit tensor of the second rankI 2. The tensorR6 has
the symmetry@V2#6 , e.g.,

Raa8bb8gg8dd8ll8rr85Ra8abb8gg8dd8ll8rr8

5Rbb8aa8gg8dd8ll8rr8 . ~4!

The results of calculation ofCab,gd,rl
(e f) ~2! for media be-

longing to all crystal classes are presented in Tables I–
Using Maple we checked that the obtained expressions a
with the Fumi reduction relations.4,5 For cubic media our
results agree with expressions obtained by Tamura.7
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III. STABILITY OF EFFECTIVE ISOTROPIC ELASTIC
MEDIA

As we mentioned above in computer experiments
propagation of down-converting phonons we are enforced
consider three-phonon anharmonic processes in isotr
EIM’s. Anisotropic and the related effective isotropic med
have to be mechanically stable, because it guarantees
phonon frequencies are real.

Consider first isotropic media. For an isotropic elastic m
dium the tensor of second-order elastic constantsC is com-
posed as15 C 2

( is)5CJJ1CKK, whereCJ5(C1112C12) and
CK5(C112C12). The tensorJ and the fourth-rank unit ten
sor I have, respectively, the following components:

Jam,bn5 1
3 da,mdb,n , Iam,bn5 1

2 ~da,bdm,n1da,ndb,n!,

K5~I2J!. ~5!

An elastic isotropic medium is mechanically stable wh
CJ.0, CK.0. According to Table I of Ref. 11,CJ

(e f) and
CK

(e f) depend only on the matrix elementsCUU (U54,5,6)
and CUV (U,V51,2,3). We shall use this property in th
proof of stability of effective linear isotropic media.

Consider an anisotropic medium characterized by the
trix C̃2 with the elementsCUV (U,V51, . . . ,6). Weshall
prove that the stability of anisotropic medium yields the s
bility of the corresponding effective isotropic mediu
~EIM!. An elastic medium is mechanically stable if and on
if the matrixC̃2 is positive.2 A square matrix is positive if all
its main minors are positive. In particular, forC̃2 the in-
equalities CUU.0 (U51, . . . ,6) hold and Mi.0 (i
51,2,3), whereMi ( i 51,2,3) are the following main mi-
nors of C̃2:

TABLE I. Parameter of elasticity alpha for effective isotrop
media for all crystal systems.

Crystal class ae f

1
105(C11119C11219C11319C122148C123

C1 ,S2 ,C1h ,C2 19C133230C14426C15526C1661C22219C223

C2h ,C2v ,D2 ,D2h 19C23326C244230C25526C2661C333

26C34426C355230C366148C456)

C3 ,S6 ,C3v
1

105(10C111121C11213C113163C123118C133

D3 ,D3d 284C144112C155211C2221C333212C344)

C3h ,C6 ,C6h ,D6, 1
105(10C111121C11213C113163C123118C133

D6h ,D3h ,C6v 284C144112C155211C2221C333212C344)

1
105(2C111118C112118C113148C123

C4 ,S4 ,C4h ,C4v 118C133260C144212C155212C166

D2d ,D4 ,D4h 1C333212C344130C366148C456)

1
35(C11119C11219C113116C123230C144

T,Th 26C15526C166116C456)

( 1
35C111118C112116C123

O,Td ,Oh 230C144212C166116C456)
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M15UC11 C12

C12 C22
U, M25UC11 C13

C13 C33
U, M35UC22 C23

C23 C33
U.
~6!

Notice that expressions forCJ
(e f) , CK

(e f) are invariant in
respect to changes of indices 1↔2↔3. So we can assum
that C11.C22.C33 and thatC1151. This means that

C1151, C22P~0,1!, C33P~0,C22!. ~7!

The conditions of positivity ofMi impose three condi-
tions on matrix elementsCUV (UÞV, U,V51,2,3).
Namely,

C12P~2AC22,AC22!, C13P~2AC33,AC33!,

C23P~2AC22C33,AC22C33!. ~8!

We shall prove that the instability of the isotropic effe
tive medium yields instability of the corresponding anis
tropic medium. An effective elastic medium is unstable, if
least one of Walpole’s coefficients is negative, i.e., we h
to prove that

~CJ
(e f),0~CK

(e f),0!

→at least one of main minors ofC̃2 is negative.

Therefore, the above statement is equivalent to the statem

@~CJ
(e f),0→at least one of main minors ofC̃2

is negative)̀ ~CK
(e f),0→at least

one of main minors ofC̃2 is negative)].

TABLE II. Parameter of elasticity beta for effective isotrop
media for all crystal systems.

Crystal class be f

1
105(C11112C11212C11312C122215C123

C1 ,S2 ,C1h ,C2 12C133119C1441C1551C166

C2h ,C2v ,D2 ,D2h 1C22212C22312C2331C244119C255

1C2661C3331C3441C355119C366236C456)

1
210(6C11117C112127C113249C123

C3 ,S6 ,C3v 18C1331112C144232C155

D3 ,D3d 2C22212C23314C344)

C3h ,C6 ,C6h ,D6, 1
210(6C11117C112127C113249C12318C133

D6h ,D3h ,C6v 1112C144232C1552C22212C23314C344)

1
105(2C11114C11214C113215C123

C4 ,S4 ,C4h ,C4v 14C133138C14412C15512C166

D2d ,D4 ,D4h 1C33312C344119C366236C456)

1
35(C11112C11212C11325C123119C1441C155

T,Th 1C166212C456)

1
35(C11114C11225C123119C144

O,Td ,Oh 12C166212C456)
-
t
e

ent

We shall prove that the following statements are fulfille
~A! If CK,0 then at least one of main minors ofC̃2 is
negative;~B! if CJ,0 then at least one of main minors ofC̃2
is negative. Consider case~A!.

~A! Suppose thatCK
(e f) is negative. We shall show tha

then

~ i ! C11,0~C22,0~C33,0~C44,0~C55,0~C66,0,

~ i i ! ~M1,0~M2,0~M3,0.

Assume that the alternative~i! is not fulfilled and consider
the inequalityCK

(e f),0, then

@ 1
3 ~C111C221C33!1~C441C551C66!#

, 1
3 ~C121C131C23!, ~9!

hence

~C111C221C33!
2,~C121C131C23!

2. ~10!

With the help of an obvious inequality

CRSCUV, 1
2 ~CRS

2 1CUV
2 !, ~11!

we rewrite inequality~10!

TABLE III. Parameter of elasticity gamma for effective isotro
pic media for all crystal systems.

Crystal class ge f

1
210(2C11123C11223C11323C122112C123

C1 ,S2 ,C1h ,C2 23C133218C14419C15519C166

C2h ,C2v ,D2 ,D2h 12C22223C22323C23319C24412C255

19C26612C33319C34419C355

218C366154C456)

1
210(2C1112

21
2 C112215C113121C123

C3 ,S6 ,C3v 26C133263C144145C155

D3 ,D3d 1
19
2 C22212C233118C334)

C3h ,C6 ,C6h ,D6, 1
210(2C1112

21
2 C112215C113121C12326C133

D6h ,D3h ,C6v 263C144145C1551
19
2 C22212C233118C334)

1
105(2C11123C11223C11316C123

C4 ,S4 ,C4h ,C4v 23C133218C14419C15519C166

D2d ,D4 ,D4h 1C33319C34429C366227C456)

1
70(2C11123C11223C11314C123218C144

T,Th 19C15519C166118C456)

1
35(C11123C11212C12329C144

O,Td ,Oh 19C16619C456)
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1
2 ~C11

2 1C22
2 !1 1

2 ~C22
2 1C33

2 !1 1
2 ~C11

2 1C33
2 !12C11C22

12C11C3312C22C33,3~C12
2 1C23

2 1C12
2 !. ~12!

Using the inequality~11! once more the inequality~12! can
be written in the form containing sum of minorsM1 ,
M2 , M3,

(
i 51

3

Mi,0.

Hence, at least one of minorsMi ( i 51,2,3) is negative.
~B! Now assume thatCJ

(e f) is negative. If the statemen
M1,0~M2,0~M3,0~C11,0~C22,0~C33, 0~C44

,0~C55,0~C66,0 is true, then obviously matrixC̃ is
negative. Further, assume thatCUU.0 (U51, . . . ,6),then
the conditionCJ

(e f),0 is equivalent to

2
3 ~11C221C33!1~C121C131C23!,0. ~13!

In the space of five parametersC22, C33, C12, C13, C23,
obeying conditions~7! and~8!, we introduced dense enoug
mesh and checked numerically that if inequality~13! is ful-
filled then one of main minors ofC̃2 is negative.
in

h.
Consequently, if the anisotropic medium is mechanica
stable~i.e., C̃2 is positive! the related effective isotropic me
dium is also mechanically stable~i.e., CJ.0, CK.0). Of
course, stability of an EIM does not guarantee the stability
the corresponding anisotropic medium, because main min
of it different thanCUU (U51, . . . ,6) andMi ( i 51,2,3)
may be negative.

We also calculated the contribution of piezoelectric ter
to the second-order elastic constants for all noncentros
metric crystal classes. However, even for strongly piezoe
tric crystals ~e.g., GaN! the corresponding contribution i
two orders smaller than terms related toCam,bn , whereas for
weak piezoelectrics~e.g., GaAs!—four orders weaker. For
this reason we do no list these results.
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