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Mechanically stable effective isotropic media for all crystal classes:
Construction of the third-order elastic constants
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The simplest kind of mutual interactions of long-wavelength acoustic phonons in crystalline elastic media is
characterized by sets of components of tensors of the third-order elastic constants. Averaging these components
over all directions of axes of a laboratory frame we obtained elastic constants for effective isotropic media
corresponding to anisotropic media that belong to all crystal classes. In regions of stability of anisotropic media
the corresponding tensors of effective second-order elastic constants are positive, i.e., effective isotropic media
are mechanically stable. The obtained sets of elastic constants for effective isotropic media can be used in
computer experiments on nonequilibrium gases of long-wavelength acoustic phonons.

I. INTRODUCTION Tamura’ who used the method invented by Fedorov for the
second-order elastic constaftgsing the method of averag-

With the advent of the experimental technique of heating of components of tensors of elastic constants over all
pulses the evolution of nonequilibrium states of phononorientations of axes of the laboratory frame we calculated
gases becomes intensively studied both experimentally arelements o’ $*" for all crystal classe$! Hence, we shall not
theoretically. These pulses are used as a useful tool for th@produce here these results and confine ourselves only to the
investigation of many other properties of crystalline sofids. discussion of stability of these linear EIMI&f. Sec. Il)).

In most experiments beams of long-wavelength acoustid he same method is used here for derivation of expressions
phonons are used. They propagate in crystalline media der the third-order elastic constants of EIM’s for all crystal
various symmetries. Characteristics of such phonons, namefja@ssessSec. I). _ . _ .
frequencies, phase and group velocities, polarization vectors Additionally, for cubic and transversely isotropic media

as well as shapes of slowness surfaces, are defined by a set i already p_roved that our method c_;f obtaining EIM's re-
independent componen@ (i,j.kI1=1,2,3) of the ten uces complicated spectra of relaxation rates related to the
J Skl '} AT T <Y} -

sor of second-order elastic constadss This tensor belongs elastic scattering in anisotropic media to simple, purely dis-

o the clasgVZ]2. The number of its independent compo- (r:;ggeialszpectrum, which is characteristic for all isotropic
nents 95 varies from 18 for triclinic to 2 for isotropic '
media®

At ambient temperatures much lower than the Debye tem-”' TENSORS OF THIRD-ORDER ELASTIC CONSTANTS
perature, the density of thermal phonons is so low that one For isotropic media the tens6g depends on three param-
can neglect the phonon merging processes and consequenéiersa, B8, andy.'® It can be expressed in terms of the unit
only processes of the spontaneous decay should be asecond-rank tensdp with the components, g,
counted for. Characterization of even the simplest kinds of
such phonon-phonon processes, that is three-phonon anha®a ., ayu, agus= ¥0ay uyOay uy0az,us
monic spontaneous decay processes, needs familiarity with
second-order elastic constaf¥s frequenciesand also with + 5[5a1,u1( 5a2,a35u2,u3+ 5a2,u35u2,a3)
the whole set of third-order elastic consta@tg | mn, which

are components of the sixth-rank tenglr TensorC; be- T 0ay.15( Pay agOpy gt 5a1»#35ﬂlva3)
longs to the clasBV?]%. The numben; of independent elas- is
H : 5 ; H @ (5a o 6 + 5& 6 @ )]
tic constants varies from 56 t03° Together with scattering R R A N 12 1%
by lattice imperfections, mutual phonon interactions deter- SO P C N o N
mine the evolution of the spectral composition of nonequi- pisr Ttz 2T 12 72T
librium phonon systems. Such evolution is studied +5 (6 S +5 S )
analytically as well as in computer simulatior(sf. Refs. B
7-10. . . + 51“1'“3( 5“1v“25M2rM3+ 50‘1vﬂ25“2v#3)
Due to their complexity, even spontaneous decay pro-
cesses are studied, usually in equivalent effective isotropic 00, as( O aOuy iy Oy iyOay ug) ]

media(EIM’s).” For such studies it is indispensable to know

elastic constants of the second and third order for the related Description of an elastically anisotropic medium is more
EIM’s, i.e., the components af$£? andc¢? | respectively. complicated. It is characterized by orientation of crystallo-
For cubic elastic media these components were calculated lgraphical axe®; ,€},€; with respect of axes of a laboratory
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coordinate system. In the case of lowest symmetry classes TABLE I|. Parameter of elasticity alpha for effective isotropic
these axes may not be orthogonal, hence one introduces dgnedia for all crystal systems.
thogonal ‘“crystallographic” systems of axeg;,e,e;
related toe€],e;,e; imposing some conditions on elastic Crystal class Pef
constantgcf. for example, textbook k_)y Sirotin anq Shaskol- 155(C111+9C 115+ 9C 1131+ 9C 155+ 48C 153
skaya, Ref. 3 Sec. 52We §ha|| cor_1$|der tensot in suc_h C1,5.C1n.Cy  +9C 55— 30C 44— 6C1s6— 6C 166+ Cappt 9Cons
orthogonal crystallographic coordinate systems. Consider & ¢ D.D 4 9Cor 6Coarr 30Coe— BCoret C
. : . 2hy~2v 22,220 233 244 255 266 333

rotation() of crystallographic axes with respect to laboratory ~ 6Cass— 6Cass 30Casst 48C 150
axes through three Euler angles 6, and ¢ (0<¢<2m, a4 TS5 366 +
0<6=<m, 0<y<2m).1* Denote suitable rotation matrix with
matrix elements,,; by 0(¢,0,9).

Suppose that we deal with a rotated elastic anisotropi
medium the nonlinear properties of which are characterizeg:

C3,S5.Cay 165(10C 11+ 21C1 1+ 3Cyp 5+ 63C 55+ 18C 133
gs 'D3qg —84C 144+ 12C 55~ 11C 0+ C333~ 12C340)

3n+C6,Cen+Dg,  155(10C 31+ 21C 15+ 3C 115+ 63C 5+ 18C a3

by the tensoiC;({}) with component<,; s ,.(Q),
aByo.pv Den.D3an,Coy —84C 44+ 12C 55— 11Cp5+ Cg33— 12C54)
3
Capyonp(Q)= > Qoo Qppr 705(2C141+ 18C11,+ 18C 115+ 48C 5
a' By 8"\ p =1 C4,54,C4n,Cysy +18C 33— 60C 144~ 12C155— 12C 46
X Qs Qyp Corpr s nr - D24,D4.Dan +Cg33~ 12C344+ 30C366+ 48C 450)
@) 35(C111+9C115+ 9C 5+ 16C1 95— 30C 14,

To find the tensor elastic constad§s) for an effective iso- T.Th ~6C155~6Ca66T 16Cus0
tropic elastic medium corresponding to the chosen aniso-

tropic medium, we allow for all possible orientations of crys- (35C111+18C 135+ 16C 55
talline axes with respect to the laboratory coordinate systen),T4,0p —30C ;44— 12C 461 16C459)
i.e., we shall integrate all elemen®, s ,s),({2) of C5(Q2)
over all allowed values of Euler angles,

lll. STABILITY OF EFFECTIVE ISOTROPIC ELASTIC
! MEDIA
CE"eBu)YtS,)\p:<Caﬁ,y¢5,)\p(Q)>

3 As we mentioned above in computer experiments on

_ E Co propggation of down-converting ph_onons we are (_anf(_)rced to
N A @By o N p consider _three-p_honon anharmonic processes in isotropic
EIM’s. Anisotropic and the related effective isotropic media
XRaa’ g yy' 68" A\ pp' » (20 have to be mechanically stable, because it guarantees that
(e _ (is) phonon frequencies are real.
whereCyjz/,5,, IS @ component of 3:¢(€2) and Consider first isotropic media. For an isotropic elastic me-
dium the tensor of second-order elastic constanis com-
Raa g vy 66w pp' = (R6) aa’ g7 yv' 86/ W\ pp? posed a¥ C{¥=C,J+ CyK, whereC,=(Cy;+2C;,) and
(D Q0 Qs Uy Q). Ck=(C11—Cyy). The tensor7 and the fourth-rank unit ten-

sorZ have, respectively, the following components:

For any functionA of Euler anglesp, 6, #,
Ja,u,ﬁvz % 5a,p,5ﬁ,v ’ Ia,u,BV: %( 5a,B5M,V+ 5&,1/5,5,1/)!

2 T 2
<A(¢,6,¢))=$L dqsfo desinefo dyA(d,0,1). K=(IZ=J). ®)
T 3) An elastic isotropic medium is mechanically stable when
C,>0, C¢>0. According to Table | of Ref. 11C¢" and
The unweighted mean value of the productC{” depend only on the matrix elemer@s,, (U=45,6)
(Qaar Qe Qss Q) Q,,) depends only on elements and Cy, (U,V=1,2,3). We shall use this property in the
of the unit tensor of the second rahk The tensofRg has  proof of stability of effective linear isotropic media.

the symmetnfV2]° | e.g., Consider an anisotropic medium characterized by the ma-
trix C, with the element<Cy, (U,V=1,...,6). Weshall
Rea’ 887 vy 65\ pp' = Rar appr vy 85317 pp prove that the stability of anisotropic medium yields the sta-

bility of the corresponding effective isotropic medium
(EIM). An elastic medium is mechanically stable if and only

The results of calculation dﬁ(uegf,)y,s,m (2) for media be- if the matrixC, is positive? A square matrix is positive if all

longing to all crystal classes are presented in Tables I—Illits main minors are positive. In particular, f@; the in-
Using Maple we checked that the obtained expressions agré&slualites Cy,,>0 (U=1,...,6) hold and M;>0 (i
with the Fumi reduction relatiorfs> For cubic media our =1,2,3), whereM; (i=1,2,3) are the following main mi-
results agree with expressions obtained by Tamura. nors of C:

:Rﬁﬁ’aa’yy’éﬁ’)\)\’pp’ . (4)
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TABLE Il. Parameter of elasticity beta for effective isotropic
media for all crystal systems.
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TABLE lll. Parameter of elasticity gamma for effective isotro-
pic media for all crystal systems.

Crystal class

Bef

Crystal class

Yeft

705(C1117 2C 110+ 2C113+ 2C120— 15C 15
+2C 133+ 19C 144+ Cis5t Cigp
+ Cozot 2C5051+ 2C533+ Coggt 19C 155
+ Ca66t Cazat Caast Casst 19C 366~ 36C4s0)

ClstI(:lh 1C2
Can,Cay,D2,Dap

716(6C111+ 7Cr1p+ 27C 115~ 49C 155
+8C a5+ 112C 44— 32C 155
—Cot 2C 331 4C349

C3,55,Cay
D3,D3q

C3h ICS!CGh IDG!
Dsh:D3n.Cey

316(6C111+ 7Cy1o+ 27C115— 49C 15+ 8C3s
+112C; 44— 32C 155~ Cpppt 2C 35+ 4C34))

165(2C 111+ 4C 115+ 4C115— 15C 55

C4.54,C4n,Cay +4C;33+38C 441 2C 1551+ 2C166

D24,D4,Dan + Cazat 2C344+ 19C 566~ 36C 456
35(C111+ 2C115+ 2C 115~ 5C o5+ 19C 44+ Ciss
T,Th + Ci66— 12C 456
35(C111+4C115~ 5C 15+ 19C144
O,T4.0n +2C166~12C459)
_‘Cll Co _‘Cll Cis M _‘sz Co3
1~ ’ 2= ’ 3= .
C12 C22 Cl3 C33 C23 C33(6)

Notice that expressions fa€{*", C(¢" are invariant in
respect to changes of indices~P«—3. So we can assume
that C,;>C,,>C3; and thatC,,=1. This means that
C33e(0,C2). (7

The conditions of positivity ofM; impose three condi-
tions on matrix elementsCy, (U#V, U,V=1.23).
Namely,

Ce(— \/C_zzy\/c_zz)r Cize(— \/C_aa,\/c_aa),
Coze (— VC2LC33VC5:Ca3). (8)

We shall prove that the instability of the isotropic effec-

C11=1, Cxe(0,),

tive medium yields instability of the corresponding aniso-
tropic medium. An effective elastic medium is unstable, if at
least one of Walpole’s coefficients is negative, i.e., we have

to prove that
(cE<oycEN<o)

— at least one of main minors of, is negative.

ClstVClh vCZ
C2n,Cay,D2,Dyp

C3.S6.Cay
D31D3d

C3h !CG ICGh 1D6!

Dén,Dan,Cey

C4.54,Can,Cyy
D2d !D4ID4h

T,Th

0,T4.04

5716(2C 111~ 3C 115~ 3C 115~ 3C 155+ 12C 155
—3C133718C 144+ 9C 155+ 9C 166
+2C525—3C223—3C0331+ 9C 44+ 2C 155
+9Co661+ 2C3331+ 9Casst 9C3s5

—18C366+ 54C 450

516(— C111— 3 C112~ 15C 115+ 21C 155
_169C133_ 630144“1‘ 45(:155
+ %5 Coppt 2C5331 18C334)

716(— Cuu— %cm—l 15Cy15+21C 25~ 6C 10
—63C 144 45C 155+ 5 Copot 2C 5351+ 18C3534)

705(2C 111~ 3C115~ 3C113+ 6C1y3
—3C133~ 18C 144+ 9C 55+ 9C 16
+ C333+9C344— 9C 366~ 27Cys6)

%(20111_ 3C11p73C11514C 125~ 18C 144
+9C 551+ 9C g6t 18C4s50)

35(C111— 3C110+ 2C 155~ 9C144
+9C 661+ 9Cus0

We shall prove that the following statements are fulfilled:
(A) If Cc<0 then at least one of main minors &, is

negativey(B) if C;<0 then at least one of main minors©4
is negative. Consider cag8).
(A) Suppose thaC" is negative. We shall show that

then

(i) C11<0V/Cp<0\/Cy33<<0\/Cys<0\/Cs5<0\/Cs<0,

(i) \/M;<0\/M,<0\/Ms<O0.

Assume that the alternativ@) is not fulfilled and consider
the inequalityC(¢” <0, then

[3(Cy1+Coot Cg) +(Cyyt CostCop) ]

hence

Therefore, the above statement is equivalent to the statement

[(C¥"<0—at least one of main minors of,

is negative)\(C{¢”<0— at least

one of main minors ofC, is negative)].

<3(Cyp+Cy3+Cypy), 9
(C11+Copt C39)?<(Cypt Ci3+Crp)”. (10

With the help of an obvious inequality
CreCuv<3(CkstCfy), (12)

we rewrite inequality(10)
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3(C51+ C3) +3(Chyt Chp)+ 3(CE+C3) +2C15Cop
+2C11Cq3+ 2C,C33< 3(C2,+ C5,+ C3,). (12)

Using the inequality11) once more the inequalit{12) can
be written in the form containing sum of minondl,,
M,, Ms,

3
> M;<0.
i=1

Hence, at least one of minoM; (i=1,2,3) is negative.

(B) Now assume tha€{®" is negative. If the statement
M ;<0\/M,<0\/M3z<0\/C;;<0\/Cpy<0\/Cs3< 0\/Cyy
<0\/Cgs<0\/Cg<0 is true, then obviously matri is
negative. Further, assume ti@g,>0 (U=1,...,6),then
the conditionC{#" <0 is equivalent to

5(1+Cypt Cgg) +(Cypt Cyat Cpa) <O. (13

In the space of five paramete&,,, Cs3, Cqy, Ci3, Cos,
obeying conditiong7) and(8), we introduced dense enough
mesh and checked numerically that if inequalityy) is ful-

filled then one of main minors df, is negative.

Consequently, if the anisotropic medium is mechanically
stable(i.e., C, is positive the related effective isotropic me-
dium is also mechanically stablge., C;>0, C¢>0). Of
course, stability of an EIM does not guarantee the stability of
the corresponding anisotropic medium, because main minors
of it different thanCy, (U=1, ...,6) andM; (i=1,2,3)
may be negative.

We also calculated the contribution of piezoelectric terms
to the second-order elastic constants for all noncentrosym-
metric crystal classes. However, even for strongly piezoelec-
tric crystals (e.g., GaN the corresponding contribution is
two orders smaller than terms relatedlg,, 4, , whereas for
weak piezoelectricge.g., GaAs—four orders weaker. For
this reason we do no list these results.
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