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Nonlinear dynamic conductance and harmonic generation in mesoscopic multiprobe systems
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We report a theoretical analysis of nonlinear dynamic conductance and harmonic generation for multiprobe
mesoscopic conductors. Our calculation takes into account the internal induced potential which is due to a
response to oscillating external bias voltages applied at the probes of the conductor. We pay special attention
to the physical requirement of current conservation and gauge invariance. There are generally several branches
for higher-frequency harmonics in nonlinear components of the transport current, and each branch has its
characteristic harmonics frequency. Our theory permits weakly nonlinear analysis order by order in terms of
the external bias but in general terms of the ac frequency, and in particular we present detailed derivations up
to third order. The third-order response contains a contribution at the driving frequency and a contribution 3
times the driving frequency. As a specific example we analyzed the nonlinear harmonic generation in double-
barrier tunneling systems.

[. INTRODUCTION scopic conductors, it is both qualitatively and quantitatively
important to include a self-consistent internal potential
The technological advance in fabricating nanostructuresaused by the long-range Coulomb interactidfiie reason
and the recent interest in physics of ultrasmall semiconductads that the induced internal potential can be quite substantial
devices have motivated formulations of appropriate quantunfor small conductors due to their small density of states
transport theories applicable for coherent multiprobe quanwhich in turn leads to the long-screening lengths. Hence the
tum conductors:? In particular, nonlinear quantum transport total potential of the system, external plus induced, can be
properties of these mesoscopic conductors have receivagtry different from the applied external potential. Further-
much attention both theoretically and experimentaflyOn  more, it has been showihat without consideration of the
the theoretical side, several approaches have been proposeduced potential, the theory would violate electric current
to analyze quantum transport problems under dc and ac corgenservation under ac bias and would violate gauge invari-
ditions, including the scattering matrix thedry,response ance under nonlinear dc situations. A major progress in de-
theory®=° nonequilibrium Green’s function theof§;*and  veloping viable nonlinear dc and ac theories has been
direct numerical simulations. In the ballistic regime under anachieved recently after Levinsbrand Biitiker'® introduced
external dc bias, electronic transport can be described ia self-consistent internal potential in the context of consider-
terms of independent conducting channels characterized kipg current conservation and gauge invariance requirements.
their transmission coefficierfts* through the mesoscopic Physically for ac transport situations, the self-consistent po-
conductor. In a typical analysis of the linear dc conductanceential is induced by a redistribution of charges due to the
coefficient, which is the linear order coefficient of electric presence of a displacement current when a time-dependent
current versus bias voltage, itdgsalitatively notessential to  bias is applied to the conductor. Essentially, in response to a
include the potential buildup inside the conductor: many expotential variation at a contact of the mesoscopic conductor,
amples have shown that single-electron scattering matrihe charge distribution in the interior of the sample is driven
theory is adequate in predicting the dc linear conductance aiway from equilibriun?'’ On the other hand, an electron
mesoscopic conductots. Coulomb interaction opposes this variation. The competition
On the other hand, when comes to predicting nonlineaof these two effects gives rise to a self-consistent internal
transport coefficients and ac transport coefficients for mesopotential which must be taken into account in predicting
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transport coefficients. Usually we can write the net chargelating form turned on adiabatically ap=—c, i.e., V,(t)
which is associated with the redistribution of carriers in the_y; e~ 7lticosOt, wherey is positive and infinitesimal. The

sample in response to an external bias potential variationyeneral form of the various terms in the expangibncan be

into two parts. The first part is due to direct external injectiontoyng by invoking the fundamental physical principle of
of carriers through contacts of the conductor with a fixedtime invariance: the dynamical properties of our system can-
internal potential. The second part is due to induction which,ot pe changed by a translation of the time origin. For our
accounts for such effects as the displacement current, angse, a time displacement of external bias merely results in a
which is sensitive to the density of states of the conductoreqrresponding time displacement of the induced current. By

The effects of displacement current have been indicated byhanging variables in the time integration of Eg), one has
physical consideratioh® and by direct numerical

simulationst® (@i )
When dealing with nonlinear ac response in quantum Ia(t)=Re{e 7 % Gap (Vg

transport, higher-order harmonic generation is naturally ex-

pected, similar to those observed in nonlinear optical sys- ot )

tems. In other words, due to nonlinearity, an external ac per- +5e” BE Gap(Q)VgV,

turbation at frequency) can generate an electric current 7

response at frequenci€s and multiples of2 including a dc . A

component! The dc component of harmonic generation has +3 Re{ 2@ty GEDQ)V,V,

been analyzed recently. de Veg¥arstudied the low- b

frequency second-harmonic transport response of mesos- 1 o

copic conductors using a perturbation theory and he found + ?Re{ el@intg2nty) G(a%)yé(ﬂ)vﬁvyva}

that the low-frequency second-harmonic current is a non- pro

Fermi-surface quantity. In a recent study Pedersen and 1 _ _

Buttiker?* discussed the effects of displacement current on + ?R{ 3Oy GED(Q)VEV,V,

harmonic generation. The current in the nonlinear regime is pre

also studied on a double-barrier tunneling diode by Blantewhere R€] means the real part ¢f ]. In this expression of

and Biitiker?? These investigations were based on perturbathe currentGY3 (Q)=/5dm;G 4(ry)e (1M is the lin-

tion expansions in terms of both external bias and in freear complex dynamic conductance coefficient, called admit-

quency; hence the full frequency-dependent feature has n@ince,

been clearly examined. It is the purpose of this work to re-

)

port a systematic theoretical analysis on nonlinear ac trans- ) [ *
port where harmonic generation is studied in general terms Capy( V)= fo dTlfo d72Gagy
of the ac frequency.
To make the problem of harmonic generation clearer, let X (75,71 + o) 1271t 2)cosO 1,
us consider the weakly nonlinear response of a mesoscopic

conductor to an applied external bias voltage. For this situaffmd

tion the electric current flowing through a probe _Iabeled byG(aZ[?y)(Q):fnglfooodTZGaﬁy
a, 1,(t), can be expanded in powers of the bias voltage | . ici
V4(t) applied at probes. V, is'finite but is a_ssumed to be ar%second—order complex dynamic conductance coefficients,
small; hence the weakly nonlinear expansion makes sendd!

and only the first few terms need to be retained. The expan-

(7_2 , Tl+ Tz)e—i(ﬂ—i 7)(271+ 75)

sion is written as GUY,5(Q)= fo dTlfo defo d73G,pys
t
Ia(t)=2 dthaB'y(t_tl)Vﬁ(tl) X(T31T2+T3'Tl+TZ+T3)
F Tt X [2e~ 211+272% 72 g~ (A= 1M1 cog() 7y
t t
+> | dy J 065G 0, (t1— Lo t— 1) V(1) V(1) e 2mmg i@ in(nt2mt )]
By Jig to
and

t t t
+> dtlf dt, | dtg . . .
Bve Jig to to G%%(Q):J’ d7-1J d’TzJ d73Gapys

X Gapys(ta—t3,t1—t3,t—t3)Vp(t1)V,(t2) Vs(ta) ° ° °

T 1) X(73,Tp+ 73,71+ To+ 73)

. . ) Xe*i3(Q*iﬂ)(Tl+T2+T3)

Here it has been assumed that the bias voltage at prabe
turned on at timet,. The response coefficients,z,(t  are third-order complex dynamic conductance coefficients.
—11), Gupy(ti—to,t—tp), and G ,z,s(to—t3,t;—t3,t—t3) Equation(2) indicates clearly that the second-order term
are, respectively, the first-, second-, and third-order dynamia the electric current contains a dc piece and an oscillating
conductance. To make the analysis relatively easier, in thpiece at twice the driving frequendy. In addition Eq.(2)
following discussions we assunvg,(t) to be a simple oscil- indicates that at third order there is a piece oscillating at the
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driving frequency and a piece oscillating at triple the drivingapplied voltage and internal induced potential. The solution
frequency. These together with even higher-order terms givis obtained by solving the equation of motion. In Appendix B
the harmonic generation efficiency. The nonlinear terms othe essential derivations of charge density as well as the
Eq. (2) suggest that in addition to the component oscillatingequations for the characteristic potential tensors have been
at the driving frequency), the current contains significant presented.

components oscillating at harmonic frequencie3, 23Q2,

... plus a dc component at zero frequency. This is precisely [l. THEORY

analogous to the well-known harmonic distortion of signals o . .
in an electrical circuit whose dynamic response is not per- Ogr analysis is based on a perturbatlon theory, scattering
fectly linear matrix theory, and a self-consistent solution of the internal

In this paper we will investigate harmonic generation angPotential built up at the Hartree level. To make the presen-

its corresponding ac dynamic conductance coefficients up tBation clear we qu detailc_ed mgthematical d.erivations. inside
third order in an external bias. Our calculations concern nofV0 @ppendixes. First, by iterating the equation of motion we

only dc transport features but also frequency-dependent fe&i_erive the correlation function which enters the electric cur-
tures in weakly nonlinear response. The derived analytica.rlerlt operator; _secon.d, we derive equations Sat'Sf'ed. by the
ternal potential buildup in terms of the local density of

expressions presented in this paper are suitable for predictiH ) o .
ac transport coefficients in general terms of the frequency>'aeS(LDOS); combining these results we obtain the dy-
namic conductance coefficients.

rather than in a form expanded in frequency as done in pr Th idered here i il vol fth |
vious studies. Our investigation is carried out by combining e system considered here is a smal' volume of the mul-

response theofywith scattering matrix theorgin particular t|p|robe sample W't.h an.erl]p?hcatlon of theht|me-d:pendent
we generalize the scattering matrix approach to take intdf0!t@9esVa(t) r:/aryrl]ng Wl't rgquer;fgﬁ altt e p”ro esﬁ' o
account nonlinear dependences on oscillating potentials. Fol'€ SUPPose that the volume is sufficiently small so that the
the most general case of a mesoscopic conductor under esPatial variation of electric field could be ignored. Also the

ternal ac fields, a theoretical analysis is, perhaps, impossibfgl€CtS arising from the induced magnetic field are ignored.

to be carried out if full electrodynamic effects such as Fara. 2llowing the works of Bttiker and cg—worker%;ls the cur-
day’s law need to be included. We thus neglect this second€nt flowing over the probe: is found:

ary effect and only include the dynamic electric field re- e

sponse. We however point out that, formally, the full | (t)= _f dED, Agg kk(a,E,E')<C;§k(E,t)C5k(E'J))eq,
Maxwell equations can indeed be included into our formal- h Bk '

ism, but that makes analytical derivations very diffidand 3
is beyond the scope of this work. Our analysis indicates thajnere

there is only one branch in the linear response while there are

more than one branches of transport current in the nonlinear

response: each branch has its own frequency characteristics Agsi(@,E,.E) =2 [1,8.580— Shp i (E.U(r {V})
as discussed above, E®). Importantly, the ac external per- !

turbation_prqducgs static dc components in th_e current or a X S,p(E"U(r{V}H))] (4
dc electric field in the conductor; i.e., there is an optical o o )

As mentioned above, at nonlinear order special attentiofatrix S,z «(E,U(r.{V})), which is a functional of energy
must be paid to gauge invariance: the electric current canndt and induced internal potentid) (r {V,}). Cg (Cl) is
depend on the choice of potential zero. In other worgét) the annihilation(creation operator for an electron in the in-
of Eq. (1) cannot change if all the bias voltages are shifted bycoming channek inside the probeg and the scattering ma-
the same constant: the value lof remains the same when trix is used to describe the relationship between the incoming
Vz—Vg+A for all . In addition, current conservation €lectron at the probg to the outgoing electron at the probe
meansz | (t)=0. These requirements, applied to Et), a. From Eq.(3), therefore, the current can be obtained upon
suggest that dynamic conductance coefficients must satisfje solutionCLk(E,t)CBk(E’t) being known. This double
many sum rules, zaeg“g}'(s(w)zzﬁeg‘ﬁ@'5(“,): e operator can be found by solving the equation of motion
=365 (w)=0, wheren>1 is an integer indicating the Perturbatively. o _
order of harmonic generation. Our theory, to be presented The Hamiltonian can be written in the following form:
below, produces dynamic conductance coefficients satisfying

these constraints. _ f =L /
H= dEJE'E’| §,536mn0(E—E
The rest of paper is organized as follows: in Sec. Il the a,Bz,mn [ apOmnd( )
current response to an external ac bias is then calculated .
perturbatively. By separating harmonics, the corresponding +—R EE tIct (EYC.(E' 5
dynamic conductance coefficients are derived: we explicitly 27i apmn(EELD | Com(E)Can(ED), ©)

confirm current conservation and gauge invariance under the ~

Thomas-Fermi approximation. In Sec. IIl we apply our for-Where  Bgmn(E,E’,t)=V(t) 8apOmn(E-E’)""  and
malism to analyze double-barrier tunneling systems. The lastV, (t)=eV,+ [dr[ sE(U)/SU]U(r,t) is the global volt-
section contains a short summary and related discussionage at the probe in which the effects of internal potential
There are two appendixes: In Appendix A we gave the derihave been included. The second term in the Hamiltonian is
vation of the Hamiltonian with considerations of externalregarded as a time-dependent perturbaktig(t) because of
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the functione™ 7'lcosOt in the applied voltages, which sat-  {C,(E,1),Cpn(E’,1)}={C] (E,1),C},(E',1)}=0,
isfiesH,(—«)=0. The derivation of Eq(5) is given in Ap-

pendix A. As shown in the global voltag®k, the total per- one obtains

turbation to which the electron system responds is the sum of

applied perturbation and internal potentials due to the in—iM EE t)=(E'—E EE't

duced variation of the electron density. The internal potential (Qua i BED=( )Qaa(E.E"

is determined by Poisson’s equation. In Appendix B, we ex- e , A

press the internal potential in terms of characteristic poten- + o % f dE"[Bgank(E'.E"1)

tials and obtain the equations for these characteristic poten-

tials. X Qupxk(E,E" )

Using the time-evolution equation for a double operator , i

Qupii(E.E' 1) =Cl(E,)Ca(E" 1), —Bagkn(E",E,1)Qupi(E",E",D].
: ' ) )
17.0:Qapk(E,E"\1) =[Qup(E,E",1),H], (6)

and employing the equal-time commutation relations Making use of a transformationfllk(E,t)@ak(E’,t)

F oy o = exp[(i/ﬁ)(E’—E)t]CZk(E,t)Cak(E’,t) and integrating the
{Cam(E,1),Cpn(E" .1} = 02p0mnd(E—E) equation of motion with respect to the time variable, then
and going back toCLk(E,t)Cak(E’,t), it is found that

i(E'— ’ 1 e ! i(E'— =
CL(ECK(E" H)=e E~BVA CT (E)C W(E ”Eﬁfwdtl;, e/ DN By BB 1)

X CLK(E1tl)CBn(E”at1) =B knl E,,rEvtl)an(Eﬂytl)cak(E’ ,tl)]} . (8)

The perturbation solution up to third order in powers ofwhere the linear, the second-order, and the third-order modi-
B mn(E,E' 1) is presented in Appendix A. fied voltages at the prohg are

Substituting the solution of couple operaté9) into Eq.
(3), the current can be calculated in a standard way. Here we
would like to comment that in evaluating the current, it is V(Bl)ZE v,
needed to take a quantum statistical average of Y
(CI(E)CLUE"))eq= 8upS(E—E') T (E), wheref (E) is
the Fermi function of reservoit. It is assumed that the

SE(U
5yﬁ+fdruy(r) (SU((r)))’ (11

1 SE(U
modulation imposed on the system is so slow that the con- V(ﬁz)zzeE Vyvgf druy(;(r)#, (12
tacts can still be regarded as being in a dynamic equilibrium Vo u(r
state. Thus the quantum statistical average can be found by
evaluating the averages &f, (E). From Eq.(A9), one ob- @ 1 SE(U)
. 3)_ — a2 7
tains Vi =gre %J vyvgvpf dru,s,(r) 500) (13
T , and h;(t)= codQte 7 (j=1, 2, and 3 are the time-
(Cak(E;)Ck(E" 1))eq dependent factors.
—f(E)8(E—E')+ Wi(t) The first termf(E) 5(E—_E’) in Eq. (9) doe_s_ not contrib-
ute to the transport electric current. In equilibrium, the cur-
+W,(1) + Ws(t), (9 rent containing this term i${?== 4 f(E)Agg il a,E,E),

which vanishes immediately due ®gA g5 ((a,E,E)=0.
whereW;(E,t) are given in Eqs(A13)—(A15) in powers of It corresponds to the closed current loops following the equi-
the glob:';ll voltaged/ 4(t). According to Eq.(B3) and con- potential contours when the magnetic field is applied to the
sidering a series ex%ansion of energy in terms of potentia?yStem'. We will neglect this term in our further calculations.
landscapdJ, the global voltages can be written in powers of To V'$W the frequerl‘\cy dep(_andence Of_ curr_ent, we_trans—
the applied voltages form (C(E,t) Cok(E'\1))eq, in EQ. (9), into its Fourier
transformation form. In addition, the Fourier transformation
forr]ms o;gl?be voltagﬁs be(zjonﬂé,?(v)gtz)j y-\/(yl)r(]ﬂ)gj(y)"
V=S v (1), 10 where the frequency-dependent factofv) is the Fourier
ot) 121 AL (19 transformation oh;(t),
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Then the Fourier transformation form of current, E8),

1
hy(v)=5[6(v+Q)+8(r=Q)], (14 is obtained:
1
ha(1)= 52[8(v+20)+ 8(v—20)+28(»)], (19 Ia(w)=§f AEE'S) Ags (@ EE")
B
and X[Wa(@)+ Wal@)+ Wy(w)], (A7)
1 )
ha(v)= 53l 8(v+3Q) + 5(v—3Q) whereW,(w) = (27) 17 _.dte“'W,(t) is the Fourier trans-
formation of W (t). With the help of Eqs(A13)—(A15), itis
+38(v+Q)+38(v—0]. (16)  found that

f(E)—f(E') 1
E-E' E-E'+fhotin

e ~
Wil@)== 5+ 2 Vg(w)

1 e (= .
W)=~ 5 G VTt | e

1

E'—-E"E'—E

X|H(F(E) —H(E)]

1 1 1 1
X —+[f(E")—f(E")] —|,
E-E'+h(w—v)+iy E'-E"E'-EE'-E'+A(w—v)+in

and

e3

W3(w)=—§(2w—i)3f7 Vlf, dvzvﬁ(vl)vﬁ(vz)vﬁ(w—vl—Vz)f dE"dE"”

E-E'+hw+iy

1 1 1 1
E"—E"E'-EE'—E" E—E'+h(w—v1—vy)+in E—E"+h(0—v)+i7y

><|[f(E)—f(E”)]

1 1 1 1
E/N_EH EH_E E/_EI// E”_Em_ﬁ((x)_lll_llz)‘f'l?] E_E///+h(w_vl)+|77

—[f(E")—f(E")]

n n 1 1 1 1 1
B [f( E ) - f( E )] ! n 4 n n " 4 1 n ! H
E'-E"E'-E"E"-EE"-EBE'+h(wo—vi—vy)+tin E"—E +h(wo—vitin)

, ) 1 1 1 1 1
+ [f( E )_ f(E )] ! n n " n 4 ! H n ! H )
E'-E"E'"-E"E"-EE"-E' +h(wo—vi—vy)+in E"—E +h(w—vy)+ipy

In the calculation of these integrations of energy, there is a relation
f dE'X(E") —————=2miX(E) (18
—o E-E'+iy

for an arbitrary functionX(E). Therefore, integrating ove’ in Eq. (17), the Fourier transformation form of the current is
then written as

Ia(w)=§f dE%:, Agp k(@ EE+T0)(ChL(E)CalE+1w))eq, (19)

where the quantum statistical avera(ge;k(E)Cﬁk(Ethw))eq is given by the following relation:
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3

e - hy
<c}3k(E)ch(E+fm)>eq=E ;21 Vg)}f—::) [f(E)—f(E+hw)]
e? » h hy(w—
- Evg)vg”f_wdu% %[f(EwLﬁ(w—vl))—f(E)+f(E+ﬁv)—f(E+ﬁw)]
_e_2 hl(V) hz(w_V) hl(w_V) hz(V)

Z!Vg“vg)f_wdu [f(E+7i(w—vy)—f(E)+f(E+fiv)

v A(w—v) * A(w—v) hv

d hi(v1) hy(v,) hy(w—vi—v,)
v hvy  hv, h(w—vi—wv))

e3 o] o)
—f(E+hw)]+ ﬁv(ﬁl)vg)v(ﬁl)f_md”lf_w

X[f(E)—f(E+A(w—v,—vy)—f(E+hAvy) +T(E+A(0—v,))—f(E+AV,)
+f(E+A(w—1vy))+T(E+A(vi+1v,)—f(E+ho)]. (20)

Furthermore, from Eqg914)—(16), it is easy to find e?
|(2>(w):—ﬁf dEY |VPAE, o)
B

[8(w+2Q)+ 8(w—20)]

1 w
hi(v)hi(w—v)= ?[ 5( VT

e JF(E,
- Evg)v(ﬁﬂ% AgE ), (26
+5(w)[5(v+Q)+5(v—Q)]], @y
1 1) 5 e? @)
hy(n)hy(w— )= 55| 8| v= 5 |[8(0+3Q)+ 8(0—30Q)] I¢ )(w)z—ﬁf dE}B: VO FE,w)
+[ (vt w)+28(v—ow)][d(w+Q) IF(E,w)
—eVv® =
+8(w— )]}, (22
e? PFE, o)
and + avg)vg})vg)?] A p(E,0),
(27

1 20
h2(”)h1(“’_y):?(5(V‘?)[‘S(“’JFSQ) with  FE,w)=f'(E)+3iof"(E) and Auu(E,w)

=TrAgs(a,E\E+7%iw). “Tr" is the trace taken over the
channel index. In view of the frequency-dependent factors
in this expression, the harmonic generation is found explic-
X[ 8w+ Q)+ 5(w—Q)]] . (23 itly. In the linear response, there is only one branch of trans-
port current with the driving frequency. However, in the non-
. . . linear response, there are several branches for each order of
After expanding the frequency-dependent expression to flr#e expansion. There are two branches for the second-order

order in frequencyw with the consideration of a low- response functions. One is dc current; the correspondin
frequency nonlinear response, the transport electric current !sstat?c term roducés a de electric field in the con?juctorg
finally expressed in the following form: . P . o ) ’
which called an optical rectification effect. Beyond this dc
3 1 @ branch, there is a response oscillating at twice the applied
lo(@)=[6(0+ Q)+ (0= Q) ]I, () + 8(w)1*(0) frequency, which gives rise to second-harmonic generation.
_ (2) The same thing happens in the higher-order response func-
Tl +20)+ o= 201 (@) Hl o0 +30) tions. The third-order response current contains a contribu-
+8(0—30)]+3[w+ Q)+ 80— (w), tion representing the oscillation at the usual driving fre-
(24) quency and a contribution representing the oscillation at
triple the driving frequency. The latter gives rise to third-
where harmonic generation.
The generalized conductances are defined as the deriva-
5 tives of the transport electric current with respect to the volt-
|(1)(w):_e_ dEz V(l)f(E,w)A (E,»), (25 ages, Gaﬁ...{j}(w)Z[dJIa.(w)/dVB:- ~dV{j}]|{V}:0. With
“ 2h 7 F “p the help of Eq(24), one finds the linear conductance

+0(w—30)]+[6(v—2w)+286(v)]
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Gup(@)=[dw+Q)+ 80— 0)]IG{Y(w), (28) and

with
dn,(E,r) d?n,g(E,r)
Gm)(w)——de( ' (ENGUE) —iewg@E)], 9iA,(E)= fdr{uﬁy(E D=4 % 4z
(29 (Er)
whereg(o)(E)=AaB(E,0) is the linear dc conductance, and f drqug(E,ru,(E, rl)a—
g(“lfg(E):f ar %_uﬁ(ar)$ 50 u(E, r)—d (zE—r) +gp(E)

is the linear emittance corresponding to the frequency-
dependent part of the linear conductance, which has been du (E rl) 1 [du,(E,r)
given by Bitiker!® The relations dN,,(E)/dE fdrl z + 1 :j—E U
= fdrdn,4(E,r)/dE and 7”

2
dnsEn 1 dS.4(E) _w) O+ (g ] .
d—E__mTr SaB(E) o) 4E2 gaﬁ( )+(B=y) (35
dS)5(E)

qu(r) Sap(E) (1) From Egs.(34) and(35), it is found that the internal interac-
tion contributes itself to both dc and ac aspects in the non-

have been used in the derivation of E§0). dn,z(E,r)/dE linear response. The same thing happens in the third-order

is the partial LDOS andn,(E,r)/dE=X4dn,4(E,r)/dEis  conductance too. The displacement current contributes itself

the LDOS. The trace in E¢31) is taken over the channel to dc and ac components of the nonlinear current in the re-

index k. We will suppress the trace in the following discus- sponse of the voltage.

sions but keep it in mind that there is a trace which should In the same way, the third-order conductance is obtained

take over the channel index. as

The first-order nonlinear conductance is given by

Gupy(@) = 8(w) G, +[8w+20) Gupyp( @) =[ 0+ Q)+ 80— 0)]GLY, ()
+8(0—20)165) (), (32 +[8(0+30) + 8(w—30)1GED (@),
with G}, =2G 2 (0) and (36)
3
GG = o [ AEC- (D00 (E) with
—i _fr (1)
|ewf dE(—f (E))gaﬂ'y(E)} (33 ng%)yp( ):3Gg}5)yp(w)

where e o
i | dEC @D, ()

g(aolz’v(E):5B7‘9Ega)(E)+J UAED W —iewg(d,,(E)] 37
aByp !
du,(Ein) ()
—E—E) QE [+l GY e

ggogw(E)z5By5ﬁpa§gg’g(E)+f dr{ uyp(E,r)aUJr5ﬁyup(E,r)aEaU+f drluy(E,r)up(E,rl)aﬁ}gg’g(E)]
Cc

du, (E,r) (E,r d?
_fdr[ VS—E+<5MC’;— fdrldEz[u E,r) p(Erl)])
du,(E,r
—2(% up;E LY WHISR JdrldE[uy<Er>up<Eu)]au)]g”)(a] (38

c

and
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() B dn,(E,r)
gaﬁw(E)—— dr uﬁw(E,r)TJr dry | droug(E,r)u(E,r)u,(E,ryp)

zdna(Evr)
U dE

B d®n,g(E,r)
By“Bp dES

dn,(E,r)
+ f drluB(E,rl)uyp(E,r)aUT

d?n4(E,r) d
wdE

+fdr1uy(E,r)up(E,r1)(9U ;Ez

d (dn,(E,r) dug(E,r)
_f drlup(E,rl)E( SE /;E

+{u,/p(E,r)

+ 85,U,(E,1)

d?n,g(E,r)

dE?

d*ne(E,r)
o=

dn,,(E,r) dug(E,r)

dE dE )

dn,,(E,r) duB(E,r)>

d
)—f drluy(E,rl)E( dE dE

+f drlf drzuy(E,rl)up(E,rz)E dE

du,,(E,r)

+f dr[g&&}(E)d—Ew“) (E)

=TT dE

d?u,,(E,r) _du,,(E,r)

dE? dE

+ ! d
47i '

d*u,(Er) _d?u,(E.r)

d (dna(E,r) duﬁ(E,r))
dE

dug(E,r)

d®u,(E,r) _d?u,(E,r)

j

du,(E,r)

]

du,(Er)

U

_fdrluy(E,rl) 4 4E?

=)

dEs dE?

d3u (E,r d?u.(E,r
—fdrlup(E,rl)( A )—2 A )3U+

duy(E,r)&2
dE v

duy(E,r) d?u,(E,ry) _du,(E,r) du,(E,ry) . du,(E,r)
dE dE

_fdrl(4 dE = 2 dE

Uy(E.ry) | —(ye=p)

ggf;;<E>] |

(39

In the view of Eqs(29), (33), and(37), the conductances
can be computed through the evaluation of quantities called
the sensitivityA,z(E,0), the characteristic potential tensors,
and the LDOS.

Under the Thomas-Fermi approximation, the current con-
servation and gauge invariance can be explicitly confirmed
i.e., the following sum rules are satisfied®,G,z(w)
=2,Gop (@) =Z,G,py,(0) =0, which means the current
conservation, X ;G ,5(@) =2 G 45 (0) =Z G 5,,(0) =0
and>,G z/(0)=2,G,4,,(0) =2 ,G,p,,(w) =0, guaran-
tee the gauge invariance of the theory.

Ill. APPLICATION

As examples, we apply the formulas of conductances i
the last section to the geometrically asymmetric and symmet-
ric systems of double-barrier tunneling diodes. Consider a
one-dimensional double-barrier tunneling system where two
barriers areé functions located at positions=—a and x
=a. The scattering matrix close to a resonance is given by
the Breit-Wigner formula

N

Sap™  ECE, 11(T )

saﬁ(E)z ei(¢a+¢5)1 (40)

whereI", is the partial width of resonance proportional to
the tunneling probability through the probe and I’

=> _I', is the total width of resonance,, are the phases
acquired in the reflection or transmission process. Through
some straightforward algebra and Eg1), the partial LDOS
are found:

dN,, 1 T, (E-E)?—(I'/2)%+T (T'/2) L
GE 27 AP A2 D

AN, 1 T, T,(I/2)

dE 27 A2 A7 aF B, (42

with A=(E—E,)+i(I'/2). The injectivities are
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dN,, dN,g; 1 T,
= E =— 5.
dE B dE 217 |A|

(0) L.
(43) (E) T(E)_l | (51)

From Eq.(43), the derivatives of injectivities with respect to and

the energy are then obtained:
9y 1 1|A2—2(T/2)2

N, 1T, 0 E)= 5, F — 1A TE) (52
ae = 7 qapr E ) (44)
7 ( whereZ(E) is the transmission coefficient.
and By evaluating Eqs(34) and (35) the first-order nonlinear
conductances can be obtained as
d®N
= 3(3|A|?~ (45) r,-T, d7(E)
de’ |A| OB =——F— g (53)
With the help of Eq.(41), the following derivatives of the
LDOS with respect to the energy are found: and
1 1 I'y-T 7( )
2 2 1712
d*Niy_ 1 Ty Tl —|APE-E 49 9B =5 ap (AT ——. (59

dez w[AZ AR AP
It is found that because of the term

and
EN. 1T d7(E)/dE=2(E—E/)[(I'y —I)/T (T4 I'5/T),
dE;1= — (|A|12)4[3(|A|2)2—5|A|2F2F G111 changes sign across the resonant point and hence can be
™ negative.
)2 In the same way, we can evidently calculate the second-
— AT 2+ 6{‘21"(5) ) (47) order nonlinear conductances from E¢38) and (39). It is
found that
In this example,the characteristic potential tensors are inde- 5 )
pendent ofr because of the Breit-Wigner formula for the (E)= Ii+15—4l, 1 d°T(E) (55)
1111

scattering matrix. From Eq$B4)—(B6), the termsV2u r? dE2
vanish under the Thomas-Fermi approximation. Then the

characteristic potential tensors can be solved from Eqsand

(B4)—(B6), evidently. Therefore, the characteristic potential

. . . . 3 3
tensors and their derivatives are obtained as dN;  d°Ny;  d°Ng

9(111)11(E) == [ ullld_E T + Ulﬁf

Iy odu
U=p. G- (48) Loy ENa Ny dNy
Uiy dE Uil ggz U 4E3
1t 2
U= — 22— ——(E—E,),
11 |A|2 FZ ( r 2d3N11 (1)dull+i
Ui—— 911 §E
2_12 dE
duy, 1 Tyl 2|A[2-T 40
dE AR TZ AR 49 d2u, duy,
X| —2 AL (1E,E) + —— iE *9eA1(1E,E)
and E?
dn] Y d3n, d®n _i 1 Ty 2\2/12, 72
Ui1=| g d—E(1+3u2—3u1)—u?@ 27 (AP T 2(|AHATT+I5—400)
3n d®n
_3“11dEl+3“1”11d_E3‘+3(1_2”1) —|A|PT2(AT2+4T2— 11T T',) + T4 T2+12
5
3 (dusdny o o ddu dn —EFlFZ)—iF1F2F(4|A|2—3F2)(E—E,)}
dE\ dE dE dE| dE dE
1 3|A-T2T,T,T,-T, (56)
- INE 2 AT B0 Al the components of conductancéiear and nonlinear

can be calculated in the same way. However, from the charge
Substituting these quantities into the expressions of condugonservation and gauge invariance we have
tances in Eqs(29) and (30), the dc and ac linear conduc-
tances are obtained: G11=—Go= —Gy1=Gyy, (57
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G111= —G11= = G121=G1p0= — Gy1g the probe voltages are functions of the unitary scattering ma-
trix. As a main result, the harmonic generation has been
=G215= Goo1= ~ Gazo, (58 shown step by step in our approach. Harmonic generation in
and the internal self-consistent potential is important for obtain-
ing gauge-invariant and charge conservation results for each
G1111= — G2111= — G1211= — G119= — G111~ Gor1o harmonic generation branch. How to separate out the higher

harmonics for the nonlinear responses of the time-dependent
external perturbation has been reported. As shown in Sec. I,
=— G157~ — Gopp1= — G1295= Gooo. (590  in the generation of higher-frequency harmonics for the non-
linear components of conductances, there would be several
~ For a geometrically symmetric system of double barrierspranches at the same order of conductance. Each branch has
.e.,I';=1",=T"/2, the dc and ac parts of linear and nonlinearjis own characteristic frequency. For example, there is a
conductances are obtained in the following forms: branch of the dc part and one at twice the driving frequency

=G2121= G2211= G121~ G1221= G112= — G212

2 for the transport current in the second-order response of the
o Q(E)=TE)= A[AT voltages. However, there is a branch with the oscillating fre-
guency and a branch at triple the driving frequency for the
" 1 12|A]2-T? transport curre_nt in the thiro!-order response of voltages._ Th_e
017 (E)=7—= —F7—7(E) (60)  approach to higher-harmonic generation can been studied in
Am T |4 the same framework built here. The conductances derived in
and this paper are expressed in terms of the Fermi surface quan-
tities. Current conservation and gauge invariance are indeed
g(O) (E)=— E d7(E) satisfied by all Fourier component of the harmonics, which is
11t 2 dE consistent with physical requirements. It is found that the the

internal interaction contributes to the dc aspect in the nonlin-
ear regime. The displacement current contributes itself to the
dc components of nonlinear current in the nonlinear response
) 5 ) . of voltage too. This is consistent with the conclusions of
A AP=3THT(A+AM)]. (62) Refs. 21 and 22; the current in nonlinear regime is dependent
The first-order nonlinear conductances vanish, Qé%)i(E) on the band bottom position of the quantum well. We would

=g{3}(E)=0. The zero of the first-order nonlinear conduc- like to emphasize that the magnetic field accompanied by the

tance g;14(E) is evident'® In general, froml;=Gy(V; time-dependent internal potential is negligible in the weakly
—V,)+Gy14(V1— Vo) 24 Gyyq4(V1— Vo) 3+ - for a sym- nonlinear response region because of a slow variation in
metric scattering volume with scattering potentid(x)  time. However, the full Maxwell equations, namely, the
=U(—x) in one dimension wherg is the propagation di- Helmhotz equations describing both the internal self-induced
rection, we must have-1, if V, andV, are interchanged. potential and the corresponding vector potential, should be
Hence we conclude that for a symmetric scattering volumesonsideredif we consider the magnetic field induced by the
there are no quadratic terms, i.6;,,=0. The first-order time-dependent fluctuations of current. In the applications,
nonlinear conductance can be nonzero only for geometricalljhe formulas of the ac conductances have been applied to a
asymmetric systems. The sign of the nonlinear conductancefouble-barrier tunneling diode using the Breit-Wigner form

3 r
(1) - = 2y2__ 212 4
g111(E) 26— (|A|2)4[8(|A| ) = 6|A[T?+T

can be positive or negative. for the scattering matrix. The quadratic conductance would
be absent for geometrically symmetric systems. The formu-
IV. SUMMARY las of the dynamic conductances presented within this paper

In this paner we have dealt with harmonic generation irc" be used in numerical simulations for any interesting
pap . 9 . sample because the formulas can be expressed in terms of the
the ac nonlinear response for a multiprobe mesoscopic sy

tem. The calculations are perturbatively carried up to thir lensity of states explicitly”*** Experimental verification
) P y P of our approaches holds promise for a wide range of studies
order at the low-frequency weakly nonlinear response of th

probe voltages. By combining perturbation theory and sca(in the areas of quantum nonlinear transport.

tering matrix theory, a model for the time-dependent system
has been built. The theory has taken into account the oscil-
lating applied potential and the oscillating internal self-

induced potential nonlinearly. This allows us to obtain the \ye are indebted to Professor Jian Wang for discussions
response functions and the corresponding harmonic genergng comments on the manuscript. We gratefully acknowl-
tion for not only their dc features but also those of the fré-edge support by Heinrich-Hertz-Stiftung, NSF-China,

quency dependence in a self-consistent way. The calculatioQSERC of Canada, and FCAR of Che.
proceeds by first solving the equation of motion and obtain-

ing the solutions of a double operator in terms of the external
voltage perturbatively. Then the current is written as an ex-
pansion in powers of voltage. The coefficients describing the
total current flowing in and out of the system with respectto The Hamiltonian density is
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. 1/(. e 2 probes, the electric field is approximately unchanged in the
H=Ho+ H,=m( P— EAo(f)) finite region of space, and current conservation. Integrating
the second term in EqA4) and using the divergence theo-
+Vo(r)+eV(r,t)+ AE(r,{V},t), (A1)  rem, it yields

whereAq(r) is a steady vector potentid,="V X Ay(r), and
a Vy(r) is a steady potentialeV/(r,t) is the perturbation
Hamiltonian concerned with the external potential due to an
application of voltage®/ e~ 9ticosOt at the probesr. The f drv.w ,(r)V(r)zim ORY; J dy,Jee (1) -X
term AE(r,{V},t) is the change in the energy which is the £E eh G "¢, TFE “
function of the internal potentidl (r,t) induced by a varia- (A7)
tion of the density of electrons after application of the exter-
nal voltage.
The total Hamiltonian is then taken in the form R
wherex,, is a unit vector parallel to the prokeand pointing
outward from the junction regionf, is the cross-section
H:f dEdE’f df‘l’E(r)(ﬂﬁﬂO‘l’E'(f), (A2) curve of probex, andfﬁadya denotes the integral over the
cross section of it. Furthermore, it is fod that
J 2, dYadeer (1) -Xo=(e/n)ZCl(E)Cun(E"), which s
in which Wg(r) is the electron field operator. To make fur- ayajlable for the low-frequency situation. Hence, the corre-
ther progress, employing the matrix element of the currengponding Hamiltoniar(A4) is rewritten in the form of sec-
density, ond quantization,

2M )
V-Wee/(r)=— ?(E'—E)‘I’E(f)‘l’e(f), (A3)
ES(E—E')

H=>, JdEdE’

am

with the notationWeg (1) =W L(r)W(r)¥e,(r), the Hamil-
tonian becomes

H=dedE’fdr

eh?
2M E'—E

e 1
Y t ,
+ ZWiVQ(t)—E—E’ Cim(E,)Cm(E' 1), (A8)

WL HeWe(r)

after considering the completeness and orthonormal condi-

tions of the eigenstates oH, where eV, (t)=eV,
+ [dr[ 6E_(U)/sU]U(r,t) and eV,(t) is the shift of the
electrochemical potential , away from the equilibrium state
associated withu®%. This is precisely the Hamiltonian of the
charged particle system with the perturbation due to the pres-
ence of time-dependent external voltage at the pwbe
1 Now we present the perturbation solution of the double-
W(r,t)= 2 ——— Yourn(Eams ) C o E ) operatorCJ;k(E,t)Cyk(E’ ,1). Upon working to third order in

am [V g E ym) 12 powers ofB,z mn(E,E’ 1), the time dependences of the op-

o 1 Eam/i)t (A5) erators involved in the second term and in the third term in

' Eq. (8) are taken to those in the first-order perturbation sys-

tem and the second-order perturbation system, respectively.
where ¢,m(Em.F) is the wave function with a channel in- The perturbation solution is obtained :
dex m at the probea, C,,, is the annihilation operator of
electron in the incoming channai inside the probey, and
1/hv ,m(E) is the one-dimensional density of states of the
quantum channeh at energyE.>® Then the first term, i.e., CI(E.DCW(E" H=e "E-BVACT (E)C (E")
the free electron HamiltoniaH,, becomes

V- -Wee (NV(r,b) . (A4)

In order to write the Hamiltonian in the form of second quan-
tization, we use the field operator

+Wi(E,E' 1)+ Wy(E,E' )
HOZJ 4E 2, ECan(E)CanfE). (A6) FV(EE D), (A9)
The second term in EqA4) is a perturbation Hamiltonian

which can be derived by consideration of the boundary con- .
ditions that the applied voltages are constants at the perfeethere three operators o#(t) are given by
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A 1
Wi(E,E"t)=—

T e I(E/_E)I/ﬁf7 dt 2 de’lBﬁynk(E E/r 1)C k(E)CBn(E//)e—I(E/I E'ty /A

1 e

' t H "
Ih 7o — e~ i(E E)t/ﬁj dt 2 J dE"B V8, kn(E” E tl)C n(Err)Cyk(Er)efl(EfE )tllﬁ,, (AlO)

- 1 e \?21 t '
"ty= — | —| —a-i(E'-E)t/h U= PR —i(E'—E")ty 14
WH(E,E' t) (m)z(zﬂ) e de 0E" S f_mdtleﬁmk(E E'ty)e

t n A n
XJ dto[ Bysk(E",E”,t5)C k(E)Cél(E")e_I(E TEM /B W(E"E 1) CH(E")C (EMe (BB

1 [ e\?1 t .
_ —i(E'—E)t/h " " =t —i(E'—E"ty /A
T (—M) e de dE Bn§’5‘,m f_wdtlB,;%nk(E E'tye

ty m
XJ dtZ[Byﬁkl(E/ E/// Z)C k(E”)C(S(Em) —I(E —ENty /%

— By (E" E", 1) CHE")C(E e (B "ENL/], (A11)

and

R 1\3 e \3%1 t .
’ gy — e I(E'-E)/ " e A E(4) 1 =(4) —i(EM—E"ty Ik
Ws(E,E’ 1) (iﬁ) (27ri) 3, BWEnmI dE"dE"dE fﬁxdtlBﬁn,ak(E JEW e

k! ” —i(E"—E® t2 " oem —i(E"—-E" m
XfiocdtZB)’m,ak(E(Ll)vE !tZ)e '(E-E )12/ﬁ|: inocdtSBpLak(E E 1t3)e (& E)tSIﬁCL(E)CPl(E )

t2 - : 1\3 e \®1
_f dtBB(Em,E,t?‘)eﬂ(EfE )t3/hcp|(Em)Cpl(En) _ E ﬁ ge7|(|§ —E)t/#

t _ , t
X 2 dE,,dE/,ldE(4)f dtlB'Bn’ak(Er,E(4)'t1)e—|(E(4)—E )tllhf 1 dt2

Byp,nml

H ! " t2 H "
XB’ym’ak(E//,Er,tz)efl(E —E )t2/ﬁ|: f_ dtsBpl’ak(EM)’Em'ts)efl(E —E(4))t3/ﬁC;|(E//)CPI(E//I)

f2 —i(E"—E")talt~T (4) 1% e )®1 —i(E'—E)t/h
—f dt;B(E”,E" t3)e 3MC,(E")C,(E )} = 2] 38

t
X > dE"dE"dE® f

. 4
dty Bn,ak(E(4),E,tl)e_'(E_E(4))t1/ﬁf dt,
Byp,nml B

H 4 t2 H " "
X Bym,ak(E' E" tp)e” _EW“ dtgB, (E"E" ty)e (T TENRIC (EW)C (B

3 3
L R T
i) \2mi) 31

t2 m —i(e®) —gm m "
- f dtsB,1 o(E”,EW tg)e (7 EIRIACh(E™)C  (E) | +

t
X > dE"dE"dE® J

Byp,nml

. tl
dtlBﬂn,ak( E(4),E,tl)e_'(E—E(“)/ﬁ)tlf dt,

f " ta soem ’
XB),m’ak(E”,E(4),t2)e_l(E(4)_E Yo/t J_ dtSBpLak(E,,Em,t3)e_l(E -E )t3/hC;|(EH)Cp|(E///)

tp s _em " ,
—f_ dtsB, K(E” E" tz)e "E-ENGACT (EM)C (B )}. (A12)

Here the intrinsic permutation-symmetry property has been considered because we are concerned with calculating the response
functions. The response functions are invariant under interchange of theg8paiisy for the second-order perturbation terms,
and are invariant under permutations of the indiBesy, andp for the third-order perturbation terms. This property, and its
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generalization to higher orders, is known as the “intrinsic permutation symmetry.” In the following calculations the intrinsic
permutation-symmetry property indicates that the response fundtonsluctances, capacitances, and characteristic potential

tensors are invariant under any of the! permutations of then triplets (¢, w,r).
To calculate the electric current we need the quantum statistical average of the double operator. With the help of

(ct (E)C4(E’ ))eq 0.50(E—E")f,, Eq.(17) has been obtained. The last three tedvigt) in Eq. (17) are given by the
following expressions:

1 e t 1 .
i(E'—E)t/h " " _EM\/ —i(E"—E" )ty /#

Wit) == 5—e” fwdtl% dE E,_E”(sﬁa(snkf,g(E)&(E E")V4(ty)e

1 e

1
7|/(E’ E"t/h = " " "_ i(E—E" )tllﬁ
“home f dt de 2 Opadnid (BN S(E"—ENV(tr)e” (AL3)

1
(ih)?

xftl dt|
e 2 E"—

~ g Volt2) Oy (BN A(E" E")e-“E-E’”)tz’ﬁl

e \?21
Wo(1) = )

1
I(E’ E)t/h dEHdEm f dt V t) S e~ i(E'—E"ty /%
2| f gam l —_E" B( l) Ba nk

2mi

V (t2) 8, 0mnf (E") S(E—E")e I(E"~ENta/

E" Y

1 [ e)?1 , 1 _
(Ih (27”) 2| 7I(E E)t/ﬁf dE"dEWBn . f dtl =y Vﬂ(t )5ﬁa ke I(E"—E")ty /R
Y

E”,~ 'y(t2) 5yﬁ‘smnf 'y( EH) 5( E"— Em)efi(E’"fE')tz Ih

ty 1
Xf dty| ——V
e E'—

V,(t2) 8,p0mef (E”) S(E"—E" e 1€~ ml , (AL4)

Ew_ EH
and

1)\3 31
(E'—E)t/h " E"d E(4)
Wa(t)= (m) (2m> e - ﬁg}nml 5Baank5735mn5p75|mj dE'dE"dE

Y (t)e (E"—E@in)t,
Y

_ie(4)_
dt, ———V(t,)e '(EV-ENL ’ﬁf dt —v
f e _g@’F E@_Er

t 1 ~ H n "
X fz dtg V,(ta)e E" BN/ (E)S(E—E")

e E'—E" P

t 1 "
_J dth p(t )e—I(E E )t3/hf (Em)a(Em E//)

1\3 e %1 ey
] 5= 27 " ETEVE Y 84080kSy50mndpySim J dE"dE"dEM

in 27i) 3! Byp,nml
I(EW—E" )ty I 1 < —i(E'—EMt, /i
dtl (4)VB(I1)e 1 dt —E,Vy(tz)e 2
f Aty gy ota)e &7 S (B S(E7 - ET)

t 1 ~ B " ua
_f 2 dt3 = E”Vp(t3)e_l(E -E )t3/ﬁfp(E///)5(Em_E(A))



330 MA, GUO, SCHULKE, YUAN, AND LI PRB 61

1\3/ e \31
_ (E'"—E)t/h E "’ " (4)
(iﬁ) (2714) T R Byp.nml 5Ba5nk5y35mn5pyélmf dE'dE"dE

(t )e i(E"=E)t,/#

X

t 1 ~ B " "
f 2 dt3 = E,"Vp(tS)e_l(E —E )t3/hfp( E(4)) 5( E(4)_ E/u)

B ftz dt3 1 vp(t3)e_i(E(4)_Em)tS/ﬁfp(Em)5(Em_ E/I)
e E"— E(4)

1
iw

1 .
(4) ~ _ (4)_gn
f dt1 Vﬁ(t ye I(E-E )tl/ﬁj dt2mv'y(t2)e ((EW-E"t, /4

3 3
e 1
—I(E' E)t/% " " (4)
(ZWi) e ﬂyp}nﬁml 5ﬁa5nk5735mnapy5|mf dE"dE"dE

f dt3 E”,Vp(t ) I(Em,E')t3/ﬁ,fP(EH)(E”_E///)

t 1 " "
_f 2 dt3 (tg)e_l(E -E )t3/ﬁf (E”)5(E" E’ )

Al5
o E"—E" P ( )

\~/B(t) is the global voltage on the prob@s which is discussed in Appendix B.

APPENDIX B: SELF-CONSISTENCE AND THE INDUCED INTERNAL POTENTIAL

We now address the problem of accounting for the Coulomb interaction in calculations of the response function due to the

external voltage. The application of the voltagg(t) at the probes induces a charge fluctuation in the average valig;of

i.e., the time-dependent probe voltage can create a variation in the electron density. Hence, the total perturbation to which the
electron system responds is the sum of the applied perturbation and internal potentials due to the induced variation of the
electron density. When we neglect those effects due to the induced magnetic field, which are practically very weak in the

weakly frequency-dependent approach, the induced internal poteniiathe sample is determined by Poisson’s equation

VaU(r,t)=—4medn(r,t), (B1)

where the induced variation of density is denoted dn(r,t)=%,6n,(r,t). Considering the harmonic generations of the

driving frequency, the induced potential will have the same space-dependence and some integer times the frequency in the
time dependence as the applied perturbation. In the response to the applied voltage and the induced self-consistent potential,
there are two contributions to the electron density at the pr@behe injected charge density due to variation of the
electrochemical potential and the induced charge density, .(r.t) due to the internal potential, respectively. In the
Thomas-Fermi approximation, the variation of electron density is obtained:

sn,(r,t)= “( )

e[V () —U(t)]
d2
dEZ[Va(t) U(t)]

{[vam U1+ | e SEIV,() - U(D)]

d
( eqe(ValD)— U(t)]>e[Va(t) U]+ e[Va(t) — U(t)]}

+1O|2 “()[ V,(tH)—U(t)]+|e
2 dE? e[Vl ]

e Vo0~ U]

e[ V() - U(t)]]

X e[va(t) - U(t)] + edd_E[Va(t) - U(t)]

e[Va(t)—U(t)]]

+1d (
3!

e[V, (1) —U(t) P+ 0((V,—U)H. (B2)
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In the weakly nonlinear region, the induced self-consistent potential can be expanded in powers of variation of electrochemical
potentialdu (1) =eV,(1), i.e.,

1 1
U= 2 UaNValt)+ 5825 Uag(NVo(V5(1+ 578 2, Uagy(DVA(OV(OV,(O+O(VR)),  (BY)

in which the coefficients are the characteristic potentjphnd the second-order characteristic potential teaggr(which is

symmetric ina andg). u,g, and higher-order terms are third-order and higher-order characteristic potential tensors. There are

several sum rules on the characteristic potential tensors. If all the changes in the electrochemical potentials are the same, i.e.,

du,=du for arbitrary indexe, this corresponds to an overall shift of the electrostatic poteatidl—du. It implies that

Spup=1 andZ g Ug,=34,,Us,,=0. Due to gauge invariance, it is_ f_urther fo_und t%guﬁy=2yum=_0 an_d Eﬁuﬂy_p

=3 Ug,,=2,Ug,,=0. The sum rules for the higher-order characteristic potential tensors can be derived in a similar way.
Substituting Eqs(B2) and (B3) into Poisson’s equatiofB1), the following equations for the first three of characteristic

potential tensors are arrived at:

dn dng(r)
Vaug(r)+4me—— SE ug(r)=4me 4E (B4)
) dn(r) d?ng(r) dzn(r) dznﬂ(r)
\Y uﬁy(r)+47red—Euﬁ,/(r)=47re 5/37F+uﬁ(r)j drou,(ry)——— = u,(r)
dng( dn(r)|du,,(r)
( ot Jd rup(r)—g- ) dyE —-[B <—>7]], (BS)
and
dn(r) ng(r) r
-V? Ugy,(r)+4me d(E uﬁyp(r)=47-re( 33,08, déi —ug(r) Jdrluy(rl)fdrzup(rz) n(
d®n 2ng(r
—| 8,pup(n—2— E( —uy<r>fdr1u (rp2 et "( Ly, $0eln) ’3( )
n(r) d (dn.,(r) dug(r)
fdrluﬁ(rl)uw(r) ] + 5Wd_E( ka dBE )

dn.(r) dug(r) dn,(r) dug(r)
fd””f’(”)dE( T ) fdrluy(rl)dE( T )

dn(r) dug(r dn(r
fdrluy(rl)ferUp(rZ)dE( d(E) ﬁ( ))} { fd r{u vp rl) dE)

d2 d2 d2
—(57P ny(r)_J’ drlup(rl)n—y(r)—f drluy(rl)n—p(r)

dE? dE? dE2
2n(r) | [dug(r) [dng(r dn(r)
Jdrlu'y(rl)J dr2up(r2) ( ) dﬁé _( dﬁé )_Uﬁ r %)

d r dng(r dn(r du.(r du (r
Jd ) uyp( ) 2( dﬁé>_uﬁ(r) d;))fdrl uJ<El> ar, Ug(Ez)] )

(B6)

where the subscript stands for the cyclic permutation among the indiggsy, andp in Eq. (B6). Note that there are
“intrinsic permutation symmetries” for these equations; i.e., they are invariant under the permutation among these subscripts.
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