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Nonlinear dynamic conductance and harmonic generation in mesoscopic multiprobe systems
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We report a theoretical analysis of nonlinear dynamic conductance and harmonic generation for multiprobe
mesoscopic conductors. Our calculation takes into account the internal induced potential which is due to a
response to oscillating external bias voltages applied at the probes of the conductor. We pay special attention
to the physical requirement of current conservation and gauge invariance. There are generally several branches
for higher-frequency harmonics in nonlinear components of the transport current, and each branch has its
characteristic harmonics frequency. Our theory permits weakly nonlinear analysis order by order in terms of
the external bias but in general terms of the ac frequency, and in particular we present detailed derivations up
to third order. The third-order response contains a contribution at the driving frequency and a contribution 3
times the driving frequency. As a specific example we analyzed the nonlinear harmonic generation in double-
barrier tunneling systems.
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I. INTRODUCTION

The technological advance in fabricating nanostructu
and the recent interest in physics of ultrasmall semicondu
devices have motivated formulations of appropriate quan
transport theories applicable for coherent multiprobe qu
tum conductors.1,2 In particular, nonlinear quantum transpo
properties of these mesoscopic conductors have rece
much attention both theoretically and experimentally.3,4 On
the theoretical side, several approaches have been prop
to analyze quantum transport problems under dc and ac
ditions, including the scattering matrix theory,2,5 response
theory,6–9 nonequilibrium Green’s function theory,10–13 and
direct numerical simulations. In the ballistic regime under
external dc bias, electronic transport can be described
terms of independent conducting channels characterize
their transmission coefficients2,14 through the mesoscopi
conductor. In a typical analysis of the linear dc conducta
coefficient, which is the linear order coefficient of electr
current versus bias voltage, it isqualitatively notessential to
include the potential buildup inside the conductor: many
amples have shown that single-electron scattering ma
theory is adequate in predicting the dc linear conductanc
mesoscopic conductors.1

On the other hand, when comes to predicting nonlin
transport coefficients and ac transport coefficients for me
PRB 610163-1829/2000/61~1!/317~16!/$15.00
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scopic conductors, it is both qualitatively and quantitative
important to include a self-consistent internal potent
caused by the long-range Coulomb interactions.2 The reason
is that the induced internal potential can be quite substan
for small conductors due to their small density of sta
which in turn leads to the long-screening lengths. Hence
total potential of the system, external plus induced, can
very different from the applied external potential. Furthe
more, it has been shown2 that without consideration of the
induced potential, the theory would violate electric curre
conservation under ac bias and would violate gauge inv
ance under nonlinear dc situations. A major progress in
veloping viable nonlinear dc and ac theories has b
achieved recently after Levinson15 and Büttiker16 introduced
a self-consistent internal potential in the context of consid
ing current conservation and gauge invariance requireme
Physically for ac transport situations, the self-consistent
tential is induced by a redistribution of charges due to
presence of a displacement current when a time-depen
bias is applied to the conductor. Essentially, in response
potential variation at a contact of the mesoscopic conduc
the charge distribution in the interior of the sample is driv
away from equilibrium.9,17 On the other hand, an electro
Coulomb interaction opposes this variation. The competit
of these two effects gives rise to a self-consistent inter
potential which must be taken into account in predicti
317 ©2000 The American Physical Society
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318 PRB 61MA, GUO, SCHÜLKE, YUAN, AND LI
transport coefficients. Usually we can write the net char
which is associated with the redistribution of carriers in t
sample in response to an external bias potential variat
into two parts. The first part is due to direct external injecti
of carriers through contacts of the conductor with a fix
internal potential. The second part is due to induction wh
accounts for such effects as the displacement current,
which is sensitive to the density of states of the conduc
The effects of displacement current have been indicated
physical considerations18 and by direct numerica
simulations.19

When dealing with nonlinear ac response in quant
transport, higher-order harmonic generation is naturally
pected, similar to those observed in nonlinear optical s
tems. In other words, due to nonlinearity, an external ac p
turbation at frequencyV can generate an electric curre
response at frequenciesV and multiples ofV including a dc
component.21 The dc component of harmonic generation h
been analyzed recently. de Vegvar20 studied the low-
frequency second-harmonic transport response of me
copic conductors using a perturbation theory and he fo
that the low-frequency second-harmonic current is a n
Fermi-surface quantity. In a recent study Pedersen
Büttiker21 discussed the effects of displacement current
harmonic generation. The current in the nonlinear regim
also studied on a double-barrier tunneling diode by Blan
and Büttiker.22 These investigations were based on pertur
tion expansions in terms of both external bias and in f
quency; hence the full frequency-dependent feature has
been clearly examined. It is the purpose of this work to
port a systematic theoretical analysis on nonlinear ac tra
port where harmonic generation is studied in general te
of the ac frequency.

To make the problem of harmonic generation clearer,
us consider the weakly nonlinear response of a mesosc
conductor to an applied external bias voltage. For this sit
tion the electric current flowing through a probe labeled
a, I a(t), can be expanded in powers of the bias volta
Vb(t) applied at probeb. Vb is finite but is assumed to b
small; hence the weakly nonlinear expansion makes se
and only the first few terms need to be retained. The exp
sion is written as

I a~ t !5(
b

E
t0

t

dt1Gabg~ t2t1!Vb~ t1!

1(
bg

E
t0

t

dt1E
t0

t

dt2Gabg~ t12t2 ,t2t2!Vb~ t1!Vg~ t2!

1(
bgd

E
t0

t

dt1E
t0

t

dt2E
t0

t

dt3

3Gabgd~ t22t3 ,t12t3 ,t2t3!Vb~ t1!Vg~ t2!Vd~ t3!

1•••. ~1!

Here it has been assumed that the bias voltage at probea is
turned on at timet0. The response coefficientsGabg(t
2t1), Gabg(t12t2 ,t2t2), and Gabgd(t22t3 ,t12t3 ,t2t3)
are, respectively, the first-, second-, and third-order dyna
conductance. To make the analysis relatively easier, in
following discussions we assumeVa(t) to be a simple oscil-
,
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lating form turned on adiabatically att052`, i.e., Va(t)
5Vae2hutucosVt, whereh is positive and infinitesimal. The
general form of the various terms in the expansion~1! can be
found by invoking the fundamental physical principle
time invariance: the dynamical properties of our system c
not be changed by a translation of the time origin. For o
case, a time displacement of external bias merely results
corresponding time displacement of the induced current.
changing variables in the time integration of Eq.~1!, one has

I a~ t !5ReFei (V2 ih)t(
b

Gab
(V)~V!VbG

1
1

2
e2ht(

bg
Gabg

(0) ~V!VbVg

1
1

2
ReFei2(V2 ih)t(

bg
Gabg

(2V)~V!VbVgG
1

1

22 ReFei (V2 ih)te2ht(
bgd

Gabgd
(V) ~V!VbVgVdG

1
1

22 ReFei3(V2 ih)t(
bgd

Gabgd
(3V) ~V!VbVgVdG , ~2!

where Re@ # means the real part of@ #. In this expression of
the current,Gab

(V)(V)[*0
`dt1Gab(t1)e2 i (V2 ih)t1 is the lin-

ear complex dynamic conductance coefficient, called adm
tance,

Gabg
(0) ~V!5E

0

`

dt1E
0

`

dt2Gabg

3~t2 ,t11t2!e2h(2t11t2)cosVt2

and

Gabg
(2V)(V)5*0

`dt1*0
`dt2Gabg(t2 ,t11t2)e2 i (V2 ih)(2t11t2)

are second-order complex dynamic conductance coefficie
and

Gabgd
(V) ~V!5E

0

`

dt1E
0

`

dt2E
0

`

dt3Gabgd

3~t3 ,t21t3 ,t11t21t3!

3@2e2h(2t112t21t3)e2 i (V2 ih)t1 cosVt3

1e22ht1e2 i (V2 ih)(t112t21t3)#

and

Gabgd
(3V) ~V!5E

0

`

dt1E
0

`

dt2E
0

`

dt3Gabgd

3~t3 ,t21t3 ,t11t21t3!

3e2 i3(V2 ih)(t11t21t3)

are third-order complex dynamic conductance coefficient
Equation~2! indicates clearly that the second-order te

in the electric current contains a dc piece and an oscilla
piece at twice the driving frequencyV. In addition Eq.~2!
indicates that at third order there is a piece oscillating at
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PRB 61 319NONLINEAR DYNAMIC CONDUCTANCE AND HARMONIC . . .
driving frequency and a piece oscillating at triple the drivi
frequency. These together with even higher-order terms g
the harmonic generation efficiency. The nonlinear terms
Eq. ~2! suggest that in addition to the component oscillat
at the driving frequencyV, the current contains significan
components oscillating at harmonic frequencies 2V, 3V,
. . . plus a dc component at zero frequency. This is precis
analogous to the well-known harmonic distortion of sign
in an electrical circuit whose dynamic response is not p
fectly linear.

In this paper we will investigate harmonic generation a
its corresponding ac dynamic conductance coefficients u
third order in an external bias. Our calculations concern
only dc transport features but also frequency-dependent
tures in weakly nonlinear response. The derived analyt
expressions presented in this paper are suitable for predic
ac transport coefficients in general terms of the frequen
rather than in a form expanded in frequency as done in
vious studies. Our investigation is carried out by combin
response theory7 with scattering matrix theory:2 in particular
we generalize the scattering matrix approach to take
account nonlinear dependences on oscillating potentials.
the most general case of a mesoscopic conductor unde
ternal ac fields, a theoretical analysis is, perhaps, imposs
to be carried out if full electrodynamic effects such as Fa
day’s law need to be included. We thus neglect this seco
ary effect and only include the dynamic electric field r
sponse. We however point out that, formally, the f
Maxwell equations can indeed be included into our form
ism, but that makes analytical derivations very difficult9 and
is beyond the scope of this work. Our analysis indicates
there is only one branch in the linear response while there
more than one branches of transport current in the nonlin
response: each branch has its own frequency character
as discussed above, Eq.~2!. Importantly, the ac external per
turbation produces static dc components in the current
dc electric field in the conductor; i.e., there is an optic
rectification effect at nonlinear orders.

As mentioned above, at nonlinear order special atten
must be paid to gauge invariance: the electric current can
depend on the choice of potential zero. In other words,I a(t)
of Eq. ~1! cannot change if all the bias voltages are shifted
the same constant: the value ofI a remains the same whe
Vb→Vb1D for all b. In addition, current conservatio
means(aI a(t)50. These requirements, applied to Eq.~1!,
suggest that dynamic conductance coefficients must sa
many sum rules, (aGab•••d

(nV) (v)5(bGab•••d
(nV) (v)5•••

5(dGab•••d
(nV) (v)50, wheren.1 is an integer indicating the

order of harmonic generation. Our theory, to be presen
below, produces dynamic conductance coefficients satisfy
these constraints.

The rest of paper is organized as follows: in Sec. II t
current response to an external ac bias is then calcul
perturbatively. By separating harmonics, the correspond
dynamic conductance coefficients are derived: we explic
confirm current conservation and gauge invariance under
Thomas-Fermi approximation. In Sec. III we apply our fo
malism to analyze double-barrier tunneling systems. The
section contains a short summary and related discuss
There are two appendixes: In Appendix A we gave the d
vation of the Hamiltonian with considerations of extern
e
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applied voltage and internal induced potential. The solut
is obtained by solving the equation of motion. In Appendix
the essential derivations of charge density as well as
equations for the characteristic potential tensors have b
presented.

II. THEORY

Our analysis is based on a perturbation theory, scatte
matrix theory, and a self-consistent solution of the inter
potential built up at the Hartree level. To make the pres
tation clear we put detailed mathematical derivations ins
two appendixes. First, by iterating the equation of motion
derive the correlation function which enters the electric c
rent operator; second, we derive equations satisfied by
internal potential buildup in terms of the local density
states~LDOS!; combining these results we obtain the d
namic conductance coefficients.

The system considered here is a small volume of the m
tiprobe sample with an application of the time-depend
voltagesVa(t) varying with frequencyV at the probesa.
We suppose that the volume is sufficiently small so that
spatial variation of electric field could be ignored. Also th
effects arising from the induced magnetic field are ignor
Following the works of Bu¨ttiker and co-workers,2,16 the cur-
rent flowing over the probea is found:2

I a~ t !5
e

hE dE(
bk

Abb,kk~a,E,E8!^Cbk
† ~E,t !Cbk~E8,t !&eq ,

~3!

where

Abb,kk~a,E,E8!5(
l

@1adabdkl2Sab,kl
†

„E,U~r ,$V%!…

3Sab,kl„E8,U~r ,$V%!…# ~4!

is the screened transmission function in terms of scatte
matrix Sab,kl„E,U(r ,$V%)…, which is a functional of energy
E and induced internal potentialU(r ,$Va%). Cbk (Cbk

† ) is
the annihilation~creation! operator for an electron in the in
coming channelk inside the probeb and the scattering ma
trix is used to describe the relationship between the incom
electron at the probeb to the outgoing electron at the prob
a. From Eq.~3!, therefore, the current can be obtained up
the solutionCbk

† (E,t)Cbk(E8t) being known. This double
operator can be found by solving the equation of mot
perturbatively.

The Hamiltonian can be written in the following form:

H5 (
ab,mn

E dEdE8E8Fdabdmnd~E2E8!

1
e

2p i
Bab,mn~E,E8,t !GCam

† ~E!Cbn~E8!, ~5!

where Bab,mn(E,E8,t)5Ṽa(t)dabdmn(E2E8)21 and
eṼa(t)5eVa1*dr @dEa(U)/dU#U(r ,t) is the global volt-
age at the probea in which the effects of internal potentia
have been included. The second term in the Hamiltonia
regarded as a time-dependent perturbationHI(t) because of



t-

in
tia
ex
en
te

to

en

320 PRB 61MA, GUO, SCHÜLKE, YUAN, AND LI
the functione2hutucosVt in the applied voltages, which sa
isfiesHI(2`)50. The derivation of Eq.~5! is given in Ap-
pendix A. As shown in the global voltagesṼa the total per-
turbation to which the electron system responds is the sum
applied perturbation and internal potentials due to the
duced variation of the electron density. The internal poten
is determined by Poisson’s equation. In Appendix B, we
press the internal potential in terms of characteristic pot
tials and obtain the equations for these characteristic po
tials.

Using the time-evolution equation for a double opera
Qab,kk(E,E8,t)5Cak

† (E,t)Cbk(E8,t),

i\] tQab,kk~E,E8,t !5@Qab,kk~E,E8,t !,H#, ~6!

and employing the equal-time commutation relations

$Cam~E,t !,Cbn
† ~E8,t !%5dabdmnd~E2E8!

and
o

w
is
o

o
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d

ti
o

of
-
l
-
-
n-

r

$Cam~E,t !,Cbn~E8,t !%5$Cam
† ~E,t !,Cbn

† ~E8,t !%50,

one obtains

i\] tQaa,kk~E,E8,t !5~E82E!Qaa,kk~E,E8,t !

1
e

2p i (
b

E dE9@Bba,nk~E8,E9,t !

3Qab,kk~E,E9,t !

2Bab,kn~E9,E,t !Qab,kk~E9,E8,t !#.

~7!

Making use of a transformationC̃ak
† (E,t)C̃ak(E8,t)

5 exp@(i/\)(E82E)t#Cak
† (E,t)Cak(E8,t) and integrating the

equation of motion with respect to the time variable, th
going back toCak

† (E,t)Cak(E8,t), it is found that
Cak
† ~E,t !Cak~E8,t !5e2 i (E82E)t/\H Cak

† ~E!Cak~E8!1
1

i\

e

2p i E2`

t

dt1(
b,n

ei (E82E)t1 /\@Bba,nk~E8,E9,t1!

3Cak
† ~E,t1!Cbn~E9,t1!2Bab,kn~E9,E,t1!Cbn

† ~E9,t1!Cak~E8,t1!#J . ~8!
odi-

ur-

ui-
the
s.
ns-

on
The perturbation solution up to third order in powers
Bab,mn(E,E8,t) is presented in Appendix A.

Substituting the solution of couple operator~A9! into Eq.
~3!, the current can be calculated in a standard way. Here
would like to comment that in evaluating the current, it
needed to take a quantum statistical average
^Cak

† (E)Cbk(E8)&eq5dabd(E2E8) f a(E), where f a(E) is
the Fermi function of reservoira. It is assumed that the
modulation imposed on the system is so slow that the c
tacts can still be regarded as being in a dynamic equilibr
state. Thus the quantum statistical average can be foun
evaluating the averages ofCak(E). From Eq.~A9!, one ob-
tains

^Cak
† ~E,t !Cak~E8,t !&eq

5 f a~E!d~E2E8!1W1~ t !

1W2~ t !1W3~ t !, ~9!

whereWj (E,t) are given in Eqs.~A13!–~A15! in powers of
the global voltagesṼb(t). According to Eq.~B3! and con-
sidering a series expansion of energy in terms of poten
landscapeU, the global voltages can be written in powers
the applied voltages

Ṽb~ t !5(
j 51

Vb
( j )hj~ t !, ~10!
f

e

f

n-

by

al
f

where the linear, the second-order, and the third-order m
fied voltages at the probeb are

Vb
(1)5(

g
VgS dgb1E drug~r !

dE~U !

dU~r ! D , ~11!

Vb
(2)5

1

2
e(

gd
VgVdE drugd~r !

dE~U !

dU~r !
, ~12!

Vb
(3)5

1

3!
e2(

gdr
VgVdVrE drugdr~r !

dE~U !

dU~r !
, ~13!

and hj (t)5 cosjVte2hutu (j51, 2, and 3! are the time-
dependent factors.

The first termf (E)d(E2E8) in Eq. ~9! does not contrib-
ute to the transport electric current. In equilibrium, the c
rent containing this term isI a

(0)5(bkf (E)Abb,kk(a,E,E),
which vanishes immediately due to(bkAbb,kk(a,E,E)50.
It corresponds to the closed current loops following the eq
potential contours when the magnetic field is applied to
system. We will neglect this term in our further calculation

To view the frequency dependence of current, we tra
form ^Cak

† (E,t) Cak(E8,t)&eq , in Eq. ~9!, into its Fourier
transformation form. In addition, the Fourier transformati
forms of globe voltages becomeṼb(n)5( j gVg

( j )(b)hj (n),
where the frequency-dependent factorhj (n) is the Fourier
transformation ofhj (t),
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h1~n!5
1

2
@d~n1V!1d~n2V!#, ~14!

h2~n!5
1

22 @d~n12V!1d~n22V!12d~n!#, ~15!

and

h3~n!5
1

23 @d~n13V!1d~n23V!

13d~n1V!13d~n2V#. ~16!
Then the Fourier transformation form of current, Eq.~3!,
is obtained:

I a~v!5
e

hE dEdE8(
bk

Abb,kk~a,E,E8!

3@W1~v!1W2~v!1W3~v!#, ~17!

whereWj (v)5(2p)21*2`
` dteivtWj (t) is the Fourier trans-

formation ofWj (t). With the help of Eqs.~A13!–~A15!, it is
found that
is
W1~v!52
e

2p i (
g

Ṽb~v!
f ~E!2 f ~E8!

E2E8

1

E2E81\v1 ih
,

W2~v!52
1

2!

e2

~2p i !2E
2`

`

dnṼb~n!Ṽb~v2n!E dE9
1

E2E81\v1 ih

3F [ ~ f ~E9!2 f ~E!#
1

E82E9

1

E92E

3
1

E2E91\~v2n!1 ih
1@ f ~E9!2 f ~E8!#

1

E82E9

1

E92E

1

E92E81\~v2n!1 ih
G ,

and

W3~v!52
1

3!

e3

~2p i !3E
2`

`

n1E
2`

`

dn2Ṽb~n1!Ṽb~n2!Ṽb~v2n12n2!E dE9dE-
1

E2E81\v1 ih

3H @ f ~E!2 f ~E9!#
1

E-2E9

1

E92E

1

E82E-

1

E2E91\~v2n12n2!1 ih

1

E2E-1\~v2n1!1 ih

2@ f ~E9!2 f ~E-!#
1

E-2E9

1

E92E

1

E82E-

1

E92E-2\~v2n12n2!1 ih

1

E2E-1\~v2n1!1 ih

2@ f ~E-!2 f ~E9!#
1

E82E9

1

E92E-

1

E-2E

1

E-2E91\~v2n12n2!1 ih

1

E-2E81\~v2n11 ih!

1@ f ~E9!2 f ~E8!#
1

E82E9

1

E92E-

1

E-2E

1

E92E81\~v2n12n2!1 ih

1

E-2E81\~v2n1!1 ih
J .

In the calculation of these integrations of energy, there is a relation

E
2`

`

dE8X~E8!
1

E2E81 ih
52p iX~E! ~18!

for an arbitrary functionX(E). Therefore, integrating overE8 in Eq. ~17!, the Fourier transformation form of the current
then written as

I a~v!5
e

hE dE(
bk

Abb,kk~a,E,E1\v!^Cbk
† ~E!Cbk~E1\v!&eq , ~19!

where the quantum statistical average^Cbk
† (E)Cbk(E1\v)&eq is given by the following relation:
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^Cbk
† ~E!Cbk~E1\v!&eq5

e

2 F (
j 51

3

Vb
( j ) hj~v!

\v G @ f ~E!2 f ~E1\v!#

2
e2

2!
Vb

(1)Vb
(1)E

2`

`

dn
h1~n!

\n

h1~v2n!

\~v2n!
@ f „E1\~v2n1!…2 f ~E!1 f ~E1\n!2 f ~E1\v!#

2
e2

2!
Vb

(1)Vb
(2)E

2`

`

dnFh1~n!

\n

h2~v2n!

\~v2n!
1

h1~v2n!

\~v2n!

h2~n!

\n G@ f „E1\~v2n1!…2 f ~E!1 f ~E1\n!

2 f ~E1\v!#1
e3

3!
Vb

(1)Vb
(1)Vb

(1)E
2`

`

dn1E
2`

`

dn2

h1~n1!

\n1

h1~n2!

\n2

h1~v2n12n2!

\~v2n12n2!

3@ f ~E!2 f „E1\~v2n12n2!…2 f ~E1\n2!1 f „E1\~v2n1!…2 f ~E1\n1!

1 f „E1\~v2n2!…1 f „E1\~n11n2!…2 f ~E1\v!#. ~20!
fir
-
nt
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Furthermore, from Eqs.~14!–~16!, it is easy to find

h1~n!h1~v2n!5
1

22H dS n2
v

2 D @d~v12V!1d~v22V!#

1d~v!@d~n1V!1d~n2V!#J , ~21!

h1~n!h2~v2n!5
1

23 H dS n2
v

3 D @d~v13V!1d~v23V!#

1@d~n1v!12d~n2v!#@d~v1V!

1d~v2V!#J , ~22!

and

h2~n!h1~v2n!5
1

23 H dS n2
2v

3 D @d~v13V!

1d~v23V!#1@d~n22v!12d~n!#

3@d~v1V!1d~v2V!#J . ~23!

After expanding the frequency-dependent expression to
order in frequencyv with the consideration of a low
frequency nonlinear response, the transport electric curre
finally expressed in the following form:

I a~v!5@d~v1V!1d~v2V!#I a
(1)~v!1d~v!I (2)~0!

1@d~v12V!1d~v22V!#I (2)~v!1$@d~v13V!

1d~v23V!#13@d~v1V!1d~v2V!#%I (3)~v!,

~24!

where

I a
(1)~v!52

e2

2hE dE(
b

Vb
(1)F~E,v!Aab~E,v!, ~25!
st

is

I (2)~v!52
e2

22hE dE(
b

FVb
(2)F~E,v!

2
e

2
Vb

(1)Vb
(1) ]F~E,v!

]E GAab~E,v!, ~26!

and

I (3)~v!52
e2

23hE dE(
b

FVb
(3)F~E,v!

2eVb
(1)Vb

(2) ]F~E,v!

]E

1
e2

3!
Vb

(1)Vb
(1)Vb

(1) ]2F~E,v!

]E2 GAab~E,v!,

~27!

with F(E,v)5 f 8(E)1 1
2 \v f 9(E) and Aab(E,v)

5 Tr Abb(a,E,E1\v). ‘‘Tr’’ is the trace taken over the
channel indexk. In view of the frequency-dependent facto
in this expression, the harmonic generation is found exp
itly. In the linear response, there is only one branch of tra
port current with the driving frequency. However, in the no
linear response, there are several branches for each ord
the expansion. There are two branches for the second-o
response functions. One is dc current; the correspond
static term produces a dc electric field in the conduct
which called an optical rectification effect. Beyond this
branch, there is a response oscillating at twice the app
frequency, which gives rise to second-harmonic generat
The same thing happens in the higher-order response f
tions. The third-order response current contains a contr
tion representing the oscillation at the usual driving fr
quency and a contribution representing the oscillation
triple the driving frequency. The latter gives rise to thir
harmonic generation.

The generalized conductances are defined as the de
tives of the transport electric current with respect to the vo
ages, Gab•••$ j %(v)5@dj I a(v)/dVb•••dV$ j %#u$V%50. With
the help of Eq.~24!, one finds the linear conductance
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Gab~v!5@d~v1V!1d~v2V!#Gab
(V)~v!, ~28!

with

Gab
(V)~v!5

e2

2 E dE„2 f 8~E!…@gab
(0)~E!2 ievgab

(1)~E!#,

~29!

wheregab
(0)(E)5Aab(E,0) is the linear dc conductance, an

gab
(1)~E!5E dr Fdnab~E,r !

dE
2ub~E,r !

dna~E,r !

dE G ~30!

is the linear emittance corresponding to the frequen
dependent part of the linear conductance, which has b
given by Büttiker.16 The relations dNab(E)/dE
5*drdnab(E,r )/dE and

dnab~E,r !

dE
52

1

4p i
Tr FSab

† ~E!
dSab~E!

dU~r !

2
dSab

† ~E!

dU~r !
Sab~E!G ~31!

have been used in the derivation of Eq.~30!. dnab(E,r )/dE
is the partial LDOS anddna(E,r )/dE5(bdnab(E,r )/dE is
the LDOS. The trace in Eq.~31! is taken over the channe
index k. We will suppress the trace in the following discu
sions but keep it in mind that there is a trace which sho
take over the channel index.

The first-order nonlinear conductance is given by

Gabg~v!5d~v!Gabg
(0) 1@d~v12V!

1d~v22V!#Gabg
(2V)~v!, ~32!

with Gabg
(0) 52Gabg

(2V)(0) and

Gabg
(2V)~v!5

e3

23hE dE„2 f 8~E!…Fgabg
(0) ~E!

2 ievE dE„2 f 8~E!…gabg
(1) ~E!G , ~33!

where

gabg
(0) ~E!5dbg]Egab

(0)~E!1E dr F S ug~E,r !]U

2
dug~E,r !

dE Dgab
(0)~E!G1@b↔g!] % ~34!
-
en

d

and

gabg
(1) ~E!52E dr H ubg~E,r !

dna~E,r !

dE
2dbg

d2nab~E,r !

dE2

2E dr1ub~E,r !ug~E,r1!
d2na~E,r !

dE2

1Fug~E,r !
d2nab~E,r !

dE2
1gab~E!

3E dr1

dug~E,r1!

dE
1

1

4p i S dug~E,r !

dE
]U

2
d2ug~E,r !

dE2 D gab
(0)~E!1~b↔g!G J . ~35!

From Eqs.~34! and~35!, it is found that the internal interac
tion contributes itself to both dc and ac aspects in the n
linear response. The same thing happens in the third-o
conductance too. The displacement current contributes it
to dc and ac components of the nonlinear current in the
sponse of the voltage.

In the same way, the third-order conductance is obtai
as

Gabgr~v!5@d~v1V!1d~v2V!#Gabgr
(V) ~v!

1@d~v13V!1d~v23V!#Gabgr
(3V) ~v!,

~36!

with

Gabgr
(V) ~v!53Gabgr

(V) ~v!

5
e4

24hE dE„2 f 8~E!…@gabgr
(0) ~E!

2 ievgabgr
(1) ~E!#, ~37!

where
gabgr
(0) ~E!5dbgdbr]E

2gab
(0)~E!1E dr H Fugr~E,r !]U1dbgur~E,r !]E]U1E dr1ug~E,r !ur~E,r1!]U

2 Ggab
(0)~E!J

c

2E dr H Fdugr~E,r !

dE
1S dbg

d2ur~E,r !

dE2
2E dr1

d2

dE2 @ug~E,r !ur~E,r1!# D
22S dbg

dur~E,r !

dE
]UAbb~a,E,E!2E dr1

d

dE
@ug~E,r !ur~E,r1!#]UD Ggab

(0)~E!J
c

~38!

and
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gabgr
(1) ~E!52E dr H ubgr~E,r !

dna~E,r !

dE
1E dr1E dr2ub~E,r !ug~E,r1!ur~E,r2!

3]U
2 dna~E,r !

dE
2dbgdbr

d3nab~E,r !

dE3
1Fugr~E,r !

d2nab~E,r !

dE2

1E dr1ub~E,r1!ugr~E,r !]U

dna~E,r !

dE
1dbgur~E,r !

d3nab~E,r !

dE3

1E dr1ug~E,r !ur~E,r1!]U

d2nab~E,r !

dE2
1dgr

d

dES dnag~E,r !

dE

dub~E,r !

dE D
2E dr1ur~E,r1!

d

dE S dnag~E,r !

dE

dub~E,r !

dE D2E dr1ug~E,r1!
d

dE S dnar~E,r !

dE

dub~E,r !

dE D
1E dr1E dr2ug~E,r1!ur~E,r2!

d

dE S dna~E,r !

dE

dub~E,r !

dE D G
c
J

1E dr H gab
(1)~E!

dugr~E,r !

dE
1gagr

(1) ~E!
dub~E,r !

dE J
c

1
1

4p i E dr H Fd2ugr~E,r !

dE2
2

dugr~E,r !

dE
]U1dbgS d3ur~E,r !

dE3
22

d2ur~E,r !

dE2
]U2

dur~E,r !

dE
]U]ED

2E dr1ug~E,r1!S d3ur~E,r !

dE3
22

d2ur~E,r !

dE2
]U1

dur~E,r !

dE
]U

2 D
2E dr1ur~E,r1!S d3ug~E,r !

dE3
22

d2ug~E,r !

dE2
]U1

dug~E,r !

dE
]U

2 D
2E dr1S 4

dug~E,r !

dE

d2ur~E,r1!

dE2
22

dur~E,r !

dE

dug~E,r1!

dE
1

dug~E,r !

dE
ur~E,r1!D 2~g↔r!Ggab

(0)~E!J
c

.

~39!
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In the view of Eqs.~29!, ~33!, and~37!, the conductances
can be computed through the evaluation of quantities ca
the sensitivityAab(E,0), the characteristic potential tensor
and the LDOS.

Under the Thomas-Fermi approximation, the current c
servation and gauge invariance can be explicitly confirm
i.e., the following sum rules are satisfied:(aGab(v)
5(aGabg(v)5(aGabgr(v)50, which means the curren
conservation, (bGab(v)5(bGabg(v)5(bGabgr(v)50
and (gGabg(v)5(gGabgr(v)5(rGabgr(v)50, guaran-
tee the gauge invariance of the theory.

III. APPLICATION

As examples, we apply the formulas of conductances
the last section to the geometrically asymmetric and symm
ric systems of double-barrier tunneling diodes. Conside
one-dimensional double-barrier tunneling system where
barriers ared functions located at positionsx52a and x
5a. The scattering matrix close to a resonance is given
the Breit-Wigner formula
d
,

-
d,

in
t-
a
o

y

Sab~E!5Fdab2 i
AGaGb

E2Er1 i ~G/2!
Gei (fa1fb), ~40!

whereGa is the partial width of resonance proportional
the tunneling probability through the probea and G
5(aGa is the total width of resonance.fa are the phases
acquired in the reflection or transmission process. Thro
some straightforward algebra and Eq.~31!, the partial LDOS
are found:

dNaa

dE
5

1

2p

Ga

uDu2
~E2Er !

22~G/2!21Ga~G/2!

uDu2 ~41!

and

dNab

dE
5

1

2p

Ga

uDu2

Ga~G/2!

uDu2
, aÞb, ~42!

with D5(E2Er)1 i (G/2). The injectivities are



o

d
e

th
q
ia

u
-

n be

nd-

rge

PRB 61 325NONLINEAR DYNAMIC CONDUCTANCE AND HARMONIC . . .
dNa

dE
5(

b

dNab

dE
5

1

2p

Ga

unu2
. ~43!

From Eq.~43!, the derivatives of injectivities with respect t
the energy are then obtained:

d2Na

dE2 52
1

p

Ga

~ unu2!2 ~E2Er ! ~44!

and

d3Na

dE3 5
1

p

Ga

~ unu2!3 ~3unu22G2!. ~45!

With the help of Eq.~41!, the following derivatives of the
LDOS with respect to the energy are found:

d2N11

dE2
5

1

p

G1

uDu2

G2G2unu2

uDu2

E2Er

unu2
~46!

and

d3N11

dE3
5

1

p

G1

~ unu2!4 F3~ unu2!225unu2G2G

2unu2G216G2GS G

2 D 2G . ~47!

In this example,the characteristic potential tensors are in
pendent ofr because of the Breit-Wigner formula for th
scattering matrix. From Eqs.~B4!–~B6!, the terms¹2ua•••
vanish under the Thomas-Fermi approximation. Then
characteristic potential tensors can be solved from E
~B4!–~B6!, evidently. Therefore, the characteristic potent
tensors and their derivatives are obtained as

u15
G1

G
,

du1

dE
50, ~48!

u11522
1

unu2
G1G2

G2 ~E2Er !,

du11

dE
5

1

unu2

G1G2

G2

2unu22G2

unu2 , ~49!

and

u1115F dn

dEG21Fd3n1

dE
~113u223u1!2u1

3 d3n

dE3

23u11

d3n1

dE3 13u1u11

d3n

dE313~122u1!

3
d

dE S du1

dE

dn1

dE D13u1
2 d

dES du1

dE

dn

dED G
522

1

unu2
3unu22G2

G2

G1G2

unu2
G12G2

G
. ~50!

Substituting these quantities into the expressions of cond
tances in Eqs.~29! and ~30!, the dc and ac linear conduc
tances are obtained:
e-

e
s.
l

c-

g11
(0)~E!5T~E!5

G1G2

unu2 ~51!

and

g11
(1)~E!5

1

2p

1

G

unu222~G/2!2

unu2
T~E!, ~52!

whereT(E) is the transmission coefficient.
By evaluating Eqs.~34! and~35! the first-order nonlinear

conductances can be obtained as

g111
(0)~E!52

G12G2

G

dT~E!

dE
~53!

and

g111
(1)~E!52

1

2p

1

unu2

G12G2

G2 ~ unu22G2!
dT~E!

E
. ~54!

It is found that because of the term

dT~E!/dE52~E2Er !@~G12G2!/G#~G1G2 /G!,

G111 changes sign across the resonant point and hence ca
negative.

In the same way, we can evidently calculate the seco
order nonlinear conductances from Eqs.~38! and ~39!. It is
found that

g1111
(0) ~E!5

G1
21G2

224G1G2

G2

d2T~E!

dE2
~55!

and

g1111
(1) ~E!52H u111

dN1

dE
2

d3N11

dE
1u1

3 d3N1

dE3

13Fu11

d2N11

dE2
2u1u11

d2N1

dE2 1u1

d3N11

dE3

2u1
2 d3N11

dE3 G23g11
(1) du11

dE
1

3

4p i

3Fd2u11

dE2
A11~1,E,E!1

du11

dE
]EA11~1,E,E!G J

5
3

2p

1

~ unu2!4

G1G2

G3 F2~ unu2!2~G1
21G2

224G1G2!

2unu2G2~4G1
214G2

2211G1G2!1G4S G1
21G2

2

2
5

2
G1G2D2 iG1G2G~4unu223G2!~E2Er !G .

~56!

All the components of conductances~linear and nonlinear!
can be calculated in the same way. However, from the cha
conservation and gauge invariance we have

G1152G1252G215G22, ~57!
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G11152G11252G1215G12252G211

5G2125G22152G222, ~58!

and

G111152G211152G121152G112152G11125G2112

5G21215G22115G12125G12215G112252G2122

52G221252G222152G12225G2222. ~59!

For a geometrically symmetric system of double barrie
i.e.,G15G25G/2, the dc and ac parts of linear and nonline
conductances are obtained in the following forms:

g11
(0)~E!5T~E!5

1

4

G2

unu2
,

g11
(1)~E!5

1

4p

1

G

2unu22G2

unu2
T~E! ~60!

and

g1111
(0) ~E!52

1

2

dT~E!

dE
,

g1111
(1) ~E!52

3

26p

G

~ unu2!4@8~ unu2!226unu2G21G4

1 i ~4unu223G2!G~n1n* !#. ~61!

The first-order nonlinear conductances vanish, i.e.,g111
(0)(E)

5g111
(1)(E)50. The zero of the first-order nonlinear condu

tance g111(E) is evident.19 In general, from I 15G11(V1
2V2)1G111(V12V2)21G1111(V12V2)31••• for a sym-
metric scattering volume with scattering potentialU(x)
5U(2x) in one dimension wherex is the propagation di-
rection, we must have2I 1 if V1 and V2 are interchanged
Hence we conclude that for a symmetric scattering volu
there are no quadratic terms, i.e.,G11150. The first-order
nonlinear conductance can be nonzero only for geometric
asymmetric systems. The sign of the nonlinear conductan
can be positive or negative.

IV. SUMMARY

In this paper we have dealt with harmonic generation
the ac nonlinear response for a multiprobe mesoscopic
tem. The calculations are perturbatively carried up to th
order at the low-frequency weakly nonlinear response of
probe voltages. By combining perturbation theory and sc
tering matrix theory, a model for the time-dependent syst
has been built. The theory has taken into account the o
lating applied potential and the oscillating internal se
induced potential nonlinearly. This allows us to obtain t
response functions and the corresponding harmonic gen
tion for not only their dc features but also those of the f
quency dependence in a self-consistent way. The calcula
proceeds by first solving the equation of motion and obta
ing the solutions of a double operator in terms of the exter
voltage perturbatively. Then the current is written as an
pansion in powers of voltage. The coefficients describing
total current flowing in and out of the system with respect
,
r

e

lly
es

n
s-

d
e
t-
m
il-

ra-
-
on
-

al
-
e

the probe voltages are functions of the unitary scattering
trix. As a main result, the harmonic generation has be
shown step by step in our approach. Harmonic generatio
the internal self-consistent potential is important for obta
ing gauge-invariant and charge conservation results for e
harmonic generation branch. How to separate out the hig
harmonics for the nonlinear responses of the time-depen
external perturbation has been reported. As shown in Sec
in the generation of higher-frequency harmonics for the n
linear components of conductances, there would be sev
branches at the same order of conductance. Each branc
its own characteristic frequency. For example, there is
branch of the dc part and one at twice the driving frequen
for the transport current in the second-order response of
voltages. However, there is a branch with the oscillating f
quency and a branch at triple the driving frequency for
transport current in the third-order response of voltages.
approach to higher-harmonic generation can been studie
the same framework built here. The conductances derive
this paper are expressed in terms of the Fermi surface q
tities. Current conservation and gauge invariance are ind
satisfied by all Fourier component of the harmonics, which
consistent with physical requirements. It is found that the
internal interaction contributes to the dc aspect in the non
ear regime. The displacement current contributes itself to
dc components of nonlinear current in the nonlinear respo
of voltage too. This is consistent with the conclusions
Refs. 21 and 22; the current in nonlinear regime is depend
on the band bottom position of the quantum well. We wou
like to emphasize that the magnetic field accompanied by
time-dependent internal potential is negligible in the wea
nonlinear response region because of a slow variation
time. However, the full Maxwell equations, namely, th
Helmhotz equations describing both the internal self-indu
potential and the corresponding vector potential, should
considered5 if we consider the magnetic field induced by th
time-dependent fluctuations of current. In the applicatio
the formulas of the ac conductances have been applied
double-barrier tunneling diode using the Breit-Wigner for
for the scattering matrix. The quadratic conductance wo
be absent for geometrically symmetric systems. The form
las of the dynamic conductances presented within this pa
can be used in numerical simulations for any interest
sample because the formulas can be expressed in terms o
density of states explicitly.19,23,24 Experimental verification
of our approaches holds promise for a wide range of stud
in the areas of quantum nonlinear transport.
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APPENDIX A: HAMILTONIAN AND ITS SOLUTIONS

The Hamiltonian density is
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Ĥ5Ĥ01ĤI5
1

2M S P̂2
e

c
A0~r ! D 2

1V0~r !1eV~r ,t !1nE~r ,$V%,t !, ~A1!

whereA0(r ) is a steady vector potential,B5,3A0(r ), and
a V0(r ) is a steady potential.eV(r ,t) is the perturbation
Hamiltonian concerned with the external potential due to
application of voltagesVae2dutucosVt at the probesa. The
term nE(r ,$V%,t) is the change in the energy which is th
function of the internal potentialU(r ,t) induced by a varia-
tion of the density of electrons after application of the ext
nal voltage.

The total Hamiltonian is then taken in the form

H5E dEdE8E drCE
†~r !~Ĥ01ĤI !CE8~r !, ~A2!

in which CE(r ) is the electron field operator. To make fu
ther progress, employing the matrix element of the curr
density,

“•WEE8~r !52
2M

\2 ~E82E!CE
†~r !CE8~r !, ~A3!

with the notationWEE8(r )5CE
†(r )Ŵ(r )CE8(r ), the Hamil-

tonian becomes

H5E dEdE8E drFCE
†~r !Ĥ0CE8~r !

2
e\2

2M

1

E82E
“•WEE8~r !Ṽ~r ,t !G . ~A4!

In order to write the Hamiltonian in the form of second qua
tization, we use the field operator

C~r ,t !5(
am

1

@hvam~Eam!#1/2
cam~Eam ,r !Cam~Eam!

3e2 i (Eam /\)t, ~A5!

wherecam(Eam ,r ) is the wave function with a channel in
dex m at the probea, Cam is the annihilation operator o
electron in the incoming channelm inside the probea, and
1/\vam(E) is the one-dimensional density of states of t
quantum channelm at energyE.2,16 Then the first term, i.e.
the free electron HamiltonianH0, becomes

H05E dE(
am

ECam
† ~E!Cam~E!. ~A6!

The second term in Eq.~A4! is a perturbation Hamiltonian
which can be derived by consideration of the boundary c
ditions that the applied voltages are constants at the pe
n

-

t

-

-
ct

probes, the electric field is approximately unchanged in
finite region of space, and current conservation. Integra
the second term in Eq.~A4! and using the divergence theo
rem, it yields

E dr“•WEE8~r !Ṽ~r !5 i
2M

e\ (
a

ṼaELa

dyaJEE8~r !• x̂a ,

~A7!

wherex̂a is a unit vector parallel to the probea and pointing
outward from the junction region,La is the cross-section
curve of probea, and*La

dya denotes the integral over th

cross section of it. Furthermore, it is found2,16 that

*La
dyaJEE8(r )• x̂a5(e/h)(mCam

† (E)Cam(E8), which is

available for the low-frequency situation. Hence, the cor
sponding Hamiltonian~A4! is rewritten in the form of sec-
ond quantization,

H5(
am

E dEdE8FEd~E2E8!

1
e

2p i
Ṽa~ t !

1

E2E8
GCam

† ~E,t !Cam~E8,t !, ~A8!

after considering the completeness and orthonormal co

tions of the eigenstates ofH0, where eṼa(t)5eVa

1*dr @dEa(U)/dU#U(r ,t) and eVa(t) is the shift of the
electrochemical potentialma away from the equilibrium state
associated withmeq. This is precisely the Hamiltonian of th
charged particle system with the perturbation due to the p
ence of time-dependent external voltage at the probea.

Now we present the perturbation solution of the doub
operatorCgk

† (E,t)Cgk(E8,t). Upon working to third order in
powers ofBab,mn(E,E8,t), the time dependences of the o
erators involved in the second term and in the third term
Eq. ~8! are taken to those in the first-order perturbation s
tem and the second-order perturbation system, respectiv
The perturbation solution is obtained :

Cgk
† ~E,t !Cgk~E8,t !5e2 i (E82E)t/\Cgk

† ~E!Cgk~E8!

1Ŵ1~E,E8,t !1Ŵ2~E,E8,t !

1Ŵ3~E,E8,t !, ~A9!

where three operators ofŴj (t) are given by
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Ŵ1~E,E8,t !5
1

i\

e

2p i
e2 i (E82E)t/\E

2`

t

dt1(
bn

E dE9Bbg,nk~E8,E9,t1!Cgk
† ~E!Cbn~E9!e2 i (E92E8)t1 /\

2
1

i\

e

2p i
e2 i (E82E)t/\E

2`

t

dt1(
bn

E dE9Bgb,kn~E9,E,t1!Cbn
† ~E9!Cgk~E8!e2 i (E2E9)t1 /\, ~A10!

Ŵ2~E,E8,t !5
1

~ i\!2 S e

2p i D
2 1

2!
e2 i (E82E)t/\E dE9dE- (

bn,dm
E

2`

t

dt1Bbg,nk~E8,E9,t1!e2 i (E82E9)t1 /\

3E
2`

t1
dt2@Bgd,kl~E9,E-,t2!Cgk

† ~E!Cd l~E9!e2 i (E-2E9)t2 /\2Bdg,lk~E-,E,t2!Cd l
† ~E-!Cgk~E9!e2 i (E2E-)t2\#

2
1

~ i\!2 S e

2p i D
2 1

2!
e2 i (E82E)t/\E dE9dE- (

bn,dm
E

2`

t

dt1Bbg,nk~E9,E8,t1!e2 i (E82E9)t1 /\

3E
2`

t1
dt2@Bgd,kl~E8,E-,t2!Cgk

† ~E9!Cd l~E-!e2 i (E-2E8)t2 /\

2Bdg,lk~E-,E9,t2!Cd l
† ~E-!Cgk~E8!e2 i (E92E-)t2 /\#, ~A11!

and

Ŵ3~E,E8,t !5S 1

i\ D 3S e

2p i D
3 1

3!
e2 i (E82E)t/\ (

bgr,nml
E dE9dE-dE(4)E

2`

t

dt1Bbn,ak~E8,E(4),t1!e2 i (E(4)2E8)t1 /\

3E
2`

t1
dt2Bgm,ak~E(4),E9,t2!e2 i (E92E(4))t2 /\F E

2`

t2
dt3Br l ,ak~E9,E-,t3!e2 i (E-2E9)t3 /\Cr l

† ~E!Cr l~E-!

2E
2`

t2
dt3B~E-,E,t3!e2 i (E2E-)t3 /\Cr l

† ~E-!Cr l~E9!G2S 1

i\ D 3S e

2p i D
3 1

3!
e2 i (E82E)t/\

3 (
bgr,nml

E dE9dE-dE(4)E
2`

t

dt1Bbn,ak~E8,E(4),t1!e2 i (E(4)2E8)t1 /\E
2`

t1
dt2

3Bgm,ak~E9,E8,t2!e2 i (E82E9)t2 /\F E
2`

t2
dt3Br l ,ak~E(4),E-,t3!e2 i (E-2E(4))t3 /\Cr l

† ~E9!Cr l~E-!

2E
2`

t2
dt3B~E-,E9,t3!e2 i (E92E-)t3 /\Cr l

† ~E-!Cr l~E(4)!G2S 1

i\ D 3S e

2p i D
3 1

3!
e2 i (E82E)t/\

3 (
bgr,nml

E dE9dE-dE(4)E
2`

t

dt1Bbn,ak~E(4),E,t1!e2 i (E2E(4))t1 /\E
2`

t1
dt2

3Bgm,ak~E8,E9,t2!e2 i (E92E)t2 /\F E
2`

t2
dt3Br l ,ak~E9,E-,t3!e2 i (E-2E9)t3 /\Cr l

† ~E(4)!Cr l~E-!

2E
2`

t2
dt3Br l ,ak~E-,E(4),t3!e2 i (E(4)2E-)t3 /\Cr l

† ~E-!Cr l~E9!G1S 1

i\ D 3S e

2p i D
3 1

3!
e2 i (E82E)t/\

3 (
bgr,nml

E dE9dE-dE(4)E
2`

t

dt1Bbn,ak~E(4),E,t1!e2 i (E2E(4)/\)t1E
2`

t1
dt2

3Bgm,ak~E9,E(4),t2!e2 i (E(4)2E9)t2 /\F E
2`

t2
dt3Br l ,ak~E8,E-,t3!e2 i (E-2E8)t3 /\Cr l

† ~E9!Cr l~E-!

2E
2`

t2
dt3Br l ,ak~E-,E9,t3!e2 i (E92E-)t3 /\Cr l

† ~E9!Cr l~E8!G . ~A12!

Here the intrinsic permutation-symmetry property has been considered because we are concerned with calculating the
functions. The response functions are invariant under interchange of the pairsb andg for the second-order perturbation term
and are invariant under permutations of the indicesb, g, andr for the third-order perturbation terms. This property, and
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generalization to higher orders, is known as the ‘‘intrinsic permutation symmetry.’’ In the following calculations the in
permutation-symmetry property indicates that the response functions~conductances, capacitances, and characteristic pote
tensors! are invariant under any of then! permutations of then triplets (a,v,r ).

To calculate the electric current we need the quantum statistical average of the double operator. With the
^Cak

† (E)Cbk(E8)&eq5dabd(E2E8) f a , Eq. ~17! has been obtained. The last three termsWj (t) in Eq. ~17! are given by the
following expressions:

W1~ t !5
1

i\

e

2p i
e2 i (E82E)t/\E

2`

t

dt1(
bn

E dE9
1

E82E9
dbadnkf b~E9!d~E2E9!Ṽb~ t1!e2 i (E92E8)t1 /\

2
1

i\

e

2p i
e2 i /(E82E9)t/\E

2`

t

dt1
e

2 (
bn

E dE9
1

E92E
dbadnkf b~E9!d~E92E8!Ṽb~ t1!e2 i (E2E9)t1 /\, ~A13!

W2~ t !5
1

~ i\!2 S e

2p i D
2 1

2!
e2 i (E82E)t/\E dE9dE- (

bn,gm
E

2`

t

dt1
1

E82E9
Ṽb~ t1!dbadnke

2 i (E82E9)t1 /\

3E
2`

t1
dt2F 1

E92E-
Ṽg~ t2!dgbdmnf g~E9!d~E2E9!e2 i (E-2E9)t2 /\

2
1

E-2E
Ṽg~ t2!dgbdmnf g~E9!d~E-2E9!e2 i (E2E-)t2 /\G

2
1

~ i\!2 S e

2p i D
2 1

2!
e2 i (E82E)t/\E dE9dE- (

bn,gm
E

2`

t

dt1
1

E92E8
Ṽb~ t1!dbadnke

2 i (E82E9)t1 /\

3E
2`

t1
dt2F 1

E82E-
Ṽg~ t2!dgbdmnf g~E9!d~E92E-!e2 i (E-2E8)t2 /\

2
1

E-2E9
Ṽg~ t2!dgbdmnf g~E-!d~E-2E8!e2 i (E92E-)t2 /\G , ~A14!

and

W3~ t !5S 1

i\ D 3S e

2p i D
3 1

3!
e2 i (E82E)t/\ (

bgr,nml
dbadnkdgbdmndrgd lmE dE9dE-dE(4)

3E
2`

t

dt1
1

E82E(4)
Ṽb~ t1!e2 i (E(4)2E8)t1 /\E

2`

t1
dt2

1

E(4)2E9
Ṽg~ t2!e2 i (E92E(4)/\)t2

3F E
2`

t2
dt3

1

E92E-
Ṽr~ t3!e2 i (E-2E9)t3 /\ f r~E!d~E2E-!

2E
2`

t2
dt3

1

E-2E
Ṽr~ t3!e2 i (E2E-)t3 /\ f r~E-!d~E-2E9!G

2S 1

i\ D 3S e

2p i D
3 1

3!
e2 i (E82E)t/\ (

bgr,nml
dbadnkdgbdmndrgd lmE dE9dE-dE(4)

3E
2`

t

dt1
1

E82E(4)
Ṽb~ t1!e2 i (E(4)2E8)t1 /\E

2`

t1
dt2

1

E92E8
Ṽg~ t2!e2 i (E82E9)t2 /\

3F E
2`

t2
dt3

1

E(4)2E-
Ṽr~ t3!e2 i (E-2E(4))t3 /\ f r~E9!d~E92E-!

2E
2`

t2
dt3

1

E-2E9
Ṽr~ t3!e2 i (E92E-)t3 /\ f r~E-!d~E-2E(4)!G
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2S 1

i\ D 3S e

2p i D
3 1

3!
e2 i (E82E)t/\ (

bgr,nml
dbadnkdgbdmndrgd lmE dE9dE-dE(4)

3E
2`

t

dt1
1

E(4)2E
Ṽb~ t1!e2 i (E2E(4))t1 /\E

2`

t1
dt2

1

E82E9
Ṽg~ t2!e2 i (E92E)t2 /\

3F E
2`

t2
dt3

1

E92E-
Ṽr~ t3!e2 i (E-2E9)t3 /\ f r~E(4)!d~E(4)2E-!

2E
2`

t2
dt3

1

E-2E(4)
Ṽr~ t3!e2 i (E(4)2E-)t3 /\ f r~E-!d~E-2E9!G

1S 1

i\ D 3S e

2p i D
3 1

3!
e2 i (E82E)t/\ (

bgr,nml
dbadnkdgbdmndrgd lmE dE9dE-dE(4)

3E
2`

t

dt1
1

E(4)2E
Ṽb~ t1!e2 i (E2E(4))t1 /\E

2`

t1
dt2

1

E92E(4)
Ṽg~ t2!e2 i (E(4)2E9)t2 /\

3F E
2`

t2
dt3

1

E82E-
Ṽr~ t3!e2 i (E-2E8)t3 /\ f r~E9!~E92E-!

2E
2`

t2
dt3

1

E-2E9
Ṽr~ t3!e2 i (E92E-)t3 /\ f r~E9!d~E92E8!G . ~A15!

Ṽb(t) is the global voltage on the probesb, which is discussed in Appendix B.

APPENDIX B: SELF-CONSISTENCE AND THE INDUCED INTERNAL POTENTIAL

We now address the problem of accounting for the Coulomb interaction in calculations of the response function du
external voltage. The application of the voltageVa(t) at the probes induces a charge fluctuation in the average value ofṼa ;
i.e., the time-dependent probe voltage can create a variation in the electron density. Hence, the total perturbation to w
electron system responds is the sum of the applied perturbation and internal potentials due to the induced variatio
electron density. When we neglect those effects due to the induced magnetic field, which are practically very wea
weakly frequency-dependent approach, the induced internal potentialU in the sample is determined by Poisson’s equatio

¹2U~r ,t !524pedn~r ,t !, ~B1!

where the induced variation of density is denoted bydn(r ,t)5(adna(r ,t). Considering the harmonic generations of t
driving frequency, the induced potential will have the same space-dependence and some integer times the frequen
time dependence as the applied perturbation. In the response to the applied voltage and the induced self-consisten
there are two contributions to the electron density at the probea: the injected charge density due to variation of t
electrochemical potential and the induced charge densitydnind,a(r ,t) due to the internal potential, respectively. In th
Thomas-Fermi approximation, the variation of electron density is obtained:

dna~r ,t !5
dna~r !

dE H e@Va~ t !2U~ t !#1Fe
d

dE
@Va~ t !2U~ t !#GFe@Va~ t !2U~ t !#

1S e
d

dE
~Va~ t !2U~ t !# De@Va~ t !2U~ t !#G1

1

2 Fe
d2

dE2 @Va~ t !2U~ t !#Ge2@Va~ t !2U~ t !#2J
1

1

2

d2na~r !

dE2 H e@Va~ t !2U~ t !#1Fe
d

dE
@Va~ t !2U~ t !#Ge@Va~ t !2U~ t !#J

3H e@Va~ t !2U~ t !#1Fe
d

dE
@Va~ t !2U~ t !#Ge@Va~ t !2U~ t !#J

1
1

3!

d3na~r !

dE3
e3@Va~ t !2U~ t !#31O„~Va2U !4

…. ~B2!
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In the weakly nonlinear region, the induced self-consistent potential can be expanded in powers of variation of electroc
potentialdma(t)5eVa(t), i.e.,

U~r ,t !5(
a

ua~r !Va~ t !1
1

2
e(

ab
uab~r !Va~ t !Vb~ t !1

1

3!
e2(

abg
uabg~r !Va~ t !Vb~ t !Vg~ t !1O„~Va!4

…, ~B3!

in which the coefficients are the characteristic potentialua and the second-order characteristic potential tensoruab ~which is
symmetric ina andb). uabg and higher-order terms are third-order and higher-order characteristic potential tensors. Th
several sum rules on the characteristic potential tensors. If all the changes in the electrochemical potentials are the s
dma5dm for arbitrary indexa, this corresponds to an overall shift of the electrostatic potentialedU2dm. It implies that
(bmb51 and (bgubg5(bgrubgr50. Due to gauge invariance, it is further found that(bubg5(gubg50 and (bubgr

5(gubgr5(rubgr50. The sum rules for the higher-order characteristic potential tensors can be derived in a similar
Substituting Eqs.~B2! and ~B3! into Poisson’s equation~B1!, the following equations for the first three of characteris

potential tensors are arrived at:

2¹2ub~r !14pe
dn~r !

dE
ub~r !54pe

dnb~r !

dE
, ~B4!

2¹2ubg~r !14pe
dn~r !

dE
ubg~r !54peH dbg

d2nb~r !

dE2
1ub~r !E dr1ug~r1!

d2n~r !

dE2
2Fug~r !

d2nb~r !

dE2

1S dnb~r !

dE
2E dr1ub~r1!

dn~r !

dE Ddug~r !

dE G2@b↔g#J , ~B5!

and

2¹2ubgr~r !14pe
dn~r !

dE
ubgr~r !54peS dbgdbr

d3nb~r !

dE3
2ub~r !E dr1ug~r1!E dr2ur~r2!

d3n~r !

dE3

2Fdgrub~r !
d3ng~r !

dE3
2ug~r !E dr1ur~r1!

d3nb~r !

dE3
1ugr~r !

d2nb~r !

dE2

2E dr1ub~r1!ugr~r !
d2n~r !

dE2 G
c

1Fdgr

d

dE S dng~r !

dE

dub~r !

dE D
2E dr1ur~r1!

d

dE S dng~r !

dE

dub~r !

dE D2E dr1ug~r1!
d

dE S dnr~r !

dE

dub~r !

dE D
1E dr1ug~r1!E dr2ur~r2!

d

dE S dn~r !

dE

dub~r !

dE D G
c

2H F E dr1ugr~r1!
dn~r !

dE

2S dgr

d2ng~r !

dE2
2E dr1ur~r1!

d2ng~r !

dE2
2E dr1ug~r1!

d2nr~r !

dE2

1E dr1ug~r1!E dr2ur~r2!
d2n~r !

dE2 D G dub~r !

dE
2S dnb~r !

dE
2ub~r !

dn~r !

dE D
3E dr1

dugr~r1!

dE
22S dnb~r !

dE
2ub~r !

dn~r !

dE D E dr1

dug~r1!

dE E dr2

dur~r2!

dE J
c
D ,

~B6!

where the subscriptc stands for the cyclic permutation among the indicesb, g, and r in Eq. ~B6!. Note that there are
‘‘intrinsic permutation symmetries’’ for these equations; i.e., they are invariant under the permutation among these su



c

,

ys

ev

.

v. B

332 PRB 61MA, GUO, SCHÜLKE, YUAN, AND LI
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iker, H. Thomas, and A. Preˆtre, Z. Phys. B: Condens. Matter94,
133 ~1994!.

17Ya.M. Blanter and M. Bu¨ttiker, Europhys. Lett.42, 535 ~1998!;
Ya.M. Blanter, F.W.J. Hekking, and M. Bu¨ttiker, Phys. Rev.
Lett. 81, 1925~1998!.

18T. Christen and M. Bu¨ttiker, Europhys. Lett.35, 523 ~1996!.
19J. Wang and H. Guo, Phys. Rev. B54, R11 090~1996!; J. Wang,

Q.R. Zheng, and H. Guo,ibid. 55, 9763~1997!; 55, 9770~1997!.
20P.G.N. de Vegvar, Phys. Rev. Lett.70, 837 ~1993!.
21M.H. Pedersen and M. Bu¨ttiker, Phys. Rev. B58, 12 993~1998!.
22Ya.M. Blanter and M. Bu¨ttiker, Phys. Rev. B59, 10 217~1999!.
23J.C. Cuevas, A.L. Yeyati, and A. Martı´n-Rodero, Phys. Rev. Lett

80, 1066~1998!.
24M. Brandbyge, M.R. Sorensen, and K.W. Jacobsen, Phys. Re

56, 14 956~1997!; M. Brandbyge and M. Tsukada,ibid. 57, R15
088 ~1998!.


