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Orientational phase transition in solid Cg,
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A simple model for the angular dependent interaction betwegmmlecules in face centered cubic lattice
is proposed and analyzed by use of the rigorous bifurcation approach. The quantitative results for the orien-
tational phase transition and the characteristics of the ordered phase are in good agreement with the experi-
mental data.

The orientational phase transition in soligy@ of much  tential of Sprik et al:'’ a sum of 6-12 and Coulomb

current interest. The orientational ordering has been a subjeiteractions between 60 atortsand 30 double-bond centers
of extensive experimental investigatiorisee, e.g., Refs. D and between each other:
1-6); some theoretical researches were performed, tbb.
However,ab initio calculations fail to reproduce the experi- occ\? [occ)®
mental results. (I)(l'z):k;c:m k,z;f , 46( (m) _(@) ]

In this paper we develop a simple model for the angular e
dependence of the intermolecular potential in solig. The N 2 46[ (@) 12_ ( UCD)@}
model is based on the ideas of preferred orientations due to Ryw

: 1 . 11 ; k#k’ kk'eC,D
David et al." and to Lapinska®t al,”* and on the maximal

. . . . 12 6
exploit of symmetry considerations. We apply to this model 9pp)|" [9DD
. . - + z 2 dey | =— —-—
interaction the rigorous approach based on the Lyapunov- kED(1) k' cD(2) Ry Ry
Schmidt theory of bifurcation of solutions of nonlinear inte-
gral equations and obtain quantitative results for the transi- Akl
) awve r + X : ®
tion temperature and the distribution of molecular kkicc.p Rk
orientations in the ordered phase. These results occur to re-
produce the experimental data. Here e=1.293 meV, occ=34 A, ocp=35A, opp
As is established in a number of experiments @ystal-  =3.6 A, qp=—0.3%, qc=—0p/2. .
lizes in a face centered cubidcc) structure. At ambient Rigorously speaking we are interested in the angular part

temperature the molecules rotate almost freely with center8f this complicated interaction represented in terms of

on the fcc lattice sites, so that the space groupni@m (see multipole-multipole interaction of pointlike multipoles on
e.g., Ref. 2 When thé temperature decreased to- 260 K, the sites of rigid fcc lattice with coefficients to be calculated
the first order orientational phase transition takes place: th0mM Ed-(1). The general form of this angular part is

sites of the initial fcc lattice become divided between four

simple cubic sublatticesee Fig. 1 with its own preferable D (o )= c U Yu ) 2
molecular orientation in each sublattice. The broken symme- i@ ;) 2; o @)U @) Ui (@) @

try space group i®a3. ) )

shown that the orientations in the ordered state are so that tymmetryl,. In Eq. (2) w; are the angles describing the
electron-rich regionsthe interpentagon double bondsce ~ orientation of the molecule on site for example, Euler
the electron-deficient regions of the neighboring, @ol-  angles andy,—some kind of harmonics. However, we sim-
ecule: the centers of pentagons or the centers of hexagons Riify the problem and develop a model orientational interac-
was showh3® that the ratio of the number of molecules in tion. As the angular dependent interaction is rather short
those two states is about 60:40 at the phase transition tem-

perature and increases when the temperature decreases. This @
remaining orientational disorder is usually believed to cause D z D
the orientational glass transition Bt~ 90 K now confirmed @ 4

by various experimental techniqudsee, e.g., Ref. 14 CA) 0 CA)
These two minima of the intermolecular angle dependent y
energy were obtained by numerical calculations and were (A) CA)
shown to be much lower than the energies of other mutual z @
orientations of the pair of moleculésee, e.g., Refs. 8, 9, 13, D D
15). In those calculations the previously obtained charge dis- @

tribution for the isolated g moleculé® was taken into ac-

count. Usually recent calculations use the intermolecular po- FIG. 1. The sublattices in fccgg.
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ranged we can restrict ourselves by the nearest-neighbor in-  P,(w)=apK;(w)+ Bp[Kg(w) —Kg(w)— Ko @)]
teractions, as far as we do not consider the dynamics or the
pressure effects. + vplKi(w) =K @) = Kiz(w)],

We follow the main ideas of Refs. 1 and 11 and use the
restricted number of allowed orientations instead of free con- P(w)=apK(w)+ Bp[ —Kg(w) —Kg(w) + Ko w)]
tinuous rotations. Let us take into account in the endgyy
only the orientations with pentagons, hexagons or double T ypl —Ku(ow) —K(w) +Kiz(w)], 3
bonds directed towards 12 nearest neighbors in fcc latticg, ..., ap=—0.38866; Bp=0.31486; yp=—0.42877. The

The Gy molecule is constructed in such a way that if 6 of its]c ; ;
) . unctionsH;(w) have the same form &8,(w) but with the
12 pentagonsor 6 of its 20 hexagongace 6 nearest neigh- coefficientslc(y )=0.46588'/3 :0_377407'( :)0_34432_ The
bors double bond$P and H states of Lapinskast alld), fnctions areHnormaIized tg unity $H
then 6 of its 30 interpentagon double bonds face the remain- Let us now treat our model by use of bifurcation approach

ing 6 nearest neighbors. Now the energy matrix elements 4 the mean-field approximation. As is well known the mean-
take only three valuesly, the energy of the general mutual field approach often brings one to the formulation of the

positiona]p ,bpl>engaggn _\I/_t;rsus dOUbI? bqnd, ahd heo>|<algon bbroken space symmetry problem in terms of the bifurcation
Versus double bond. These Energies in our model can by o4, tions of nonlinear integral equations for distribution
compared with those calculated in Refs. 8, 9, 13, and 15

functi f th lar disol ts of th lecul 4inctions (see, e.g., Ref. 191In particular, the bifurcation
unctions of the angular displacéments ot the moiecule a&pproach was used in the case of orientational phase transi-

(O_,0,0.bFoIrowi?g Ref_. 11, and put(tjingo_=0 we obtain from iong in molecular crystals in Refs. 20-25, etc. The simpli-
::'9' 2b) ? Ref. %J]f’ﬁ —300K andJ,=—110K. Now we o version was originally developed by James and Keenan
eave Ref. 11 and follow our own way. for solid methané&® Michel, Copley, and Neumarnand

The energy matrix elemengy andJy connect the states 610 yseq some concepts of bifurcation theory and ana-
of molecules only in the allowed orientations. So, only al'lyzed the multipole interaction in solid¢g

lowed linear combinations af,, enter Eq.(2). The theoret- We shall follow our papers on hydrogdén?225to obtain

:cafl ﬁurve in Ref. Eérgakesbno drl]fferifnce bfet\?lleefnhthe numbey antitative results. In the mean-field approximation from
ho ; armonlci afn escg les tl ele fect of all 0 T[blem. ﬁo_'l('jr}he first equation of BBGKY hierarchy for the orientational
the framework of our model calculation itis possible to bulld yisyinytion functions or by minimizing the orientational free

up_the allowed functions using only the harmonics With onergy one can obtain the following nonlinear integral
=6: we need only their transformation properties. We re-

: - equatior?!
strict ourselves té=6, however, the coefficienty andJ,
are not some o@ﬁ), given in Eq.(2) but effectively take into 1
account higher order terms. This means that for simple de- Oi(wj)+ 62 ij do;®j(w; ,wj)egi(’”ﬂzo; 4
scription of the essential properties of the symmetry of the 171
model we do not use the multipole expansion per se.
Let us construct the function;(w) andH;(w) explicitly
in terms of cubic harmonicK,=Kg,, m=1,2,...,13(see,

0i(w;)=In[fi(x)/G;], f;(w;)—one-particle orientational dis-
tribution function for a molecule oith lattice site, the con-
stantsG; are the normalization constants.

In our case of solid g where there are four sublattices
Efsee Fig. 1and four kinds of unknown distribution functions
we obtain from Eq(4) the following system of four nonlin-
ear integral equations:

(i.e., belonging to the\;4 representation of the icosahedral
grouply,) if icosahedrons are naturally oriented in one of 8
properly chosen coordinate systems. The stB€kl;) have
6 pentagonghexagonsand 6 double bonds directed towards
12 nearest neighbors along differdd00] axes.P;(w) de- gl(w)-i-)\f dw’[B(w,w’)Gzegz(“">+A(w,w’)Gge93<‘”')
scribes the molecule rotated from the standard orientdion
(following Ref. 18 about [111] axis through the angle
97.76125°. The angle fdfl;(w) is 37.76125°. The functions
P,(w), P3(w) andP,(w) (orH,,H5,H,) are obtained from
P.(w) (H1) by subsequent counterclockwise rotations of the gz(w)ﬂ\f dw/[B(w’w/)Glegl(w’)+A(w'wr)GAeg4(w’)
molecule by 90° around theaxes.

If written in the standard coordinate frame with Cartesian
axes along the cube sides these functions have the following
explicit form:

+D(w,0')G,4e%4)]=0,

+D(w,0')G3e%3)]=0,

g3(w)+)\f do'[B(w,0')G4e% )+ A(w,w’')G,e91(@")
Pi(w)=apKi(w) + Bp[Kg(w) +Kg(w) + Ko@) ]

! 92(0") ] =
+yp[K1y( @) +Kif ) + Kig(w)], +D(w,0')G,e%*)]=0,

’ ’ g3(w’) ! 92(0),)
P2(©) = apK1(w) + Bel — K(w) + Ko(®) ~ K1) ] g“(“’)“f do’[Blw,0)Goe™ ™ T+ Alw, )Gz

+yp[ —Kpg( @) + Ky 0) — Kig(w)], +D(w,0")Ge%)]=0. (5)
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HereA=1/T A(w,»"), B(w,0"), D(w,»") are the sums of interactions over nearest neighbors in the subla&ti&andD
(see Fig. 1, respectively. For example, the sum in the plane perpendicular to dlxes can be written explicitly in the form

D(w,0")=2{[(P1(®)+ P4(®))Ip+ (Hi(w)+Hs(w))Iy]
X[Pa(w')+P3(w’)+Hy(0")+Hs(w’)]
+[Pa(w)+P3(w) +Ha(w) +Ha(@) J[(Py(w’) + Py(e")Ip+ (Hi(w’) +Ha(w’))Iy]
+[(P2(w)+ P3(@))Jp+ (Ha(w) + Ha(@))Iy][P1(0") + Py(w’) +Hi(w') + Hy(w")]
+[P1(@) + Ps(w)+Hi(w) +Hy(@) ][ (P2(@') + P3(w'))Ip+ (Ha(w') +Ha(w'))I4]} (6)

and analogously for two other sublattices. A;,;=B;;=D;,=u,
Equations(5) are well known Hammerstein equatiofis. ’ ’ '
In the case of finite domain of integration when the fixed

point principle is valid there exists detailed theory for such Ags=Boo=D101=V,
equations(see Ref. 28 We use the standard metho@ee,
e.g., Ref. 29 At high temperature the syste(B) has only A1117=B1o17~Di3157,

trivial solution g;(w;)=0, corresponding to the orientation-
ally disordered phase. At the bifurcation points new so- Aciim Arr = Be e Bro oD ooe Do e
lutions with broken symmetry appear\ (>0). For \ 8117 711,87 29,127 212,97 ~10,137 = 13,10 T
=N.(1+ u) the functionsg*(w;) can be written as series in
integer or fractional powers qi. These powers are defined
by the bifurcation equatiofisee Ref. 29 corresponding to
the system5). In our case we have

One can write the elements v, z, andw in terms of the
coefficientsap,Bp,vp,@H,BH, vy and energiedp, Jy and
obtain the following valuesu=32x5.046,v=32x94.127,
z=32X7.665,w=—32x37.155.
9i(@)= ghi(w)+ w2 (w)+- - The deter_minant of the algebraic system is factori;ed in
2X 2 determinants, so that the eigenvaligscan be easily
because among the integralddwK,;KoKns with m  obtained. Among the values, there are two positive values.
=8,...,13 there are some which are not equal to zero. Thi¥he first onex;=4m/u corresponds to the solution propor-
means the first order phase transitfdn?? tional to K; and is of no interest now. The second is the
The bifurcation points are the eigenvalues of the lin-  positive solution of the equation
earized system corresponding to E§):

A \? 5
)+ 2= [ 40/ [Bl,0 )l 0') +Aw,0 () Vg VA G v W)= O
+D(w,0")hy(w')]=0. (7) namely,\,=0.00364 K'* or T,=275K. The corresponding
_ o nontrivial eigenfunctions have/=0, and the other coeffi-
The functionsh; can be written in the form cientsh” are subject to some constraints. If we add the con-
dition for the functionsh;(w) to transform one into another
hi(w)=2 h’K (o), (8) under the action _of t_he cqbic group rotation elements whic;h
v leave the fcc lattice invariant, then only three of the coeffi-

] ] ] ) cients remain to be independent and the functiensan be
so that the eigenvalues, define not only the bifurcation \yritten in the following form:

temperatures but the relations between nonzero coefficients
h{” (that is the symmetry of the new phasto.

In the case of the full interaction one can obtain all pos-
sible broken symmetry phases compatible with the initial
symmetry and the condition of positive temperature value h,(w)=aP3(w)+bHjz(w)+cKi(w),
(see, e.g., the case of hydrog®ff'2. Now we have trun-
cated the interaction and reduced the problem. Nevertheless,
there still remain two quantitative characteristics we aim to
obtain the bifurcation temperature and the relation between
the weights ofP andH functions in the solution. hy(w)=aP,(w)+bHy(w)+cKi(w), (10

Using Eq.(8) it is easy to rewrite the systelf?) as the
system of linear algebraic equations for the coefficidrts
with i=1,2,3,4 andv=1,8,9,...,13. Using the explicit form
of the matricesA,B,D it is easy to obtain the only nonzero
elements: aBptbBy=Q(aypt+byy), (12

h;(w)=aP;(w)+bH;(w)+cKi(w),

h3(w)=aP4(w)+bH4(w)+CK1(w),

aap+baH+C:O, (11)
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1—v(\/4) Egs.(11), (12), and(14), we obtain finallya=—25.7; b=
= “NAmw —16.6; c=—2.27. The minus sign means that the solution
goes in the direction of higher temperatufgs= — 7,7=(T

Using the numerical value fa we obtain immediately ~ — Tb)/Tp]- The solution has the turning poift which is
some Kelvins higher thaf,. The actual first order phase

transition obtained from the free energy behavior takes place

=0.608; pH:m=0-392, (13 between these two points. The details of this calculation are

to be published elsewhere.
so that not only the transition temperature and the symmetry To conclude, we developed a simple model for angle de-
of the ordered phadé¢he solution(10)], but also the ratio of pendent interaction for g molecules in the fcc cubic lattice.

PP a+b

the number of molecules iR andH states occur to coincide We used rigorous analytic approach based on the Lyapunov-

with the experimental datd" pp : py = 60:40. Schmidt theory of bifurcation of solutions of nonlinear inte-
To obtain the remaining unknown coefficient we use thegral equations to treat this model. As a result we obtained the
equations of the second order in[gi(w)=puhi(w) first order phase transition, the bifurcation temperafUge

+ 1 (w); A =Ne(1+ u)]. The system has the fornixx ~ =275K, the Pa3 symmetry of the ordered phase and the

=R, whereL is the linear 4<4 operatorl. x h=0. The sys- ratio p of the number of molecules with pentagon facing
tem has nontrivial solutions fax; if the right hand side is neighbor double bond to the number of molecules with hexa-

orthogonal to the solutions fdn; obtained before. All 16 90n facing neighbor double borid3) near the phase transi-
equations tion in good agreement with the experimental data.
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