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Orientational phase transition in solid C60

T. I. Schelkacheva and E. E. Tareyeva
Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142092, Moscow Region, Russia

~Received 14 January 1999!

A simple model for the angular dependent interaction between C60 molecules in face centered cubic lattice
is proposed and analyzed by use of the rigorous bifurcation approach. The quantitative results for the orien-
tational phase transition and the characteristics of the ordered phase are in good agreement with the experi-
mental data.
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The orientational phase transition in solid C60 is of much
current interest. The orientational ordering has been a sub
of extensive experimental investigations~see, e.g., Refs
1–6!; some theoretical researches were performed, too7–13

However,ab initio calculations fail to reproduce the exper
mental results.

In this paper we develop a simple model for the angu
dependence of the intermolecular potential in solid C60. The
model is based on the ideas of preferred orientations du
David et al.1 and to Lapinskaset al.,11 and on the maxima
exploit of symmetry considerations. We apply to this mod
interaction the rigorous approach based on the Lyapun
Schmidt theory of bifurcation of solutions of nonlinear int
gral equations and obtain quantitative results for the tra
tion temperature and the distribution of molecu
orientations in the ordered phase. These results occur to
produce the experimental data.

As is established in a number of experiments C60 crystal-
lizes in a face centered cubic~fcc! structure. At ambient
temperature the molecules rotate almost freely with cen
on the fcc lattice sites, so that the space group isFm3̄m ~see,
e.g., Ref. 2!. When the temperature decreases toTS'260 K
the first order orientational phase transition takes place:
sites of the initial fcc lattice become divided between fo
simple cubic sublattices~see Fig. 1! with its own preferable
molecular orientation in each sublattice. The broken symm
try space group isPa3̄.

Moreover, the neutron-diffraction experiments1 have
shown that the orientations in the ordered state are so tha
electron-rich regions~the interpentagon double bonds! face
the electron-deficient regions of the neighboring C60 mol-
ecule: the centers of pentagons or the centers of hexago
was shown1,3,5 that the ratio of the number of molecules
those two states is about 60:40 at the phase transition
perature and increases when the temperature decreases
remaining orientational disorder is usually believed to ca
the orientational glass transition atTG'90 K now confirmed
by various experimental techniques~see, e.g., Ref. 14!.
These two minima of the intermolecular angle depend
energy were obtained by numerical calculations and w
shown to be much lower than the energies of other mu
orientations of the pair of molecules~see, e.g., Refs. 8, 9, 13
15!. In those calculations the previously obtained charge
tribution for the isolated C60 molecule16 was taken into ac-
count. Usually recent calculations use the intermolecular
PRB 610163-1829/2000/61~5!/3143~4!/$15.00
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tential of Sprik et al.:17 a sum of 6–12 and Coulomb
interactions between 60 atomsC and 30 double-bond center
D and between each other:

F~1,2!5 (
kPC~1!

(
k8PC~2!

4eH S sCC

Rkk8
D 12

2S sCC

Rkk8
D 6J

1 (
kÞk8,k,k8PC,D

4eH S sCD

Rkk8
D 12

2S sCD

Rkk8
D 6J

1 (
kPD~1!

(
k8PD~2!

4eH S sDD

Rkk8
D 12

2S sDD

Rkk8
D 6J

1 (
k,k8PC,D

qkqk8
Rkk8

. ~1!

Here e51.293 meV, sCC53.4 Å, sCD53.5 Å, sDD
53.6 Å, qD520.35e, qC52qD/2.

Rigorously speaking we are interested in the angular p
of this complicated interaction represented in terms
multipole-multipole interaction of pointlike multipoles o
the sites of rigid fcc lattice with coefficients to be calculat
from Eq. ~1!. The general form of this angular part is

F i j ~v i ,v j !5(
l ;t

Cn,t
l ~v i j !ul t~v i !ulr ~v j ! ~2!

with l 56,10,12,16,18,..., due to the icosahedral molecu
symmetry I h . In Eq. ~2! v i are the angles describing th
orientation of the molecule on sitei, for example, Euler
angles anduln—some kind of harmonics. However, we sim
plify the problem and develop a model orientational intera
tion. As the angular dependent interaction is rather sh

FIG. 1. The sublattices in fcc C60.
3143 ©2000 The American Physical Society
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ranged we can restrict ourselves by the nearest-neighbo
teractions, as far as we do not consider the dynamics or
pressure effects.

We follow the main ideas of Refs. 1 and 11 and use
restricted number of allowed orientations instead of free c
tinuous rotations. Let us take into account in the energy~2!
only the orientations with pentagons, hexagons or dou
bonds directed towards 12 nearest neighbors in fcc latt
The C60 molecule is constructed in such a way that if 6 of
12 pentagons~or 6 of its 20 hexagons! face 6 nearest neigh
bors double bonds~P and H states of Lapinskaset al.11!,
then 6 of its 30 interpentagon double bonds face the rem
ing 6 nearest neighbors. Now the energy matrix elements
take only three values:J0 , the energy of the general mutu
position,JP , pentagon versus double bond, andJH , hexagon
versus double bond. These energies in our model can
compared with those calculated in Refs. 8, 9, 13, and 15
functions of the angular displacements of the molecule
~0,0,0!. Following Ref. 11, and puttingJ050 we obtain from
Fig. 2~b! of Ref. 8JP52300 K andJH52110 K. Now we
leave Ref. 11 and follow our own way.

The energy matrix elementsJP andJH connect the state
of molecules only in the allowed orientations. So, only
lowed linear combinations ofuln enter Eq.~2!. The theoret-
ical curve in Ref. 8 makes no difference between the num
l of harmonics and describes the effect of all of them. So
the framework of our model calculation it is possible to bu
up the allowed functions using only the harmonics withl
56: we need only their transformation properties. We
strict ourselves tol 56, however, the coefficientsJP andJH

are not some ofCn,t
6 given in Eq.~2! but effectively take into

account higher order terms. This means that for simple
scription of the essential properties of the symmetry of
model we do not use the multipole expansion per se.

Let us construct the functionsPi(v) andHi(v) explicitly
in terms of cubic harmonicsKm[K6,m , m51,2,...,13~see,
e.g., Ref. 10!. All functions Pi andHi are the sums ofKm ,
invariant under the icosahedral symmetry of the molec
~i.e., belonging to theA1g representation of the icosahedr
group I h) if icosahedrons are naturally oriented in one of
properly chosen coordinate systems. The statesPi(Hi) have
6 pentagons~hexagons! and 6 double bonds directed towar
12 nearest neighbors along different@100# axes.P1(v) de-
scribes the molecule rotated from the standard orientatioB
~following Ref. 18! about @111# axis through the angle
97.76125°. The angle forH1(v) is 37.76125°. The functions
P2(v), P3(v) andP4(v) ~or H2 ,H3 ,H4) are obtained from
P1(v) (H1) by subsequent counterclockwise rotations of
molecule by 90° around thez axes.

If written in the standard coordinate frame with Cartes
axes along the cube sides these functions have the follow
explicit form:

P1~v!5aPK1~v!1bP@K8~v!1K9~v!1K10~v!#

1gP@K11~v!1K12~v!1K13~v!#,

P2~v!5aPK1~v!1bP@2K8~v!1K9~v!2K10~v!#

1gP@2K11~v!1K12~v!2K13~v!#,
in-
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P3~v!5aPK1~v!1bP@K8~v!2K9~v!2K10~v!#

1gP@K11~v!2K12~v!2K13~v!#,

P4~v!5aPK1~v!1bP@2K8~v!2K9~v!1K10~v!#

1gP@2K11~v!2K12~v!1K13~v!#, ~3!

with aP520.38866; bP50.31486; gP520.42877. The
functionsHi(v) have the same form asPi(v) but with the
coefficientsaH50.46588;bH50.37740;gH50.34432. The
functions are normalized to unity.

Let us now treat our model by use of bifurcation approa
in the mean-field approximation. As is well known the mea
field approach often brings one to the formulation of t
broken space symmetry problem in terms of the bifurcat
of solutions of nonlinear integral equations for distributio
functions ~see, e.g., Ref. 19!. In particular, the bifurcation
approach was used in the case of orientational phase tra
tions in molecular crystals in Refs. 20–25, etc. The simp
fied version was originally developed by James and Kee
for solid methane.26 Michel, Copley, and Neumann7 and
Heid10 used some concepts of bifurcation theory and a
lyzed the multipole interaction in solid C60.

We shall follow our papers on hydrogen20–22,25to obtain
quantitative results. In the mean-field approximation fro
the first equation of BBGKY hierarchy for the orientation
distribution functions or by minimizing the orientational fre
energy one can obtain the following nonlinear integ
equation:21

gi~v i !1
1

Q (
iÞ j

GjE dv jF i j ~v i ,v j !e
gi ~v j !50; ~4!

gi(v i)5 ln@fi(vi)/Gi#, f i(v i)—one-particle orientational dis
tribution function for a molecule oni th lattice site, the con-
stantsGi are the normalization constants.

In our case of solid C60 where there are four sublattice
~see Fig. 1! and four kinds of unknown distribution function
we obtain from Eq.~4! the following system of four nonlin-
ear integral equations:

g1~v!1lE dv8@B~v,v8!G2eg2~v8!1A~v,v8!G3eg3~v8!

1D~v,v8!G4eg4~v8!#50,

g2~v!1lE dv8@B~v,v8!G1eg1~v8!1A~v,v8!G4eg4~v8!

1D~v,v8!G3eg3~v8!#50,

g3~v!1lE dv8@B~v,v8!G4eg4~v8!1A~v,v8!G1eg1~v8!

1D~v,v8!G2eg2~v8!#50,

g4~v!1lE dv8@B~v,v8!G3eg3~v8!1A~v,v8!G2eg2~v8!

1D~v,v8!G1eg1~v8!#50. ~5!
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Herel51/T A(v,v8), B(v,v8), D(v,v8) are the sums of interactions over nearest neighbors in the sublatticesA, B, andD
~see Fig. 1!, respectively. For example, the sum in the plane perpendicular to thex axis can be written explicitly in the form

D~v,v8!52$@„P1~v!1P4~v!…JP1„H1~v!1H4~v!…JH#

3@P2~v8!1P3~v8!1H2~v8!1H3~v8!#

1@P2~v!1P3~v!1H2~v!1H3~v!#@„P1~v8!1P4~v8!…JP1„H1~v8!1H4~v8!…JH#

1@„P2~v!1P3~v!…JP1„H2~v!1H3~v!…JH#@P1~v8!1P4~v8!1H1~v8!1H4~v8!#

1@P1~v!1P4~v!1H1~v!1H4~v!#@„P2~v8!1P3~v8!…JP1„H2~v8!1H3~v8!…JH#% ~6!
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and analogously for two other sublattices.
Equations~5! are well known Hammerstein equations27

In the case of finite domain of integration when the fix
point principle is valid there exists detailed theory for su
equations~see Ref. 28!. We use the standard methods~see,
e.g., Ref. 29!. At high temperature the system~5! has only
trivial solution gi(v i)50, corresponding to the orientation
ally disordered phase. At the bifurcation pointsla new so-
lutions with broken symmetry appear (la.0). For l
5la(11m) the functionsgi

a(v i) can be written as series i
integer or fractional powers ofm. These powers are define
by the bifurcation equation~see Ref. 29! corresponding to
the system~5!. In our case we have

gi~v!5mhi~v!1m2xi~v!1¯

because among the integrals*dvKm1Km2Km3 with m
58,...,13 there are some which are not equal to zero. T
means the first order phase transition.20–22

The bifurcation points are the eigenvaluesla of the lin-
earized system corresponding to Eq.~5!:

h1~v!1
l

4p E dv8@B~v,v8!h2~v8!1A~v,v8!h3~v8!

1D~v,v8!h4~v8!#50. ~7!

The functionshi can be written in the form

hi~v!5(
n

hi
nKn~v!, ~8!

so that the eigenvaluesla define not only the bifurcation
temperatures but the relations between nonzero coeffici
hi

n ~that is the symmetry of the new phase!, too.
In the case of the full interaction one can obtain all po

sible broken symmetry phases compatible with the ini
symmetry and the condition of positive temperature va
~see, e.g., the case of hydrogen20,22,25!. Now we have trun-
cated the interaction and reduced the problem. Neverthe
there still remain two quantitative characteristics we aim
obtain the bifurcation temperature and the relation betw
the weights ofP andH functions in the solution.

Using Eq.~8! it is easy to rewrite the system~7! as the
system of linear algebraic equations for the coefficientshi

n

with i 51,2,3,4 andn51,8,9,...,13. Using the explicit form
of the matricesA,B,D it is easy to obtain the only nonzer
elements:
is

ts

-
l
e

ss,
o
n

A1,15B1,15D1,1[u,

A8,85B9,95D10,10[v,

A11,115B12,125D13,135z,

A8,115A11,85B9,125B12,95D10,135D13,10[w.

One can write the elementsu, v, z, and w in terms of the
coefficientsaP ,bP ,gP ,aH ,bH ,gH and energiesJP , JH and
obtain the following values:u53235.046,v532394.127,
z53237.665,w5232337.155.

The determinant of the algebraic system is factorized
232 determinants, so that the eigenvaluesla can be easily
obtained. Among the valuesla there are two positive values
The first onel154p/u corresponds to the solution propo
tional to K1 and is of no interest now. The second is t
positive solution of the equation

12
l

4p
~v1z!1

l2

~4p!2 ~vz2w2!50, ~9!

namely,lb50.00364 K21 or Tb5275 K. The corresponding
nontrivial eigenfunctions havehi

150, and the other coeffi-
cientshi

m are subject to some constraints. If we add the c
dition for the functionshi(v) to transform one into anothe
under the action of the cubic group rotation elements wh
leave the fcc lattice invariant, then only three of the coe
cients remain to be independent and the functionshi can be
written in the following form:

h1~v!5aP1~v!1bH1~v!1cK1~v!,

h2~v!5aP3~v!1bH3~v!1cK1~v!,

h3~v!5aP4~v!1bH4~v!1cK1~v!,

h4~v!5aP2~v!1bH2~v!1cK1~v!, ~10!

aaP1baH1c50, ~11!

abP1bbH5Q~agP1bgH!, ~12!
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Q5
12v~l/4p!

~l/4p!w
.

Using the numerical value forQ we obtain immediately

rP5
a

a1b
50.608; rH5

b

a1b
50.392, ~13!

so that not only the transition temperature and the symm
of the ordered phase@the solution~10!#, but also the ratio of
the number of molecules inP andH states occur to coincide
with the experimental data1,3,5 rP :rH560:40.

To obtain the remaining unknown coefficient we use
equations of the second order inm@gi(v)5mhi(v)
1m2xi(v);l5lc(11m)#. The system has the form:L̂3x
5R, whereL̂ is the linear 434 operatorL̂3h50. The sys-
tem has nontrivial solutions forxi if the right hand side is
orthogonal to the solutions forhi obtained before. All 16
equations

E dv Ri~v!hj~v!50 ~14!

are identical due to the symmetry of coefficients. Solvi
K

E
K.
ith

ys

v

un

s.
ry

e

Eqs. ~11!, ~12!, and ~14!, we obtain finallya5225.7; b5
216.6; c522.27. The minus sign means that the soluti
goes in the direction of higher temperatures@m52t,t5(T
2Tb)/Tb#. The solution has the turning pointTt which is
some Kelvins higher thanTb . The actual first order phas
transition obtained from the free energy behavior takes pl
between these two points. The details of this calculation
to be published elsewhere.

To conclude, we developed a simple model for angle
pendent interaction for C60 molecules in the fcc cubic lattice
We used rigorous analytic approach based on the Lyapun
Schmidt theory of bifurcation of solutions of nonlinear int
gral equations to treat this model. As a result we obtained
first order phase transition, the bifurcation temperatureTb

5275 K, thePa3̄ symmetry of the ordered phase and t
ratio r of the number of molecules with pentagon facin
neighbor double bond to the number of molecules with he
gon facing neighbor double bond~13! near the phase trans
tion in good agreement with the experimental data.

This work was partially supported by Russian Foundat
for Basic Researches~Grant No. 98-02-16805!. The authors
would like to thank V. N. Ryzhov and V. A. Davydov fo
useful discussions.
ti,

.

-

-

1W. I. F. David, R. M. Ibberson, T. J. S. Dennis, J. P. Hare, and
Prassides, Europhys. Lett.18, 219 ~1992!.

2P. A. Heiney, G. B. M. Vaughan, J. E. Fischer, N. Coustel, D.
Cox, J. R. D. Copley, D. A. Neumann, W. A. Kamitakahara,
M. Creegan, D. M. Cox, J. P. McCauley, Jr., and A. B. Sm
III, Phys. Rev. B45, 4544~1992!.

3W. I. F. David, Europhys. News24, 71 ~1993!.
4R. Blinc, J. Seliger, J. Dolinsek, and D. Arcon, Phys. Rev. B49,

4993 ~1994!.
5O. Blaschko, G. Krexner, Ch. Maier, and R. Karawatzki, Ph

Rev. B56, 2288~1997!.
6V. V. Brazhkin and A. G. Liapin, Usp. Fiz. Nauk166, 893

~1996!.
7K. H. Michel, J. R. D. Copley, and D. A. Neumann, Phys. Re

Lett. 68, 2929~1992!.
8T. Yildirim and A. B. Harris, Phys. Rev. B46, 7878~1992!.
9J. P. Lu, X.-P. Li, and R. M. Martin, Phys. Rev. Lett.68, 1551

~1992!.
10R. Heid, Phys. Rev. B47, 15 912~1993!.
11S. Lapinskas, E. E. Tornau, and A. Rosengren, Phys. Rev. B49,

9372 ~1994!.
12P. Launois, S. Ravy, and R. Moret, Phys. Rev. B55, 2651~1997!.
13Z. Gamba, Phys. Rev. B57, 1402~1998!.
14F. Gugenberger, R. Heid, C. Meingast, P. Adelmann, M. Bra
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