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We present the nonisotropic effective-medium approximation to solve diffusion problems in a two-
dimensional anisotropic random media. The problem has been worked out by introducing a generalization of
the well-known effective-medium approximation. A set of coupled nonlinear self-consistent equations must be
solved to find the effective rates in each direction. We have considaredyticall) some particular models
in short and large frequency limits. The dc conductivity is also compared against the isotropic case. The ac
conductivity and Cole-Cole diagrams for the nonisotropic random bond percolation model have been analyzed
in terms of the physical parameters that characterize the anisotropy and the disorder in the media. A mono-
parametric nonisotropic bond disordered modelnjode) has also been worked out to show the applicability
of the present approach in the context of weak or strong disorder. Such a model of disorder leads the system
to show a quasi-one-dimensional behavior, proper of nonisotropic materials.

[. INTRODUCTION ponent for unbiased wallk but also more complex systems
such as conductivity in granular metal firoan be described
We are interested in the study of anomalopsre- in the context of EMA. In the recent past, several extensions
diffusion (i.e., without biag and ac-electric conductivity on of EMA have been performed to study the first passage time
nonisotropic random media. Typical examples where thalistribution in finite chaing®*!and the injection of external
frequency-dependent response needs to be found belong tarrent of particles in random media!®
the field of solid-state transport, but also in geological Inthe present work, we extend the EMA considering a 2D
studies (dielectric properties of reservoir rockihie transport  disordered system that also presents anisotropy. For this pur-
on anisotropic heterogeneous media needs to bpose we introduce different bond disorder distributions for
characterized.Let us mention here that ac conductivity mea- each direction in the latticehamely horizontal and vertical
surements of LgNiO,, 5 have recently been carried 8ut Thus a set of coupled nonlinear self-consistent equations
showing a strong anisotropy in the electric conductivity. Themust be solved to find effective diffusion constants in each
characteristics of these materials can be summarized as fatirection. We calculate the nonisotropic ac conductivity for
lows: (i) the system has strong nonisotropic three-the bond percolation model, and the dc conductivity for an-
dimensional (3D) behavior (which has been established other class of disorder presenting weak and strong limits. As
through dc measuremeptsuggesting that the conductivity a matter of fact, the nonisotropic dc conductivity for bond
in the NiO, basal plane exceeds the one along the orthogonalercolation was previously reported by using Kirkpatrik’s
c axis by two orders of magnitudéij) the frequency behav- approach for square and cubic latti¢dsand for triangular
ior of the R¢ o(27rf)] shows a power law (2f)S for inter-  lattices!® too. In Bernasconi’s paper the author considers an
mediate frequencies, with an exponent in the range<0s38 effective electric network, and analyzes the perturbation pro-
<0.8; (iii) this system involves weak Anderson localized duced on the voltage across the resistances by changing a
states, therefore justifying the use of a hopping stochastisingle conductance oriented along each direction of the ex-
model for its transport description. Here we propose a genternal electric field. Thus the effective conductivities are de-
eral description of anisotropic anomalous diffusion within atermined by the requirement that the voltage variations
stochastic transport theory that allows the interplay of anisotshould average zero. In a previous paper, using our general-
ropy and disorder. ized EMA we have studied the dc conductivity on a 2D
The stochastic transport theory has been developed indeonisotropic percolation networR. Here, we extend these
pendently by Scher and Laand Alexanderet al® In par-  studies to consider the spectral behavior and other models of
ticular, Odagaki and L&xhave employed the effective- disorder, too. For simplicity, we restrict the problem for
medium approximationEMA) to calculate the averaged square lattice, but it can also be extended to 3D.
random walk propagator, obtaining in this way a generalized We start our description with a 2D random w&RW) on
Einstein relation from a mesoscopic point of view. It is a random nonisotropic media, which can be represented by a
known that EMA gives the correct anomalous diffusion ex-one-step master equation with discrete indeXds. Sec. Il
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FIG. 1. Definitions of hopping rates associated with the site

B
(m,n) for the general case in the square lattice. The circles repre- t‘
sent sites in the lattice. —
A
W,

the general theory of nonisotropic EMA is presented, all the
calculations have been done on square lattices. Section Ill is¢ ﬂ IT D
devoted to present some cases of anisotropic percolation, and B
weak and strong disorder models. In Sec. IV we present the

conclusions concerning our approach. The mathematical de- /=

tails concerning Green'’s functions and the density of states —

in anisotropic lattices can be found in the Appendixes. A

FIG. 2. Sketch of the single impurity problem. A substitutional
[l. 2D NONISOTROPIC EMA impurity has been allocated between the nearest-neighbor sites
A. Nonisotropic ordered case andb in the square lattice. The pair of sitasb can be set in the
' horizontal direction(@) or in the vertical directiorb).
For a random walKkRW) on ad-dimensional lattice, the

dynamics of the particle is governed by the master equation P =An_1Pmn_1(t)+ Bt 1Pmnsa(t)

Jd S N 2 - . +Cmflpmfl,n(t)+Dm+1Pm+1,n(t)
—P(s,t|50,0)= —T'zP(s,t|5y,0) + W;: o P(s’,t]sg,0),
P10 = TP IR0 T & WasP(S %00 ~(Ay+By+Crt D)Pra(t), (24

@D where P, 1(t) is the conditional probability of finding the
wheres represents an arbitra:dimensional vector on the Particle at site fn,n) and timet given the initial condition
lattice, Wg ¢ is the hopping probability transition from site Pmn(0)= Sim,mon,ng- The hopping rate§ are defined in F'g'

S’ to sites, T's=3g 9Wa < is the escape rate from the site 1. The general nana}ndofordered case in the square lattice .
S and P(§,t|§0,0) is the conditional probability of finding corresponds to site-independent transition rates. The associ-

) R ) e . ated RW operator results
the particle at sits at timet, given that it initially was at site

So. Introducing the RW operator Ho=A|m,n)(m,n—1|+B[m,n)(m,n+1]
+C|m,n){m—1,n|+D|m,n)(m+ 1|
H=-2 |s>Fg<s|+_(EQ) [SHWss(s'l, (2.2 —(A+B+C+D)|m,n)(m,n|. (2.5
s s’ (#s

) . . A complete treatment for the solution of the biased noniso-
the formal solution of Eq(2.1) in the Laplace representation tropic 2D problem can be found in Appendix A.

(i.e.,t—u) results in We now consider theingle impurityproblem in which
L R R the homogeneity of the ordered lattice has been destroyed at
P(s,u|so)=<s|(u—H)’1|SO>EGg,gO(u), (2.3 just one bondthe bond that connects the nearest-neighbor

sitesa andb on the square lattigeThere the transition rates
where G(u) denotes the Green’s function or propagator ofequalW,, andW,,; at every other bond it has the unper-
the RW operatoH. In the square lattice and for transition turbed valuesA,B or C,D, corresponding to horizontal or
only to nearest-neighbor sites, E@.1) reads vertical bondgsee Fig. 2 The RW operator can be written
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asH;=Hy+V, whereH, is given by Eq.(2.5 andV is the Gi(O,l),(O,O)
perturbation arising from the substitutional impurity

Go.1). 0.0 (W= WHI(G 1) 0.0)°— (Glo0).0.0)°]
Vap=b18ua8pat D280apn+ DsSanSpatDadur g - =~ D )~ Coo.co ]
(2.6) 1+2(Wer— W) (G(o.1),0,0~ G(0,0),(0,0) 28
J,4 is the Kronecker delta. We have defineg=A—W,,, ) ) .
bZiWab—B, bs=W,,— A, andb,=B—W,, iﬁhe siteb;a Putting Eq.(2.8) in Eq. (2.7), the self-consistent conditions

andb are horizontal nearest-neighbor sifese Fig. 2a)] and ~ €2d
b1=C—Wba, b2=Wab—D, b3:Wba_C, and b4:D <

—W,;, if the sitesa andb are vertical nearest-neighbor sites
[see Fig. 2b)]. The Green’s function corresponding to the
single impurity problem,G'(u)=(u—H,;)"%, can be ex-
pressed in terms of Green’s function associated to the or- wh—wl
dered lattice G°(u)=(u—H,) %, as is shown in Eq(B6) < effo - > =0.
(Appendix B. 1+2(W£ﬁ_WI)(G(O,1),(O,O)_G(O,O),(O,O)) awl)

Wepg— W > .
o o 0 0 e
14+ 2(We= W) (G (10,007~ G00).00) | r(wer)

(2.9

B. Nonisotropic random case . . . .
P Following the linear response thedihe generalized dif-

In the square lattice, the general random case corresponéission coefficientsD(u), in the anisotropic EMA context,
to the situation for which hopping rates,,B,,C,,Dy, in are now given by
Eq. (2.4) are independent, identically distributed random
variables. Thus the general case involves four distributions. DH(u)=A2W;}(u), Dl(u)=A2w£ﬁ(u), (2.10
For the nonisotropic unbiased case we t@ge=B,_; and

Cm=Dp+1. Thus the disorder is now characterized by two . .
distributions of transitions rates, corresponding to the hori—s’tOChaStIC transport theory predicts frequency-dependent

zontal and vertical directions. Here EMA consists in calcu-ConducwIty in horizonta[vertical direction, proportional to

lating the average effects of disorder by defining a cohererff?® effective ratevey [Wgﬁ]:

medium with two effective ratesu(dependent These effec- ne?

tive rates are self-consistently determined by the requirement o~ M(w)= —=D"M(u=i2xf). (2.11)

that the difference between the propagator of the impurity kT

and homogeneous problem should average zero. Thus ifhese are generalized Einstein’s relations for nonisotropic
nonisotropic unbiased problems, for each direction, horizonrandom media. Therefore the dielectric constant in each di-
tal and vertical, we introduce unknown effective rates,rection can be studied by considering the real and imaginary

Wgr(u) and Wiﬁ(u), which are determined bytwo) self-  part of the corresponding Eq.11).
consistent conditions:

where A is the lattice constanfwe will take A=1). The

i o ol . 0 o o1 IIl. NONISOTROPIC DISORDERED MODELS
(Gap( U, Wett, Wit W) (w—) = Gap(U, Wegr ,Werr),
There are several physical systems where the strong an-
<G;b(u,wgf},wgﬁ,WI))Q(W1)=ng(u,W§f,W£ﬁ). (2.70  isotropy leads to the study and the construction of models,
_ where the disorder is only present in one direction. Cases
Gy and Gg'b are thesingle impurityand thenonperturbed like this can be seen on diffusion-advection stratified
nonisotropic Green’s functions, respectively. The impuremedial® growth of thin films? etc. In this paper we will
bond connects the nearest-neighbor sitesdb. The tran-  consider the case when the disorder is only present in one
sition rates between these sites are equaltoif the bond  direction, let us say in theertical direction. Thus we can use
lies in the horizontal direction anda'! if the impure bond is  our general Eq(2.9) for the case whew™ is a sure(non-
vertical. '(w™) andQ(w!) are the probability distributions random variable andw! is a random one. The general case
assigned to the random variables” andw!, respectively.  with two types of disordefone in each directionrand when
These distributions describe the model of nonisotropic unbithere is bias in the system will be reported elsewhere.
ased disorder in the lattice. Note that considering a perturbed
Green'’s function with two impure bondsamely one in the A. Bond percolation model

vertical and one in the horizontal axigould correspond to Consider th h he disordered bonds in th
considering higher-order Terwiel's cumulants that are be- onsider the case where the disordered bonds in the ver-

yond EMA®2 Considering the explicit form of the Green's tical direction are distributed following a random percolation

functions involved in Eq(2.7) (see the Appendixes with the model. Therefore a bond in the vertical direction of the lat-
- e ol : tice can either be a conducting one with probabilityor
SUDSHIUONSA=Weq aNd D =wey), we can write insulating with probability +p. The probability measure

GI(l,O),(O,O) Q(w') is given by the dichotomous distribution

Qwh=ps(wl—wh)+(1—p)s(wh). (3.2

GO +(W<—>_W<—>)[(GO 2_(GO 2]
=—(10.(90) ef 0(1'0)'(0'0)) 09.09) , It is easy to see that even when the fractiond of insulat-

P 0
1+ 2(Werr=WT)(G1,0), 0,0~ G(0.0),(0.0) ing bonds is negligible, the portrait of any realization of dis-
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FIG. 3. Log-log plot of the real part of the@onisotropi¢ gen- FIG. 4. Frequency behavior of the imaginary partof(2#f),

eralized conductivity in the vertical direction as a function of fre- for the same values of the parameters given in Fig. 3. At low fre-
quency 2rf, for p=0.5 and different values of the paramete?t! quencies we found a proportionality between[Dw(2xf)] and
andw®". At intermediate frequencies the ac conductivity follows 27 f.

an approximate power law(27f)o (27 ).

order will not show the statistical rotational invariance of |, he very high-frequency limit 2f —c, performing a
isotropic models. This simple fact shows that the present ias expansions of the quantity] GC (u)
model cannot go continuously to the isotropic limit. Because” 5o 1)] appearing in Eq(3.2), we obta(i%iO)’(O'O

in the present papew™ is a sure variablewg(u)=w" (00),(00f PP g Eqis.2),

(fixed). So from Eq.(2.9 we only getone self-consistent
equation: 2p(1—p)(woh)?

2xf (3.3

Dl(27f)=pwll+i
P! = wh() + 2L wlg(u) W = (Wl(u)21(G g (0.0f W)
o _ Note that in this limit the behavior of the nonisotropic gen-
~G(00),(00fW)) =0 (3.2 eralized diffusion constant is the same as the 1D unbiased
case’ This fact can heuristically be understood because at

The frequency response is obtained by numerical solution gfnort times @— ), the behavior ODI(ZTTf) is mainly af-
this self-consistent condition. The corresponding expressioni§cted by the vertical bonds. The RW dispersion in the ver-
for the Green’s functions are given in Appendix A. In Figs. 3 fical direction mainly depends om' and not on the perpen-
and 4 we show the behavior of the real and imaginary part oficular hopping rate. The low-frequency behavior of
the generalized diffusion coefficient in the vertical direction,DI(Z_Trf) is obtained performing a series expansion tor
by introducing the variable change:=—i2=f. In Fig. 3itis 0 in Eq.(3.2), which then reads

possible to observe that in the low-frequency range the plot

is flat and the conductivity is given by its dc value. For the 10 T T T T
high-frequency region a saturation of [Re(2#f)] is A . (w°¢/w°‘*)= 10
shown, whereas at intermediate frequencies the ac conduc ;| n ot o= ]
tivity follows a power law: o/ (27f) = (27f)® with s>0. - © (wiw =5
This dielectric response has been observed in a broad class | . A (w
ionic and electronic isotropic systertts?’In Fig. 5 we show
the dependence of the exponems a function of the con- o | .
centration parametep. In particular it is possible to see a 04 i
decreasing behavior afwhenp grows (for a fixed value of

S )=1

wO!/w~). Therefore we obtain a frequency insensitivity of .| * & * |
Rg D! (27f)] when there are no vertical bonds broken. Be- ' 4 a ° -
sides, a similar type of behavior can also be observed if the I . A 2
analysis is modified consideringas a function of the rate 00 Y Py e o
wOl/wP=, with the bond concentratiop remaining fixed. b

The imaginary part oD!(2#f) is plotted in Fig. 4. In this

plot it is possible to see a characteristic peak and the relax- F|G. 5. Behavior of the exponestin the power lawo(2f)
ation to zero for high frequencies. We also observe a lineak (2+f)s. This exponent is shown here as a function of concentra-
dependence on [ !(27f)] versus 2rf for low frequen-  tion of the conducting bondg in the vertical direction, for several
cies. values of the ratev®l/wo-.
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. /,"~"§'=*,_ \\‘ T FIG. 7. dc conductivity from the nonisotropic EMA, E.5),
NI ATTEN B T T for two values of the rate/°!/w®~ as a function of the concentra-
304 & 6 7 8 tion p. Note that as consequence of anisotropy fegcolation
Re[ D (2nf)] thresholdis shifted top=0.

FIG. 6. The Cole-Cole diagram, [B!(2«f)] versus 5
R D!(2#f)], for different values of the parametes8! andw®~. wo! _Wlﬁ(o) =_(WOI —Wlﬁ(O))arCtarﬁ \ /WTﬁ(O)/WOH).
Observe the almost semicircular characteristic and the departure oP ¢ m ¢ €
this behavior for lower values qf. For comparison we have repre- (3.9
sented here the curve for the isotropic disordered ¢&%ev~")
=Q(wh)=ps(w—1)+(1—-p)s(w)] at the percolation threshold
(Piso=1/2).

This zero-frequency limit was also obtained by Bernasoni
by using Kirpatrick’s approach. From E(B.5) it is easy to
see that fop=0 (all the bonds in the vertical direction are
broken the solution iswgﬁ(0)=0. In the opposite case(
=1), the solution i&vgﬁ(O)ZWOI as was expected. In Fig. 7
2 arctar \/VW) a2t we have p_Iotte_d the e_ffectwe ratelectric conduc_'u_vEyIm the
X ] 3 \/TT vertical direction using the rescaled quantitiesx(0)
TWet WerW =w/(0)/wi(p=1) and w’=w°//w’", as a function of

pWO! —whg+ [ (Wl 2—wigw®']

|2 - 27f the concentratiorp (for two values of\7v°). A comparison
Fi[ (W) = WegW ™! |——=—== with Monte Carlo simulations has been presented béfore.
eff eff 4\/W P

At this point it is useful to note that anisotropic percolation

1 0o models have broadly similar properties to those of isotropic

64w W e on( — i

x| In(27f)—In| ———] | =0. (3.4)  networks. However, the critical concentratipg(=1/d) in
w£ﬁ+w°H the isotropic case becomes a “critical surface” in the

nonisotropic model. This fact can also be seen from(Bd)
From this equation, Clef’;lrly. Whe_nﬂ'Z—>0 the real part of pecause the threshold to zero conducti\[i?ygﬁ(O):O] is
D!(2f) saturates and its imaginary part goes to zero.  shifted top=0. This phenomenon can also be heuristically
The overall frequency response can alternatively be reppierpreted because the walker can reach any place in the

resented by using a Cole-Cole (_Jllagraﬁm[_Dl(_quf)] lattice. For anyp#0 there are always connecting paths be-
Versus REDI(Z_WT)]} as shown in Fig. 6. In this figure we tyeen any two sites. We must note that our nonisotropic
find almostsemicircular shapes, characteristic of this type ofodel reproduces the 1D and 2D dc isotropic result. Taking
diagrams. It is also possible to observe a little departure fronhe [imit w°~ -0 in Eq.(2.9) we obtain for the effective rate
the semicircular plot for lower values pf We find that this WIﬁ(O)=(1/WI)’1, that is, the 1D mean effective raten
dhepar;ur% is independent ?f thedran/@;/vt\)/%m,uga%hi;g US  the other hand, if in Eq(2.9 we consider the limitw®"
that this departure is mainly produce ssordej pa- .
rameterp. OFr)1 the other hangi/, lfhe larger tge rat%llwo“’pis, ;w;ﬁ(O), we obtain {(Wex(0) WI)/-(Wgﬁ(O)TLWI»-_O’

. e at is, the self-consistent 2D equation for isotropic bond
the larger the diameter of the semicircular Cole-Cole plot isordered models
will be. This can also be seen by a swift inspection of the reaij ’
part of D!(2f). To make a comparison of our nonisotropic _
cases with the well-known isotropic one, we have repre- B. Weak and strong disordered model
sented a curve for the last, at the percolation threshpld ( To consider other cases of disorder in our formalism, we
=1/2). It is important to note that as a consequence of théntroduce here a monoparametric distribution function:
anisotropy, there is a shift on the left limit of any Cole-Cole

curve (dc limit) toward greater value of the EIBI(quf)]. (1—a)w™ %, 0o<ws<l1
However, the isotropic case always goes to zero ffor Q(w)= 0 otherwise (3.9
<Piso- , ,

The dc conductivity corresponds to the limit-0 in Eq.  which describes weak and strong disorder by changing the
(3.4). Thus we reobtain our previously reported reult parametefw. If —oc<a<0, we get a sort ofveak disorder
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coherent rate is bounded by the values 039%Z#(0)
<0.614. Therefore we found that Wf°~ is lower than the
minimum value ofwg4(0), thebehavior of the nonisotropic
coherent ratewgﬁ(O) is always lower than the isotropic one
(in the same range af). The opposite case is also valid. If
w9 is larger than the maximum value of.(0) the behav-

ior of the nonisotropic coherent ranﬁ(O) is always larger
than the isotropic one. For the strong disorder case
€(0,1), a similar conclusion can also be seen from Fig. 8.
The remarkable point is that for strong disorder the system
can mimic a quasi-1D behavior. This fact is also seen from
Fig. 8 for ¢ €(0,1). For the isotropic 2bond disordered
models the system has always a finite dc conductfitihis

is not the case in the isotropisite disordereda model,

FIG. 8. dc diffusion coefficient in the vertical direction for dif- where in any dimension the dc conductivity goes to zero!

ferent values of the parameta®~, in presence of weaka(<0)
and strong disorder @ a<1). Also, we have plotted the isotropic

case(full triangles.

(only a finite number of inverse momentg¢w*), with k
=1,2,3 ..., remain finitg, whereas if 6a<1 we get a
class ofstrong disorder(all the inverse moments diverge

Nevertheless, for the nonisotrogiond disorderede model

and whenw®~/w4(0)<1 the dc conductivity goes to zero,
for a«e(0,1), very much before the isotropic cagee the

full circles in Fig. 8. This fact can be interpreted as showing
that the nonisotropic system has a quasi-1D behavior. In the
opposite case when®~/w(0)>1 the transition to zero dc
conductivity in the limita— 1 is much more abrupt than in

As we have pointed out before, in this work we will consider the sotropic case as can be expected from the high anisot-
only the disorder in the vertical direction. In this section wegpy. These behaviors can heuristically be understood: If the

will be interested in the dc limit of Eq2.9) and we will
consider the disorder to be characterized by 6g6). The
spectral study omgﬁ(u) for u#0 can also be done in a
similar way. Solving Eq(2.9) by usingw™ as nonrandom
and Eq.(3.6) as the probability distribution for the random

variablew!, the self-consistent condition reads

W(Ieff(o)
1-«a

JFi[1,1—a;2— a;— F(wig(0),w)]

1
— = ,F[1,2— a;3— a;— F(Wit(0),w’~)]=0.

2—«a

3.7

Here, ,F,(a,b;c;Z) is the hypergeometric function, where

the argumen is given by the function

F(wig(0),w0)=2 arctar{

—2wly(0) arctar(

In Fig. 8 we show the behavior of thagﬁ(O) for —1<a
<1 and for different values of the paramete?~. Also we
show the isotropic coherent rate.;(0). Note that the iso-
tropic case can also be obtained by taking the limit$
—Wl(0) and wiy(0)—wet(0) in our self-consistent Eq.
(3.7. This is so because in this limiF(wiy(0),w°")

— 1/Wg(0).

wii(0)
WO<—>

w£ﬁ<0)) 1

wo

(3.9

Wi 0)

perpendicular rate is larger than the isotropic coherent rate,
the effective conducting paths in the vertical direction are
enhanced by the probablarge excursions in the ordered
direction [becausanv®~>w4(0)]. Therefore the conductiv-

ity in the disordered direction is larger than the isotropic
case. The opposite case®~<w(0) can also be under-
stood by the same arguments, leading then to a reduction to
the effective conducting paths in the vertical direction.

The frequency-dependent diffusion coefficiéfur the «
model of disordercan also be obtained following the same
methodology as for the dc conductivity. Now the self-
consistent condition is the same as E8}.7), but a new ar-
gument?—'(wgﬁ,wo“’,u) in the hypergeometric function must
be insertedtherefore involving elliptic integra)s

IV. CONCLUSIONS

The results presented here give insight into the frequency-
dependent behavior of the conductivity in nonisotropic bond
disordered models. We have worked out this problem in a
generalized context of the well-known EMA. Our approach
leads to a set of coupled self-consistent equations to be able
to consider the anisotropy of the random media. Our ap-
proach is quite general and provides the possibility to study
other models of disorder in two- or three-dimensional lat-
tices. In the present work we have restricted the analysis to
the square lattices. Therefore we have worked with a pair of
coupled nonlinear self-consistent equations, one for each co-
herent rate, namelyvgﬁ(u) andwgg(u). We have exempli-
fied our method by considering two models of disor¢lait
only) in the vertical direction. Specifically, the anisotropic
bond percolation model given by E¢3.1), and the aniso-
tropic « model given by Eq(3.6). These models illustrate

Let us now comment about the behavior of the diffusionthe main characteristics of the procedure and allow us to get
coefficient in the vertical direction. The lattice parameter hasa better understanding of the problem of the nonisotropic
been takerA =1; thus the diffusion coefficient is equal to electric conductivity. Within the present formalism we have

the coherent rate. Far in the rangeg —1,0], the isotropic

also reobtained the dc conductivity previously reported by
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using Kirkpatrick's schemé®™° The present approach also  4,P,, 1(t)=APy 1 1(t)+BPp s 1(t) + CPr14(t)
allows us to get the complete frequency response in a unified ’ ' ' '

way. For the nonisotropic percolation model, the lack of the +DPpian(t) =(A+B+C+D)Pp (1),
percolation threshold, in comparison with the isotropic case (A1)
(pc=1/2), can be seen from Fig. 7. The corresponding spec-

tral analysis shows that the Cole-Cole diagrams, for thecorresponding to the RW operator given by E25), can be

nonisotropic case, have a shift in the low-frequency limit, @Smapped on the unbiased case through the transformation
can be seen in Fig. 6. For this model of disorder, the fre-

guency dependenc? of R2!(27f)] shows a power-law di- o o
electric responsg o'(27f)x(27f)°] at intermediate fre- _

quencies. From Fig. 5 it is possible to see that the exponent Pm'”(t)_va”(t)(§> (B) exd—(A+B+C+D

s depends on the quantity®//w°, the rate between the

intrinsic conductivities corresponding to the disordered and —2\AB-2\/CD)t], (A2)
ordered axis. Also, it depends on the concentrafioithus

we have found that the value of the exponenstrongly — whereQ,, ,(t) is the solution of the anisotropi@inbiased
depends on the physical parameters of the nonisotropimaster equation

model. In Sec. Il B we have found a quasi-1D behavior for
the @ model in the strong disorder region. Finally the density _ .
of states for anisotropic ordered lattices was reported. Ex- Qmn=X(Qmn+17 Qmn-172Qmn)

pressions for the limits corresponding to 2D isotropic lattices +Y(Qm+1nT Qm-10—2Qmn)- (A3)
and the 1D case have explicitly been calculated in Appendix

A.

. Here there are only twédiffereny hopping ratesX=AB
The temperature dependence of the spectral properties cal yy— J/CD.

be introduced in our framework through the temperature de- We are interested in the Green's function of E43).

pendence of ratew! andw*". The present approach allows . . :
us to study the interplay between the temperature activatelaencormlng a Laplace and Fourier transform in EAg), the

hopping and the nonisotropic disorder phases in a unifie&_oIlJtlon correspondmg to the initial conditioQm,(t=0)
= Omm.Onn. CAN be written as
theory. \Mg“N.Ng
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APPENDIX A: NONISOTROPIC PROBLEM (A4)
The solution of the general biased homogeneous one step
master equation Integrating oveig,; we obtain
|
X X 2 m—mg
e ("ol A — —cosq,— \/ A——cosq,| —1
i 1 f” ; Y Q2 Y 02
G =— , A5
(m,n),(mgy,Nng) anyY) - (7] \/ X > ( )
A— —cos -1
Y a2
|
whereA =1+ X/Y+u/2Y. From Eq.(A5) and using the re- 1
lation G u)= ———KkK(k), A7
(0,0),(0,0fU) 2 XY (k) (AT)
k? T p
O(p,k)+II| — k| —K(K)=5\/———— where
P 2 NV (1+p)(K+p)
(A6) " \/ 16XY ng
for 0<k<1, between the the complete elliptical integrals of NV (u+4X)(u+4y) (AB)

the first kind, K(k), and the third kindII(p,k), we have
calculated the following elements &°: and
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. 1 11
G(l,O),(o,m(“):—WJx—k 25 KK

1
1
G? ) ! k +1 K(K)
u = — — J—
on.0of =55 127,
1
2
wherep;=4Y/(u+4X) andp,=4X/(u+4Y). The expres-

sions(A9) and(A10) are symmetrical under the transforma-
tion XY, as we can expect. Additionally, we note that the
isotropic two-dimensional case is recovered with the identi-

fication X=Y. In this situation, Eq(A7) results in

GO is0) 1

(0.0).(00” 27y (1 + u/dY) K

(A11)

(1+u/4Y))'

and Eqgs.(A9) and(A10) coalesce in the expression

1
G100 57y K

1
(1+u/4Y))_W'

(A12)

In the text we are concerned with unbiased systexis:

=A=B andY=C=D.

Density of states

From Eq.(A4) the band of relaxation modésresults in
B=[—4(X+Y),0]. The density of stategelaxation modes
per site is given bY

1

nﬂo+
for AeB. In the complex plane, the functioK (k) has

branch cuts connecting1 and+« and —1 and —», re-
spectively, on the real axis. For<0 we define

Bi=[—4(X+Y),—4W-]JU(—4W_,0), (Al4)
Bo=(—4W. ,—4W.),
By=(—%,—4W.),

where W~ =maxX,Y) and W_=min(X,Y). For u>0 oru

e B3 we find |k|<1, but forueB; we get the condition
|k|>1. We must note that fon e B, resultk=ik, where

-

For ueB,, taking k=kg+ie,
known expressiorté

16XY

(U+4X)(u+4Y)’ (AL5)

e~0"%, and using the

K(K)=k Kk Y +iK (k" 1k2=1)] (forkg>1),
(A163)

NONISOTROPIC EFFECTIVE-MEDIUM APPROXIMATION . ..
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K(k)=|k| Kk H—iK(k 1Vk?=1)] (forkg<—1),

(Al6b)

we obtain for the anisotropic case
NOn) = 1 « \/ N2+ 4(X+Y)N AL7
RPN ey ) A

The elliptic integralK (k) behaves as [A/\1—k?] ask—1.
Thus N(M\) has logarithmic singularities at the inner edges
(—4W. and —4W._), and exhibits at both external band
edgeqd —4(X+Y) and Q a discontinuity.

For ue B,, using the expresiof%

5 1 ( k2 )
K(ik)= K —

(A18)
V1+K?2 1+k
and
_ k2 16XY
k= —=\/-————<1, (A19
1+k? u?+4(X+Y)u
we obtain
G ) ! KK (K) (A20)
u)= .
(0,0),(0,0{ 27T\/X_Y
Hence we find
NOV= 2 1
w2 = (N°+4(X+Y)N)
16XY
X K( \/— _ (A21)
N2+HA(X+Y)N

N(N\) also has logarithmic singularities at the edgeBef
(—4W- and —4W.).

We note that the isotropic two-dimensional case is recov-
ered with the identificatiorlX=Y. The band of relaxation
modes becomes the intervat-8Y,0) and B, disappears.
However, the density of states retains a logarithmic singular-
ity at the center of the band. Additionally, the one-
dimensional case is recovered takM@.=0. The band be-
comes the interval {4W-,0) and B; disappears. Since
K(0)=m/2 we obtain the expresion N(\)
=1/m\J—N(A+4W-) from Eq.(A21). In this case, the den-
sity of states presents a power-law divergent behavior at the
band edges.

Taking the substitution.= — w?, the problem is mapped
on the frequency spectrum of oscillations in 2D anisotropic
lattices whose vibrations are transvefsermal to the equi-
librium plane of the lattice

APPENDIX B: SINGLE IMPURITY PROBLEM

The perturbed problem is defined b{{=Hy+V, where
the Hy andV are given by Eqs(2.5 and (2.6). The corre-
sponding Green’s functio®'=(u—H,) ! can be written in
terms of the Green'’s function associated to the homogeneous
lattice, G%u)=(u—Hy)~L. This can be performed in
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d-dimensional hypercubic lattices for any selected directiorfunction:
of the impure bond. Defininy*=|a)b(a|, H;=H;—V?,

1_ o -1 . .
G'=(u—H,) 1, and performing a Dyson expansion G2 =G0+ GlybyGlu(1—b,Gly) L, (B5)
G'=G'+G'V!G'+GVIGVIG +- -, (BY)
. 1 Note that by definitionbg=—b;, b,=—b,. Inverting the
we can expres&' in terms of G™:

process, we finally obtain the exact expression

Gup=Gipt Ghrab1Gas(1-b1GI) ™1 (B2
) . GO +b (GO GO _GO GO)
The same scheme must be applied definiffg=|a)b,(b|, i ab’ T4 PabPba Paabb) (B6)
H2=Hl—-V2, andG?=(u—H,) L. This enables us to ex- 14+ by(G2— G, + by (G2~ G2,
pressG! in terms of G2
GiﬁzGiﬁ—i_GiabZGg,B(l_bZGga)il- (B3) The inhomogeneous Green's function appearing in Eq.

(2.7) is calculated in absence of bias; i.A=B andC=D.
Then, definingV®=|b)bs(al, Hs=H,—V? and G>=(u  Thus resultaV,,=W,, andb,=b,. Given the homogeneity
—H3) !, we can expres&? in terms of G*: of the unperturbed lattice we always ha@d,=G{y .00
2 3 3 3 3.1 for any sitea and as consequence of the no bias assumed,
Cap=Capt CupbsGap(1=bsGap) B4 resultsG2, =Gy, for any pair of nearest-neighbor sitasb.
Finally, definingV*=|b)b,(b|, we obtainH,=H;—V* and In the text we have chosen the sie=(0,0) and the two
we can expres§? in terms ofG°, the homogeneous Green’s possibilities(1,0) and (0,1) for the sitea.
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