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Nonisotropic effective-medium approximation for diffusion problems in random media
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We present the nonisotropic effective-medium approximation to solve diffusion problems in a two-
dimensional anisotropic random media. The problem has been worked out by introducing a generalization of
the well-known effective-medium approximation. A set of coupled nonlinear self-consistent equations must be
solved to find the effective rates in each direction. We have considered~analytically! some particular models
in short and large frequency limits. The dc conductivity is also compared against the isotropic case. The ac
conductivity and Cole-Cole diagrams for the nonisotropic random bond percolation model have been analyzed
in terms of the physical parameters that characterize the anisotropy and the disorder in the media. A mono-
parametric nonisotropic bond disordered model (a model! has also been worked out to show the applicability
of the present approach in the context of weak or strong disorder. Such a model of disorder leads the system
to show a quasi-one-dimensional behavior, proper of nonisotropic materials.
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I. INTRODUCTION

We are interested in the study of anomalouspure-
diffusion ~i.e., without bias! and ac-electric conductivity on
nonisotropic random media. Typical examples where
frequency-dependent response needs to be found belon
the field of solid-state transport, but also in geologic
studies1 ~dielectric properties of reservoir rocks! the transport
on anisotropic heterogeneous media needs to
characterized.2 Let us mention here that ac conductivity me
surements of La2NiO41d have recently been carried ou4

showing a strong anisotropy in the electric conductivity. T
characteristics of these materials can be summarized as
lows: ~i! the system has strong nonisotropic thre
dimensional ~3D! behavior ~which has been establishe
through dc measurements! suggesting that the conductivit
in the NiO2 basal plane exceeds the one along the orthogo
c axis by two orders of magnitude;~ii ! the frequency behav
ior of the Re@s(2p f )# shows a power law (2p f )s for inter-
mediate frequencies, with an exponent in the range 0.38,s
,0.8; ~iii ! this system involves weak Anderson localiz
states, therefore justifying the use of a hopping stocha
model for its transport description. Here we propose a g
eral description of anisotropic anomalous diffusion within
stochastic transport theory that allows the interplay of anis
ropy and disorder.

The stochastic transport theory has been developed i
pendently by Scher and Lax5 and Alexanderet al.6 In par-
ticular, Odagaki and Lax7 have employed the effective
medium approximation~EMA! to calculate the average
random walk propagator, obtaining in this way a generaliz
Einstein relation from a mesoscopic point of view. It
known that EMA gives the correct anomalous diffusion e
PRB 610163-1829/2000/61~1!/308~9!/$15.00
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ponent for unbiased walks,6,8 but also more complex system
such as conductivity in granular metal film9 can be described
in the context of EMA. In the recent past, several extensi
of EMA have been performed to study the first passage t
distribution in finite chains,10,11 and the injection of externa
current of particles in random media.12,13

In the present work, we extend the EMA considering a
disordered system that also presents anisotropy. For this
pose we introduce different bond disorder distributions
each direction in the lattice~namely horizontal and vertical!.
Thus a set of coupled nonlinear self-consistent equati
must be solved to find effective diffusion constants in ea
direction. We calculate the nonisotropic ac conductivity f
the bond percolation model, and the dc conductivity for a
other class of disorder presenting weak and strong limits.
a matter of fact, the nonisotropic dc conductivity for bon
percolation was previously reported by using Kirkpatrik
approach for square and cubic lattices,14 and for triangular
lattices,15 too. In Bernasconi’s paper the author considers
effective electric network, and analyzes the perturbation p
duced on the voltage across the resistances by changi
single conductance oriented along each direction of the
ternal electric field. Thus the effective conductivities are d
termined by the requirement that the voltage variatio
should average zero. In a previous paper, using our gen
ized EMA we have studied the dc conductivity on a 2
nonisotropic percolation network.16 Here, we extend these
studies to consider the spectral behavior and other mode
disorder, too. For simplicity, we restrict the problem f
square lattice, but it can also be extended to 3D.

We start our description with a 2D random walk~RW! on
a random nonisotropic media, which can be represented
one-step master equation with discrete indexes.17 In Sec. II
308 ©2000 The American Physical Society
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PRB 61 309NONISOTROPIC EFFECTIVE-MEDIUM APPROXIMATION . . .
the general theory of nonisotropic EMA is presented, all
calculations have been done on square lattices. Section
devoted to present some cases of anisotropic percolation
weak and strong disorder models. In Sec. IV we present
conclusions concerning our approach. The mathematical
tails concerning Green’s functions and the density of sta
in anisotropic lattices can be found in the Appendixes.

II. 2D NONISOTROPIC EMA

A. Nonisotropic ordered case

For a random walk~RW! on ad-dimensional lattice, the
dynamics of the particle is governed by the master equa

]

]t
P~sW,tusW0,0!52GsWP~sW,tusW0,0!1 (

sW8(ÞsW)

WsW,sW8P~sW8,tusW0,0!,

~2.1!

wheresW represents an arbitraryd-dimensional vector on the
lattice, WsW,sW8 is the hopping probability transition from sit
sW8 to sitesW, GsW5(sW8(ÞsW)WsW8,sW is the escape rate from the si
sW, and P(sW,tusW0,0) is the conditional probability of finding
the particle at sitesW at timet, given that it initially was at site
sW0. Introducing the RW operator

H52(
sW

usW&GsW^sWu1 (
sW8,(ÞsW)

usW&WsW,sW8^s
W8u, ~2.2!

the formal solution of Eq.~2.1! in the Laplace representatio
~i.e., t→u) results in

P̂~sW,uusW0!5^sWu~u2H !21usW0&[GsW,sW0
~u!, ~2.3!

whereG(u) denotes the Green’s function or propagator
the RW operatorH. In the square lattice and for transitio
only to nearest-neighbor sites, Eq.~2.1! reads

FIG. 1. Definitions of hopping rates associated with the s
(m,n) for the general case in the square lattice. The circles re
sent sites in the lattice.
e
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] tPm,n~ t !5An21Pm,n21~ t !1Bn11Pm,n11~ t !

1Cm21Pm21,n~ t !1Dm11Pm11,n~ t !

2~An1Bn1Cm1Dm!Pm,n~ t !, ~2.4!

where Pm,n(t) is the conditional probability of finding the
particle at site (m,n) and timet given the initial condition
Pm,n(0)5dm,m0

dn,n0
. The hopping rates are defined in Fi

1. The general nonrandom~ordered! case in the square lattic
corresponds to site-independent transition rates. The as
ated RW operator results

H05Aum,n&^m,n21u1Bum,n&^m,n11u

1Cum,n&^m21,nu1Dum,n&^m11,nu

2~A1B1C1D !um,n&^m,nu. ~2.5!

A complete treatment for the solution of the biased noni
tropic 2D problem can be found in Appendix A.

We now consider thesingle impurityproblem in which
the homogeneity of the ordered lattice has been destroye
just one bond~the bond that connects the nearest-neigh
sitesa andb on the square lattice!. There the transition rate
equalWab and Wba ; at every other bond it has the unpe
turbed valuesA,B or C,D, corresponding to horizontal o
vertical bonds~see Fig. 2!. The RW operator can be writte

e
e-

FIG. 2. Sketch of the single impurity problem. A substitution
impurity has been allocated between the nearest-neighbor sita
andb in the square lattice. The pair of sitesa, b can be set in the
horizontal direction~a! or in the vertical direction~b!.
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310 PRB 61REYES, CÁCERES, AND PURY
asHi5H01V, whereH0 is given by Eq.~2.5! andV is the
perturbation arising from the substitutional impurity

Vab5b1daadba1b2daadbb1b3dabdba1b4dabdbb .
~2.6!

dab is the Kronecker delta. We have definedb15A2Wba ,
b25Wab2B, b35Wba2A, and b45B2Wab if the sitesa
andb are horizontal nearest-neighbor sites@see Fig. 2~a!# and
b15C2Wba , b25Wab2D, b35Wba2C, and b45D
2Wab if the sitesa andb are vertical nearest-neighbor site
@see Fig. 2~b!#. The Green’s function corresponding to th
single impurity problem,Gi(u)5(u2Hi)

21, can be ex-
pressed in terms of Green’s function associated to the
dered lattice,G0(u)5(u2H0)21, as is shown in Eq.~B6!
~Appendix B!.

B. Nonisotropic random case

In the square lattice, the general random case corresp
to the situation for which hopping ratesAn ,Bn ,Cm ,Dm in
Eq. ~2.4! are independent, identically distributed rando
variables. Thus the general case involves four distributio
For the nonisotropic unbiased case we takeAn5Bn21 and
Cm5Dm11. Thus the disorder is now characterized by tw
distributions of transitions rates, corresponding to the h
zontal and vertical directions. Here EMA consists in calc
lating the average effects of disorder by defining a cohe
medium with two effective rates (u dependent!. These effec-
tive rates are self-consistently determined by the requirem
that the difference between the propagator of the impu
and homogeneous problem should average zero. Thu
nonisotropic unbiased problems, for each direction, horiz
tal and vertical, we introduce unknown effective rate
weff

↔(u) and weff
l (u), which are determined by~two! self-

consistent conditions:

^Gab
i ~u,weff

↔ ,weff
l ,w↔!&G(w↔)5Gab

0 ~u,weff
↔ ,weff

l !,

^Gab
i ~u,weff

↔ ,weff
l ,wl!&V(wl)5Gab

0 ~u,weff
↔ ,weff

l !. ~2.7!

Ga,b
i andGa,b

0 are thesingle impurityand thenonperturbed
nonisotropic Green’s functions, respectively. The impu
bond connects the nearest-neighbor sitesa andb. The tran-
sition rates between these sites are equal tow↔ if the bond
lies in the horizontal direction andwl if the impure bond is
vertical.G(w↔) andV(wl) are the probability distributions
assigned to the random variablesw↔ and wl, respectively.
These distributions describe the model of nonisotropic un
ased disorder in the lattice. Note that considering a pertur
Green’s function with two impure bonds~namely one in the
vertical and one in the horizontal axis! would correspond to
considering higher-order Terwiel’s cumulants that are
yond EMA.8,12 Considering the explicit form of the Green
functions involved in Eq.~2.7! ~see the Appendixes with th
substitutionsA5weff

↔ andD5weff
l ), we can write

G(1,0),(0,0)
i

5
G(1,0),(0,0)

0 1~weff
↔2w↔!@~G(1,0),(0,0)

0 !22~G(0,0),(0,0)
0 !2#

112~weff
↔2w↔!~G(1,0),(0,0)

0 2G(0,0),(0,0)
0 !

,

r-

ds
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G(0,1),(0,0)
i

5
G(0,1),(0,0)

0 1~weff
l 2wl!@~G(0,1),(0,0)

0 !22~G(0,0),(0,0)
0 !2#

112~weff
l 2wl!~G(0,1),(0,0)

0 2G(0,0),(0,0)
0 !

.

~2.8!

Putting Eq.~2.8! in Eq. ~2.7!, the self-consistent condition
read

K weff
↔2w↔

112~weff
↔2w↔!~G(1,0),(0,0)

0 2G(0,0),(0,0)
0 !

L
G(w↔)

50,

K weff
l 2wl

112~weff
l 2wl!~G(0,1),(0,0)

0 2G(0,0),(0,0)
0 !

L
V(wl)

50.

~2.9!

Following the linear response theory7 the generalized dif-
fusion coefficientsD(u), in the anisotropic EMA context
are now given by

D↔~u!5L2weff
↔~u!, Dl~u!5L2weff

l ~u!, ~2.10!

where L is the lattice constant~we will take L51). The
stochastic transport theory predicts frequency-depend
conductivity in horizontal@vertical# direction, proportional to
the effective rateweff

↔ @weff
l #:

s↔[l]~v!5
ne2

kT
D↔[l]~u5 i2p f !. ~2.11!

These are generalized Einstein’s relations for nonisotro
random media. Therefore the dielectric constant in each
rection can be studied by considering the real and imagin
part of the corresponding Eq.~2.11!.

III. NONISOTROPIC DISORDERED MODELS

There are several physical systems where the strong
isotropy leads to the study and the construction of mod
where the disorder is only present in one direction. Ca
like this can be seen on diffusion-advection stratifi
media,18 growth of thin films,4 etc. In this paper we will
consider the case when the disorder is only present in
direction, let us say in thevertical direction. Thus we can use
our general Eq.~2.9! for the case whenw↔ is a sure~non-
random! variable andwl is a random one. The general ca
with two types of disorder~one in each direction! and when
there is bias in the system will be reported elsewhere.

A. Bond percolation model

Consider the case where the disordered bonds in the
tical direction are distributed following a random percolati
model. Therefore a bond in the vertical direction of the l
tice can either be a conducting one with probabilityp, or
insulating with probability 12p. The probability measure
V(wl) is given by the dichotomous distribution

V~wl!5pd~wl2w0l!1~12p!d~wl!. ~3.1!

It is easy to see that even when the fraction 12p of insulat-
ing bonds is negligible, the portrait of any realization of d



of
e
s

n
io
. 3
t o
n

pl
he

du

ss

-
a

of
e
th

la
e

n-
sed
at

er-
-
of

tra-
l

e-

s

re-

PRB 61 311NONISOTROPIC EFFECTIVE-MEDIUM APPROXIMATION . . .
order will not show the statistical rotational invariance
isotropic models. This simple fact shows that the pres
model cannot go continuously to the isotropic limit. Becau
in the present paperw↔ is a sure variable,weff

↔(u)5w0↔

~fixed!. So from Eq.~2.9! we only getone self-consistent
equation:

pw0l2weff
l ~u!12@weff

l ~u!w0l2~weff
l ~u!!2#~G(1,0),(0,0)

0 ~u!

2G(0,0),(0,0)
0 ~u!!50. ~3.2!

The frequency response is obtained by numerical solutio
this self-consistent condition. The corresponding express
for the Green’s functions are given in Appendix A. In Figs
and 4 we show the behavior of the real and imaginary par
the generalized diffusion coefficient in the vertical directio
by introducing the variable change:u→ i2p f . In Fig. 3 it is
possible to observe that in the low-frequency range the
is flat and the conductivity is given by its dc value. For t
high-frequency region a saturation of Re@Dl(2p f )# is
shown, whereas at intermediate frequencies the ac con
tivity follows a power law: sl(2p f )}(2p f )s with s.0.
This dielectric response has been observed in a broad cla
ionic and electronic isotropic systems.19,20 In Fig. 5 we show
the dependence of the exponents as a function of the con
centration parameterp. In particular it is possible to see
decreasing behavior ofs whenp grows~for a fixed value of
w0l/w0↔). Therefore we obtain a frequency insensitivity
Re@Dl(2p f )# when there are no vertical bonds broken. B
sides, a similar type of behavior can also be observed if
analysis is modified considerings as a function of the rate
w0l/w0↔, with the bond concentrationp remaining fixed.
The imaginary part ofDl(2p f ) is plotted in Fig. 4. In this
plot it is possible to see a characteristic peak and the re
ation to zero for high frequencies. We also observe a lin
dependence on Im@Dl(2p f )# versus 2p f for low frequen-
cies.

FIG. 3. Log-log plot of the real part of the~nonisotropic! gen-
eralized conductivity in the vertical direction as a function of fr
quency 2p f , for p50.5 and different values of the parameterw0l

and w0↔. At intermediate frequencies the ac conductivity follow
an approximate power laws(2p f )}(2p f )s.
nt
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In the very high-frequency limit 2p f→`, performing a
series expansions of the quantity@G(1,0),(0,0)

0 (u)
2G(0,0),(0,0)

0 (u)# appearing in Eq.~3.2!, we obtain

Dl~2p f !.pw0l1 i
2p~12p!~w0l!2

2p f
. ~3.3!

Note that in this limit the behavior of the nonisotropic ge
eralized diffusion constant is the same as the 1D unbia
case.7 This fact can heuristically be understood because
short times (u→`), the behavior ofDl(2p f ) is mainly af-
fected by the vertical bonds. The RW dispersion in the v
tical direction mainly depends onwl and not on the perpen
dicular hopping rate. The low-frequency behavior
Dl(2p f ) is obtained performing a series expansion foru
;0 in Eq. ~3.2!, which then reads

FIG. 5. Behavior of the exponents in the power laws(2p f )
}(2p f )s. This exponent is shown here as a function of concen
tion of the conducting bondsp in the vertical direction, for severa
values of the ratew0l/w0↔.

FIG. 4. Frequency behavior of the imaginary part ofDl(2p f ),
for the same values of the parameters given in Fig. 3. At low f
quencies we found a proportionality between Im@Dl(2p f )# and
2p f .
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312 PRB 61REYES, CÁCERES, AND PURY
pw0l2weff
l 1@~weff

l !22weff
l w0l#

3S 2 arctan~Aweff
l /w0↔!

pweff
l 2

p

8

2p f

Aweff
l w0↔D

1 i @~weff
l !22weff

l w0l#
2p f

4Aweff
l w0↔

3F ln~2p f !2 lnS 64weff
l w0↔

weff
l 1w0↔ D G50. ~3.4!

From this equation, clearly when 2p f→0 the real part of
Dl(2p f ) saturates and its imaginary part goes to zero.

The overall frequency response can alternatively be r
resented by using a Cole-Cole diagram$Im@Dl(2p f )#
versus Re@Dl(2p f )#% as shown in Fig. 6. In this figure w
find almostsemicircular shapes, characteristic of this type
diagrams. It is also possible to observe a little departure fr
the semicircular plot for lower values ofp. We find that this
departure is independent of the ratew0l/w0↔, teaching us
that this departure is mainly produced by the~disorder! pa-
rameterp. On the other hand, the larger the ratew0l/w0↔ is,
the larger the diameter of the semicircular Cole-Cole p
will be. This can also be seen by a swift inspection of the r
part ofDl(2p f ). To make a comparison of our nonisotrop
cases with the well-known isotropic one, we have rep
sented a curve for the last, at the percolation threshold (piso
51/2). It is important to note that as a consequence of
anisotropy, there is a shift on the left limit of any Cole-Co
curve ~dc limit! toward greater value of the Re@Dl(2p f )#.
However, the isotropic case always goes to zero forp
,piso.

The dc conductivity corresponds to the limitu→0 in Eq.
~3.4!. Thus we reobtain our previously reported result16

FIG. 6. The Cole-Cole diagram, Im@Dl(2p f )# versus
Re@Dl(2p f )#, for different values of the parametersw0l andw0↔.
Observe the almost semicircular characteristic and the departu
this behavior for lower values ofp. For comparison we have repre
sented here the curve for the isotropic disordered case@G(w↔)
5V(wl)5pd(w21)1(12p)d(w)# at the percolation threshold
(piso51/2).
p-

f
m

t
l

-

e

pw0l2weff
l ~0!5

2

p
~w0l2weff

l ~0!!arctan~Aweff
l ~0!/w0↔!.

~3.5!

This zero-frequency limit was also obtained by Bernascon14

by using Kirpatrick’s approach. From Eq.~3.5! it is easy to
see that forp50 ~all the bonds in the vertical direction ar
broken! the solution isweff

l (0)50. In the opposite case (p
51), the solution isweff

l (0)5w0l as was expected. In Fig.
we have plotted the effective rate~electric conductivity in the
vertical direction! using the rescaled quantitiesw̃eff

l (0)

[weff
l (0)/weff

l (p51) and w̃0[w0l/w0↔, as a function of

the concentrationp ~for two values ofw̃0). A comparison
with Monte Carlo simulations has been presented befor16

At this point it is useful to note that anisotropic percolatio
models have broadly similar properties to those of isotro
networks. However, the critical concentrationpc(51/d) in
the isotropic case becomes a ‘‘critical surface’’ in th
nonisotropic model. This fact can also be seen from Eq.~3.5!
because the threshold to zero conductivity@w̃eff

l (0)50# is
shifted top50. This phenomenon can also be heuristica
interpreted because the walker can reach any place in
lattice. For anypÞ0 there are always connecting paths b
tween any two sites. We must note that our nonisotro
model reproduces the 1D and 2D dc isotropic result. Tak
the limit w0↔→0 in Eq.~2.9! we obtain for the effective rate
weff

l (0)5^1/wl&21, that is, the 1D mean effective rate.6 On
the other hand, if in Eq.~2.9! we consider the limitw0↔

→weff
l (0), we obtain ^(weff

l (0)2wl)/(weff
l (0)1wl)&50,

that is, the self-consistent 2D equation for isotropic bo
disordered models.7

B. Weak and strong disordered model

To consider other cases of disorder in our formalism,
introduce here a monoparametric distribution function:

V~w!5H ~12a!w2a, 0,w<1

0, otherwise,
~3.6!

which describes weak and strong disorder by changing
parametera. If 2`,a<0, we get a sort ofweak disorder

of

FIG. 7. dc conductivity from the nonisotropic EMA, Eq.~3.5!,
for two values of the ratew0l/w0↔ as a function of the concentra
tion p. Note that as consequence of anisotropy thepercolation
thresholdis shifted top50.
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PRB 61 313NONISOTROPIC EFFECTIVE-MEDIUM APPROXIMATION . . .
~only a finite number of inverse moments^1/wk&, with k
51,2,3, . . . , remain finite!, whereas if 0,a,1 we get a
class ofstrong disorder~all the inverse moments diverge!.
As we have pointed out before, in this work we will consid
only the disorder in the vertical direction. In this section w
will be interested in the dc limit of Eq.~2.9! and we will
consider the disorder to be characterized by Eq.~3.6!. The
spectral study ofweff

l (u) for uÞ0 can also be done in
similar way. Solving Eq.~2.9! by usingw↔ as nonrandom
and Eq.~3.6! as the probability distribution for the random
variablewl, the self-consistent condition reads

weff
l ~0!

12a 2F1@1,12a;22a;2F~weff
l ~0!,w0↔!#

2
1

22a 2F1@1,22a;32a;2F~weff
l ~0!,w0↔!#50.

~3.7!

Here, 2F1(a,b;c;Z) is the hypergeometric function, wher
the argumentZ is given by the function

F~weff
l ~0!,w0↔!52 arctanSAweff

l ~0!

w0↔ D Y Fpweff
l ~0!

22weff
l ~0!arctanSAweff

l ~0!

w0↔ D G .

~3.8!

In Fig. 8 we show the behavior of theweff
l (0) for 21,a

,1 and for different values of the parameterw0↔. Also we
show the isotropic coherent rateweff(0). Note that the iso-
tropic case can also be obtained by taking the limitsw0↔

→weff
l (0) and weff

l (0)→weff(0) in our self-consistent Eq
~3.7!. This is so because in this limitF(weff

l (0),w0↔)
→1/weff(0).

Let us now comment about the behavior of the diffusi
coefficient in the vertical direction. The lattice parameter h
been takenL51; thus the diffusion coefficient is equal t
the coherent rate. Fora in the range@21,0#, the isotropic

FIG. 8. dc diffusion coefficient in the vertical direction for di
ferent values of the parameterw0↔, in presence of weak (a<0)
and strong disorder (0,a,1). Also, we have plotted the isotropi
case~full triangles!.
r

s

coherent rate is bounded by the values 0.397,weff(0)
,0.614. Therefore we found that ifw0↔ is lower than the
minimum value ofweff(0), thebehavior of the nonisotropic
coherent rateweff

l (0) is always lower than the isotropic on
~in the same range ofa). The opposite case is also valid.
w0↔ is larger than the maximum value ofweff(0) the behav-
ior of the nonisotropic coherent rateweff

l (0) is always larger
than the isotropic one. For the strong disorder casea
P(0,1), a similar conclusion can also be seen from Fig.
The remarkable point is that for strong disorder the syst
can mimic a quasi-1D behavior. This fact is also seen fr
Fig. 8 for aP(0,1). For the isotropic 2Dbond disordered
models the system has always a finite dc conductivity.21 This
is not the case in the isotropicsite disordereda model,
where in any dimension the dc conductivity goes to ze
Nevertheless, for the nonisotropicbonddisordereda model
and whenw0↔/weff(0)!1 the dc conductivity goes to zero
for aP(0,1), very much before the isotropic case~see the
full circles in Fig. 8!. This fact can be interpreted as showin
that the nonisotropic system has a quasi-1D behavior. In
opposite case whenw0↔/weff(0)@1 the transition to zero dc
conductivity in the limita→1 is much more abrupt than in
the isotropic case as can be expected from the high an
ropy. These behaviors can heuristically be understood: If
perpendicular rate is larger than the isotropic coherent r
the effective conducting paths in the vertical direction a
enhanced by the probable~large! excursions in the ordered
direction @becausew0↔.weff(0)#. Therefore the conductiv-
ity in the disordered direction is larger than the isotrop
case. The opposite casew0↔,weff(0) can also be under
stood by the same arguments, leading then to a reductio
the effective conducting paths in the vertical direction.

The frequency-dependent diffusion coefficient~for the a
model of disorder! can also be obtained following the sam
methodology as for the dc conductivity. Now the se
consistent condition is the same as Eq.~3.7!, but a new ar-
gumentF(weff

l ,w0↔,u) in the hypergeometric function mus
be inserted~therefore involving elliptic integrals!.

IV. CONCLUSIONS

The results presented here give insight into the frequen
dependent behavior of the conductivity in nonisotropic bo
disordered models. We have worked out this problem i
generalized context of the well-known EMA. Our approa
leads to a set of coupled self-consistent equations to be
to consider the anisotropy of the random media. Our
proach is quite general and provides the possibility to stu
other models of disorder in two- or three-dimensional l
tices. In the present work we have restricted the analysi
the square lattices. Therefore we have worked with a pai
coupled nonlinear self-consistent equations, one for each
herent rate, namelyweff

l (u) and weff
↔(u). We have exempli-

fied our method by considering two models of disorder~but
only! in the vertical direction. Specifically, the anisotrop
bond percolation model given by Eq.~3.1!, and the aniso-
tropic a model given by Eq.~3.6!. These models illustrate
the main characteristics of the procedure and allow us to
a better understanding of the problem of the nonisotro
electric conductivity. Within the present formalism we ha
also reobtained the dc conductivity previously reported
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using Kirkpatrick’s scheme.14–16 The present approach als
allows us to get the complete frequency response in a un
way. For the nonisotropic percolation model, the lack of
percolation threshold, in comparison with the isotropic ca
(pc51/2), can be seen from Fig. 7. The corresponding sp
tral analysis shows that the Cole-Cole diagrams, for
nonisotropic case, have a shift in the low-frequency limit,
can be seen in Fig. 6. For this model of disorder, the f
quency dependence of Re@Dl(2p f )# shows a power-law di-
electric response@sl(2p f )}(2p f )s# at intermediate fre-
quencies. From Fig. 5 it is possible to see that the expon
s depends on the quantityw0l/w0↔, the rate between the
intrinsic conductivities corresponding to the disordered a
ordered axis. Also, it depends on the concentrationp. Thus
we have found that the value of the exponents strongly
depends on the physical parameters of the nonisotr
model. In Sec. III B we have found a quasi-1D behavior
thea model in the strong disorder region. Finally the dens
of states for anisotropic ordered lattices was reported.
pressions for the limits corresponding to 2D isotropic lattic
and the 1D case have explicitly been calculated in Appen
A.

The temperature dependence of the spectral properties
be introduced in our framework through the temperature
pendence of rateswl andw↔. The present approach allow
us to study the interplay between the temperature activ
hopping and the nonisotropic disorder phases in a uni
theory.
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APPENDIX A: NONISOTROPIC PROBLEM

The solution of the general biased homogeneous one
master equation
o

d
e
e
c-
e
s
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nt
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r
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an
-

ed
d

ep

] tPm,n~ t !5APm,n21~ t !1BPm,n11~ t !1CPm21,n~ t !

1DPm11,n~ t !2~A1B1C1D !Pm,n~ t !,

~A1!

corresponding to the RW operator given by Eq.~2.5!, can be
mapped on the unbiased case through the transformatio

Pm,n~ t !5Qm,n~ t !S A

BD n/2S C

D D m/2

exp@2~A1B1C1D

22AAB22ACD!t#, ~A2!

whereQm,n(t) is the solution of the anisotropic~unbiased!
master equation

] tQm,n5X~Qm,n111Qm,n2122Qm,n!

1Y~Qm11,n1Qm21,n22Qm,n!. ~A3!

Here there are only two~different! hopping rates:X[AAB
andY[ACD.

We are interested in the Green’s function of Eq.~A3!.
Performing a Laplace and Fourier transform in Eq.~A3!, the
solution corresponding to the initial conditionQm,n(t50)
5dm,m0

dn,n0
can be written as

G(m,n),(m0 ,n0)
0 ~u!5

1

4p2E2p

p

dq1E
2p

p

dq2

3
exp$ i @~m2m0!q11~n2n0!q2#%

u12@X~12cosq2!1Y~12cosq1!#
.

~A4!

Integrating overq1 we obtain
G(m,n),(m0 ,n0)
0 5

1

4pY
E

2p

p

dq2

ei (n2n0)q2FD2
X

Y
cosq22AS D2

X

Y
cosq2D 2

21Gm2m0

AS D2
X

Y
cosq2D 2

21

, ~A5!
whereD511X/Y1u/2Y. From Eq.~A5! and using the re-
lation

P~r,k!1PS k2

r
,kD2K~k!5

p

2
A r

~11r!~k21r!
,

~A6!

for 0,k,1, between the the complete elliptical integrals
the first kind,K(k), and the third kind,P(r,k), we have
calculated the following elements ofG0:
f

G(0,0),(0,0)
0 ~u!5

1

2pAXY
kK~k!, ~A7!

where

k5A 16XY

~u14X!~u14Y!
~A8!

and
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G(1,0),(0,0)
0 ~u!5

1

pAXY
kF S 1

2
1

1

r1
DK~k!

2S 11
1

r1
DP~r1 ,k!G , ~A9!

G(0,1),(0,0)
0 ~u!5

1

pAXY
kF S 1

2
1

1

r2
DK~k!

2S 11
1

r2
DP~r2 ,k!G , ~A10!

wherer154Y/(u14X) andr254X/(u14Y). The expres-
sions~A9! and~A10! are symmetrical under the transform
tion X↔Y, as we can expect. Additionally, we note that t
isotropic two-dimensional case is recovered with the ide
fication X5Y. In this situation, Eq.~A7! results in

G(0,0),(0,0)
0~iso! 5

1

2pY~11u/4Y!
KS 1

~11u/4Y! D , ~A11!

and Eqs.~A9! and ~A10! coalesce in the expression

G(1,0),(0,0)
0~iso! 5

1

2pY
KS 1

~11u/4Y! D2
1

4Y
. ~A12!

In the text we are concerned with unbiased systemsX
5A5B andY5C5D.

Density of states

From Eq.~A4! the band of relaxation modesB results in
B5@24(X1Y),0#. The density of states~relaxation modes!
per site is given by6

N~l!57
1

p
lim

h→01

Im G(0,0),(0,0)
0 ~l6 ih! ~A13!

for lPB. In the complex plane, the functionK(k) has
branch cuts connecting11 and1` and 21 and2`, re-
spectively, on the real axis. Foru,0 we define

B15@24~X1Y!,24W.#ø~24W,,0!, ~A14!

B25~24W. ,24W,!,

B35~2`,24W.!,

where W.5max(X,Y) and W,5min(X,Y). For u.0 or u
PB3 we find uku,1, but for uPB1 we get the condition
uku.1. We must note that foruPB2 resultk5 i k̃, where

k̃5A2
16XY

~u14X!~u14Y!
. ~A15!

For uPB1, taking k5kR1 i e, e;01, and using the
known expressions22

K~k!5k21@K~k21!1 iK ~k21Ak221!# ~ for kR.1!,
~A16a!
i-

K~k!5uku21@K~k21!2 iK ~k21Ak221!# ~ for kR,21!,
~A16b!

we obtain for the anisotropic case

N~l!5
1

2p2AXY
KSA2

l214~X1Y!l

16XY D . ~A17!

The elliptic integralK(k) behaves as ln@4/A12k2# ask→1.
Thus N(l) has logarithmic singularities at the inner edg
(24W. and 24W,), and exhibits at both external ban
edges@24(X1Y) and 0# a discontinuity.

For uPB2, using the expresions22

K~ i k̃ !5
1

A11 k̃2
KSA k̃2

11 k̃2
D ~A18!

and

k̄5A k̃2

11 k̃2
5A2

16XY

u214~X1Y!u
,1, ~A19!

we obtain

G(0,0),(0,0)~u!5
i

2pAXY
k̄K~ k̄!. ~A20!

Hence we find

N~l!5
2

p2

1

A2~l214~X1Y!l!

3KSA2
16XY

l214~X1Y!l
D . ~A21!

N(l) also has logarithmic singularities at the edges ofB2
(24W. and24W,).

We note that the isotropic two-dimensional case is rec
ered with the identificationX5Y. The band of relaxation
modes becomes the interval (28Y,0) and B2 disappears.
However, the density of states retains a logarithmic singu
ity at the center of the band. Additionally, the on
dimensional case is recovered takingW,50. The band be-
comes the interval (24W.,0) and B1 disappears. Since
K(0)5p/2 we obtain the expresion N(l)
51/pA2l(l14W.) from Eq.~A21!. In this case, the den
sity of states presents a power-law divergent behavior at
band edges.

Taking the substitutionl52v2, the problem is mapped
on the frequency spectrum of oscillations in 2D anisotro
lattices whose vibrations are transverse~normal to the equi-
librium plane of the lattice!.

APPENDIX B: SINGLE IMPURITY PROBLEM

The perturbed problem is defined byHi5H01V, where
the H0 and V are given by Eqs.~2.5! and ~2.6!. The corre-
sponding Green’s functionGi5(u2Hi)

21 can be written in
terms of the Green’s function associated to the homogene
lattice, G0(u)5(u2H0)21. This can be performed in
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d-dimensional hypercubic lattices for any selected directio
of the impure bond. DefiningV15ua&b1^au, H15Hi2V1,
G15(u2H1)21, and performing a Dyson expansion

Gi5G11G1V1G11G1V1G1V1G11•••, ~B1!

we can expressGi in terms ofG1:

Gab
i 5Gab

1 1Gaa
1 b1Gab

1 ~12b1Gaa
1 !21. ~B2!

The same scheme must be applied definingV25ua&b2^bu,
H25H12V2, and G25(u2H2)21. This enables us to ex-
pressG1 in terms ofG2:

Gab
1 5Gab

2 1Gaa
2 b2Gbb

2 ~12b2Gba
2 !21. ~B3!

Then, definingV35ub&b3^au, H35H22V3, and G35(u
2H3)21, we can expressG2 in terms ofG3:

Gab
2 5Gab

3 1Gab
3 b3Gab

3 ~12b3Gab
3 !21. ~B4!

Finally, definingV45ub&b4^bu, we obtainH05H32V4 and
we can expressG3 in terms ofG0, the homogeneous Green’s
l

in
v
n

.

c

.

nfunction:

Gab
3 5Gab

0 1Gab
0 b4Gbb

0 ~12b4Gbb
0 !21. ~B5!

Note that by definitionb352b1 , b252b4. Inverting the
process, we finally obtain the exact expression

Gab
i 5

Gab
0 1b4~Gab

0 Gba
0 2Gaa

0 Gbb
0 !

11b1~Gab
0 2Gaa

0 !1b4~Gba
0 2Gbb

0 !
. ~B6!

The inhomogeneous Green’s function appearing in
~2.7! is calculated in absence of bias; i.e.,A5B andC5D.
Thus resultsWab5Wba andb15b4. Given the homogeneity
of the unperturbed lattice we always haveGaa

0 5G(0,0),(0,0)
0

for any sitea and as consequence of the no bias assum
resultsGab

0 5Gba
0 for any pair of nearest-neighbor sitesa, b.

In the text we have chosen the siteb5(0,0) and the two
possibilities~1,0! and ~0,1! for the sitea.
-
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10E. Hernández-Garcı´a, M.O. Cáceres, and M. San Miguel, Phys
Rev. A 41, 4562 ~1990!; E. Hernández-Garcı´a and M.O. Ca´c-
eres,ibid. 42, 4503~1990!.

11P.A. Pury, M.O. Ca´ceres, and E. Herna´ndez-Garcı´a, Phys. Rev. E
de

oir
-

B

h,

49, R967~1994!.
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