PHYSICAL REVIEW B VOLUME 61, NUMBER 4 15 JANUARY 2000-11

Elastic properties of single-walled carbon nanotubes
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Analytical expressions for the velocities of the longitudinal and the torsional sound waves in single-walled
carbon nanotubes are derived using Born’s perturbation technique within a lattice-dynamical model. These
expressions are compared to the formulas for the velocities of the sound waves in an elastic hollow cylinder
from the theory of elasticity to obtain analytical expressions for the Young's and shear moduli of nanotubes.
The calculated elastic moduli for different chiral and achi@mchair and zigzagnanotubes using force
constants of the valence force field type are compared to the existing experimental and theoretical data.

[. INTRODUCTION tained. A non-orthogonal tight-bindindB) scheme was ap-
plied to calculate Young’s modulus of several chiral and
Since the discovery of the multiwalled carbon nanotubesachiral SWNT'’s yielding an average value of 1.24 Tfa.
(MWNT’s) in the soot produced by the arc dischargeRecently, the second derivative of the strain energy with re-
techniqué? much attention has been given to the investiga-spect to the axial strain, calculated with a pseudopotential
tion of their amazing physical properti2®ecently, the mass density-functional-theory(DFT) model for a number of
production of single-walled carbon nanotub&WNT's), SWNT’s® was found to vary slightly with the tube type and
stacked in crystalline ropes, was made possible by the lases have the average value of 56 eV.
ablatiorf and by the arc dischargéechniques. Due to their  |n this paper, we choose a different approach to the cal-
specific structure, the nanotubes are expected to be as stiff @glation of the elastic properties of SWNT’s. Namely, we
graphite along the graphene layers or even reach the stiffneggrive analytical expressions for the elastitoung’s and
of diamond. This unique mechanical property of the nanosheay moduli of SWNT's using a perturbation technique due
tubes combined with their light-weightiness predeterminesy gornt® within a lattice-dynamical model for nanotub®s.
their usage in composite materials and has motivated precisg,is scheme has the advantage that the elastic moduli are

ehxp?nmerfne;]l measurlfgmﬁnts of their elazuc prgpe?ﬂ%mf g consistent with the lattice dynamics of the nanotubes and that
the first of these works,the temperature dependence of the g ot these moduli is obtained in one calculational step

vibration amplitude of several isolated MWNT'’s was ana-Only
lyzed in a transmission electron microscope to eventually The essential features of a model of the lattice dynamics

obtain 1.8 TPa for the average Young’'s modulus. Later on . o . :
this technique was applied to measure Young’s modulus o?f SWNT’s based on the explicit accounting for the helical

isolated SWNT's in the diameter range £.0.5 nm and an SYMmetry of the tubés$ are summarized in Sec. Il A. This

average valudY)=1.25-0.35/+0.45 TPa was deriveHin model is applied_to study,of the Iongfwaveleng_th vibrations
another experimental approdthe MWNT’s were pinned to [N hanotubes using Born’s perturbation tgghni’(ﬁmd to
a substrate by conventional lithography and the force wagbtain analytical expressions for the velocities of the longi-
measured at different distances from the pinned point byudinal and the torsional sound waves in SWNTsge Sec.
atomic force microscoquTM)_ The average Young’s Il B) The Comparison of these eXpreSSionS with the formulas
modulus for different MWNT’s with diameters from 26 to 76 from the theory of elasticity for the velocities of these waves
nm was found to be 1.280.59 TPa. Recently, Young’s and in an elastic hollow cylinder allows one to determine the
shear moduli of ropes of SWNT’s were measured by susYoung's and shear moduli of the nanotubes. The calculated
pending the ropes over the pores of a membrane and usirp‘;hOHOH diSpel’SiOI’l of a (10,10) nanotube and elastic moduli
ATM to determine directly the resulting deflection of the for various chiral and achiralarmchair and zigzggnano-
rope® The theoretical estimation of the elastic moduli wastubes using force constants of the valence force fieleF)
accomplished exclusively by numerical second derivatives ofype'® are presented in Sec. Il and discussed in comparison
the energy of the strained nanotubes. In the calculation of theith the existing experimental and theoretical data.

elastic moduli of various SWNT'’s within a simple force-

constant modéf it was found that the moduli were insensi-

tive to tube size and helicity and had the average values of Il. THEORY

(Yy=0.97 TPa and(G)=0.45 TPa. In several works,
molecular-dynamic§MD) simulation algorithms using the
Tersoff-Brenner potential for the carbon-carbon interactions The ideal nanotube structure can be obtained from a
were implemented to relax the strained nanotubes and calcgraphene sheet by rolling it up along the straight line con-
late their energy!~* For tubes of diameter of 1 nm values necting two lattice points into a seamless cylinder in such a
for Y of 5.5 TPa(Ref. 12 and 0.8 TPaRef. 13 were ob-  way that the two points coincide:**?°The tube is uniquely

A. The lattice-dynamical model
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s_pecified by the pair of integers {,L>) that_ define the Iat— q:N; +q,N,=q. (2.7

tice translation vector between the two points. Alternatively,

the tube can be described by its radRiand the chiral angle Here, | is an integer numben\, is the number of atomic

6 that is the angle between the tube circumference and theairs in the translational unit cell of the tubg,is a new,

nearest zigzag of carbon-carbon bonds. The tubes are callee-dimensional wave vector, and the integiisand N,

achiral for =0 (zigzag typé and #=7/6 (armchair typg, ~ define the primitive translation vector of the tube.

and chiral for G<0<7/6. From Eqgs.(2.6) and(2.7) the wave-vector components
The nanotube can be considered as a crystal lattice with @and g, can be expressed through the cougland! and the

two atoms unit cell. Two different screw operators can beequations of motion and the dynamical matrix can be written

used to construct the entire tube from these two atbins  as

quite the same way as a crystal is generated by means of

primitive translation vectors. By definition, a screw operator , ,

{S|ti} (i=1,2) executes a rotation of the position vector of wz(ql)ea(k|ql)=k2, D.p(kk'[aDeg(k’[ql)  (2.8)

an atom by an angle; about the tube axis with rotation P

matrix § and a translation of this vector by a vectpalong  and

the same axis. Thus, the equilibrium position ve&gk; | ,k)

of the kth atom in the [;,l,)th cell is obtained fromR(k) 1
=R(00K) as D..s(kk'|ql)= WIE D ,5(0k,1"k")Sp(1")
KMyr 176
R(lk)=SDR(k)+1(D), 2.1 x exdi (a(I)+z(1NQ)]. 2.9

where the compact notationS(I)=§11§22,t(l)=I1t1+I2t2,

and|=(|l,|2) iS adopted. Here, a(|)=277(|1N2—|2N1)/NC and Z(I):(L1|2

—L,l;)/N; are the dimensionless coordinates of the origin of

A lattice-dynamical model for a SWNT can be con- . )
. o . ; thelth cell along the circumference and along the tube axis,
structed in a similar way as for a three-dimensional cry<tal. . : . ) .
respectively. The equations of moti¢2.8) yield the eigen-

In particular, the equation of motion for small displacementsvalueSw(qu) and the corresponding eigenvectergk|ql})
g(lk) of the atoms from their equilibrium positions are given where the couplel{) (I=0, ... Ne—1:]=1,....6)labels
y the modes with a given wave number in the one-
) dimensional Brillouin zone € mr<q=<). It can be easily
meu, (k)= — >, D451k, 1"k ug(l'k"), (2.2 proven that three translational and one rotational sum rules
I'k'p are fulfilled identically for this lattice-dynamical model giv-
where m, is the atomic mass of theth atom and ing rise to four acoustic branches without any additional cor-
®,4(1k,1’k") is the force-constant matrix( 8=x,y,z). The rections either to the dynamical matfik,or to the force
helical symmetry of the tubes described by the two screwgonstant®’ (see Appendix A

operators suggests to look for wavelike solutions for the In some cases, it is important to know the eigenvectors
atomic disp|acement Vecto[d”() of the type and the dynamlcal matrix for the translational unit cell. The

derivation of these quantities in terms of those for the two

1 atoms unit cell is straightforward and eventually the follow-
u, (k)= N 23: S.s(es(klgyexpli[a-1— w(a)t]} ing equations are obtained
k
(2.3
with wave vectorg=(q,,d,), wave amplitudesg(k|q) and ea(lk|qu):2ﬁ Sap(Deg(Klqlj)explifa(DI+2z(Nql}
angular frequencyn(q). After substituting Eq(2.3) in Eq. (2.10

(2.2), the equations of motion are obtained in the form
and

0*(Q)ey(Kla) =X Dug(kK [eg(k'la), (2.4 1
s Dap(lkl'k|0)= - lEé Say(NDy5(KK'[a1) Ss(—1")

where
) xexp{—i[a(I'DI+z('hq]}.  (2.1D
Dap(kk'la)= MMy |Ey Py (OKITKDSyp(1explig-1"). Here, the indeX labels the two atoms unit cells within the

translational unit cell, a(I')=a(l')—a(l) and z(l'l
(2.5 o :
, , ) ) =z(lI")—z(I). It is important to point out that the necessary
is the r}g‘_%i‘am'ca' matrix. The rotational F’%Jrgdafy computational time for solving the eigenvalue problem for
cond|t.|0 and the trapslatlonal p§r|0d|C|ty conditid™on  tha two atoms unit cell and subsequent use of @dL0 is
u(lk) impose the following constraints on the wave-vectorpearly independent of the number of atoms in the transla-
components tional unit cell. However, if the dynamical matrix is calcu-
lated from Eq.(2.11), this will require a time increasing as
(2.6 N ) , . . . )
o, Which may be practically impossible for certain experi-
and mentally observable chiral SWNT'’s with largs, .

qlLl+ q2L2:2’7T|
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B. Sound waves velocities and elastic moduli 1 )
Analytical expressions for the velocity of the sound waves™ = v a,;:x,y |k|2,k, % MM D (KK e oz
in SWNT can be derived by studying the long-wavelength
vibrational waves using Born’s perturbation technitfue XR,(IK) & gzsR5(1'K")
within the lattice-dynamical model developed above.
Namely, the dynamical matrix E¢2.11) and the eigenvec- _ T (k1K' DD (1K 17K
tors Eq.(2.10 and the eigenvalues belonging to the acoustic u%« ;’V 1K, )y%y €DK e azy

branches are expanded in power serieg).iMhese expan-
sions, substituted in the equations of motion for the transla- e Q11 (rem "y
' XR,(1"k VMDA (K 1K™ ) e 5,sR5(1"k .
tional unit cell, give rise to equations of zeroth, first, and A )lm%ﬁ kDl & pzaR )
second order with respect to the perturbation parangeter
Taking nontrivial solutions for the zeroth-order eigenvec- (2.18
tor of the form The sound velocity of the torsional wave in the tubg, can

be determined from Ed2.17) as
eIk = Vymeu, (2.12 I

: . ' A
with u - a constant vector, and solving the zeroth-, first-, and VR= \ﬁ (2.19
second-order equations as in Ref.16 we obtain the system of p

linear equations fou, In Egs. (2.14 and (2.18 the matrixT"s(Ik,1'k’) is the
inverse of the zeroth-order dynamical mati¥)(Ik,1'k").
pvzuazE AgpUg. (2.13 However, this inversion cannot be done directly because of
B the linear dependence of elements of the latter. To carry out
Here,p=N.3,m,/V is the mass density of the tubé,is a  the inversion, we, following BorhS remove one row and one
(yet unspecified “unit cell volume,” and v=w®/q is the  column of D{)(Ik,I’k’) for eacha and 3, remove one row
phase sound velocity. The matrix elemem§lg are defined and one column from itxy submatrix, invert the resulting

by matrix, and add rows and columns of zeros on the places of
the removed ones.
1 The microscopically derived sound waves velocities Egs.
_ (2) "t
Nap=y > vmmye D (T, 1K) (2.15 and(2.19 can be used to derive the Young’s modulus

k! Y and the shear modul of the nanotube. For this purpose,

. ) o we assume that a nanotube can be considered as an infinitely
- > 2 T0kI'k) Y Jme DK, I7K") thin homogeneous cylinder with radiisand use the formu-

Ik e i las from the theory of elasticity
X D, Ame DK 1K™ | 2.1 Y
|% kD5 a( ) (2.14 v, = \/; (2.20
The matricesD{)(Ik,1’k’) and DZ)(Ik,I’k’) are the first- 5
and second-order dynamical matrices and the matrix VR= \ﬁ (2.20)
I ,5(lk,1’k") is defined at the end of this section. p
Equation(2.13 have nontrivial solutions only for certain >
values ofv that are the sounq velocity of the longitudinal vG= /—Rq: V2RV, q. (2.22
wave v, and the sound velocity of the transverse waves P
A A Comparing Egs(2.195 and(2.19 to Egs.(2.20, (2.2, and
VL= /_1, V= 1\ /_2'3, (2.15 (2.22, we identify A; and A as the Young’s and the shear
p p moduli of the tube, respectively, and find th&j ; must be

whereA ,(a=1,2,3) are the eigenvalues of the mathix,; . zero. The Young’s modulus can be determined alternatively
Besides the nontrivial solutions given in EQ.12), the from Eq. (_2.22) and the transverse acoustic branches of the
zeroth-order equations have also a nontrivial solution of th@®honon dispersion curves.
form Ill. RESULTS AND DISCUSSION
e(ao)(”():E \/ﬁksanngV“k), (2.16 _ The Iattice—dynamical_model and the.analytical expres-
v sions for the sound velocities can be applied now to calculate
the phonon dispersion, Young's and shear moduli of various
SWNT'’s. Since in a force-constant model of the lattice dy-
namics it is not possible to accomplish a real structural op-
timization, the structural data for the nanotubes has to be
provided from the experiment or from theoretical estima-
(2.17) tions. The experimental data on the nanotube structure are
rather scarce but two receab initio studies®>?° reveal that
where there are only slight differences between the various carbon-

where without loss of generality we have chosen zfaxis
along the tube axis and, consequentysX,y;e g, is the
Levi-Civita symbol, 8, is an angle of rotation about the
axis. Proceeding as in Ref. 16, we obtain the equation

pV2=A,
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carbon bond lengths and between the various bond angles. | 1800 100
accord with these results, we have chosen the simplest struc
tural model accepting that for a given tulé#¢) all bond
lengths are equal to 1.42 A, the same as those in the
graphene sheet?) all bond angles are equal to each other
for a given tube, and3) all atoms lie on a cylindrical sur-
face. These assumptions are justified by the results of ou
preliminary calculations showing that deviations of the bond 1400
lengths and bond angles up to a few per cent from their
values following from(1)—(3) and small departures from the

ideal cylindrical geometry do not affect significantly the
eigenmodes and the elastic moduli. 1200

The lattice-dynamical model implements force constants
of valence force fieldVFF) type with values obtained by
fitting to the surface phonon dispersion curves of graphite 44
investigated by high-resolution electron energy-loss __
spectroscopff.3 The VFF parameters are of types nearest- F'E
neighbor stretch, next-to-nearest-neighbor stretch, in-plane £
bend, out-of-plane bend and twist interactions. Here, we ad- ©
ditionally assume that these model parameters can be tran:
ferred to nanotubes without any modification. Nevertheless,
effects due to the curvature of the tubes will still exist be-
cause the bond angles enter the force-constant matrix explic
itly.

The calculated phonon dispersion of a (10,10) tube in 400
Fig. 1 shows the presence of four acoustic branches:
longitudinal, torsional, and a doubly degenerate transverse
one. The former two increase linearly with the wave number
and the latter one increases as the square of the wave numb
near the origin in agreement with the long-wavelength re-
sults presented above. To our knowledge, up to now there
have been only a few calculations of the phonon dispersior e T o0 o o7 os oo oo 002
in nanotubes. They have been accomplished either by th q/2n
zone-folding method with a correction of the dynamical ma-
trix in order to obtain the two transverse acoustic branéhes, FIG. 1. Calculated phonon dispersion curves for a (10,10)
or by a simple force-constant model with modification of the SWNT (left) and the low-energy region of the same curves contain-
force constants in order to fulfill the rotational sum rule anding the translational, the torsional and the doubly degenerate trans-
to obtain the torsional acoustic brarétin the latter work it ~ Verse acoustic branchésght).
is obtained, however, that all the four acoustic modes have
nonzero slopes at the origin. Recenti initio phonon dis-  contain the ambiguous unit-cell volume. For this reason, we
persions for (4,4) and (10,10) tubes that are free from thedopt such a description of the elastic properties of the tubes
zone-folding model deficiencies have been publisied. for both axial and shear strains.

However, theseab initio results predict frequencies for the  The in-plane elastic moduli, calculated for graphene with
highest zone-center phonons that are about 6% higher thahe adopted VFF parameters, are compared to the corre-
the experimental values and in this respect they cannot consponding experimental values for graphite in Table I. The
pete with the simple force-constant models. agreement between these values is quite good and it may be

The estimation of the elastic moduli of nanotubes requiregxpected that these VFF parameters would allow for fair pre-
the knowledge of the “unit cell volume'V of the tubes. dictions of the elastic moduli of nanotubes as well. The
There is no agreement between the different authors abotoung’s and shear moduli of SWNT'’s are calculated here
the choice of the continuum model of a nanotube. Some ofising Eqs(2.14 and(2.18) for various tube types: armchair
them consider a nanotube as a hollow cylinder with a certainubes from(3,3) to (15,19, zigzag tubes frong5,0) to (25,0,
wall thickness, e.g., 0.66 ARef. 12 or 3.4 A (Ref. 10—  and a number of chiral tubé¢5,1), (5,2), (6,1), (5,3, (6,2,
equal to the adjacent layer separation in graphite. Other§& 1), (6,3, (6,4, (8,2, (7,4, (10,1, (8,4, (9,3, (8,5,
choose a uniform cylinder with a cross-sectional area®Rf (11,2, (10,4, (10,5, (12,3, (14,2, (12,6, (16,4, (14,7),

(Ref. 13 or a prism—the unit cell in a crystalline rope of and(15,6—in order of increasing tube radilisThe results
SWNT's? with a cross-sectional area af3/2(2R+3.472  for the moduli and the Poisson ratio vs tube radius are dis-
(Ref. 9. Recently, it was proposed to characterize the axiaplayed in Fig. 2. We note that can be determined alterna-
stiffness of a nanotube with the second derivative of theively from the transverse acoustic branches of the dispersion
strain energy with respect to the axial strain per unit area oturves fitted with a polynomial of second degree with respect
the nanotub® or per atom of the tub& In the latter case, to the wave number and the expression for the group sound
the resulting quantity is equal to the Young’'s modulus mul-velocity of the bending wave§2.22) leading to the same
tiplied by the tube volume per atom, so that it does not results as those obtained by using E@s15 and(2.20). The

1600

200

q/2n
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TABLE I. Experimental elastic constani® GPa and elastic moduliin GPa/in eV} and Poisson ratio for
graphite in comparison with the calculated ones here.

Cll Clz CGSa Y b G b 14 b
Experim. value$ 1060 180 440 1029/56.43 440/24.13 0.17
Calc. valuedthis work) 1047 219 414 1002/54.95 414/22.70 0.21

3 or hexagonal symmetrggs=(C1;— C15)/2.
bIn-plane moduliY = (c2,—c2,)/c,; and G=cgg, and Poisson ratie=c;,/c1; .
‘Ref. 27.

results forY, presented in Fig. 2, show that for a given radiusforce-constant resuft$ as well as ours are also within the
the Young's modulus for armchair tubes is slightly largerrange of the experimental error of the former.

than for zigzag tubes and that for chiral tubes it has interme- The shear modulus behaves similarly to the Young's
diate values. As a whole, the Young's modulus is insensitivenodulus reaching values of about 23 eV for large radii but
to the tube chirality and for large radii has values of about 55%oftening at small radii as shown in Fig. 2. The direct com-
eV that are about 3% smaller than the experimental one foparison of the obtained results with the experimental data for
graphite(see Table )l At small radii the Young’s modulus graphite(see Table )l reveals systematic deviation of about
softens to about 50 eV. The first MD simulatidhgredict 6% for the shear modulus at large radii, which we attribute to
for the Young’s modulus of a (10,10) tube the value 59.4 eVthe VFF parameters of the model and to the initial assump-
which differs only by a few percent from our results. How- tions. The shear moduli calculated for several tube types
ever, the calculations within another MD simulations within a force-constant mod@l appear to be insensitive to
schemé&® and with a TB modéf yield for Y values of about the tube radius and chirality and are about 15% higher than
35 eV and about 70 eV, respectively, that significantly un-the ones obtained here.

derestimate and overestimate Young's modulus of a tube. UsingY andG, we can estimate the Poisson ratipthat
Recently, pseudopotential DFT calculatibhf several s equal to the ratio of the relative radial tube expansion to
SWNT's resulted in average Young’s modulus of 56 eV. Thethe relative axial tube shortening, making use of the expres-
only available experimental pofnis nearer to the TBRef.  sion valid for a three-dimensional isotropic medifim:

14) and the DFT results for the same tube radius but the =(Y/2—G)/G. The spread in the values of both moduli has
as a consequence a spread in the values of the Poisson ratio
that is more prominent for small tube radéee the inset in
Fig. 2. In the limit of large radii, the Poisson ratio tends to
0.21 that is close to the experimental value for grapfsee
Table ). The Poisson ratio estimated by means of a force-
constant modé? is practically a constant of 0.28 that is
about 1.6 times larger than the in-plane value for graphite. A
possible reason for this disagreement may be that the chosen

70 T T T T T T T T
® achiral SWNTs (this work}
65 |- O chiral SWNTSs (this work)
---- graphite (Blakslee et al.) |

60 | .
Young's modulus

i Wd}w@“-ﬂ’"‘ model cannot describe properly the energy of radially
o Ae ;9 I strained tubes. The same behavior has TB reluliat range
- 50 . . from 0.247 to 0.275. The recently calculated Poisson ratio by
pe e ] a DFT modet® varies from 0.12 to 0.19 for a number of tube
>‘_" 45,2 shear modulus % types 'and for large tube radii'has values that are close to the
T i experimental value for graphite.
=) i
3 7 o %R LIA RN
E=r % ‘%23&_ 7 IV. CONCLUSIONS
g 20 | ° 0.25 °/: 4 In this paper, Young's and shear moduli of various
w A 2 60y 2 ee SWNT’s are estimated from analytical formulas derived
18 L 5% oon i within a lattice-dynamical model for nanotubes. The results
£ 015 ol for the elastic moduli and Poisson ratio obtained here using
6l oo ‘%z i force constants of_the VFF type are in fa_ir agreement with
L Ny 10 the existing experimental data on graphite and nanotubes.
0 P 4 8 a 10 These results compare well to the best results of more refined

Tube radius (A)

models—potential-based molecular-dynamics, tight-binding
and DFT models. The force-constant model has the essential

FIG. 2. Calculated Young's and shear moduli times the volumeddvantage to the latter models that it has a low-

per atom of the tube, (in eV), and Poisson ratio estimated using computational cost with respect to both computer memory
the relationv= (Y/2— G)/G (in the inse} vs tube radius for various and processing time. In particular, the use of analytical for-
chiral and achiral SWNT’s. The notations A and Z stand for “arm- mulas allows one to obtain the elastic moduli of a given tube
chair” and “zigzag,” respectively. in one calculational step only. Due to the large values of the
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Young’s modulus along the tube’s axis, the SWNT's are one

of the stiffest materials. This property, combined with their
relatively small mass density, makes them ideal ingredients

for composites.
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APPENDIX A: TRANSLATIONAL
AND ROTATIONAL SUM RULES

The infinitesimal translational and rotational invariance
conditions impose constraints on the force constants. If the
undistorted crystal is translated by an infinitesimal vector
&g, this will not give any contribution to the restoring force

in Eq. (2.2, i.e.,
0=, .4k 1"k )eg. (A1)
'k’ B
This equation can be transformed in the form
0=2 S,,()| 2 cpyﬁ(Ok,v—|k')}sﬁﬁ(—|)sﬁ.
75'3 I/k/
(A2)

Since the rhs of Eq(A2) is zero for arbitraryl ande g, we
may setl=0 and obtain the translational sum rule as

0="2, ®,4(0k,I'k’).
1"k’

Equation(A3) enables the determination of the “self” force
constant

(A3)

>

17k’ (1" k' #0k)

@, 5(0k,0k) = — D, 40k 1'K).  (A4)

An infinitesimal rotation performed on the undistorted

crystal results in the atomic displacements

ua<lk>=BE Sup(N€ punt,R(K), (A5)
)7y

where 6, is an infinitesimal rotation angle about theaxis.

0= 2 @, (klI'’k)S,5(1")ep,,0,R,(K'). (AB)
I"K" yBuv

Here,s g, is the Levi-Civita tensor. The rhs of EGA6) can
be written as

> Ds0k,I —1k")
1"k’ 8Bv

0=2 saym[
Y

X Ssp(l"'=De g, Ry (K') |0, (A7)

Since the rhs of EqUA7) is zero for arbitraryl and 6,,, the
rotational sum rule is obtained eventually as

0= 2 @50k I'k)Sss(1ep,,R,(k).  (AB)
I"k" 8Buv

Consider now the casg—0. If we assume a solution to
Eqg. (2.4) in the form

eq(K|0)=Vmge ., (R9)
we get
wZ(O)SQ:% > q>a5(0k,|'k')}sgﬁ(|')gﬁ. (A10)
1"k’

The rhs of Eq.(A10) vanishes due to the translational sum
rule (A3) and this gives rise to three acoustical modes with
w(0)=0.

Let us assume the solution

ea(k|0)=2 Vme o, 0,R,(K). (A11)
7

Then Eq.(2.4) becomes
©%(0) 2 &0 0,R,(K)
v

=D | X D50k 1'k)Sss(1")e g R(K) |6,
~o 1K 8B

(A12)

The rhs of Eq(A12) vanishes in view of the rotational sum
rule (A8) and we getw(0)=0. However, from here, the

Such a rotation gives no contribution to the restoring force inexistence of only one torsional acoustic mode follows be-

Eqg. (2.2, i.e.,

cause of the restriction for small atomic displacements.
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