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Elastic properties of single-walled carbon nanotubes
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Analytical expressions for the velocities of the longitudinal and the torsional sound waves in single-walled
carbon nanotubes are derived using Born’s perturbation technique within a lattice-dynamical model. These
expressions are compared to the formulas for the velocities of the sound waves in an elastic hollow cylinder
from the theory of elasticity to obtain analytical expressions for the Young’s and shear moduli of nanotubes.
The calculated elastic moduli for different chiral and achiral~armchair and zigzag! nanotubes using force
constants of the valence force field type are compared to the existing experimental and theoretical data.
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I. INTRODUCTION

Since the discovery of the multiwalled carbon nanotub
~MWNT’s! in the soot produced by the arc dischar
technique1,2 much attention has been given to the investig
tion of their amazing physical properties.3 Recently, the mass
production of single-walled carbon nanotubes~SWNT’s!,
stacked in crystalline ropes, was made possible by the l
ablation4 and by the arc discharge5 techniques. Due to thei
specific structure, the nanotubes are expected to be as st
graphite along the graphene layers or even reach the stiff
of diamond. This unique mechanical property of the na
tubes combined with their light-weightiness predetermin
their usage in composite materials and has motivated pre
experimental measurements of their elastic properties.6–9 In
the first of these works,6 the temperature dependence of t
vibration amplitude of several isolated MWNT’s was an
lyzed in a transmission electron microscope to eventu
obtain 1.8 TPa for the average Young’s modulus. Later
this technique was applied to measure Young’s modulus
isolated SWNT’s in the diameter range 1.021.5 nm and an
average valuêY&51.2520.35/10.45 TPa was derived.7 In
another experimental approach8 the MWNT’s were pinned to
a substrate by conventional lithography and the force w
measured at different distances from the pinned point
atomic force microscope~ATM !. The average Young’s
modulus for different MWNT’s with diameters from 26 to 7
nm was found to be 1.2860.59 TPa. Recently, Young’s an
shear moduli of ropes of SWNT’s were measured by s
pending the ropes over the pores of a membrane and u
ATM to determine directly the resulting deflection of th
rope.9 The theoretical estimation of the elastic moduli w
accomplished exclusively by numerical second derivative
the energy of the strained nanotubes. In the calculation of
elastic moduli of various SWNT’s within a simple force
constant model10 it was found that the moduli were insens
tive to tube size and helicity and had the average value
^Y&50.97 TPa and^G&50.45 TPa. In several works
molecular-dynamics~MD! simulation algorithms using the
Tersoff-Brenner potential for the carbon-carbon interactio
were implemented to relax the strained nanotubes and ca
late their energy.11–13 For tubes of diameter of 1 nm value
for Y of 5.5 TPa~Ref. 12! and 0.8 TPa~Ref. 13! were ob-
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tained. A non-orthogonal tight-binding~TB! scheme was ap
plied to calculate Young’s modulus of several chiral a
achiral SWNT’s yielding an average value of 1.24 TPa14

Recently, the second derivative of the strain energy with
spect to the axial strain, calculated with a pseudopoten
density-functional-theory~DFT! model for a number of
SWNT’s,15 was found to vary slightly with the tube type an
to have the average value of 56 eV.

In this paper, we choose a different approach to the c
culation of the elastic properties of SWNT’s. Namely, w
derive analytical expressions for the elastic~Young’s and
shear! moduli of SWNT’s using a perturbation technique d
to Born16 within a lattice-dynamical model for nanotubes.17

This scheme has the advantage that the elastic moduli
consistent with the lattice dynamics of the nanotubes and
each of these moduli is obtained in one calculational s
only.

The essential features of a model of the lattice dynam
of SWNT’s based on the explicit accounting for the helic
symmetry of the tubes17 are summarized in Sec. II A. Thi
model is applied to study of the long-wavelength vibratio
in nanotubes using Born’s perturbation technique16 and to
obtain analytical expressions for the velocities of the lon
tudinal and the torsional sound waves in SWNT’s~see Sec.
II B !. The comparison of these expressions with the formu
from the theory of elasticity for the velocities of these wav
in an elastic hollow cylinder allows one to determine t
Young’s and shear moduli of the nanotubes. The calcula
phonon dispersion of a (10,10) nanotube and elastic mo
for various chiral and achiral~armchair and zigzag! nano-
tubes using force constants of the valence force field~VFF!
type18 are presented in Sec. III and discussed in compari
with the existing experimental and theoretical data.

II. THEORY

A. The lattice-dynamical model

The ideal nanotube structure can be obtained from
graphene sheet by rolling it up along the straight line co
necting two lattice points into a seamless cylinder in suc
way that the two points coincide.11,19,20The tube is uniquely
3078 ©2000 The American Physical Society
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PRB 61 3079ELASTIC PROPERTIES OF SINGLE-WALLED CARBON . . .
specified by the pair of integers (L1 ,L2) that define the lat-
tice translation vector between the two points. Alternative
the tube can be described by its radiusR and the chiral angle
u that is the angle between the tube circumference and
nearest zigzag of carbon-carbon bonds. The tubes are c
achiral for u50 ~zigzag type! and u5p/6 ~armchair type!,
and chiral for 0,u,p/6.

The nanotube can be considered as a crystal lattice w
two atoms unit cell. Two different screw operators can
used to construct the entire tube from these two atoms21 in
quite the same way as a crystal is generated by mean
primitive translation vectors. By definition, a screw opera
$Si ut i% ( i 51,2) executes a rotation of the position vector
an atom by an anglef i about the tube axis with rotatio
matrix Si and a translation of this vector by a vectort i along
the same axis. Thus, the equilibrium position vectorR( l 1l 2k)
of the kth atom in the (l 1 ,l 2)th cell is obtained fromR(k)
[R(00k) as

R~ lk!5S~ l!R~k!1t~ l!, ~2.1!

where the compact notationS( l)5S1
l 1S2

l 2 ,t( l)5 l 1t11 l 2t2,
and l5( l 1 ,l 2) is adopted.

A lattice-dynamical model for a SWNT can be co
structed in a similar way as for a three-dimensional crysta17

In particular, the equation of motion for small displaceme
u( lk) of the atoms from their equilibrium positions are give
by

mküa~ lk!52 (
l8k8b

Fab~ lk,l8k8!ub~ l8k8!, ~2.2!

where mk is the atomic mass of thekth atom and
Fab( lk,l8k8) is the force-constant matrix (a,b5x,y,z). The
helical symmetry of the tubes described by the two scr
operators suggests to look for wavelike solutions for
atomic displacement vectorsu( lk) of the type

ua~ lk!5
1

Amk
(
b

Sab~ l!eb~kuq!exp$ i @q–l2v~q!t#%

~2.3!

with wave vectorq5(q1 ,q2), wave amplitudeeb(kuq) and
angular frequencyv(q). After substituting Eq.~2.3! in Eq.
~2.2!, the equations of motion are obtained in the form

v2~q!ea~kuq!5(
k8b

Dab~kk8uq!eb~k8uq!, ~2.4!

where

Dab~kk8uq!5
1

Amkmk8
(
l8g

Fag~0k,l8k8!Sgb~ l8!exp~ iq–l8!.

~2.5!

is the dynamical matrix. The rotational bounda
condition19–21and the translational periodicity condition22 on
u( lk) impose the following constraints on the wave-vec
components

q1L11q2L252p l ~2.6!

and
,
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e

of
r
f

s
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r

q1N11q2N25q. ~2.7!

Here, l is an integer number,Nc is the number of atomic
pairs in the translational unit cell of the tube,q is a new,
one-dimensional wave vector, and the integersN1 and N2
define the primitive translation vector of the tube.

From Eqs.~2.6! and~2.7! the wave-vector componentsq1
andq2 can be expressed through the coupleq and l and the
equations of motion and the dynamical matrix can be writ
as

v2~ql !ea~kuql !5(
k8b

Dab~kk8uql !eb~k8uql ! ~2.8!

and

Dab~kk8uql !5
1

Amkmk8
(
l8d

Fad~0k,l8k8!Sdb~ l8!

3exp@ i ~a~ l8!l 1z~ l8!q!#. ~2.9!

Here, a( l)52p( l 1N22 l 2N1)/Nc and z( l)5(L1l 2
2L2l 1)/Nc are the dimensionless coordinates of the origin
the lth cell along the circumference and along the tube a
respectively. The equations of motion~2.8! yield the eigen-
valuesv(ql j ) and the corresponding eigenvectorsea(kuql j )
where the couple (l j ) ( l 50, . . . ,Nc21; j 51, . . . ,6) labels
the modes with a given wave numberq in the one-
dimensional Brillouin zone (2p<q<p). It can be easily
proven that three translational and one rotational sum ru
are fulfilled identically for this lattice-dynamical model giv
ing rise to four acoustic branches without any additional c
rections either to the dynamical matrix,23 or to the force
constants24 ~see Appendix A!.

In some cases, it is important to know the eigenvect
and the dynamical matrix for the translational unit cell. T
derivation of these quantities in terms of those for the t
atoms unit cell is straightforward and eventually the follo
ing equations are obtained

ea~ lkuql j !5(
b

Sab~ l!eb~kuql j !exp$ i @a~ l!l 1z~ l!q#%

~2.10!

and

Dab~ lk,l8k8uq!5
1

Nc
(
lgd

Sag~ l!Dgd~kk8uql !Sdb~2 l8!

3exp$2 i @a~ l8l!l 1z~ l8l!q#%. ~2.11!

Here, the indexl labels the two atoms unit cells within th
translational unit cell, a( l8l)5a( l8)2a( l) and z( l8l)
5z( l8)2z( l). It is important to point out that the necessa
computational time for solving the eigenvalue problem
the two atoms unit cell and subsequent use of Eq.~2.10! is
nearly independent of the number of atoms in the tran
tional unit cell. However, if the dynamical matrix is calcu
lated from Eq.~2.11!, this will require a time increasing a
Nc

3 , which may be practically impossible for certain expe
mentally observable chiral SWNT’s with largeNc .
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B. Sound waves velocities and elastic moduli

Analytical expressions for the velocity of the sound wav
in SWNT can be derived by studying the long-waveleng
vibrational waves using Born’s perturbation techniqu16

within the lattice-dynamical model developed abov
Namely, the dynamical matrix Eq.~2.11! and the eigenvec
tors Eq.~2.10! and the eigenvalues belonging to the acous
branches are expanded in power series inq. These expan-
sions, substituted in the equations of motion for the tran
tional unit cell, give rise to equations of zeroth, first, a
second order with respect to the perturbation parameterq.

Taking nontrivial solutions for the zeroth-order eigenve
tor of the form

ea
(0)~ lk!5Amkua ~2.12!

with u - a constant vector, and solving the zeroth-, first-, a
second-order equations as in Ref.16 we obtain the syste
linear equations forua

rv2ua5(
b

Labub . ~2.13!

Here,r5Nc(kmk /V is the mass density of the tube,V is a
~yet unspecified! ‘‘unit cell volume,’’ and v5v (1)/q is the
phase sound velocity. The matrix elementsLab are defined
by

Lab5
1

V F (
lkl8k8

Amkmk8Dab
(2)~ lk,l8k8!

2 (
lkl8k8

(
mn

Gmn~ lk,l8k8!(
l9k9

Amk9Dma
(1)~ lk,l9k9!

3 (
l-k-

Amk-Dnb
(1)~ l8k8,l-k-!G . ~2.14!

The matricesDab
(1)( lk,l8k8) and Dab

(2)( lk,l8k8) are the first-
and second-order dynamical matrices and the ma
Gab( lk,l8k8) is defined at the end of this section.

Equation~2.13! have nontrivial solutions only for certai
values ofv that are the sound velocity of the longitudin
wave vL and the sound velocity of the transverse wavesvT

vL5AL1

r
, vT5AL2,3

r
, ~2.15!

whereLa(a51,2,3) are the eigenvalues of the matrixLab .
Besides the nontrivial solutions given in Eq.~2.12!, the

zeroth-order equations have also a nontrivial solution of
form

ea
(0)~ lk!5(

n
Amk«aznuzRn~ lk!, ~2.16!

where without loss of generality we have chosen thez axis
along the tube axis and, consequently,a5x,y;«abg is the
Levi-Civita symbol,uz is an angle of rotation about thez
axis. Proceeding as in Ref. 16, we obtain the equation

rv25L, ~2.17!

where
s

.

c

-

-

d
of

ix

e

L5
1

V H (
a,b5x,y F (

lkl8k8
(
gd

Amkmk8Dab
(2)~ lk,l8k8!«azg

3Rg~ lk!«bzdRd~ l8k8!

2 (
lkl8k8

(
m,n

Gmn~ lk,l8k8! (
l9k9g

Amk9Dma
(1)~ lk,l9k9!«azg

3Rg~ l9k9! (
l-k-d

Amk-Dnb
(1)~ l8k8,l-k-!«bzdRd~ l-k-!G J .

~2.18!

The sound velocity of the torsional wave in the tube,vR , can
be determined from Eq.~2.17! as

vR5AL

r
. ~2.19!

In Eqs. ~2.14! and ~2.18! the matrixGab( lk,l8k8) is the
inverse of the zeroth-order dynamical matrixDab

(0)( lk,l8k8).
However, this inversion cannot be done directly because
the linear dependence of elements of the latter. To carry
the inversion, we, following Born,16 remove one row and one
column ofDab

(0)( lk,l8k8) for eacha andb, remove one row
and one column from itsxy submatrix, invert the resulting
matrix, and add rows and columns of zeros on the place
the removed ones.

The microscopically derived sound waves velocities E
~2.15! and~2.19! can be used to derive the Young’s modul
Y and the shear modulusG of the nanotube. For this purpos
we assume that a nanotube can be considered as an infin
thin homogeneous cylinder with radiusR and use the formu-
las from the theory of elasticity25

vL5AY

r
, ~2.20!

vR5AG

r
, ~2.21!

vT
G5A2Y

r
Rq5A2RvLq. ~2.22!

Comparing Eqs.~2.15! and~2.19! to Eqs.~2.20!, ~2.21!, and
~2.22!, we identify L1 andL as the Young’s and the shea
moduli of the tube, respectively, and find thatL2,3 must be
zero. The Young’s modulus can be determined alternativ
from Eq. ~2.22! and the transverse acoustic branches of
phonon dispersion curves.

III. RESULTS AND DISCUSSION

The lattice-dynamical model and the analytical expr
sions for the sound velocities can be applied now to calcu
the phonon dispersion, Young’s and shear moduli of vario
SWNT’s. Since in a force-constant model of the lattice d
namics it is not possible to accomplish a real structural
timization, the structural data for the nanotubes has to
provided from the experiment or from theoretical estim
tions. The experimental data on the nanotube structure
rather scarce but two recentab initio studies15,26 reveal that
there are only slight differences between the various carb
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carbon bond lengths and between the various bond angle
accord with these results, we have chosen the simplest s
tural model accepting that for a given tube~1! all bond
lengths are equal to 1.42 Å, the same as those in
graphene sheet,~2! all bond angles are equal to each oth
for a given tube, and~3! all atoms lie on a cylindrical sur
face. These assumptions are justified by the results of
preliminary calculations showing that deviations of the bo
lengths and bond angles up to a few per cent from th
values following from~1!–~3! and small departures from th
ideal cylindrical geometry do not affect significantly th
eigenmodes and the elastic moduli.

The lattice-dynamical model implements force consta
of valence force field~VFF! type with values obtained by
fitting to the surface phonon dispersion curves of graph
investigated by high-resolution electron energy-lo
spectroscopy.18 The VFF parameters are of types neare
neighbor stretch, next-to-nearest-neighbor stretch, in-p
bend, out-of-plane bend and twist interactions. Here, we
ditionally assume that these model parameters can be tr
ferred to nanotubes without any modification. Neverthele
effects due to the curvature of the tubes will still exist b
cause the bond angles enter the force-constant matrix ex
itly.

The calculated phonon dispersion of a (10,10) tube
Fig. 1 shows the presence of four acoustic branch
longitudinal, torsional, and a doubly degenerate transve
one. The former two increase linearly with the wave num
and the latter one increases as the square of the wave nu
near the origin in agreement with the long-wavelength
sults presented above. To our knowledge, up to now th
have been only a few calculations of the phonon dispers
in nanotubes. They have been accomplished either by
zone-folding method with a correction of the dynamical m
trix in order to obtain the two transverse acoustic branche23

or by a simple force-constant model with modification of t
force constants in order to fulfill the rotational sum rule a
to obtain the torsional acoustic branch.24 In the latter work it
is obtained, however, that all the four acoustic modes h
nonzero slopes at the origin. Recently,ab initio phonon dis-
persions for (4,4) and (10,10) tubes that are free from
zone-folding model deficiencies have been publishe15

However, theseab initio results predict frequencies for th
highest zone-center phonons that are about 6% higher
the experimental values and in this respect they cannot c
pete with the simple force-constant models.

The estimation of the elastic moduli of nanotubes requ
the knowledge of the ‘‘unit cell volume’’V of the tubes.
There is no agreement between the different authors a
the choice of the continuum model of a nanotube. Some
them consider a nanotube as a hollow cylinder with a cer
wall thickness, e.g., 0.66 Å~Ref. 12! or 3.4 Å ~Ref. 10!—
equal to the adjacent layer separation in graphite. Oth
choose a uniform cylinder with a cross-sectional area ofpR2

~Ref. 13! or a prism—the unit cell in a crystalline rope o
SWNT’s,4 with a cross-sectional area ofA3/2(2R13.4)2

~Ref. 9!. Recently, it was proposed to characterize the a
stiffness of a nanotube with the second derivative of
strain energy with respect to the axial strain per unit area
the nanotube14 or per atom of the tube.15 In the latter case,
the resulting quantity is equal to the Young’s modulus m
tiplied by the tube volume per atomva so that it does not
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contain the ambiguous unit-cell volume. For this reason,
adopt such a description of the elastic properties of the tu
for both axial and shear strains.

The in-plane elastic moduli, calculated for graphene w
the adopted VFF parameters, are compared to the co
sponding experimental values for graphite in Table I. T
agreement between these values is quite good and it ma
expected that these VFF parameters would allow for fair p
dictions of the elastic moduli of nanotubes as well. T
Young’s and shear moduli of SWNT’s are calculated he
using Eqs.~2.14! and~2.18! for various tube types: armcha
tubes from~3,3! to ~15,15!, zigzag tubes from~5,0! to ~25,0!,
and a number of chiral tubes@~5,1!, ~5,2!, ~6,1!, ~5,3!, ~6,2!,
~7,1!, ~6,3!, ~6,4!, ~8,2!, ~7,4!, ~10,1!, ~8,4!, ~9,3!, ~8,5!,
~11,2!, ~10,4!, ~10,5!, ~12,3!, ~14,2!, ~12,6!, ~16,4!, ~14,7!,
and ~15,6!—in order of increasing tube radius#. The results
for the moduli and the Poisson ratio vs tube radius are
played in Fig. 2. We note thatY can be determined alterna
tively from the transverse acoustic branches of the disper
curves fitted with a polynomial of second degree with resp
to the wave number and the expression for the group so
velocity of the bending waves~2.22! leading to the same
results as those obtained by using Eqs.~2.15! and~2.20!. The

FIG. 1. Calculated phonon dispersion curves for a (10,1
SWNT ~left! and the low-energy region of the same curves conta
ing the translational, the torsional and the doubly degenerate tr
verse acoustic branches~right!.
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TABLE I. Experimental elastic constants~in GPa! and elastic moduli~in GPa/in eV! and Poisson ratio for
graphite in comparison with the calculated ones here.

c11 c12 c66
a Y b G b n b

Experim. valuesc 1060 180 440 1029/56.43 440/24.13 0.17
Calc. values~this work! 1047 219 414 1002/54.95 414/22.70 0.21

aFor hexagonal symmetry,c665(c112c12)/2.
bIn-plane moduliY5(c11

2 2c12
2 )/c11 andG5c66, and Poisson ration5c12/c11.

cRef. 27.
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results forY, presented in Fig. 2, show that for a given radi
the Young’s modulus for armchair tubes is slightly larg
than for zigzag tubes and that for chiral tubes it has interm
diate values. As a whole, the Young’s modulus is insensi
to the tube chirality and for large radii has values of about
eV that are about 3% smaller than the experimental one
graphite~see Table I!. At small radii the Young’s modulus
softens to about 50 eV. The first MD simulations12 predict
for the Young’s modulus of a (10,10) tube the value 59.4
which differs only by a few percent from our results. How
ever, the calculations within another MD simulatio
scheme13 and with a TB model14 yield for Y values of about
35 eV and about 70 eV, respectively, that significantly u
derestimate and overestimate Young’s modulus of a tu
Recently, pseudopotential DFT calculations15 of several
SWNT’s resulted in average Young’s modulus of 56 eV. T
only available experimental point7 is nearer to the TB~Ref.
14! and the DFT results15 for the same tube radius but th

FIG. 2. Calculated Young’s and shear moduli times the volu
per atom of the tubeva ~in eV!, and Poisson ratio estimated usin
the relationn5(Y/22G)/G ~in the inset! vs tube radius for various
chiral and achiral SWNT’s. The notations A and Z stand for ‘‘arm
chair’’ and ‘‘zigzag,’’ respectively.
r
-

e
5
or

-
e.

e

force-constant results10 as well as ours are also within th
range of the experimental error of the former.

The shear modulus behaves similarly to the Youn
modulus reaching values of about 23 eV for large radii b
softening at small radii as shown in Fig. 2. The direct co
parison of the obtained results with the experimental data
graphite~see Table I! reveals systematic deviation of abo
6% for the shear modulus at large radii, which we attribute
the VFF parameters of the model and to the initial assum
tions. The shear moduli calculated for several tube ty
within a force-constant model10 appear to be insensitive t
the tube radius and chirality and are about 15% higher t
the ones obtained here.

Using Y andG, we can estimate the Poisson ration, that
is equal to the ratio of the relative radial tube expansion
the relative axial tube shortening, making use of the expr
sion valid for a three-dimensional isotropic medium:6 n
5(Y/22G)/G. The spread in the values of both moduli h
as a consequence a spread in the values of the Poisson
that is more prominent for small tube radii~see the inset in
Fig. 2!. In the limit of large radii, the Poisson ratio tends
0.21 that is close to the experimental value for graphite~see
Table I!. The Poisson ratio estimated by means of a for
constant model10 is practically a constant of 0.28 that i
about 1.6 times larger than the in-plane value for graphite
possible reason for this disagreement may be that the ch
model cannot describe properly the energy of radia
strained tubes. The same behavior has TB results14 that range
from 0.247 to 0.275. The recently calculated Poisson ratio
a DFT model15 varies from 0.12 to 0.19 for a number of tub
types and for large tube radii has values that are close to
experimental value for graphite.

IV. CONCLUSIONS

In this paper, Young’s and shear moduli of vario
SWNT’s are estimated from analytical formulas deriv
within a lattice-dynamical model for nanotubes. The resu
for the elastic moduli and Poisson ratio obtained here us
force constants of the VFF type are in fair agreement w
the existing experimental data on graphite and nanotu
These results compare well to the best results of more refi
models—potential-based molecular-dynamics, tight-bind
and DFT models. The force-constant model has the esse
advantage to the latter models that it has a lo
computational cost with respect to both computer mem
and processing time. In particular, the use of analytical f
mulas allows one to obtain the elastic moduli of a given tu
in one calculational step only. Due to the large values of

e
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Young’s modulus along the tube’s axis, the SWNT’s are o
of the stiffest materials. This property, combined with th
relatively small mass density, makes them ideal ingredie
for composites.

ACKNOWLEDGMENTS

This work was supported partly by Grant No. G.0347.
of the Flemish Science Foundation and partly by the C
certed Action of the University of Antwerp GOA-BOF-UA
Nr.23. Two of us~V. E. V. D. and V. N. P.! acknowledge the
financial support from the Scientific Affairs Division o
NATO under Grant No. CRG 973953.

APPENDIX A: TRANSLATIONAL
AND ROTATIONAL SUM RULES

The infinitesimal translational and rotational invarian
conditions impose constraints on the force constants. If
undistorted crystal is translated by an infinitesimal vec
«b , this will not give any contribution to the restoring forc
in Eq. ~2.2!, i.e.,

05 (
l8k8b

Fab~ lk,l8k8!«b . ~A1!

This equation can be transformed in the form

05(
gdb

Sag~ l!F(
l8k8

Fgd~0k,l82 lk8!GSdb~2 l!«b .

~A2!

Since the rhs of Eq.~A2! is zero for arbitraryl and«b , we
may setl50 and obtain the translational sum rule as

05(
l8k8

Fab~0k,l8k8!. ~A3!

Equation~A3! enables the determination of the ‘‘self’’ forc
constant

Fab~0k,0k!52 (
l8k8( l8k8Þ0k)

Fab~0k,l8k8!. ~A4!

An infinitesimal rotation performed on the undistorte
crystal results in the atomic displacements

ua~ lk!5 (
bmn

Sab~ l!«bmnumRn~k!, ~A5!

whereua is an infinitesimal rotation angle about thea axis.
Such a rotation gives no contribution to the restoring force
Eq. ~2.2!, i.e.,
G

, J
e
r
ts

-

e
r

n

05 (
l8k8gbmn

Fag~ lk,l8k8!Sgb~ l8!«bmnumRn~k8!. ~A6!

Here,«bmn is the Levi-Civita tensor. The rhs of Eq.~A6! can
be written as

05(
gm

Sag~ l!F (
l8k8dbn

Fgd~0k,l82 lk8!

3Sdb~ l82 l!«bmnRn~k8!Gum . ~A7!

Since the rhs of Eq.~A7! is zero for arbitraryl andum , the
rotational sum rule is obtained eventually as

05 (
l8k8dbmn

Fad~0k,l8k8!Sdb~ l8!«bmnRn~k8!. ~A8!

Consider now the caseq→0. If we assume a solution to
Eq. ~2.4! in the form

ea~ku0!5Amk«a , ~A9!

we get

v2~0!«a5(
db F(

l8k8
Fad~0k,l8k8!GSdb~ l8!«b . ~A10!

The rhs of Eq.~A10! vanishes due to the translational su
rule ~A3! and this gives rise to three acoustical modes w
v(0)50.

Let us assume the solution

ea~ku0!5(
mn

Amk«amnumRn~k!. ~A11!

Then Eq.~2.4! becomes

v2~0!(
mn

«amnumRn~k!

5(
m F (

l8k8dbn

Fad~0k,l8k8!Sdb~ l8!«bmnRn~k8!Gum .

~A12!

The rhs of Eq.~A12! vanishes in view of the rotational sum
rule ~A8! and we getv(0)50. However, from here, the
existence of only one torsional acoustic mode follows b
cause of the restriction for small atomic displacements.
u,
a,

la
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