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Phase-shift analysis of two-dimensional carrier-carrier scattering in GaAs and GaN:
Comparison with Born and classical approximations

Antónia Mošková and Martin Moško
Institute of Electrical Engineering, Slovak Academy of Sciences, Du´bravskácesta 9, SK-842 39 Bratislava, Slovak Republic

~Received 30 December 1998; revised manuscript received 4 June 1999!

We study Markovian two-dimensional~2D! carrier-carrier (c-c) scattering in GaAs and GaN quantum well
systems. We evaluate the phase shifts of scattered partial waves by numerically solving the Schro¨dinger
equation for the 2Dc-c collision problem. The output of this ‘‘phase shift analysis’’ is exact quantum results
~in Markovian limit! for the 2D c-c scattering cross section and 2Dc-c scattering rate. We compare these
results with the results of the Born approximation~with the ‘‘Fermi-golden-rule based’’ theory!, and find that
the Born approximation can strongly overestimate the exact results. In particular, the 2Dc-c scattering rate is
overestimated by a factor of 1 to 15 in the GaAs quantum well and by a factor of 2 to 100 in the GaN quantum
well, if conditions typical for a quantum-well-laser device or for a quantum well excited by a short laser pulse
are considered. Our study is performed for a statically screened intercarrier interaction, but we expect the
dynamic screening to further deteriorate the Born approximation: We show that the weaker the screening the
worse the Born approximation in a 2D system. We also analyze the 2Dc-c collision as a classical event, and
find a very good agreement with the phase-shift analysis in the case of weak screening. For unscreened 2Dc-c
collisions the hierarchy of exact, Born, and classical cross sections is derived analytically, and it is shown that
the Born approximation breakdown is due to the carrier two dimensionality.
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I. INTRODUCTION

Carrier-carrier scattering in semiconductors is respons
for the thermalization of the nonthermal carrier distributi
toward a Fermi distribution at elevated carrier temperature1,2

for dephasing of ballistic electrons in a degenerate elec
gas,3,4 for the intercarrier Coulomb drag,5 and for other ef-
fects of fundamental interest~for a review, see, e.g., Ref. 6!.
It also affects the performance of various semiconductor
vices, in particular of small silicon metal-oxide
semiconductor field-effect transistors7 and of semiconductor
quantum-well lasers.8 Therefore, there is a strong motivatio
to develop a quantitatively reliable theory of carrier-carr
(c-c) scattering.

In a Fermi gas with many-body Coulomb interaction t
concept ofc-c scattering emerges from the Landau-Ferm
liquid theory.9 In that theory singleparticle states~quasipar-
ticles! are defined in a one-to-one correspondence with
single-particle states of the noninteracting gas, except
they are renormalized by the many-body interaction. Ho
ever, the many-particle wave function created from su
quasiparticle states is not an exact solution~a stationary
eigenstate! of the many-body Schro¨dinger equation. This im-
plies that the lifetime of the quasiparticle excitation is fini
i.e., that there is an interaction between the quasiparti
themselves, which scatters them from one single-part
state to another one. The interaction between the quasip
cles is a renormalized~screened! Coulomb interaction and
the scattering is~usually9–14! represented by successive tw
body collision events.

In a so-called Markovian limit, in which the colliding
quasiparticle does not ‘‘remember’’ the preceding collisio
the time evolution of the carrier distribution function due
the two-body collisions is described by the Boltzmann tra
PRB 610163-1829/2000/61~4!/3048~12!/$15.00
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port equation15–17 or by the Monte Carlo simulation18–23

~which is a physically equivalent24 Markovian approach!. A
central quantity of the Markovian theory is the two-bod
collision probability, which is usually calculated in the Bor
approximation—the perturbation theory in second order
the intercarrier interaction. In the Born approximation, a
for the intercarrier interaction screened in the random ph
approximation ~RPA!, the two-body collision probability
comes out as a standard ‘‘Fermi-golden-rule’’ expressi
which simplifies further calculations12–23 ~the nonrandom-
phase-approximation contribution to the golden rule has a
been considered,25 still in the second order in the intercarrie
interaction!.

However, we have pointed out recently18,26 that in case of
two-dimensional~2D! c-c scattering the Born approximatio
inherently overestimates the 2Dc-c scattering rate in the
limit of low carrier densities and low collisional energie
i.e., at least in that case the Born approximation should
abandoned and the 2Dc-c collision should be analyzed non
perturbatively.~One of us, with co-worker, also pointed ou
that a similar problem exists in 1D systems.27!

In this work we study Markovian 2Dc-c scattering in a
semiconductor quantum well nonperturbatively by means
phase-shift analysis. The analysis is performed for the in
carrier interaction determined from a simple RPA screen
model. We express the 2Dc-c scattering cross sectio
through phase shifts of scattered partial waves, and ext
the phase shifts from an exact solution of the Schro¨dinger
equation for the 2Dc-c collision problem. We obtain exac
quantum results for the 2Dc-c collision cross section and
2D c-c collision rate, which we compare with the Born a
proximation.For various conditions of practical importanc
we find that the Born approximation can fail to describe t
2D c-c scattering in the GaAs and GaN quantum-well s
3048 ©2000 The American Physical Society
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PRB 61 3049PHASE-SHIFT ANALYSIS OF TWO-DIMENSIONAL . . .
tems, and we show that the failure is due to the carrier t
dimensionality. We also consider the 2D c-c collision as
classical event, and find good agreement with the exact
proach in the weak screening limit.

In Sec. II we define the 2Dc-c collision problem, and
discuss its exact analytical solution for a bare Coulomb
tential. In Secs. III and IV, the phase-shift analysis is int
duced and the 2Dc-c collision problem is solved exactly
~numerically! for a screened Coulomb potential. In Sec.
the 2D c-c scattering rate in GaAs and GaN is evaluat
under conditions typically encountered in a quantum-w
laser and also under conditions characteristic of a quan
well excited by a short laser pulse. The classical analysi
the 2Dc-c collision is presented in the Appendix.

II. TWO-BODY COLLISION PROBLEM IN TWO
DIMENSIONS: INTRODUCTION

As is customary for the Landau–Fermi liquid9–14 and the
Boltzmann equation approach,15–23 we assume that only th
two-body collision events are operative in the 2D plasm
We ignore three-body or even many-body collision even
which are only important in 1D systems.28,29

We focus on intrasubband 2Dc-c collisions in the plasma
of electrons and/or heavy holes occupying the low
quantum-well subband. The reasons why we focus on
situation when only the ground subband is occupied are
following. First, this situation is characteristic of many d
ferent experiments which probe 2Dc-c scattering.2–6 Sec-
ond, the situation is relatively simple to analyze in compa
son with a multisubband case. Third, even in this sim
situation the 2Dc-c scattering has so far been analyzed
the Born approximation, and there has been no attemp
perform a nonperturbative analysis.

In the intrasubband 2Dc-c collision a carrierg changes
its in-plane wave vector fromk to k8 by collision with a
carrierd which is scattered fromk0 to k08 . Call the effective
mass of the first carriermg (md), whereg5e,h (d5e,h).
As is customary,18,30 we define the reduced massm
52mgmd /(mg1md) and the relative wave vectors befo
and after the collision, g5m(k0 /md2k/mg) and g8
5m(k08/md2k8/mg), respectively. Due to the energy an
momentum conservation, one hasug8u5ugu, so that if the
scattering anglef betweeng andg8 is known, the final states
k8 andk08 are determined. Further, it is useful30 to separate
the center-of-mass motion of the colliding carriers from th
relative motion, and to consider only the Schro¨dinger equa-
tion for the relative motion. In our 2D case this reads

F2
\2

m S ]2

]r 2
1

1

r

]

]r
1

1

r 2

]2

]f2D 1V~r !GF~r ,f!

5
\2g2

4m
F~r ,f!, ~1!

where r is the in-plane distance between the carriers,
scattering anglef plays the role of a polar angle,V(r ) is the
effective 2Dc-c interaction,F(r ,f) is the wave function of
the relative motion, and\2g2/4m is the eigenenergy. Equa
tion ~1! is formally identical, e.g., with the 2D exciton Schro¨-
dinger equation,31 except that now we are interested in u
o
a
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bound states, for which the eigenenergy equals the kin
energy of the relative motion before~or after! the collision,
\2g2/4m.

For a systematic derivation of Eq.~1!, one has to conside
the 3D Hamiltonian

H52
\2

2mg

]

]z2 1Vg~z!2
\2

2md

]2

]z0
2 1Vd~z0!

2
\2

m S ]2

]r 2 1
1

r

]

]r
1

1

r 2

]2

]f2D1W~r ,z2z0!, ~2!

wherez (z0) is the position of the first~second! carrier in the
quantum-well-growth direction,V(z) is the confinement po-
tential, andW(r ,z2z0) is the 3D c-c interaction. The re-
striction to the lowest subband means the use of the wa
function ansatzC(r ,f,z,z0)5F(r ,f)xg(z)xd(z0), where
xg andxd are the envelope functions of the carriersg andd,
respectively. Application of the variational principle to th
functional ^CuHuC& gives the Schrodinger equation~1!,
with

V~r !5E
2`

`

dzE
2`

`

dz0xg
2~z!W~r ,z2z0!xd

2~z0!. ~3!

In other words, the 3D problem defined by the Hamiltoni
~2! is tranformed into the 2D problem defined by Eq.~1!,
where the 3D interactionW(r ,z2z0) is replaced by the 2D
interactionV(r ). Further, since in Eq.~1! the in-plane mo-
tion is separated from the motion in thez direction, the po-
tential V(z) is only needed to determine the envelope fun
tions x(z) ~specified in Sec. III!.

For anyV(r ) which is radially symmetric and become
zero atr→`, Eq. ~1! has the asymptotic solution30

F~r ,f!r→`5expS i
g

2
r D1

1

Ar
expS i

g

2
r D f ~f,g!, ~4!

where exp@i(g/2)r # is the unperturbed plane-wave solutio
1/Ar exp@i(g/2)r # is the circular wave due to the scatterin
and f (f,g) is the the probability amplitude that the carrie
are scattered from stateg to stateg8 (f is the angle between
g andg8).

The differential scattering cross section~the scattering
probability! then reads30

s~f,g!5u f ~f,g!u2 ~5!

for collisions of distinguishable particles (e-h), while

s~f,g!5 1
2 $u f ~f,g!u21u f ~f1p,g!u2

2 1
2 @ f ~f,g! f * ~f1p,g!1 f * ~f,g! f ~f1p,g!#%

~6!

for collisions of indistinguishable particles (e-e, h-h). We
have derived Eq.~6! following the corresponding 3D
derivation.30 The amplitudesf (f,g) and f (f1p,g) de-
scribe the ‘‘direct’’ transitionk→k8, k0→k08 and the ‘‘ex-
change’’ transitionk→k08 , k0→k8, respectively. These tran
sitions are indistinguishable when indistinguishable fermio
collide, which gives rise to the interference term~the third
term! on the right-hand side of Eq.~6!.
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3050 PRB 61ANTÓNIA MOŠKOVÁ AND MARTIN MOŠKO
We wish to present a calculation ofs(f,g) which is ex-
act in all orders in the interactionV(r ). In general,V(r ) is a
screened Coulomb potential for which such calculation
complicated~see Secs. III and IV!. Therefore, we start with a
simple but instructive case of unscreened Coulomb inte
tion between strictly 2D carriers,V(r )5qdqg /(4pKr ),
where qe52e, qh5e, and K is the material permittivity.
For suchV(r ), Eq. ~1! is analytically solvable,32 and the
exact scattering amplitudef (f,g) can also be derived
analytically.32 The result is~in our notations!

f ~f,g!5
G~ 1

2 2 iG !

G~ iG !

expS 2iG ln sin
f

2 D
~ ig !1/2sin

f

2

, ~7!

G5me2/~4pKg\2!. ~8!

We note that Eq.~7! is identical to the exact quantum resu
derived32 for the scattering of a single 2D carrier by a Co
lomb impurity, if in that result we replace the immobile im
purity by a 2D carrier of initial velocityvd and massmd
through a rigorous transformation30 vg→uvg2vdu, mg
→mgmd /(mg1md), wherevg andmg are the initial veloc-
ity and mass of the first carrier.

Using Eq.~7! and theG-function properties33

G~ 1
2 1 iG !G~ 1

2 2 iG !5p/cosh~pG!,

G~ iG !G~2 iG !5p/@G sinh~pG!#,

from Eq. ~5! one obtains the exact differential cross sect
for distinguishable particles,

s~f,g!5
G

g

tanh~pG!

sin2
f

2

, ~9!

which is identical with the carrier-impurity cross section
Ref. 32 in the limitmd→`. Similarly, from Eq.~6! we ob-
tain the exact cross section for indistinguishable particles

s~f,g!5
G

2g
tanh~pG!

3H 1

sin2
f

2

1
1

cos2
f

2

2

cosS 2G lnUtan
f

2 U D
sin

f

2 Ucos
f

2 U J ,

~10!

which is a 2D analogy of the Mott formula in thre
dimensions.34 To our knowledge, Eq.~10! has not been pub
lished so far in the literature.

In the calculations we use the GaAs parametersme
50.067m0 , mh50.44m0, andK510.9e0. For GaN we use
me50.22m0 , mh51.98m0, andK55.5e0.35

Figure 1 compares function~10! with the function
s

c-

s~f,g!5
pG2

2g H 1

sin2
f

2

1
1

cos2
f

2

2
1

sin
f

2 Ucos
f

2 UJ ,

~11!

which is the Born limit (pG!1) of Eq. ~10!. Indeed,the
Born limit fails to fit the exact cross section. Note also that
the function cos@2G lnutan(f/2)u# in the exchange term o
Eq. ~10! causes oscillations, nicely resolved in the exact h
cross section forg5108 m21.

Now we ignore the particle indistinguishability and co
sider only Eq.~9!. Equation~9! gives, in the Born limit,

sB~f,g!5
pG2

gsin2
f

2

, ~12!

while in the classical limit (pG@1) it gives

scl~f,g!5
G

gsin2
f

2

. ~13!

Comparison of Eqs.~12! and ~13! with the exact result~9!
gives functions sB /s5G/tanh(pG) and scl /s
51/tanh(pG), which no longer depend onf. In Fig. 2 these
fuctions are shown in dependence ong for e-e, e-h, and
h-h collisions both in GaAs and GaN. Clearly,the Born
cross section fails to fit the exact cross section(sB /s→`
for g→0), while the classical cross section works we
(scl /s.1). This makes the 2Dc-c collisions fundamen-
tally different from the 3Dc-c collisions, for which the
purely Coulomb interaction gives30 s5sB5scl
5(G/g)sin24(f/2), i.e., the Born approximation breakdow
is inherent to two dimensions. Due to the higher carrier ef
fective mass and due to the lower permittivity,in GaN the
breakdown is much more pronounced. The above conclu-
sions, albeit proven for the unscreened interaction, are es
tially also valid for the screened interaction, as we show
the next sections.

FIG. 1. Unscreened Coulomb cross section in dependence
the scattering anglef for the 2De-e and 2Dh-h collisions in the
GaAs quantum well. Full lines are the exact result~10!, dashed
lines the Born limit~11!.
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III. PHASE-SHIFT ANALYSIS

First we specify our screening model. We express
screened interaction as

V~r !5
1

~2p!2E dQ eiQr
qgqd

2KQ

Fg2d~Q!

e~Q!
, ~14!

whereqgqd/2KQ is the Fourier transform ofqgqd /4pKr ,
e(Q) is the screening function, and Fg2d(Q)
5*2`

` dz*2`
` dz0 xg

2(z)e2Quz2z0uxd
2(z0) is the form factor

which accounts for the finite thickness of the 2D plasm
Equation~14! with e(Q)51 can easily be derived from Eq
~3! with W(r ,z2z0)5qgqd /@4pKAr 21(z2z0)2#, while
Eq. ~14! with screening is a standard result of the RP
theory,9,36 applied to a 2D system37 in the limit of static
screening. For a strictly 2D system38 e(Q)511QSC/Q,
whereQSC is the inverse screening length. The strictly 2
form can be modified to the quasi-2D form18

e~Q!511QSCF~Q!/Q, ~15!

strictly valid in case thatxe(z)5xh(z).39 In this paper we
use the screening function~15! and evaluateF(Q) assuming
xe5xh5A2/Lsin(pz/L), whereL is the quantum-well width
@for xe5xh , the indicesg,d in the form factorF(Q) can be

FIG. 2. Unscreened Coulomb cross sections in the Born li
@Eq. ~12!# and in the classical limit@Eq. ~13!# are compared with the
exact cross section@Eq. ~9!# in terms of sB /s and scl /s. The
results are provided for the 2De-e, 2D e-h, and 2Dh-h collisions
in GaAs and GaN.
e

.

omitted#. This screening model has already been found to
reasonable in some experimental situations,40 and in our case
allows a transparent presentation of the phase-shift anal
In the calculations we useL510 nm, but we note that ou
results are not very sensitive to the choice ofL or even to the
choice ofxe andxh , if the choice is reasonable.

Applications of the phase shift analysis to the 3D and
scattering on a fixed scattering center can be found, e.g
Refs. 30, 32 and 41. Below we present the application to
c-c scattering, give a number of details necessary for a s
cessfull implementation, and show representative numer
results for the phase shifts.

One can use the partial wave (Pm) expansion

F~r ,f!5 (
m52`

`

cm

1

Ar
Pm~r !eimf ~16!

to transform Eq.~1! into a set of radial equations

F ]2

]r 2
2

m

\2 V~r !2
~m221/4!

r 2 1S g

2D 2GPm~r !50,

m50,61,62, . . . . ~17!

For r→0, Eq. ~17! takes the form

F ]2

]r 2 2
~m221/4!

r 2 GPm~r !50, ~18!

the solution of which is

Pm~r→0!}Arr umu. ~19!

This gives the boundary conditionPm(0)50, which, with
the Eq. ~17!, determinesPm(r ) except for a multiplication
constant. At r→`, Eq. ~17! reduces to @]2/]r 2

1(g/2)2#Pm(r )50. We thus obtainPm(r→`)}cos@(g/2)r
1Xm#, where the phaseXm is fixed by exact solution of Eq
~17!. If we defineXm52(p/2)m2(p/4)1dm , we can write
the asymptotic solution of Eq.~17! as

Pm~r→`!5A 4

pg
cosS g

2
r 2

p

2
m2

p

4
1dmD . ~20!

Heredm is the phase shift caused byV(r ), and the multipli-
cation constantA4/pg is discussed later on.

The 2Dc-c collision cross section as a function ofdm can
be expressed through exact quantum formulas@Eqs.~33! and
~34!#. Thus, oncedm is known, the problem is completel
solved. dm can in principle be evaluated by tailoring th
exact ~numerical! solution of Eq.~17! with the asymptotic
form ~20!. In practice, however, this does not give a stab
(r -independent! dm , because numerically one only work
with finite r rather than withr→`. Now we show how to
obtain a stable and accuratedm .

We need asymptotic solution of Eq.~17! for large but
finite r @QSC

21 . For suchr the decrease ofV(r ) is faster than
r 22 ~Ref. 32!, so that at large enoughr Eq. ~17! reduces to
the equation

F ]2

]r 2 2
~m221/4!

r 2 1S g

2D 2GPm~r !50, ~21!

it
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3052 PRB 61ANTÓNIA MOŠKOVÁ AND MARTIN MOŠKO
with independent solutionsPm(r )5ArJm@(g/2)r # and
Pm(r )5ArYm@(g/2)r #,33 whereJm andYm are the cylindri-
cal Bessel functions.42 The desired asymptotic solution
their linear combination in the form

Pm~r !5Ar FJmS g

2
r D cosdm2YmS g

2
r D sindmG , r @QSC

21 ,

~22!

which in the limit r→` reduces43 to formula~20! including
the factorA4/pg.

Let Pm(r )NUM stand for the numerical solution of Eq
~17!. Equation~22! can be tailored withPm(r )NUM as

Pm8 ~r !

Pm~r !
5

Pm8 ~r !NUM

Pm~r !NUM
. ~23!

From Eqs.~23! and ~22! we obtain

tan~dm!5

Jm8 S g

2
r D2g~r !JmS g

2
r D

Ym8 S g

2
r D2g~r !YmS g

2
r D , ~24!

where

g~r !5
Pm8 ~r !NUM

Pm~r !NUM
2~2r !21. ~25!

Finally, to evaluatePm(r )NUM we solve Eq.~17! using the
finite-difference scheme

Pm~r j !52Pm~r j 21!2Pm~r j 22!1Dr 2Pm9 ~r j 21!, ~26!

wherer j5 j •Dr andPm9 is given by Eqs.~17!. Although the
scheme works forj 52,3, . . . , it ispractical to start with a
much largerj than 2. If we choose j such thatr j still obeys
the inequality u(m221/4)/r 2u@u(g/2)22mV(r )/\2u, then
Eq. ~18! is still a good alternative of Eq.~17! and we can
initialize Pm(r j 21) andPm(r j 22) using Eq.~19!. The result-
ing Pm(r )NUM and Eq.~24! give a stable (r -independent! dm

for r @QSC
21 .

The described procedure is exact but rather slow. Th
fore, we also introduce a highly accurate and fast work
approximation. We first show that the exact phase shifts c
verge form2@1/4 toward the quasiclassical limit

dm
clas5E

r a

`

dr AS g

2D 2

2
mV~r !

\2 2
m2

r 2

2E
r b

`

dr AS g

2D 2

2
m2

r 2 , ~27!

wherer a andr b are ther values at which the first and secon
integrands, respectively, are zero.

The solution of Eq.~17! in the quasiclassical limit is30

Pm~r !}
1

Ap~r !
cosS E

r a

r

dr p~r !2
p

4 D , r .r a , ~28!

where p(r )5A(g/2)22mV(r )/\22(m221/4)/r 2. For m
@1/4 we can replacem221/4 by m2 @Eq. ~28!, for V(r )
e-
g
n-

50 and r→`, then gives the asymptotic form of Eq.~20!
with dm50]. The phase shift~27! is the phase difference o
the wave function~28! and of the same wave function wit
V(r )50, both taken in the limitr→`. Equation~27! is a
2D analog of the known 3D result.30

Let us compare the quasiclassical phase shifts with
exact ones. The output of the exact phase-shift analysis@Eq.
~24!# is tandm , which givesdm as

dm5arctan~ tandm!1 j p, ~29!

where j is an arbitrary integer. The quasiclassical limit~27!
directly givesdm

clas , so if one writes

dm
clas5arctan~ tandm

clas!1 lp, ~30!

then Eq.~30! defines the integerl. Sincedm→dm
clas for m2

@1/4, comparison of Eq.~29! and ~30! gives j 5 l .
In Fig. 3 we comparedm anddm

clas for the e-e collisions
at variousg andQSC. When m2@1/4, the exact phase shift
are perfectly fitted by the quasiclassical ones for any g a
QSC. This proves that both computational programs wo
well and shows that the exact analysis is only needed say
umu50,1,2,3, while for umu.3 the quasiclassical formula
~27! is sufficient with a high accuracy. The use of Eq.~27!
decreases the computational time per one phase typic
10–50 times. The phase shifts for theh-h scattering~not

FIG. 3. Phase shiftdm as a function ofm for thee-e collision at
various wave vectors~g! and various screening lengths (QSC). Full
circles show the exact phase shifts, open squares the quasicla
phase shifts (dm

clas), and open triangles the Born phase shi
(dm

Born), all for the GaAs quantum well.
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shown! behave similarly, while for thee-h collisions ~see
Fig. 4! the only change is that the phase shifts are positi

Figures 3 and 4 also show phase shifts in the B
limit: 30,41

dm
Born5arctanH 2

p

2E0

`

dr rJm
2 S g

2
r D m

\2 V~r !J . ~31!

The Born phase shifts fit the exact phase shifts only for la
g andQSC, so their applicability32 is not general.

IV. CROSS SECTION OF SCREENED 2Dc-c COLLISION:
EXACT VERSUS BORN

Oncedm is known, the exact 2Dc-c scattering cross sec
tion can be generated. First we express throughdm the scat-
tering amplitudef (f,g). It reads

f ~f,g!5A 4i

pg (
m52`

`

eimfeidmsindm . ~32!

Equation ~32! can be derived30 by comparing Eq.~4! and
~16! at r→`. ThenPm(r ) in Eq. ~16! is given by Eq.~20!,
and if we use the identity~valid for r→`)

expS i
g

2
r D5A 4

pgr (
m52`

`

i meimfcosS g

2
r 2

p

2
m2

p

4 D ,

we can express the differencef(r ,f)2exp@i(g/2)r # as a
sum of the term proportional tor 21/2exp@i(g/2)r # and the
term proportional tor 21/2exp@2i(g/2)r #. The latter term is
not physical„r 21/2exp@2i(g/2)r # is a circular wave running

FIG. 4. The same as in Fig. 3, but for thee-h collision.
.
n

e

toward the scattering center! and disappears only ifcm in Eq.
~16! is chosen as exp„i @(p/2)m1dm#…. Then only the term
f (f,g)r 21/2exp@i(g/2)r # remains, withf (f,g) given by Eq.
~32!.

Using Eq.~32! from Eq. ~5! one obtains the exact differ
ential scattering cross section

s~f,g!5
4

pg H F (
m52`

`

sindmcos~dm1mf!G2

1F (
m52`

`

sindmsin~dm1mf!G2J , ~33!

valid for distinguishable particles. Similarly, for indistin
guishable particles, from Eq.~6! we easily obtain

s~f,g!5
2

pg H F (
m52`

`

sindmcos~dm1mf!G2

1F (
m52`

`

sindmsin~dm1mf!G2J
1

2

pg H F (
m52`

`

sindmcos~dm1mf1mp!G2

1F (
m52`

`

sindmsin~dm1mf1mp!G2J
2

2

pg (
m52`

`

(
m852`

`

sindmsindm8

3cos~dm2dm81mf2m8f2m8p!, ~34!

where the third term is due to the exchange effect.
Our aim is to compare Eqs.~33! and~34! with their Born

limit. The Born cross section (sB) was derived in our previ-
ous work18 from the Fermi golden rule. The result is

sB~f,g!5pG2g
F~Q!2

Q2e~Q!2 ~35!

for distinguishable particles, and

sB~f,g!5pG2g
1

2 F F~Q!2

Q2e~Q!21
F~Q8!2

Q82e~Q8!2

2
F~Q!F~Q8!

Qe~Q!Q8e~Q8!
G ~36!

for indistinguishable particles, whereQ5g sin(f/2), Q8
5gucos(f/2)u, andG is given by Eq.~8!. As expected, for
F(Q)51 and e(Q)51, Eqs. ~35! and ~36! give the un-
screened Born results~12! and ~11!.

We note that the Born cross sections~35! and ~36! can
also be derived directly from the exact cross sections~33!
and ~34!. The derivation is similar to that one for a fixe
scattering center,30,32 so we only mention basic steps. Fir
one assumes thatV(r ) is a small perturbation, and obtains32

the Born phase shifts~31!. Second, one simplifies Eqs.~33!,
~34!, and ~31!, assuming that all phase shifts are small.30,32

Third, using Eq.~31!, the relation33 (m52`
` Jm

2 @(g/2)r #eimf
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5J0@(g/2)r sin(f/2#, and Eq.~14!, from Eqs.~33! and ~34!
one obtains Eqs.~35! and ~36!.

Figure 5 compares the exact and Born cross sections
the e-e and h-h collisions in the GaAs quantum well a
variousQSC andg @QSC52.33108 m21 is the highest elec-
tronic screening in the GaAs quantum well—the Thom
Fermi screeningQSC5e2me /(2pK\2)]. As in Fig. 1, in
Fig. 5 the Born limit also fails to fit the exact result. One also
sees the oscillations due to the exchange effect~cf. Fig. 1! in
the exacth-h cross section forg5108 m21 and QSC50.5
3107 m21.

In Fig. 6 we show the same result as in Fig. 5, but fore-h
scattering, i.e., we evaluate the exact and Born cross sec
from formulas~33! and ~35!. The Born limit again overesti-
mates the exact result and, unlike the Born limit, the ex
result is sensitive to the sign of the intercarrier interacti
which we demonstrate by changing the attractive interac

FIG. 5. Differential scattering cross section vs scattering an
for the 2D e-e and 2Dh-h collisions. The wave vectors~g! and
screening lengths (QSC) used in the calculations are indicated. T
exact cross section~34! is shown by a full line, the Born cros
section~36! by a dashed line.

FIG. 6. The same as in Fig. 5, but fore-h collisions. Also
shown are results for the repulsivee-h interaction.
or

-

ns

t
,
n

to a repulsive one.For QSC50 the phase-shift analysis give
the same numerical results (Figs. 1 and 2) as do the anal
cal cross sections (9) and (10), but one has to apply a m
sophisticated procedure,44 appropriate for bare Coulomb
scattering.

Finally, we evaluate the total scattering cross section

s~g!5E
0

2p

df s~f,g!. ~37!

Inserting Eq.~33! for s(f,g) one obtains the exact tota
cross section for distinguishable particles:

s~g!5
8

g (
m52`

`

sin2dm . ~38!

Similarly, for indistinguishable particles, we easily obtain

s~g!5
8

g (
m52`

`

sin2dm2
4

g (
m52`

`

sin2dmcos~mp!.

~39!

The corresponding Born total cross sections can be evalu
by inserting Eqs.~35! and ~36! into Eq. ~37!.

In Fig. 7 the Born total cross sectionsB(g) is compared
with the exact total cross sections(g) in terms of the ratio
sB(g)/s(g). The results are calculated fore-e, e-h, and
h-h collisions in the GaAs quantum well at various levels
screening. Note that the screenedsB /s curves are similar to
the unscreened results in Fig. 2,except that the screenin

le

FIG. 7. Cross-section ratiosB(g)/s(g) versus the relative wave
vectorg for thee-e, e-h, andh-h collisions in the GaAs quantum
well. Heres(g) is the exact total cross section, andsB(g) is the
Born total cross section. The full, dashed, and dotted lines show
results for QSC50.53107, 83107, and 2.33108 m21, respec-
tively. Also shown are results for the repulsivee-h interaction.



ap
n

ar

ro
vi

th
a

ea

f

u

t
e
cs

-

ic
ow
in
t
a

dy

th
fo

y
o

s
t

ti-
one
-

the
r

-
at

lse,
d in

o

a
s-

nergy

he

e
aN
the

PRB 61 3055PHASE-SHIFT ANALYSIS OF TWO-DIMENSIONAL . . .
weakens the Born approximation breakdown. The Born
proximation still overestimates the exact cross section i
broad range of carrier energies and screening lengths.In
case of thee-h interaction one sees that its attractive ch
acter reduces the difference betweens(g) and sB(g) at
largeQSC. At small QSC, s(g) is no longer sensitive to the
sign of the interaction.

Similar results~not shown! were obtained also for the
GaN quantum well. The only difference was a more p
nounced failure of the Born approximation, already en
sioned in Fig. 2.

For completeness, in the Appendix we examine
screened 2Dc-c collision as a classical event. We show th
the classical treatment fits almost perfectly the exact tr
ment if the screening is weak.

V. 2D c-c SCATTERING RATE

The 2Dc-c collision rate reads

Gg2d
out ~k!52(

k0

f d~k0!
\g

m E
0

2p

df sg2d~f,g!@12 f g~k8!#

3@12 f d~k08!#, ~40!

whereg5e,h andd5e,h, f e(k) and f h(k) are the electron
and hole distribution functions, and the statesk8 and k08 as
functions off, k, andk0 are fixed by the conservation o
energy and momentum.

If one inserts the Born cross section@Eqs.~35! and~36!#,
for s(f,g), then formula~40! represents the Born 2Dc-c
scattering rate as can be derived from the Fermi golden r
If we insert the exact quantum cross section@Eqs. ~33! and
~34!# for s(f,g), then Eq.~40! provides us with the exac
~in Markovian limit! 2D c-c scattering rate. It should also b
derivable from the first-principles non-Markovian kineti
valid in all orders in the intercarrier interaction~see Appen-
dix XIII in Ref. 45!.

The static screening lengthQSC has so far been a param
eter. In the following we use18

QSC5
e2

2pK\2 @mef e~0!1mhf h~0!# ~41!

for the h-h collisions, while in case of thee-e and e-h
collisions we omit the screening by holes and take

QSC5
e2

2pK\2 mef e~0!. ~42!

Equation~42! roughly incorporates the fact that in a dynam
screening model the heavy holes would be too slow to foll
the fast electronic motion. For this study the static screen
is sufficient, because once we find a difference between
Born and exact results for static screening, we expect
even larger difference for the dynamic screening: The
namic screening is weaker than the static one,20,15,17andour
results show that the weaker the screening the worse
Born approximation in two dimensions (see, e.g., Fig. 7
QSC.0 and Fig. 2 for QSC50).

First we study the 2Dc-c scattering rate in a high-densit
e-h plasma, as typically encountered in semiconduct
-
a

-

-
-

e
t
t-

le.

g
he
n
-

e
r

r-

quantum-well lasers:8,46 We approximate the distribution
f e(k) and f h(k) as the equilibrium Fermi distributions a
temperature T5300 K and carrier densityne5nh54
31012 cm22.

Figure 8 shows the calculated 2Dc-c scattering rates.In
the GaN quantum well the Born approximation overes
mates exact results for e-e and h-h scattering by almost
order of magnitude. In the GaAs quantum well it works bet
ter, but a remarkable overestimation is still seen for theh-h
scattering. The overestimation is systematically lower for
e-h andh-e scattering, which we already saw in Fig. 7 fo
strong screening.

Now we calculate the 2Dc-c scattering rate under con
ditions typical for time-resolved optical spectroscopy. In th
kind of experiment a nonthermal 2De-h plasma is excited in
the quantum well by a fast quasimonoenergetic laser pu
and the time-resolved absorption spectrum is measure
order to detect the 2Dc-c scattering.6 Interpretation of such
experiments18,38 is not the aim of this paper, we just wish t
test the applicability of the Born approximation.

The initial energy distribution of the photoexcited plasm
roughly follows the energy spectrum of the pump pulse. A
suming a Gaussian pulse spectrum centered at excess e
W with a halfwidthDW, we obtain17

f e~k!}expH 2S \2k2

2me
2WeD 2Y 2DWe

2J , ~43!

FIG. 8. 2D carrier-carrier scattering rateGout (e-e, h-h, e-h,
and h-e) as a function of the carrier energy, calculated for t
equilibrium 2De-h plasma at temperature 300 K and ane-h pair
density of 431012 cm22. The left column shows the results for th
GaAs quantum well, and the right column the results for the G
quantum well. Full circles are the exact results, open circles are
Born results.
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f h~k!}expH 2S \2k2

2mh
2WhD 2Y2DWh

2J , ~44!

whereWe5mhW/(me1mh), Wh5meW/(me1mh), etc. for
DWe,h . We insert the above distributions into the 2Dc-c
scattering rate~40! and evaluate it for a carrier energy in th
center of the distribution in order to assess the character
scattering rate.17 Results are presented in Fig. 9 as functi
of the carrier density forW52DW520 meV. The Born
approximation overestimates the exact 2Dc-c scattering rate
far more than in Fig. 8, because the screening is m
weaker owing to the nonthermal distribution and to the low
plasma density.The overestimation by a factor of 10–100 in
the GaN corresponds to the analytical results of Fig. 2.

VI. SUMMARY AND COMPARISON WITH PREVIOUS
WORK

In summary, in this paper Markovian 2Dc-c scattering
has been studied by means of phase-shift analysis. The
put of the analysis shows exact quantum results for the
c-c scattering cross section and 2Dc-c scattering rate. We
have compared these results with the Born approximat
We have demonstrated, for GaAs and GaN quantum-w
systems, that the Born approximation can grossly overe

FIG. 9. 2D carrier-carrier scattering rateGout (e-e, h-h, e-h,
and h-e) as a function of thee-h pair density. In the calculation
the nonthermal 2De-h plasma with a Gaussian carrier energy d
tribution @Eqs.~43! and~44!# was considered, and the 2Dc-c scat-
tering rate was evaluated for a carrier with energy just in the ce
of the distribution (We517.2 meV andWh52.8 meV for the
GaAs, andWe518 meV andWh52 meV for GaN!. Results for
the GaAs~GaN! quantum well are in the left~right! column. Full
circles are the exact results, open circles the Born results.
tic

h
r

ut-
D

n.
ll

ti-

mate the exact 2Dc-c scattering cross section and the exa
2D c-c scattering rate. The overestimation by a factor
2–100 has been found under conditions typical
semiconductor-quantum-well lasers, and especially un
conditions typical for the ultrafast excite-probe spectrosco
We have identified the carrier two dimensionality as a m
reason for the Born approximation breakdown, we belie
that in 3D systems the Born approximation works bett
Major conclusions have been supported by analytical ca
lations ~Sec. II!, which can easy be verified. Finally, a de
tailed algorithm of the phase-shift analysis~Sec. III.! has
been provided for potential users, and a classical 2Dc-c
collision analysis~see the Appendix! has been proposed a
an alternative approach, appropriate for the weak scree
limit.

Our study has been performed in the Markovianc-c scat-
tering limit, so a few remarks should be added concern
the non-Markovian c-c scattering theory previously
derived45 and applied by several groups in 3D GaA
systems.45,47–51 Due to its complexity, the non-Markovian
theory was also formulated in the Born approximation45

Therefore, a formal derivation of the Markovianc-c scatter-
ing limit ~Markovian Boltzmann equation! from such non-
Markovian theory gives a conventional ‘‘Born
approximation-based’’ Markovianc-c scattering,45,52 the 2D
version of which we criticize in this paper. Owing to ou
criticism, several problems emerge. First, in case of 2D s
tems, the non-Markovian theory relying on the Bo
approximation45,47–51should be generalized for ac-c scat-
tering of arbitrary strength, because once the Bornc-c scat-
tering fails in the Markovian limit, then its validity is also
questionable in the non-Markovian theory~the question of
how to avoid the Born approximation in non-Markovia
theory is addressed in Appendix XIII of Ref. 45!. Further, it
would be useful to derive the Markovian 2Dc-c scattering
rate with the exactc-c cross section@Eq. ~40! with exact
s(f,g)] directly from such generalized non-Markovia
theory in order to give a systematic formal support to ourad
hoc formulation. These problems are beyond the scope
this paper, and we are not aware of any non-Markov
analysis of 2Dc-c scattering in the literature. 3D analysis50

shows that non-Markovian memory effects can modify t
Markovian c-c scattering, if ultrafast carrier relaxation i
considered. However, these modifications, although
negligible,50 are not so pronounced as the order-o
magnitude changes introduced by our phase-shift analysi
the same holds in the 2D systems~we consider it to be very
likely, albeit presently we cannot give a rigorous proof!, then
a major problem of the 2Dc-c scattering theory is not the
Markovian approximation but the Born approximation.

The main limitations of our Markovian model are the fo
lowing. We have considered 2Dc-c scattering only in the
lowest-energy subband. A complete phase-shift analysis
multisubband system would be too difficult, but a reasona
compromise might be a phase-shift analysis of intrasubb
c-c collisions combined with the Born approximation fo
intersubbandc-c collisions. Further, beyond the scope
this paper is Friedel’s sum rule correction of the scatter
potential entering the phase-shift analysis.32,41 We prefered
potential ~14! in order to present a transparent introducto
comparison of the exact and Born calculations.

er
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We conclude by mentioning previous work relevant to o
results. References 18 and 26 in fact also presented 2Dc-c
scattering analyses valid in all orders in the intercarrier
teraction, because, although fully classical, these anal
were performed under conditions where the classical and
act quantum cross sections coincide~see also the Appendix
of this paper!. In Refs. 18 and 26 the failure of the Born 2
c-c scattering model was proven in the weak screening lim
More recently, the authors of Ref. 53 analyzed the 2D q
siparticle life time in the limit of low temperature and lo
excitation energy. In that limit they summed up all orders
the intercarrier interaction by means of the diagramatic te
nique, and also found results differing from the Born a
proximation.

For 3Dc-c scattering, a correction due to the phase sh
was presented in the Appendix A of Ref. 7. The correction
acomplished by scaling the Born 3Dc-c scattering cross
section by the factorh5sT /sT

B ~taken from Ref. 41!, where
sT and sT

B are the total momentum-transfer cross sectio
calculated by the phase-shift method and by the Born
proximation, respectively@see Eqs.~A1! and ~A12! in that
appendix#. We believe that with regards to its definition th
factor h can correctly scale only the momentum-trans
cross section but not the scattering cross section. Furthe
Ref. 7 only the total scattering cross section is scaled, but
differential scattering cross section~the angle distribution!
still remains in the Born approximation.

Finally, the author of Ref. 54 calculated 3Dc-c scattering
in metals by evaluating the lowest phase shift. Unfortunat
such an approach is not applicable in the semiconduc
quantum-well systems considered by us, as we often nee
evaluate 100–1000 phase shifts.
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APPENDIX: SCREENED 2D C-C COLLISION AS A
CLASSICAL EVENT

In Sec. II we derived the hierarchy of exact, Born, a
classical cross sections analytically for a bare Coulomb
tential, and pointed out that the classical description is
excellent approximation just when the Born approximat
breakdown becomes most pronounced. In this appendix
analyze the classical 2Dc-c collision in the presence o
screening, and we show that the classical picture still wo
well if the screening is weak.

In a classical 2Dc-c collision, the scattering anglef is
fully determined by Newton equations of motion, if the rel
tive wave vectorg and the impact distanceb of the colliding
carriers are known. The result is30,55
r

-
es
x-

t.
-

f
-

-

s
s

s
p-

r
in
e

,
r-
to

.

a
-
-
s-
s

-
n

e

s

6f5p22E
r min

`

dr
b

r 2H 12S b

r D 2

2
4mV~r !

\2g2 J 1/2, ~A1!

where the plus and minus signs on the left-hand side hold
the attractive and repulsive interactions, respectively,
r min is the minimum intercarrier distance—the solution
the equation

12S b

r D 2

2
4mV~r !

\2g2 50. ~A2!

We note that Eqs.~A1! and ~A2! hold also for the 3D colli-
sions~for which they are usually presented55,30!, because in
the classical picture the 3D collision can be viewed as a
collision in the plane defined by trajectories of the collidin
3D carriers. For the 2D collision~but not for three dimen-
sional! the classical differential cross section is defined a

scl~f,g!5Udb

dfU. ~A3!

For V(r )5qgqd /(4pKr ) Eqs. ~A1!, ~A2!, and ~A3! give
analytical result~13!, originally derived as a clasical limit o
the quantum result~9!. For a screenedV(r ), Eqs.~A1!–~A3!
have to be solved numerically.

FIG. 10. Differential cross sections of thee-e, e-h, and h-h
collisions in the GaAs quantum well. The left~right! column of
figures shows the cross sections obtained for screened~unscreened!
intercarrier interaction, solid lines show the exact cross sect
dashed lines show the Born cross section, and open circles sho
classical cross section. For a convenient comparison of quan
and classical cross sections, we ignore the quantum particle in
tinguishability, the relative wave vector used in the calculations
g5108 m21; the screening is given byQSC50.53107 m21.
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Equation~A1! can also be derived as a classical limit
the phase-shift analysis. The derivation is similar to the c
responding 3D derivation,30 so we only give a brief outline
Using (m52`

` eimf52pd(f), we rewrite the scattering am
plitude ~32! for fÞ0 as

f ~f,g!5A 4i

pg (
m52`

`

ei (mf12dm). ~A4!

In the classical limit the phase shifts are expected to be la
Therefore,ei (mf12dm) exhibits fast oscillations as a functio
of m, and most of the terms in sum~A4! cancel mutually.
Only those terms for which eithermf12dm or 2mf
12dm approaches its maximum do not cancel. This is
case form obeying the equation

d

dm
~2dm6mf!50. ~A5!

From Eq. ~A5! we obtain Eq.~A1!, after substituting the
quasiclassical phase shift~27! for dm : One has to evaluate
ddm /dm, keeping in mind that in Eq.~27! r a andr b depend
on m, and in the final result one has to replace the quan
\m by its classical counterpart\gb.

In Fig. 10 we compare the hierarchy of exact, Born, a
classical cross sections derived forV(r )5qgqd /(4pKr )
@formulas~9!, ~12!, and~13!# with the same hierarchy evalu
ated for a screened strictly 2DV(r ). In both cases we ignore
v.

ev

ev

n

v.
r-

e.

e

y

d

the quantum particle indistinguishability for a convenie
comparison of quantum and classical results; numerical
sults are provided for Qsc50.53107 m21 and g
5108 m21. One can see that the classical result also fits
exact result very well in the screened case. The except
are the scattering anglesf→0, for which the classical cros
section also diverges.

This divergency deserves a comment. The quantum c
section diverges atf→0 only if V(r )}r 21, while the clas-
sical cross section diverges atf→0 for screenedV(r ). This
is due to the fact that the classical particles are scattered
zero scattering angle only if the force between them is ze
which is the case only for an infinite impact distance. Th
divergency implies, of course, that the classical two-bo
collision rate@Eq. ~40!, with s(f,g) taken in the classica
limit # also diverges; however, it is worth mentioning that th
does not mean that the corresponding carrier relaxation
also diverges. Indeed, as shown in Ref. 26 by means
Monte Carlo simulation, the carrier thermalization rate v
the screened classicalc-c collisions is finite despite the di
vergent collisional rate.

With increasing screening our results~not presented!
show a gradual deterioration of the classical analysis in co
parison with the phase-shift analysis. Nevertheless, Fig.
demonstrates that for weak enough screening the clas
analysis works very well or at least much better than
Born approximation. This is not surprising, because just t
behavior is characteristic of the zero-screening limit.
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