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Phase-shift analysis of two-dimensional carrier-carrier scattering in GaAs and GaN:
Comparison with Born and classical approximations
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We study Markovian two-dimension&2D) carrier-carrier ¢-c) scattering in GaAs and GaN quantum well
systems. We evaluate the phase shifts of scattered partial waves by numerically solving tféin§ehro
equation for the 2x-c collision problem. The output of this “phase shift analysis” is exact quantum results
(in Markovian limit) for the 2D c-c scattering cross section and 2BDc scattering rate. We compare these
results with the results of the Born approximatigvith the “Fermi-golden-rule based” theoryand find that
the Born approximation can strongly overestimate the exact results. In particular, i 2Dattering rate is
overestimated by a factor of 1 to 15 in the GaAs quantum well and by a factor of 2 to 100 in the GaN quantum
well, if conditions typical for a quantum-well-laser device or for a quantum well excited by a short laser pulse
are considered. Our study is performed for a statically screened intercarrier interaction, but we expect the
dynamic screening to further deteriorate the Born approximation: We show that the weaker the screening the
worse the Born approximation in a 2D system. We also analyze the-2@ollision as a classical event, and
find a very good agreement with the phase-shift analysis in the case of weak screening. For unscreened 2D
collisions the hierarchy of exact, Born, and classical cross sections is derived analytically, and it is shown that
the Born approximation breakdown is due to the carrier two dimensionality.

. INTRODUCTION port equatiot®*’ or by the Monte Carlo simulatidf>
(which is a physically equivalefft Markovian approach A
Carrier-carrier scattering in semiconductors is responsibleentral quantity of the Markovian theory is the two-body
for the thermalization of the nonthermal carrier distributioncollision probability, which is usually calculated in the Born
toward a Fermi distribution at elevated carrier temperatdre, approximation—the perturbation theory in second order in
for dephasing of ballistic electrons in a degenerate electrothe intercarrier interaction. In the Born approximation, and
gas®* for the intercarrier Coulomb dragand for other ef-  for the intercarrier interaction screened in the random phase
fects of fundamental intere§fior a review, see, e.g., Ref).6  approximation (RPA), the two-body collision probability
It also affects the performance of various semiconductor decomes out as a standard “Fermi-golden-rule” expression,
vices, in particular of small silicon metal-oxide- which simplifies further calculatioh$?® (the nonrandom-
semiconductor field-effect transisté@nd of semiconductor- phase-approximation contribution to the golden rule has also
quantum-well laserS Therefore, there is a strong motivation been considere®f,still in the second order in the intercarrier
to develop a quantitatively reliable theory of carrier-carrierinteraction.
(c-c) scattering. However, we have pointed out recenfly®that in case of
In a Fermi gas with many-body Coulomb interaction thetwo-dimensional2D) c-c scattering the Born approximation
concept ofc-c scattering emerges from the Landau-Fermi-inherently overestimates the 28&c scattering rate in the
liquid theory? In that theory singleparticle statéguasipar- limit of low carrier densities and low collisional energies,
ticles) are defined in a one-to-one correspondence with thée., at least in that case the Born approximation should be
single-particle states of the noninteracting gas, except thatbandoned and the 2B c¢ collision should be analyzed non-
they are renormalized by the many-body interaction. How-perturbatively.(One of us, with co-worker, also pointed out
ever, the many-particle wave function created from suctthat a similar problem exists in 1D systeAfs.
quasiparticle states is not an exact soluti@n stationary In this work we study Markovian 2[@-c scattering in a
eigenstateof the many-body Schdinger equation. This im- semiconductor quantum well nonperturbatively by means of
plies that the lifetime of the quasiparticle excitation is finite, phase-shift analysis. The analysis is performed for the inter-
i.e., that there is an interaction between the quasiparticlesarrier interaction determined from a simple RPA screening
themselves, which scatters them from one single-particlenodel. We express the 2[@-c scattering cross section
state to another one. The interaction between the quasipartihrough phase shifts of scattered partial waves, and extract
cles is a renormalizedscreenefl Coulomb interaction and the phase shifts from an exact solution of the Sdinger
the scattering isusually 1% represented by successive two- equation for the 2x-c collision problem. We obtain exact
body collision events. quantum results for the 2-c collision cross section and
In a so-called Markovian limit, in which the colliding 2D c-c collision rate, which we compare with the Born ap-
guasiparticle does not “remember” the preceding collision,proximation.For various conditions of practical importance
the time evolution of the carrier distribution function due to we find that the Born approximation can fail to describe the
the two-body collisions is described by the Boltzmann trans2D c-c scattering in the GaAs and GaN quantum-well sys-
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tems, and we show that the failure is due to the carrier twobound states, for which the eigenenergy equals the kinetic
dimensionality. We also consider the 2D c-c collision as aenergy of the relative motion befofer aftep the collision,
classical event, and find good agreement with the exact aps?g%/4u.
proach in the weak screening limit. For a systematic derivation of E(L), one has to consider

In Sec. Il we define the 2[@-c collision problem, and the 3D Hamiltonian
discuss its exact analytical solution for a bare Coulomb po-

tential. In Secs. Il and IV, the phase-shift analysis is intro- _ _2 1O (2)- ﬁ_z & +04(2,)

duced and the 2[@-c collision problem is solved exactly 2my(?_22 v 2m5(9_z§ o0
(numerically for a screened Coulomb potential. In Sec. V o o 5

the 2D c-c scattering rate in GaAs and GaN is evaluated A ‘9_+Ei+i‘7_ Wrz—20), ()
under conditions typically encountered in a quantum-well wlar? roar r?ag? (r.z=2),

laser and also under conditions characteristic of a quantum

well excited by a short laser pulse. The classical analysis O\fvherez (o) is the p05|t!on O.f the flrs_(tsecon()l carrier in the
the 2Dc-c collision is presented in the Appendix. guantum-well-growth directior)(z) is the confinement po-

tential, andW(r,z—z,) is the 3Dc-c interaction. The re-
striction to the lowest subband means the use of the wave-
Il. TWO-BODY COLLISION PROBLEM IN TWO function ansatz¥ (r,¢,z,z0) =P (r,é) x-(2) xs(2o), Where
DIMENSIONS: INTRODUCTION ; 4 ;
X, andy s are the envelope functions of the carrigrand s,

As is customary for the Landau—Fermi lig&id* and the respectively. Application of the variational principle to the
Boltzmann equation approatt;>3we assume that only the functional (W|H|W) gives the Schrodinger equatiafl),
two-body collision events are operative in the 2D pIasmaW'th
We ignore three-body or even many-body collision events, " "
which are only important in 1D systerf$?® V(r):J dzf dZex2(2)W(r, 2 20)x3(Z0). (3

We focus on intrasubband 26 ¢ collisions in the plasma —w —o

of electrons and/or heavy holes occupying the lowesj, giher words, the 3D problem defined by the Hamiltonian
guantum-well subband. The reasons why we focus on th ) is tranformed into the 2D problem defined by H@),

situation when only the ground subband is occupied are thﬁ/here the 3D interactiohV(r,z—z,) is replaced by the 2D

following. First, this situation is characteristic of many dif- interactionV/(r). Further, since in Eq(1) the in-plane mo-
. . . _6 . 1

ferent experiments which probe 2B¢ scattering.™® Sec- o js separated from the motion in taedirection, the po-

ond, the situation is relatively simple to analyze in Compari'tentialﬂ(z) is only needed to determine the envelope func-
son with a multisubband case. Third, even in this Simpleﬂonsx(z) (specified in Sec. I}l

situation the 2Dc-c scattering has so far been analyzed in For anyV(r) which is radially symmetric and becomes

the Born approximation, and there has been no attempt ero atr—s oo Eq. (1) has the asymptotic solutidh
perform a nonperturbative analysis. T

In the intrasubband 2@-c collision a carriery changes g
its in-plane wave vector fronk to k' by collision with a ¢>(r,¢)r_,w=ex;{i§r
carrier 8 which is scattered frorky to k(. Call the effective

mass of the first %%%riemy(mg), where y=e,h(6=e,h).  where exfi(g/2)r] is the unperturbed plane-wave solution,
As is customary?* we define the reduced masg 1/ [ exdi(g/2)r] is the circular wave due to the scattering,
=2m,m;/(m,+m,) and the relative wave vectors before 44t (4 g) is the the probability amplitude that the carriers

!

and after the collision, g=pu(ko/ms—k/m,) and g are scattered from statgto stateg’ (¢ is the angle between
=pu(ko/ms—k’/m, ), respectively. Due to the energy and gandg’).

momentum conservation, one hig|=|g|, so that if the The differential scattering cross sectigthe scattering
scattering angleb betweerg andg’ is known, the final states probability) then read®

k' andk/ are determined. Further, it is usefito separate

the center-of-mass motion of the colliding carriers from their a($,9)=f(¢,9)|? 5
relative motion, and to consider only the Satirger equa-
tion for the relative motion. In our 2D case this reads

+i iJ )f (4)
\/Fex |2r (¢vg)y

for collisions of distinguishable particleg{h), while

a(¢,9)=3{f(¢.9)*+|f(¢+ m,0)|?

2l 19 1 &2
T\ o T ar T g TV () —3[f(4.9)f* (d+ m,0)+ (4.9 f(¢+70)]}
h2g? (6)
= i D(r,¢p), (1)  for collisions of indistinguishable particleg<{e, h-h). We

have derived Eq.(6) following the corresponding 3D
wherer is the in-plane distance between the carriers, thelerivation’® The amplitudesf(#$,9) and f(¢+m,g) de-
scattering angleb plays the role of a polar angl¥(r) is the  scribe the “direct” transitionk—k’, ko—ky and the “ex-
effective 2Dc-c interaction,®(r, ¢) is the wave function of change” transitiork—k(, ko—k', respectively. These tran-
the relative motion, and?g?/4u is the eigenenergy. Equa- sitions are indistinguishable when indistinguishable fermions
tion (1) is formally identical, e.g., with the 2D exciton Schro collide, which gives rise to the interference tefthe third
dinger equation! except that now we are interested in un- term) on the right-hand side of Eq6).
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We wish to present a calculation of ¢»,g) which is ex-
act in all orders in the interactiovi(r). In generalV(r) is a
screened Coulomb potential for which such calculation
complicated’see Secs. Il and IV Therefore, we start with a

simple but instructive case of unscreened Coulomb interac-

tion between strictly 2D carriersV(r)=qsq,/(4mKr),
whereg.=—¢€, g,=¢€, andK is the material permittivity.
For suchV(r), Eq. (1) is analytically solvablé? and the
exact scattering amplitudé(¢,g) can also be derived
analytically®? The result is(in our notations

F(;_iG)ex%ZiGlnsing)
f(.9)= - L@
e (ig)l/zsinf
2
G=ue?l(47Kgh?). (8)

We note that Eq(7) is identical to the exact quantum result
derived? for the scattering of a single 2D carrier by a Cou-

lomb impurity, if in that result we replace the immobile im-
purity by a 2D carrier of initial velocityws and massmg
through a rigorous transformatith v, —|v,—vs, m,
—m,ms/(m,+my), wherev, andm,, are the initial veloc-
ity and mass of the first carrier.

Using Eq.(7) and thel-function propertie¥

T (3+iG)I(:—iG)=n/cosi7G),

raG)r(—iG)=ma/[Gsinh(wG)],

from Eq. (5) one obtains the exact differential cross section

for distinguishable particles,

G tanH#G)
o(¢,g9)=———"—, C)

g L,

SInZE

which is identical with the carrier-impurity cross section of

Ref. 32 in the limitms—c. Similarly, from Eq.(6) we ob-
tain the exact cross section for indistinguishable particles,

G
a(p,9)= Etanr(wG)

o
. 1 X 1 cos( 2GIn tanz
sinzf cos2£ sin? cos(E |
2 2 2 2

(10

which is a 2D analogy of the Mott formula in three
dimensions* To our knowledge, Eq(10) has not been pub-
lished so far in the literature.

In the calculations we use the GaAs parameteis
=0.06Mg, Mm,=0.44m,, andK=10.9%,. For GaN we use
mMe=0.22My, M,=1.98m,, andK =5.5¢,.%°

Figure 1 compares functiof10) with the function
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FIG. 1. Unscreened Coulomb cross section in dependence on
the scattering angle for the 2De-e and 2Dh-h collisions in the
GaAs quantum well. Full lines are the exact resilf), dashed
lines the Born limit(11).
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which is the Born limit @G<1) of Eq. (10). Indeed,the
Born limit fails to fit the exact cross sectioNote also that
the function coGIn|tan(¢/2)|] in the exchange term of
Eq. (10) causes oscillations, nicely resolved in the exact h-h
cross section fog=10° m™1.

Now we ignore the particle indistinguishability and con-
sider only Eq.(9). Equation(9) gives, in the Born limit,

G2
op(¢,9)= 5’ (12
gsinZE
while in the classical limit ¢G> 1) it gives
G
oc(¢,9)= % (13
gsinzg

Comparison of Eqgs(12) and (13) with the exact resulf9)
gives functions ogl/o=G/tanh@G) and olo

= 1/tanh@G), which no longer depend o#. In Fig. 2 these
fuctions are shown in dependence grfor e-e, e-h, and
h-h collisions both in GaAs and GaN. Clearlthe Born
cross section fails to fit the exact cross sect{oty/o—

for g—0), while the classical cross section works well
(o¢/o=1). This makes the 2[@-c collisions fundamen-
tally different from the 3Dc-c collisions, for which the
purely Coulomb interaction givéS o=0g=0y
=(G/g)sin % ¢/2), i.e.,the Born approximation breakdown
is inherent to two dimension®ue to the higher carrier ef-
fective mass and due to the lower permittivity, GaN the
breakdown is much more pronouncethe above conclu-
sions, albeit proven for the unscreened interaction, are essen-
tially also valid for the screened interaction, as we show in
the next sections.
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5 GaAs 100 GaN omitted|. This screening model has already been found to be
4 \ reasonable in some experimental situatitend in our case
allows a transparent presentation of the phase-shift analysis.
3 In the calculations we use=10 nm, but we note that our
2 results are not very sensitive to the choicd.air even to the
1 choice ofy, and y;,, if the choice is reasonable.
Y I E Applications of the phase shift analysis to the 3D and 2D
0 2 4 6 8 0 10 20 30 scattering on a fixed scattering center can be found, e.g., in
5 oh 100 ¢ oh Refs. 30, 32 and 41. Below we present the application to 2D
4 - ‘\‘GB/G '1‘0 Is c-C scattering, give a number of details necessary for a suc-
_5 3L N 10 R cessfull implementation, and show representative numerical
3 5 Y results for the phase shifts.
) F o . .
e 1 6 /o Toeees One can use the partial wave ) expansion
g [ J PR N R PR R T © 1
© 0 2 4 & 8 0 10 20 30 — il img
T 1o 1000 O ¢)= 2 e Pr(n)e (16)
€ 10! h-h h-h
3 ol I'.GB/G i to transform Eq(1) into a set of radial equations
S 8|t 4
\ 100 E\ 5 /5 P u (m*—1/4) [g\?
6 N ar
) ~
5F \ S
PREAY 10 | Teel m=0,=1,=2,.... a7
\ E
N AN - Forr—0, Eq.(17) takes the form
~
2 | Seeo -
1 c./c e | c,/c 2 (m?—1/4)
ol 1y ST N a2 r2 Pm(r)=0, (18
0 5 10 15 20 0 10 20 30 . o
g[10°m™] the solution of which is
FIG. 2. Unscreened Coulomb cross sections in the Born limit Pin(r—0) e frrlm (19

[Eqg.(12)] and in the classical lim{tEq. (13)] are compared with the . . _ . .
exact cross sectiofEqg. (9)] in terms of og/o and o /0. The This gives the boundary conditioR,(0)=0, which, with

results are provided for the 28 e, 2D e-h, and 2Dh-h collisions the Eq.(17), determinesP,(r) except for a multlpllzpatlgn
in GaAs and GaN. constant. At r—o, Eq. (17) reduces to [d7/dr

+(9/2)?1P(r)=0. We thus obtairP,(r —=)«=cog(g/2)r
IIl. PHASE-SHIFT ANALYSIS +X), where the phas¥,, is fixed by exact solution of Eq.

) _ _ (17). If we defineX,,= — (w/2)m— (m/4)+ 5,,, we can write
First we specify our screening model. We express thehe asymptotic solution of Eq17) as
screened interaction as

1 9,95 F7~%(Q) P (r o) = | coa(gr Tm-T4vs. 1. (20
- iQr Ar1s mlF—=%°) ="\ —C0§ 5= 5 M= —1 0.
V(r)= (277)4 dQe'? KO €Q) (14) mg 12 2 4

whereq,q,/2KQ is the Fourier transform of|,qs/4mKr,

. . . ,y_ 5
€(Q) is the screening function, andF"*(Q) The 2Dc-c collision cross section as a function &f, can

=[~.dz[” .dzy x5(2)e” " lx5(zo) is the form factor be expressed through exact quantum form[#zs. (33) and
which accounts foyr the finite thickness of the 2D plasma.(34)] El'hus onces gis knowﬂ the problem is ;:(om)pletely
. 1 m L]

Equat_ion(14) with €(Q) =1 can easily be derived from Eq. solved. §,, can in principle be evaluated by tailoring the
(3) with W(r,z—20)=0,q,/[4mK\Ir"+(2=20)°], while  exact(numerical solution of Eq.(17) with the asymptotic
Eq. (14) with screening is a standard result of the RPAtorm (20). In practice, however, this does not give a stable

9,36 . .
(r-independent &,,, because numerically one only works

theory®3® applied to a 2D systerd’ in the limit of static
screening. For a strictly 2D systée(Q)=1+Qsc/Q,  with finite r rather than withr —cc. Now we show how to
obtain a stable and accurafg, .

where Qs is the inverse screening length. The strictly 2D
We need asymptotic solution of E¢L7) for large but

form can be modified to the quasi-2D fotfn
_ finite r>Qg& . For suchr the decrease of(r) is faster than
=1+QgcF 1 SC
Q) QscF(QI/Q, 19 - (Ref. 32, so that at large enoughEg. (17) reduces to
strictly valid in case thaje(z) = xn(2).° In this paper we the equation
use the screening functidi5) and evaluaté-(Q) assuming

Here 6,, is the phase shift caused M(r), and the multipli-
cation constant/4/arg is discussed later on.

Xe= Xn=V2/Lsin(mz/L), whereL is the quantum-well width f7_2_ (m?—1/4) N 9)2 P_(1=0 21)
[for xe=xn, the indicesy, § in the form factorF(Q) can be ar? r? 2 m :
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with independent solutionsP(r)=rJ.[(9/2)r] and
Pr(r)=rY [ (9/2)r],% whereJ,, andY,, are the cylindri-
cal Bessel function® The desired asymptotic solution is
their linear combination in the form

. r>Qgd,

Jr Jm(gr
(22

which in the limitr —o reduce®’ to formula(20) including

the factory4/mg.

Let P(r)num Stand for the numerical solution of Eq.
(17). Equation(22) can be tailored wittP,(r)num @s

Pm(r) B Pru(1)num
Pm(r) P
From Egs.(23) and(22) we obtain

ol ondy
o5 o

Pn(r)num

Pm(r):

cos&m—Ym(gr)sin Sm

m(Mnum @3

)
]

tan 8,,) = (24)

I\)I(Q NItQ

where

y(r)= —(2r)" . (25)

P num
Finally, to evaluateP,,(r)num We solve Eq.(17) using the
finite-difference scheme

P(r)=2Pm(rj—1) = Pm(rj_2) +Ar?Pp(ri_1), (26)

wherer;=j-Ar andPy, is given by Eqs(17). Although the
scheme works fof=2,3, ..., it ispractical to start with a
much larger than 2. If we choose j such that still obeys
the inequality |(m?—1/4)/r?|>|(g/2)?— uwV(r)/%?|, then
Eq. (18) is still a good alternative of Eq17) and we can
initialize Pp(rj_1) andPp(rj_,) using Eq.(19). The result-
ing P, (r)num @and Eq.(24) give a stable i(-independentd,,
for r>Qg¢d.
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FIG. 3. Phase shifé,, as a function ofm for the e-e collision at
various wave vector&y) and various screening length@4o). Full
circles show the exact phase shifts, open squares the quasiclassical
phase shifts éﬁia'“), and open triangles the Born phase shifts
(82°™, all for the GaAs quantum well.

=0 andr—o, then gives the asymptotic form of E¢RO)
with 8,,=0]. The phase shift27) is the phase difference of
the wave function28) and of the same wave function with
V(r)=0, both taken in the limit —. Equation(27) is a
2D analog of the known 3D resuft

Let us compare the quasiclassical phase shifts with the
exact ones. The output of the exact phase-shift andlizsjs

The described procedure is exact but rather slow. Therg24)] is tand,,, which givess,, as
fore, we also introduce a highly accurate and fast working

approximation. We first show that the exact phase shifts con-

verge form?>1/4 toward the quasiclassical limit

o VT
_ﬁ:dr (g 2—%2, 27

wherer, andr, are ther values at which the first and second

integrands, respectively, are zero.
The solution of Eq(17) in the quasiclassical limit 78

1 r ™
i |G I,

where p(r)=(g/2)*— uV(r)/h?—(m?—1/4)/r?>. For m
>1/4 we can replacen’—1/4 by m? [Eq. (28), for V(r)

Pm(r)e

Sm=arctaritand,,) +j , (29
wherej is an arbitrary integer. The quasiclassical liff2)
directly givess®2, so if one writes
8%135=arctaritan 5€12%) + | 7, (30)

then Eq.(30) defines the integel. Since 8,— 65° for m?
>1/4, comparison of Eq29) and(30) givesj=lI.

In Fig. 3 we compares,, and 552 for the e-e collisions
at variousg andQgc. When m>1/4, the exact phase shifts
are perfectly fitted by the quasiclassical ones for any g and
Qsc. This proves that both computational programs work
well and shows that the exact analysis is only needed say for
Im|=0,1,2,3, while for|m|>3 the quasiclassical formula
(27) is sufficient with a high accuracy. The use of E87)
decreases the computational time per one phase typically
10-50 times. The phase shifts for theh scattering(not
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FIG. 4. The same as in Fig. 3, but for teeh collision.

shown behave similarly, while for the-h collisions (see

Fig. 4) the only change is that the phase shifts are positive.
Figures 3 and 4 also show phase shifts in the Born

t: 30,41

Born_ . - 2 g
Om —arctar{ 2fodrer<2r

limi

%V(r)]. (31)
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toward the scattering cenjeand disappears only @, in Eq.
(16) is chosen as eXf (7/2)m+ §,,]). Then only the term
f(p,9)r  Y2exdi(g/2)r] remains, withf(¢,g) given by Eq.
(32.

Using Eq.(32) from Eq. (5) one obtains the exact differ-
ential scattering cross section

0

4 2
o($,9)= w_g[ L_E . sin 8,,c08 8+ mqb)}

o

2
+ > sinﬁmsir(am+m¢>)} ] (33

m=—o

valid for distinguishable particles. Similarly, for indistin-
guishable patrticles, from E@6) we easily obtain

[

2
_2 SN 5O S+ m¢)}

2
U(¢1g): ﬂ__g‘

2
+ E sinémsin(am+m¢)}}

m=—o

2

7Tg m=—o

) .
+ H > sins.,cod S+ M+ mar)

o0 2

+| D singy,sin( Syt mp+mar) ]
m=—ow

—i g i SiN 6,,SiN 6y
ng:—oc m' =—o m m

X0 Sy~ SOy +Mp—mM' p—m’ 77),

where the third term is due to the exchange effect.

Our aim is to compare Eq$33) and(34) with their Born
limit. The Born cross sectionog) was derived in our previ-
ous work® from the Fermi golden rule. The result is

(39

The Born phase shifts fit the exact phase shifts only for large

g andQsgc, so their applicability? is not general.

IV. CROSS SECTION OF SCREENED 2Dc-c COLLISION:
EXACT VERSUS BORN

Onced,, is known, the exact 2[@-c scattering cross sec-

tion can be generated. First we express throggtihe scat-
tering amplitudef (¢,g). It reads

4 &
f(¢,9)=\— > €memsing,,.

TOm=—=

(32

Equation (32) can be derivetf by comparing Eq(4) and
(16) atr—oo. ThenP,,(r) in Eq. (16) is given by Eq.(20),
and if we use the identityvalid for r — )

9| 4 = i im g T T
GX%IEI')— W_gl’m;ool e (o]0 EI’ Em Z,

we can express the differenceg(r, ) —exdi(g/2)r] as a
sum of the term proportional to~*?exdi(g/2)r] and the
term proportional tor ~Y%exg —i(g/2)r]. The latter term is
not physical(r ~Y?exd —i(g/2)r] is a circular wave running

F(Q)?

GB(¢,9)=WGZQW (35

for distinguishable particles, and

1

F 2 F 2
)= gl S, Q@)

QPeQ? Q2eQ )

_ F(QF(Q)
Qe(Q)Q'e(Q)

for indistinguishable particles, wher®=gsin(¢/2), Q'
=g|cos@/2)|, andG is given by Eq.(8). As expected, for
F(Q)=1 and ¢(Q)=1, Egs.(35 and (36) give the un-
screened Born resultd?2) and(11).

We note that the Born cross sectiof85) and (36) can
also be derived directly from the exact cross secti(8%
and (34). The derivation is similar to that one for a fixed
scattering centet’? so we only mention basic steps. First
one assumes that(r) is a small perturbation, and obtafAs
the Born phase shift&1). Second, one simplifies Eq&3),
(34), and (31), assuming that all phase shifts are smaf?
Third, using Eq.(31), the relatiod® =% _ __J2[(g/2)r ]e'™¢

(36)
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1 0_3 e-e h-h 5 ‘ 5r
4] o=tx10°'m™ i g=1x10'm” | i
1073 1.Q,.=0.5x10'm"/ il
sSC / L
/ 4 :
1 0-5 3 1 1/ ! “ :
L Qg=0.5x1 o'm” j \
10° 4 7k \
3t
2t

1 Qg =2.3x10°m”

| Qg=2.3x10°m"

- : . [ 20
810 F3E]

. g=5x10°’m”" |} g=Sx10m" .
1 1Q,,=0.5x10'm™ ;

Qq,=0.5x10'm""

Qg=2.3x10°m’

10} & -t

Qg=2.3x10°'m
10 2 30 1 2 3
scattering angle [rad]

FIG. 5. Differential scattering cross section vs scattering angle
for the 2D e-e and 2D h-h collisions. The wave vector) and
screening lengthsQsc) used in the calculations are indicated. The  FIG. 7. Cross-section ratieg(g)/o(g) versus the relative wave
exact cross sectio34) is shown by a full line, the Born cross vectorg for thee-e, e-h, andh-h collisions in the GaAs quantum
section(36) by a dashed line. well. Here o(g) is the exact total cross section, angd(g) is the

Born total cross section. The full, dashed, and dotted lines show the
. — \ \ -1
= Jo[(g/2)r sin(¢/2], and Eq.(14), from Egs.(33) and (34) r_esults for Qsc=0.5x10", 8x 10, and 2.3<_ 108.m , respec-
one obtains Eq¥35) and (36). tively. Also shown are results for the repulsigeh interaction.

Figure 5 compares the exact and Born cross sections for . . N
the e-e and h-h collisions in the GaAs quantum well at 10 a repulsive oneror QSC:Ot.he phase-shift analysis gives.
variousQsc andg [Qsc=2.3< 10¢ m~ ! is the highest elec- the same num_erlcal results (Figs. 1 and 2) as do the analyti-
tronic screening in the GaAs quantum well—the Thomas-Cal Cross sections (9) and (10), bl.Jt one has to apply a more
Fermi screeningQsc=e?m,/(27K#2)]. As in Fig. 1, in sophisticated procedur¥, appropriate for bare Coulomb

e . . I} .
Fig. 5the Born limit also falils to fit the exact resu®ne also scattering

sees the oscillations due to the exchange efiefcFig. 1) in Finally, we evaluate the total scattering cross section

the exacth-h cross section fog=10° m™! and Q5c=0.5 2ar

X10 m-1. o0~ | Tds0(0.0) 37
0

In Fig. 6 we show the same result as in Fig. 5, butddn

scattering, i.e., we evaluate the exact and Born cross sectiofgserting Eq.(33) for o(¢,g) one obtains the exact total
from formulas(33) and (35) The Born limit again overesti- Cross section for distinguishab|e partic|es:
mates the exact result and, unlike the Born limit, the exact

result is sensitive to the sign of the intercarrier interaction, o
which we demonstrate by changing the attractive interaction o(9)= a m;w SIN? O (38)
o e-h e-h (repulsive) Similarly, for indistinguishable particles, we easily obtain
o g=1x10°m" g=1x10°m" g = 4=
. 7
0 1{Qsc=0.5x10'm" | Qs=0.5x10'm o(g)= g > sis,— g > sitsycogma).
6 AN Ay m=—o m=—c

O
U

(39
The corresponding Born total cross sections can be evaluated

>
&

differential cross section [m/rad]
h m m e
o

o° . by inserting Eqs(35) and (36) into Eq. (37).
0-10]Qsc=2'3X10 m Q¢=2.3x10°m’" In Fig. 7 the Born total cross sectiarg(g) is compared
ot with the exact total cross sectiar(g) in terms of the ratio
o 1t 2 80 1 2 3 og(9)/o(g). The results are calculated fere, e-h, and
scattering angle [rad]

h-h collisions in the GaAs quantum well at various levels of
FIG. 6. The same as in Fig. 5, but ferh collisions. Also  screening. Note that the screenegl/ o curves are similar to
shown are results for the repulsieeh interaction. the unscreened results in Fig. &cept that the screening
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weakens the Born approximation breakdown. The Born ap- 0.9, GaAs 3.0 GaN
proximation still overestimates the exact cross section in a e-e oo .y e-e
broad range of carrier energies and screening lengtims. 0.6f e e 2.0-/6 g,
case of thee-h interaction one sees that its attractive char- 0.3 s 10 I %%%M
acter reduces the difference betweefg) and og(g) at /gf' Y
largeQsc. At small Qsc, o(g) is no longer sensitive to the 0.0 b—s2" 0.0%
sign of the interaction. [ 6.0¢

Similar results(not shown were obtained also for the oo i h-h

. 1.0F oo 4012

GaN quantum well. The only difference was a more pro- L 00 o o %

nounced failure of the Born approximation, already envi-
sioned in Fig. 2.

Ttl)
=)
o
©
For completeness, in the Appendix we examine the g 59 ‘ 8:3_900
screened 2[2-c collision as a classical event. We show that - e-h gy %, e-h
the classical treatment fits almost perfectly the exact treat- £ % ®q
ment if the screening is weak. 3 04 04;«"\3"“’%&
Q
V. 2D c-¢c SCATTERING RATE 8 0.00= : . 0.0 : : g
~ 3.0, 9.0,
The 2Dc-c collision rate reads h-e Y OW
20t a8 6.0¢
ﬁg 2 Sl
— L anhtl *eece
rosk)=2> fa(ko)—f de a7 2(¢,g)[1—f (k)] 1-0/ 3.0¢
Ko M Jo h-e
X[1—f 5(k))] (40) 0% 700 200 300°% 300 600 900
0o/1

carrier energy [meV]
wherey=¢,h and §=¢,h, fo(k) andf,(k) are the electron
and hole distribution functions, and the stakésandk; as
functions of ¢, k, andk, are fixed by the conservation of
energy and momentum. _ density of 4<10*? cm™2. The left column shows the results for the
If one inserts the Born cross sectiffags. (35 and(36)],  Gaas quantum well, and the right column the results for the GaN

for o(#,9), then formula(40) represents the Born 2B-c  quantum well. Full circles are the exact results, open circles are the
scattering rate as can be derived from the Fermi golden rulgsgr results.

If we insert the exact quantum cross sectj&ys. (33) and
(34)] for a(¢,qg), then Eq.(40) provides us with the exact
(in Markovian limit) 2D c-c scattering rate. It should also be
derivable from the first-principles non-Markovian kinetics
valid in all orders in the intercarrier interactidgsee Appen-
dix Xl in Ref. 45).

The static screening lengt@sc has so far been a param-
eter. In the following we usé

FIG. 8. 2D carrier-carrier scattering raf®"t (e-e, h-h, e-h,
and h-e) as a function of the carrier energy, calculated for the
equilibrium 2D e-h plasma at temperature 300 K and exh pair

quantum-well laser&4® We approximate the distributions
fe(k) and fy(k) as the equilibrium Fermi distributions at
temperature T=300 K and carrier densityn,.=n,=4
X 10* cm™2.
Figure 8 shows the calculated 2Bc¢ scattering ratedn
the GaN quantum well the Born approximation overesti-
mates exact results for e-e and h-h scattering by almost one
o2 order of magnitudeln the GaAs quantum well it works bet-
Qsczm[mefe(OHmhfh(O)] (41)  ter, but a remarkable overestimation is still seen forfhie
scattering. The overestimation is systematically lower for the

for the h-h collisions, while in case of the-e and e-h e-h andh-e scattering, which we already saw in Fig. 7 for

collisions we omit the screening by holes and take strong screening. _
Now we calculate the 2[@-c scattering rate under con-
e? ditions typical for time-resolved optical spectroscopy. In that
Qsc=5 72 Mefe(0). (42 kind of experiment a nonthermal 2®h plasma is excited in

the quantum well by a fast quasimonoenergetic laser pulse,
Equation(42) roughly incorporates the fact that in a dynamic and the time-resolved absorption spectrum is measured in
screening model the heavy holes would be too slow to followorder to detect the 2B-c scattering Interpretation of such
the fast electronic motion. For this study the static screeningxperiment®8is not the aim of this paper, we just wish to
is sufficient, because once we find a difference between thiest the applicability of the Born approximation.
Born and exact results for static screening, we expect an The initial energy distribution of the photoexcited plasma
even larger difference for the dynamic screening: The dy+oughly follows the energy spectrum of the pump pulse. As-
namic screening is weaker than the static #&;'’andour ~ suming a Gaussian pulse spectrum centered at excess energy
results show that the weaker the screening the worse th@ with a halfwidth AW, we obtairl’
Born approximation in two dimensions (see, e.g., Fig. 7 for
Qsc>0 and Fig. 2 for @c=0). 52K 2

First we study the 2[2-c scattering rate in a high-density fe(k)mexp{ _( _We) / 2AW§] ' (43)

e-h plasma, as typically encountered in semiconductor- 2me
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mate the exact 2[8-c scattering cross section and the exact
2D c-c scattering rate. The overestimation by a factor of
2-100 has been found under conditions typical for
semiconductor-quantum-well lasers, and especially under
conditions typical for the ultrafast excite-probe spectroscopy.
We have identified the carrier two dimensionality as a main
reason for the Born approximation breakdown, we believe
that in 3D systems the Born approximation works better.
Major conclusions have been supported by analytical calcu-
lations (Sec. I), which can easy be verified. Finally, a de-
tailed algorithm of the phase-shift analysiSec. Ill) has
been provided for potential users, and a classical 2D
collision analysis(see the Appendjxhas been proposed as
an alternative approach, appropriate for the weak screening
limit.

Our study has been performed in the Markovtan scat-
tering limit, so a few remarks should be added concerning
the non-Markovian c-c scattering theory previously
derived® and applied by several groups in 3D GaAs
systemg®>4’=>1 Dye to its complexity, the non-Markovian
theory was also formulated in the Born approximatton.
Therefore, a formal derivation of the Markovianc scatter-
ing limit (Markovian Boltzmann equatigrfrom such non-
Markovian theory gives a conventional ‘“Born-
approximation-based” Markoviao-c scattering”®°?the 2D
version of which we criticize in this paper. Owing to our
criticism, several problems emerge. First, in case of 2D sys-
tems, the non-Markovian theory relying on the Born

the nonthermal 2[e-h plasma with a Gaussian carrier energy dis- approximatiofi®*’~>*should be generalized for @&c scat-

tribution [Egs.(43) and(44)] was considered, and the 2Bc scat-

tering of arbitrary strength, because once the Bom scat-

tering rate was evaluated for a carrier with energy just in the Centefering fails in the Markovian limit, then its validity is also

of the distribution W,=17.2 meV andW,=2.8 meV for the
GaAs, andW,=18 meV andW,=2 meV for GaN. Results for
the GaAs(GaN quantum well are in the leffright) column. Full
circles are the exact results, open circles the Born results.

2
Wh) / 2Awﬁ] , (44)

whereW,=myW/(mg+m,), W,=m,W/(m,+my), etc. for
AW, . We insert the above distributions into the 2Bbc

A-{m
fr(k)cexp —

2|2

2my

questionable in the non-Markovian theofthe question of
how to avoid the Born approximation in non-Markovian
theory is addressed in Appendix XllI of Ref. ¥3-urther, it
would be useful to derive the Markovian 28 ¢ scattering
rate with the exact-c cross sectioffEq. (40) with exact
o(¢,9)] directly from such generalized non-Markovian
theory in order to give a systematic formal support to adir
hoc formulation. These problems are beyond the scope of
this paper, and we are not aware of any non-Markovian
analysis of 2Dc-c scattering in the literature. 3D analySis

scattering rat¢40) and evaluate it for a carrier energy in the shows that non-Markovian memory effects can modify the
center of the distribution in order to assess the characteristiarkovian c-c scattering, if ultrafast carrier relaxation is
scattering raté’ Results are presented in Fig. 9 as functionconsidered. However, these modifications, although not

of the carrier density foW=2AW=20 meV. The Born

negligible®® are not so pronounced as the order-of-

approximation overestimates the exact @2 scattering rate  magnitude changes introduced by our phase-shift analysis. If
far more than in Fig. 8, because the screening is muclhe same holds in the 2D systelfvge consider it to be very
weaker owing to the nonthermal distribution and to the lowerikely, albeit presently we cannot give a rigorous protiien

plasma densityThe overestimation by a factor of 2000 in
the GaN corresponds to the analytical results of Fig. 2

VI. SUMMARY AND COMPARISON WITH PREVIOUS
WORK

In summary, in this paper Markovian 28-c scattering

a major problem of the 2[@-c scattering theory is not the
Markovian approximation but the Born approximation.

The main limitations of our Markovian model are the fol-
lowing. We have considered 2B-c scattering only in the
lowest-energy subband. A complete phase-shift analysis of a
multisubband system would be too difficult, but a reasonable
compromise might be a phase-shift analysis of intrasubband

has been studied by means of phase-shift analysis. The out-c collisions combined with the Born approximation for
put of the analysis shows exact quantum results for the 20htersubbandc-c collisions. Further, beyond the scope of

C-C scattering cross section and 2Bc scattering rate. We

this paper is Friedel's sum rule correction of the scattering

have compared these results with the Born approximatiorpotential entering the phase-shift analy%i§* We prefered
We have demonstrated, for GaAs and GaN quantum-welpotential (14) in order to present a transparent introductory
systems, that the Born approximation can grossly overesteomparison of the exact and Born calculations.
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We conclude by mentioning previous work relevant to our screened unscreened
results. References 18 and 26 in fact also presented-2D
scattering analyses valid in all orders in the intercarrier in-
teraction, because, although fully classical, these analyses
were performed under conditions where the classical and ex-
act quantum cross sections coincigee also the Appendix
of this papey. In Refs. 18 and 26 the failure of the Born 2D
c-c scattering model was proven in the weak screening limit.
More recently, the authors of Ref. 53 analyzed the 2D qua-
siparticle life time in the limit of low temperature and low
excitation energy. In that limit they summed up all orders of
the intercarrier interaction by means of the diagramatic tech-
nigue, and also found results differing from the Born ap-
proximation.

For 3D c-c scattering, a correction due to the phase shifts
was presented in the Appendix A of Ref. 7. The correction is
acomplished by scaling the Born 3B-c¢ scattering cross
section by the facton=o1/o% (taken from Ref. 41, where
or and o2 are the total momentum-transfer cross sections
calculated by the phase-shift method and by the Born ap-
proximation, respectivelysee Egs(Al) and (A12) in that
appendi}. We believe that with regards to its definition the
factor h can correctly scale only the momentum-transfer

differential cross section [m/rad]

cross section but not the scattering cross section. Further, in scattering angle [rad]

Ref. 7 only the total scattering cross section is scaled, but the . . )

differential scattering cross sectigthe angle distribution FIG. 10. Differential cross sections of tieee, e-h, andh-h
still remains in the Born approximation. collisions in the GaAs quantum well. The leftight) column of

Finally, the author of Ref. 54 calculated 3Bc scattering figures shows the cross sections obtained for scre@mestreened

in metals by evaluating the lowest phase shift. Unfortunately',”terca"'er interaction, solid lines show the exact cross section,

such an approach is not applicable in the semiconductoranhed lines show the Born cross section, and open circles show the

: lassical cross section. For a convenient comparison of quantum
guantum-well systems considered by us, as we often need 10 ; . ) R
. and classical cross sections, we ignore the quantum particle indis-
evaluate 100—-1000 phase shifts.

tinguishability, the relative wave vector used in the calculations is
g=10 m™%; the screening is given b@sc=0.5x10" m™*.
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We note that Eqs(Al) and(A2) hold also for the 3D colli-
sions (for which they are usually presenféd9, because in

In Sec. Il we derived the hierarchy of exact, Born, andthe classical picture the 3D collision can be viewed as a 2D
classical cross sections analytically for a bare Coulomb poeollision in the plane defined by trajectories of the colliding
tential, and pointed out that the classical description is ar8D carriers. For the 2D collisiofbut not for three dimen-
excellent approximation just when the Born approximationsiona) the classical differential cross section is defined as
breakdown becomes most pronounced. In this appendix we
analyze the classical 2@-c collision in the presence of db
screening, and we show that the classical picture still works oe(,9)= @’ (A3)
well if the screening is weak.

In a classical 20c-c collision, the scattering anglé is  For V(r)=q,q,/(47Kr) Egs. (Al), (A2), and (A3) give
fully determined by Newton equations of motion, if the rela- analytical resul{13), originally derived as a clasical limit of
tive wave vectoig and the impact distandeof the colliding  the quantum resul®). For a screene¥(r), Egs.(A1)—(A3)
carriers are known. The resulf{s® have to be solved numerically.

2 AupV(r)
—ﬁz—g2=0. (AZ)

APPENDIX: SCREENED 2D C-C COLLISION AS A
CLASSICAL EVENT
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Equation(Al) can also be derived as a classical limit of the quantum particle indistinguishability for a convenient
the phase-shift analysis. The derivation is similar to the coreomparison of quantum and classical results; numerical re-

responding 3D derivatioff, so we only give a brief outline.
Using=__..e™M*=275(¢), we rewrite the scattering am-
plitude (32) for ¢#0 as

4i
f(¢,9)= \/W—gm;x gl (me+20m)

(A4)

sults are provided for Q. =0.5x10" m ! and g
=10° m 1. One can see that the classical result also fits the
exact result very well in the screened case. The exceptions
are the scattering angles— 0, for which the classical cross
section also diverges.

This divergency deserves a comment. The quantum cross
section diverges ap— 0 only if V(r)or 1, while the clas-

In the classical limit the phase shifts are expected to be larggical cross section diverges @at-0 for screened/(r). This

Therefore e/ (M?+2%m) exhibits fast oscillations as a function

of m, and most of the terms in su@4) cancel mutually.
Only those terms for which eithem¢+265,, or —me¢

is due to the fact that the classical particles are scattered to a
zero scattering angle only if the force between them is zero,
which is the case only for an infinite impact distance. This

+26,, approaches its maximum do not cancel. This is thedivergency implies, of course, that the classical two-body

case form obeying the equation

d

ﬁ(Zﬁmi mg¢)=0. (A5)
From Eqg.(A5) we obtain Eq.(Al), after substituting the
guasiclassical phase shi27) for §,,: One has to evaluate
dé&,,/dm, keeping in mind that in Eq27) r, andr,, depend

collision rate[Eq. (40), with o(¢,g) taken in the classical
limit] also diverges; however, it is worth mentioning that this
does not mean that the corresponding carrier relaxation rate
also diverges. Indeed, as shown in Ref. 26 by means of a
Monte Carlo simulation, the carrier thermalization rate via
the screened classicelc collisions is finite despite the di-
vergent collisional rate.

With increasing screening our resultsot presented

onm, and in the final result one has to replace the quantityshow a gradual deterioration of the classical analysis in com-

Aim by its classical counterpafitgb.

parison with the phase-shift analysis. Nevertheless, Fig. 10

In Fig. 10 we compare the hierarchy of exact, Born, anddemonstrates that for weak enough screening the classical

classical cross sections derived fdi(r)=q,qs/(47Kr)
[formulas(9), (12), and(13)] with the same hierarchy evalu-
ated for a screened strictly 2(r). In both cases we ignore

analysis works very well or at least much better than the
Born approximation. This is not surprising, because just this
behavior is characteristic of the zero-screening limit.
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