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Self-organization of stressed surfaces: The role of local relaxations
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We investigate, in a very simple form and using a continuum approach, the influence of the Frenkel-
Kontorova mechanism on the self-organization of stressed chemisorbed layers on an anisotropic surface. The
long-range substrate-mediated interactions are still the driving force for self-organization but short-range
relaxations of the adsorbate domains play an important role. When the adsorbate film includes dislocations at
high coverage, special values of the adsorbate domain size are favored. Surprisingly, short-range relaxations
are still important for registered adsorbate films leading to modifications of Marchenko predictions.

The importance of the effects of surface stress on the 1—v
morphology of surfaces is now well recognizetlsing the C,= -
elastic theory of continuous media, Marchefkas shown g
that the difference in stress between two bidimensionay andv being the shear modulus and the Poisson ratio of the
phases produces long-range interactions, which lead to persubstrate. The total energy per unit area is
odic domain patterns: the period selected by the Marchenko
mechanism is due to a balance between the domain boundary Uy (L)= Ci &In
energy and the long-range elastic interactibhsn this ap- M L L
proach, as pointed out by Alerhamed al. local relaxations ) ) )
are supposed to play a small role: they only contribute to th&1 P€ing the energy per unit length of th&/B domain
precise value of the domain boundary energy which is takeffundaries. It includes the effects of dangling bonds and
independent on the domain size. However, local relaxation!9c@! relaxations. The minimization &y leads to
are all the more important in surface science leading to vari-
ous features: reconstruction, superstructures, commensurate- = L
incommensurate transitions, dislocations networks, etc. One sin(mr)’
standard approach to tackle this problem is the FrenkeIWith
Kontorova modef, which treats the equilibrium of a har-
monic chain standing on a sinusoidal potential. Frank and C,
van der Merwe have indicated how to study the dependence k=a2mw exr{ 1+ C—) . (5)
of the Frenkel-Kontorova chain energy on its size. This de- 2
pendence is not linear as assumed in the Marchenko aseveral comments must be made.
proach. The purpose of this paper is to investigate the influ- Since, in this continuum approach, small scale relaxations
ence of the local relaxations of an adsorbate phase in there neglected, the microscopic cutddf,remains undefined.
selection of a period by the Marchenko mechanism. ConsidHere, we will consider them explicitly and we taketo be
ering the adsorbate phase as a Frenkel-Kontorova chain, whe interatomic distance in the whole paper. Tl@scon-
will try to answer two main questions. Does a geometricaltains mainly “dangling-bond” effects.
misfit between the adsorbate layer and the substrate favor the Neither C,; nor C, are precisely known. Because of the
selection of special domain sizes? What is the role of edgexponential dependence efon C,/C,, this ratio must be of
relaxations for a dislocation-free chain? order one whenk is not macroscopic K/a=4x 10 for

The Marchenko approach considers the elastic responsg, /C,=10). This exponential dependence leads to a high
of the substrate to the difference in surface stressesensitivity ofL to C, variations.
oa, og, between two surface phasasandB. This differ- In the Marchenko energy, both the phases participate only
ence in stress is equivalent to forces concentrated oAfBe by their boundaries, therefore they play symmetric roles with
boundaries and proportional torf{— o). For a surface pre- respect to the transformation—1— 7. Consequently, the
senting alternating stripes #fandB of widthsl, andlg and  width | , at low coverage and the widlly at high coverage
of periodL=1,+1g, the elastic energy per unit area due to have the same value/ .
substrate-mediated elastic interactions has been shown to Nevertheless, when one of the two phases is an adsorbed
be*® phase, its local organization may play a role in relaxations

leading to an asymmetric role in the energy. The Frenkel-
Kontorova model allows us to examine this local organiza-
' (@) tion since its purpose is to study the equilibrium configura-
tion of a harmonic chain submitted to a periodic sinusoidal
wherea is a microscopic cutoff lengthz=1,/L is the cov- potential(see Fig. 1
erage andC, is given by The energy is written
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Let us first study the state with dislocations. The change

: of branch in the stable solution corresponds to the nucleation
| of one dislocation and occurs when the lengépproaches a
| multiple of the coincidence mesh. As seen in Fi¢p)2for
Po+l)a Z lo/Po>2 the energy is well approximated by
FIG. 1. The Frenkel-Kontorova model. WP, (| |sin(#rl/Py)]
Erx(l)~ 2 Py - : 8

N—-1 1 N—-1
Hek=op D (Xni1—Xa—b)2+SW D, | 1—cos
2 n=0 2 n=0

infinitely rigid chain. In this limiting case, all the springs are

at rest and the energy is simply obtained by integration of the
(6)  substrate potential. The absolute value of the sine is due to
the change of the position of the central atom: when the edge
T . . Jtoms are on the top of the substrate potential, a translation
of the c_ha!n,b IS th?'r Iength at resg Is the wgvelength Of of the whole chain by half a period has zero energy cost,
the periodic potentiaW/2 its amplitude, and, is the coor- ;i allowing a better configuration for further growth: two

dinat_e of thenth gtom of the_ chain. The St.and"f“d treatmenthalf dislocations on the edges are replaced by a central one.
of this problem in the continuum approximation has beer‘\Nh”e the critical value for the ratidy/Pg is 2/, the

performed by Frank and van der Merw@hey found, that asymptotic range is reached already IfgiPy,>2, therefore

for the in_finite chain, the position of th@th atom is given by the asymptotic expression dq(I) may be used as the
the solution of generic approximant for the energy in the state with disloca-
tions. The multiples of the coincidence mesh correspond to
maxima ofEr¢(1)/l andnotto minima as frequently stated.
Let us now study the state without dislocations. The
asymptotic behavior of the energy for larbes given by

|O)2 2l )_,u(b—a)z
o N

I 2
f'|Ihe slope with respect tbis trivial: in the chain without
dislocations, the springs are elongated by-@). The pre-
cise value 2,/ of the intersection of the asymptote with
Hwel axis is model dependent but its proportionalityl gois
easily understandable: the relaxations at the chain edges,
quite similar to a half dislocation, extend over a rarge
consequently these edge relaxations no longer interact when
I>1,.

In order to blend the Frenkel-Kontorova approach with
the Marchenko one, we must examine the compatibility of
their basic assumptions.

When writing Eq.(6), the deformation of the substrate is
neglected since the substrate potential is unaffected by ad-
sorbate relaxationsA priori, this may seem incompatible
Rith the Marchenko approach where the basic ingredient is
the elastic energy of the substrate. Nevertheless a substrate
with high Lamecoefficients(stiff substrate will have a no-
ticeable elastic energy leading to a Marchenko mechanism
together with a small strain as needed for a Frenkel-
Kontorova description of the chain structure.

Due to the action-reaction principle, the Frenkel-
Kontorova chain exerts a nonuniform stress on the substrate
via the potentiaWV. This stress depends on the chain lerfgth.

A full calculation of the elastic response of the substrate
should take this effect into account. Such a study is beyond
the scope of this paper. In the case of chemisorption, the
stress due t&V is not the only source of surface stress and
the difficulty of a full calculation may be circumvented. The
chemical effects of adsorption on the substrate surface atoms

FIG. 2. Energy chain versus length for chains with zero, one (electronic transfer, filling of dangling bonds, gtmay con-
two, three, and four dislocationg) |,/P,=2, the dashed line is stitute a major contribution to surface stress as pointed out
the approximant(b) |,/P,=0.5, the dashed line is the asymptote. by Ibach who gave very illustrative examplég:® While

277Xn) This asymptotic result is easily obtained by considering the

where u is the force constant of the springs between atom

%:i(loik)(l—kz cog w§)Y2, (7

whereé=x/a—n, l,=(na?2W)*? and 0O<k<1 is an in-
tegration constant. The chain consists of regions wifeise Erc(l)~W
nearly constant and integer, i.e., where the atoms are in or FK

close to troughs of the substrate potential, separated by mis
dislocations. The typical width of a dislocationlig Study-
ing a chain ofl atoms with free edged (s the chain length

in a units and we call itengthin the whole paper Frank
and van der Merwe noted that the solution may be obtaine
by cutting the infinite chain at the points of null spring ten-
sion. Their positionsin= &,, depend ork and onPy=a/(b
—a), the coincidence mesh. The chain startingatl — &,
and ending até=1+m+§&, contains m dislocations. Its
lengthl is given by integration of Eq.7) and its energy by
integration of Eq.(6).

Thus, one obtains for each value mofa curveg (1) pa-
rametrized byk (Fig. 2).° Depending on the ratity /Py, the
different branches may or may not intersect. HgfP,
> 2/, the branches intersect and the number of dislocation
in the stable chain increase with its length. FefP,<2/mw
the chain without dislocations is always stable.
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FIG. 3. Variation ofl, and lg versus coverage foC,/C; 00 0'2 0'4 0'6 ols )
=0.41,0.55,0.74,1(dots from top to bottom Solid lines are the ’ ’ ’ )
Marchenko curves and dashed lines are the modified Marchenkc Coverage

curves. FIG. 4. Variation ofL versus coverage fdpa= 0.5« (full dots),

) . lpa= « (empty dot$, | ja=2k (+). The solid line is the Marchenko
structural studies of Cs adsorbed on(Nil) have clearly  ¢;pe and the dashed line the modified Marchenko curve.

established that the direct forces between adsorbate Cs atoms

are repulsive in the whole submonolayer rafigiee induced WP

surface stress is tensile and increases quasilinearly with cov- Cy(7L)= —0|sir[ mrl/(aPy)]|. (12)
erage in this range as can be seen on Fig. 6 of Ibach’'s 2m

report’ This behavior—tensile surface stress and repulsiverigure 3 represents the variations of the adsorbate band size,
direct forces—is a clear, simple, and direct experimental evit, and the bare substrate band sikg versus coverage as
dence of the little importance of direct adsorbate forces fopbtained by numerical minimization &f(L) for various val-

the value of the effective surface stress. In the case of Qes ofC,/C;, Py=10, W/C,;=0.02. Thel, andlg curves
adsorbed on le.ll), similar results are observed and exten-gre “punctuated_” In thdA curve, these punctuations corre-
sive structural studies by Schwenniceal ° allow Ibach to  spond to quasihorizontal plateaus around odd multiples of
estimate the direct adsorbate contribution to the compressive /2 (minima of Egc/L) separated by discontinuities
stress to be less than 15%. For attractive direct forces, streggranches intersection gy /L). The symmetry betweeln,
measurements are lacking but we think that the argumentgnd|, is not preserved, nevertheless a Marchenko behavior

leading to the importance of the “chemical” contribution t0 giyen by Eq.(4) with a modified value ok accounts for the
surface stress are still valid in chemisorption cases. Wegverall| , andlg curves

therefore, neglect the dependenceCafon |, .
Since, in the case of chemisorption on a stiff substrate, the C,—WPy/2m

Frenkel-Kontorova and Marchenko approaches have compat- k' =2 anF( 1+ —c, | (13

ible basic assumptions, we have then simply to add their two 2

energy terms. We obtain for the energy per unit length: Careful study of the variation of the minimum (L)

with 7 shows that the parts of thg curves, which corre-
spond to rapid variations between two consecutive plateaus
'—_T are metastable since a decrease of the energy is obtained by
a a macroscopic separation into the two self-organized struc-
' (10" tures correspondi h pl he | f
L ponding to each plateau. Due to the long range o
the elastic Marchenko interactions, a precise determination

In the case with misfit dislocations, the approximantigg, ~ ©f the equilibrium patterns would demand to explore solu-
[Eq. (8)] does not depend ohy. In the absence of disloca- tions corresponding to a microscopic mixing of chains alter-
tions, the asymptotic expressidf) indicates that the main Nnatively of length (N—1)P¢/2 and (N+1)Po/2. This type

parameter is the ratity/«. In both the cases, the Frenkel- Of solution may lead to a very complex phase diagram as
Kontorova contribution may be written those obtained, for instance, in the anisotropic next-nearest

neighbor Ising model! While the limited coherence length
of realistic surfaces will prevent observations of such com-

Erx
U(L)=Uyw(L)+

Erx L_T plex patterns, the discontinuities in thecurve should trans-
a —Uy(7)— Ca(7L) (11) late into diffraction peaks broadening for the corresponding
L 0 L coverages. These relative broadenings of ca. 10% may be

quite observable, this value being of the same order as the
U, plays no role in the selection df. C4(7L) acts as a relative width observed by Keret al.in their helium diffrac-
effective shift ofC, and therefore yields a-dependent cor- tion study of O on C(10).*?

rection to x. Because of the high sensitivity of to C; The state with dislocations corresponds to a limited range
exhibited in Eq.(5), the effect of this correction on the re- for the ratioW/C; (such that ,/Py>2/7). Moreover to use
sulting pattern may be important. expression8) for Ugk (L), it is necessary thag/Py>2, i.e.,

Let us first examine the state with dislocations. In thisW/C1<(,ua2)/(8C1PS). Both na? and C; depend on the
case,C;(7L) becomes: adsorbate-adsorbate potential, the former accounting for its
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curvature and the latter for its depth. For a van der Waals C 212 1 9288 9
. . L . 2 3 MA g
potential, this ratio is 72, which leads ta/C,<9/Pg. C. - C o2 —|<T~I—.
Adsorbate-adsorbate potential detailed shapes are poorly 1 1 Pg o 7y o
knovyn but the ratio (La2)/C1 is a gros_s feature. The value Figure 4 exhibitsL/k versus coverage fdrO: 5, PO: 10,
obtained for the Van der Waals potential may be regarded agnd various values of §a)/ . For legibility, we have chosen
providing a reasonable order of. magnltude.. Values ranging rather high ratic,../C,=0.8. It clearly appears that the
from 20 to 90 are found for various potentidisteratomic  curve evolves smoothly, with increasing coverage, from the
potential in diatomic molecules, bimetallic interfaces, gas-«/sin(w7) curve to thex'/sin(w7) one.
atom metal interactions, ej¢>!* Lastly, it is worth noting Taking into account the Frenkel-Kontorova energy in the
that in the state with dislocations, the infinite chain=1)  state without dislocations is clearly seen to break the Mar-
necessarily exhibits misfit with the substrate. Therefore, irchenkor—1—7 symmetry. Indeed, this mechanism leads to
cases where the complete monolayer is known to be dislocdelaxations which depend on the chain size and may signifi-
tion free, i.e., in registry, the role of the coincidence meshcantly modify the effective boundary energy. We believe that
cannot be invoked to account for patterns at low coverage d#is effect is a good candidate to explain some discrepancies
was done by Liebslet al. in their study of N on C(100).*® between the Marchenko prediction and experimental results
L : : - : bout O on C(110).%*
et us now examine the state without dislocations. We nd*

longer have a full analytic expression f@s(7L) but we In conclusiop, we have shown that in a chemisorpti_on
know that it vanishes for small, and its asymptotic behav- C3S€: the contribution of the Frenkel-Kontorova mechanism

ior for largelL is to the energy suppresses the symmetry of Marchenko results.
In the state with misfit dislocations, adsorbate band size cor-

22 responding to odd half multiples of the coincidence mesh are
Csw:’“_|0_ (14)  favored, and the period variation with coverage is punctu-
wPé ated. More surprisingly, in the state with no dislocations, the

) ) . Marchenko symmetry is not preserved due to short-range
This asymptotic value o€5(7L) leads to a modified value jnieractions between the edges of an adsorbate domain.
of x which takes at largeL, i.e., at high coverage, the value These two results are due to an important dependence of
c.—C local relaxations on adsorbate band size; this dependence

1 3 -
K'=2ma eXF{“‘ —) (15) should lead to similar but more complex results for other
C, auto-organized systems such as vicinal faces or bare sub-
strates with anisotropic stress.

(16)

The previous discussion ofV/C, is also relevant to
Cs../C;,. For a van der Waals potential, this ratio must obey We would like to thank J. Barnard, P. Noms, and P.
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