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Self-organization of stressed surfaces: The role of local relaxations
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Groupe de Physique des Solides, Universite´s Paris 7 et 6, UMR-CNRS 75-88, 2 place Jussieu, 75251 Paris Cedex, France

~Received 21 July 1999!

We investigate, in a very simple form and using a continuum approach, the influence of the Frenkel-
Kontorova mechanism on the self-organization of stressed chemisorbed layers on an anisotropic surface. The
long-range substrate-mediated interactions are still the driving force for self-organization but short-range
relaxations of the adsorbate domains play an important role. When the adsorbate film includes dislocations at
high coverage, special values of the adsorbate domain size are favored. Surprisingly, short-range relaxations
are still important for registered adsorbate films leading to modifications of Marchenko predictions.
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The importance of the effects of surface stress on
morphology of surfaces is now well recognized.1 Using the
elastic theory of continuous media, Marchenko2 has shown
that the difference in stress between two bidimensio
phases produces long-range interactions, which lead to p
odic domain patterns: the period selected by the Marche
mechanism is due to a balance between the domain boun
energy and the long-range elastic interactions.2,3 In this ap-
proach, as pointed out by Alerhandet al.,3 local relaxations
are supposed to play a small role: they only contribute to
precise value of the domain boundary energy which is ta
independent on the domain size. However, local relaxati
are all the more important in surface science leading to v
ous features: reconstruction, superstructures, commensu
incommensurate transitions, dislocations networks, etc.
standard approach to tackle this problem is the Fren
Kontorova model,4 which treats the equilibrium of a har
monic chain standing on a sinusoidal potential. Frank a
van der Merwe5 have indicated how to study the dependen
of the Frenkel-Kontorova chain energy on its size. This
pendence is not linear as assumed in the Marchenko
proach. The purpose of this paper is to investigate the in
ence of the local relaxations of an adsorbate phase in
selection of a period by the Marchenko mechanism. Con
ering the adsorbate phase as a Frenkel-Kontorova chain
will try to answer two main questions. Does a geometri
misfit between the adsorbate layer and the substrate favo
selection of special domain sizes? What is the role of e
relaxations for a dislocation-free chain?

The Marchenko approach considers the elastic respo
of the substrate to the difference in surface stres
sA , sB , between two surface phasesA andB. This differ-
ence in stress is equivalent to forces concentrated on theA/B
boundaries and proportional to (sA2sB). For a surface pre-
senting alternating stripes ofA andB of widths l A andl B and
of periodL5 l A1 l B , the elastic energy per unit area due
substrate-mediated elastic interactions has been show
be2,3

DE52
C2

L
lnF L

2pa
sin~pt!G , ~1!

wherea is a microscopic cutoff length,t5 l A /L is the cov-
erage andC2 is given by
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e

l
ri-
o

ary

e
n
s
i-
te-

ne
l-

d
e
-
p-
-

he
d-
we
l
he
e

se
s,

to

C25
12n

pg
~sA2sB!2, ~2!

g andn being the shear modulus and the Poisson ratio of
substrate. The total energy per unit area is

UM~L !5
C1

L
2

C2

L
lnF L

2pa
sin~pt!G , ~3!

C1 being the energy per unit length of theA/B domain
boundaries. It includes the effects of dangling bonds a
local relaxations. The minimization ofUM leads to

L5
k

sin~pt!
, l A~t!5 l B~12t!5

kt

sin~pt!
, ~4!

with

k5a2p expS 11
C1

C2
D . ~5!

Several comments must be made.
Since, in this continuum approach, small scale relaxati

are neglected, the microscopic cutoff,a, remains undefined
Here, we will consider them explicitly and we takea to be
the interatomic distance in the whole paper. ThusC1 con-
tains mainly ‘‘dangling-bond’’ effects.

Neither C1 nor C2 are precisely known. Because of th
exponential dependence ofk on C1 /C2, this ratio must be of
order one whenk is not macroscopic (k/a543105 for
C1 /C2510). This exponential dependence leads to a h
sensitivity ofL to C1 variations.

In the Marchenko energy, both the phases participate o
by their boundaries, therefore they play symmetric roles w
respect to the transformationt→12t. Consequently, the
width l A at low coverage and the widthl B at high coverage
have the same valuek/p.

Nevertheless, when one of the two phases is an adso
phase, its local organization may play a role in relaxatio
leading to an asymmetric role in the energy. The Frenk
Kontorova model allows us to examine this local organiz
tion since its purpose is to study the equilibrium configu
tion of a harmonic chain submitted to a periodic sinusoi
potential~see Fig. 1!.

The energy is written
3039 ©2000 The American Physical Society
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HFK5
1

2
m (

n50

N21

~xn112xn2b!21
1

2
W(

n50

N21 S 12cos
2pxn

a D ,

~6!

wherem is the force constant of the springs between ato
of the chain,b is their length at rest,a is the wavelength of
the periodic potential,W/2 its amplitude, andxn is the coor-
dinate of thenth atom of the chain. The standard treatme
of this problem in the continuum approximation has be
performed by Frank and van der Merwe.5 They found, that
for the infinite chain, the position of thenth atom is given by
the solution of

dj

dn
56S 1

l 0kD ~12k2 cos2 pj!1/2, ~7!

wherej5x/a2n, l 05(ma2/2W)1/2, and 0<k<1 is an in-
tegration constant. The chain consists of regions wherej is
nearly constant and integer, i.e., where the atoms are i
close to troughs of the substrate potential, separated by m
dislocations. The typical width of a dislocation isl 0. Study-
ing a chain ofl atoms with free edges (l is the chain length
in a units and we call itlength in the whole paper!, Frank
and van der Merwe noted that the solution may be obtai
by cutting the infinite chain at the points of null spring te
sion. Their positions,m6j0, depend onk and onP05a/(b
2a), the coincidence mesh. The chain starting atj512j0
and ending atj511m1j0 contains m dislocations. Its
length l is given by integration of Eq.~7! and its energy by
integration of Eq.~6!.

Thus, one obtains for each value ofm a curveEm( l ) pa-
rametrized byk ~Fig. 2!.6 Depending on the ratiol 0 /P0, the
different branches may or may not intersect. Forl 0 /P0
.2/p, the branches intersect and the number of dislocati
in the stable chain increase with its length. Forl 0 /P0,2/p
the chain without dislocations is always stable.

FIG. 1. The Frenkel-Kontorova model.

FIG. 2. Energy chain versus length for chains with zero, o
two, three, and four dislocations.~a! l 0 /P052, the dashed line is
the approximant,~b! l 0 /P050.5, the dashed line is the asymptot
s
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Let us first study the state with dislocations. The chan
of branch in the stable solution corresponds to the nuclea
of one dislocation and occurs when the lengthl approaches a
multiple of the coincidence mesh. As seen in Fig. 2~a!, for
l 0 /P0.2 the energy is well approximated by

EFK~ l !;
WP0

2 S l

P0
2

usin~p l /P0!u
p D . ~8!

This asymptotic result is easily obtained by considering
infinitely rigid chain. In this limiting case, all the springs a
at rest and the energy is simply obtained by integration of
substrate potential. The absolute value of the sine is du
the change of the position of the central atom: when the e
atoms are on the top of the substrate potential, a transla
of the whole chain by half a period has zero energy co
while allowing a better configuration for further growth: tw
half dislocations on the edges are replaced by a central
While the critical value for the ratiol 0 /P0 is 2/p, the
asymptotic range is reached already forl 0 /P0.2, therefore
the asymptotic expression ofEFK( l ) may be used as the
generic approximant for the energy in the state with dislo
tions. The multiples of the coincidence mesh correspond
maxima ofEFK( l )/ l andnot to minima as frequently stated

Let us now study the state without dislocations. T
asymptotic behavior of the energy for largel is given by

EFK~ l !;WS l 0

P0
D 2S l 2

2l 0

p D5
m~b2a!2

2 S l 2
2l 0

p D . ~9!

The slope with respect tol is trivial: in the chain without
dislocations, the springs are elongated by (b2a). The pre-
cise value 2l 0 /p of the intersection of the asymptote wit
the l axis is model dependent but its proportionality tol 0 is
easily understandable: the relaxations at the chain ed
quite similar to a half dislocation, extend over a rangel 0,
consequently these edge relaxations no longer interact w
l @ l 0.

In order to blend the Frenkel-Kontorova approach w
the Marchenko one, we must examine the compatibility
their basic assumptions.

When writing Eq.~6!, the deformation of the substrate
neglected since the substrate potential is unaffected by
sorbate relaxations.A priori, this may seem incompatible
with the Marchenko approach where the basic ingredien
the elastic energy of the substrate. Nevertheless a subs
with high Lamécoefficients~stiff substrate! will have a no-
ticeable elastic energy leading to a Marchenko mechan
together with a small strain as needed for a Frenk
Kontorova description of the chain structure.

Due to the action-reaction principle, the Frenke
Kontorova chain exerts a nonuniform stress on the subst
via the potentialW. This stress depends on the chain lengt6

A full calculation of the elastic response of the substr
should take this effect into account. Such a study is bey
the scope of this paper. In the case of chemisorption,
stress due toW is not the only source of surface stress a
the difficulty of a full calculation may be circumvented. Th
chemical effects of adsorption on the substrate surface at
~electronic transfer, filling of dangling bonds, etc.! may con-
stitute a major contribution to surface stress as pointed
by Ibach1 who gave very illustrative examples.1,7,8 While
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structural studies of Cs adsorbed on Ni~111! have clearly
established that the direct forces between adsorbate Cs a
are repulsive in the whole submonolayer range,9 the induced
surface stress is tensile and increases quasilinearly with
erage in this range as can be seen on Fig. 6 of Iba
report.1 This behavior—tensile surface stress and repuls
direct forces—is a clear, simple, and direct experimental e
dence of the little importance of direct adsorbate forces
the value of the effective surface stress. In the case o
adsorbed on Ni~111!, similar results are observed and exte
sive structural studies by Schwennickeet al.10 allow Ibach to
estimate the direct adsorbate contribution to the compres
stress to be less than 15%. For attractive direct forces, s
measurements are lacking but we think that the argum
leading to the importance of the ‘‘chemical’’ contribution
surface stress are still valid in chemisorption cases. W
therefore, neglect the dependence ofC2 on l A .

Since, in the case of chemisorption on a stiff substrate,
Frenkel-Kontorova and Marchenko approaches have com
ible basic assumptions, we have then simply to add their
energy terms. We obtain for the energy per unit length:

U~L !5UM~L !1

EFKS Lt

a D
L

. ~10!

In the case with misfit dislocations, the approximant forEFK
@Eq. ~8!# does not depend onl 0. In the absence of disloca
tions, the asymptotic expression~9! indicates that the main
parameter is the ratiol 0 /k. In both the cases, the Frenke
Kontorova contribution may be written

EFKS Lt

a D
L

5U0~t!2
C3~tL !

L
. ~11!

U0 plays no role in the selection ofL. C3(tL) acts as a
effective shift ofC1 and therefore yields at-dependent cor-
rection to k. Because of the high sensitivity ofk to C1
exhibited in Eq.~5!, the effect of this correction on the re
sulting pattern may be important.

Let us first examine the state with dislocations. In th
case,C3(tL) becomes:

FIG. 3. Variation of l A and l B versus coverage forC2 /C1

50.41,0.55,0.74,1~dots from top to bottom!. Solid lines are the
Marchenko curves and dashed lines are the modified Marche
curves.
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C3~tL !5
WP0

2p
usin@ptL/~aP0!#u. ~12!

Figure 3 represents the variations of the adsorbate band
l A and the bare substrate band size,l B versus coverage a
obtained by numerical minimization ofU(L) for various val-
ues ofC2 /C1 , P0510, W/C150.02. Thel A and l B curves
are ‘‘punctuated.’’ In thel A curve, these punctuations corre
spond to quasihorizontal plateaus around odd multiples
P0/2 ~minima of EFK /L) separated by discontinuitie
~branches intersection inEFK /L). The symmetry betweenl A
and l B is not preserved, nevertheless a Marchenko beha
given by Eq.~4! with a modified value ofk accounts for the
overall l A and l B curves

k852p aexpS 11
C12WP0/2p

C2
D . ~13!

Careful study of the variation of the minimum ofU(L)
with t shows that the parts of thel A curves, which corre-
spond to rapid variations between two consecutive plate
are metastable since a decrease of the energy is obtaine
a macroscopic separation into the two self-organized st
tures corresponding to each plateau. Due to the long rang
the elastic Marchenko interactions, a precise determina
of the equilibrium patterns would demand to explore so
tions corresponding to a microscopic mixing of chains alt
natively of length (2N21)P0/2 and (2N11)P0/2. This type
of solution may lead to a very complex phase diagram
those obtained, for instance, in the anisotropic next-nea
neighbor Ising model.11 While the limited coherence lengt
of realistic surfaces will prevent observations of such co
plex patterns, the discontinuities in thel A curve should trans-
late into diffraction peaks broadening for the correspond
coverages. These relative broadenings of ca. 10% may
quite observable, this value being of the same order as
relative width observed by Kernet al. in their helium diffrac-
tion study of O on Cu~110!.12

The state with dislocations corresponds to a limited ran
for the ratioW/C1 ~such thatl 0 /P0.2/p). Moreover to use
expression~8! for UFK(L), it is necessary thatl 0 /P0.2, i.e.,
W/C1,(ma2)/(8C1P0

2). Both ma2 and C1 depend on the
adsorbate-adsorbate potential, the former accounting fo

ko

FIG. 4. Variation ofL versus coverage forl 0a50.5k ~full dots!,
l 0a5k ~empty dots!, l 0a52k ~1!. The solid line is the Marchenko
curve and the dashed line the modified Marchenko curve.
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curvature and the latter for its depth. For a van der Wa
potential, this ratio is 72, which leads toW/C1,9/P0

2.
Adsorbate-adsorbate potential detailed shapes are po
known but the ratio (ma2)/C1 is a gross feature. The valu
obtained for the Van der Waals potential may be regarde
providing a reasonable order of magnitude. Values rang
from 20 to 90 are found for various potentials~interatomic
potential in diatomic molecules, bimetallic interfaces, g
atom metal interactions, etc.!.13,14 Lastly, it is worth noting
that in the state with dislocations, the infinite chain (t51)
necessarily exhibits misfit with the substrate. Therefore
cases where the complete monolayer is known to be disl
tion free, i.e., in registry, the role of the coincidence me
cannot be invoked to account for patterns at low coverag
was done by Liebsleet al. in their study of N on Cu~100!.15

Let us now examine the state without dislocations. We
longer have a full analytic expression forC3(tL) but we
know that it vanishes for smallL, and its asymptotic behav
ior for largeL is

C3`5
ma2

pP0
2

l 0 . ~14!

This asymptotic value ofC3(tL) leads to a modified value
of k which takes at largetL, i.e., at high coverage, the valu

k852pa expS 11
C12C3`

C2
D . ~15!

The previous discussion ofW/C1 is also relevant to
C3` /C1. For a van der Waals potential, this ratio must ob
the relations
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C3`

C1
5

ma2

C1

l 0
2

P0
2

1

p l 0
,

288

p3l 0

'
9

l 0
. ~16!

Figure 4 exhibitsL/k versus coverage forl 055, P0510,
and various values of (l 0a)/k. For legibility, we have chosen
a rather high ratioC3` /C150.8. It clearly appears that theL
curve evolves smoothly, with increasing coverage, from
k/sin(pt) curve to thek8/sin(pt) one.

Taking into account the Frenkel-Kontorova energy in t
state without dislocations is clearly seen to break the M
chenkot→12t symmetry. Indeed, this mechanism leads
relaxations which depend on the chain size and may sig
cantly modify the effective boundary energy. We believe th
this effect is a good candidate to explain some discrepan
between the Marchenko prediction and experimental res
about O on Cu~110!.16,12

In conclusion, we have shown that in a chemisorpti
case, the contribution of the Frenkel-Kontorova mechan
to the energy suppresses the symmetry of Marchenko res
In the state with misfit dislocations, adsorbate band size c
responding to odd half multiples of the coincidence mesh
favored, and the period variation with coverage is punc
ated. More surprisingly, in the state with no dislocations,
Marchenko symmetry is not preserved due to short-ra
interactions between the edges of an adsorbate dom
These two results are due to an important dependenc
local relaxations on adsorbate band size; this depende
should lead to similar but more complex results for oth
auto-organized systems such as vicinal faces or bare
strates with anisotropic stress.3
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