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Atom positions on the vicinal face of a fcc crystal

A. S. Mosunov
Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino,

Moscow Region 142292, Russia
~Received 11 June 1999!

An approximate expression for the free energy of a single crystal is derived to determine equilibrium
positions of atoms on vicinal faces of a fcc crystal at various temperatures thermodynamically. The obtained
free energy has a peculiarity~critical temperature! in all the considered cases: infinite crystal, low-index face,
adatom on a low-index face, and vicinal face. The physical meaning of the critical temperature is special for
each case. The calculated temperature dependence of the lattice constant agrees well with experiment, and the
critical temperature for an infinite crystal corresponds to the melting temperature of the crystal. The variance
of the thermal vibrations near this critical point of the free energy agrees with the empirical Lindemann
criterion. For an adatom on a low-index face, the critical temperature corresponds to its becoming delocalized
~spread over the surface!. Similarly, there is a temperature at which an atom at a step edge breaks away and
becomes a delocalized adatom.
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I. INTRODUCTION

The study of thermodynamical equilibrium positions
atoms on the surface and in the bulk of a crystal attra
interest in the context of purely practical applications~micro-
electronics, for example! and in view of the necessity to
understand the processes occurring on the crystal surface
in the layers near the surface~melting, roughening, etc., see
for example, Ref. 1!. A theoretical description of surfac
thermodynamics helps reveal the general mechanisms un
lying the surface phase transitions, and can often serve a
starting point for numerical experiments and lead to a be
understanding of the nature of these phenomena. Therm
namical equilibrium parameters of a statistical system~in
particular, a crystal with a surface! can be found by minimi-
zation of its free energy~by the free energy we mean th
Helmholtz free energy! or any other thermodynamical poten
tial. An exact expression for the free energy can be ca
lated only in a few specific cases.2 More real ~but simple
enough! structures, such as a geometrically ideal thr
dimensional monocrystal with interaction of some neighbo
are usually described by various approximations of the f
energy,3–9 which are found either theoretically from the pe
turbation theory,6–9 or by extension over a parameter,5 or by
adding a semiempirical term to the known free energy.3,4 We
will derive an approximate expression for the crystal fr
energy in the framework of the thermodynamical pertur
tion theory which was used earlier to study some syste
interacting via the Morse potential, and to find the first-ord
correction to the free energy of a system of harmonic os
lators for a rectilinear chain with an edge,6 a three-
dimensional ideal crystal,7–9 and the second-order correctio
for these cases.8 The main aim of this work is to determin
some properties of crystal bulk and surface in thermo
namical equilibrium.

In an earlier work,10 we considered equilibrium position
of atoms on two vicinal faces@near the~001! and ~111!
planes# of a Ni single crystal atT50 K using the pairwise
Morse potential
PRB 610163-1829/2000/61~4!/3022~6!/$15.00
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U~r !5D~e22a(r 2r 0)22e2a(r 2r 0)!, ~1!

where parameters were found by fitting~minimizing the
root-mean-square deviations between calculated and ex
mental values; for more details see, for example, Ref. 11! the
lattice constant, the elastic constants, and the binding en
to their experimental values. In this work we consider a p
tential with attraction,

U~r !5ea2r /b2De2a(r 2r 0)2
, ~2!

which was used earlier in sputtering simulations.9 This ex-
pression is continuous with all derivatives, and correctly d
scribes the interatomic interaction in the range from therm
energies to few keV; this is important for sputtering simu
tion, as pointed out in Ref. 9. The upper limit is defined
applicability of the Born-Mayer potential, i.e., the repulsiv
part in Eq.~2!. Any other exponential form for the repulsiv
part in Eq.~2! can be used, such as the Moliere approxim
tion of the Thomas-Fermi-Firsov potential, for example.
these cases potential~2! is also available for the calculatio
of the free-energy approximation in closed form. As a mat
of fact, the closed-form approximation to the free energy o
crystal can be calculated for any exponential-type potenti

The approximations for the free energy of a monocrys
based on potentials~1! and~2! will be derived in Sec. II. We
will use this approximation to describe the temperature
pendence of the lattice constant and the variance of ther
vibrations ~in this work abbreviated as VTV! of an infinite
fcc crystal. The temperature behavior of~001! and ~111!
faces’ first-layer relaxation, the adatoms on these faces,
atoms on the vicinal face slightly tilted from the~001! face,
will be considered in Secs. III A, III B, and III C. Section IV
presents brief conclusions. The numerical calculations w
be carried out for a fcc copper single crystal.
3022 ©2000 The American Physical Society
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TABLE I. Calculated parameters of potential~2! for some metals. The data on the lattice constant (d), elastic constants (C11, C12) and
binding energy (E0) at T50 K were taken from Ref. 13. The calculated values are given in brackets.

Cu Ag Au Pt Ni Pd

E0 ~eV/at.! 3.5~3.5! 2.96~2.96! 3.78~3.78! 5.852~5.852! 4.435~4.435! 3.94~3.94!
d ~Å! 3.61 4.09 4.08 3.924 3.524 3.89
C11 (eV/Å3) 1.101~1.101! 0.82~0.82! 1.26~1.26! 2.167~2.167! 1.63~1.63! 1.46~1.46!
C12 (eV/Å3) 0.78~0.78! 0.61~0.64! 1.06~0.97! 1.57~1.57! 0.94~0.94! 1.10~1.10!
a 9.863 8.113 10.637 11.347 9.995 10.738
D ~eV! 0.597 0.492 0.704 1.303 0.481 0.839
a(Å22) 0.659 2.506 1.693 0.830 0.565 1.024
r 0 ~Å! 2.33 2.90 2.77 2.37 2.88 2.444
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II. APPROXIMATE EXPRESSION FOR THE FREE
ENERGY OF A CRYSTAL

Let us consider a crystal~system of atoms! with a pair-
wise additive interatomic interaction. The coordinate orig
will be set in one of the atoms of the system. The poten
energy of this atom isu(r )5 1

2 ( i 51
N u(r i) where the interac-

tion potential will be chosen in the form of Eq.~2!.
Potential~2! is convenient for a closed-form calculatio

of the correction to the free energy. The first term in Eq.~2!
is a repulsive Born-Mayer-type potential, and the second
is a Gaussian. Obviously, potential~2! is more localized than
the Morse potential@Eq. 1!#. This is of importance in simu-
lations involving a large number of particles. The potent
was truncated at the pointRtr @depending, of course, on th
parameters in Eq.~2!# in calculations. In this paper we as
sume uU(Rtr)u50 eV ~at this point Rtr5@r 011/(2ab)#
1A(1/a)@(r 0 /b)1(1/4ab)2a1 ln(D)#59.3 Å, values for
Cu from Table I was used!. Function~2! and all its deriva-
tives are smooth in the region of function definition. We no
that the constantb in Eq. ~2! was fixed~for Cu we used the
values50.219 Å,12 which are often used in crystal sputte
ing simulations!. a, a, D, andr 0 from Eq.~2! were chosen
so as to fit the experimental data on the elastic constants,
to satisfy the condition of zero pressure in the crystal b
~diagonal elements of the stress tensor are null!. Two elastic
constantsC11 andC12 (C445C12 in cubic crystals with ad-
ditive pairwise interactions! and the binding energy wer
varied during the fitting. Table I lists the values of consta
from expression~2! for some metals. The data on the latti
constants, binding energy, and elastic constants were t
from Ref. 13. Minimization of the potential energy and t
free energy was performed by the simplex method and
corrected by a quasi-Newton algorithm.11

An approximate free-energy expression is derived fo
system of particles interacting according to Eq.~2! ~in what
follows we will call this, for convenience, the total system!
in the same way as for the Morse system.8 As an origin
system we used a system of harmonic oscillators whose
energy is known. The potential energy of a harmonic os
lator is taken asU0(r a)5 1

2 (a51
Nd lar a

2 , whereNd51, 2, and
3 is the spatial dimension of the system;a5x,y,z; la is the
corresponding force constant of the oscillator~when the in-
dex is unessential we will simply writel); and r a

2 is the
square of the corresponding coordinate. In what follows
term ‘‘free energy’’ will be used to mean the configuration
part of the free energy, since the kinetic free-energy par
l
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known exactly and is the same for the total and the ori
systems. Following the thermodynamical perturbati
theory, we writeF5F01DF, whereF0 is the known free
energy of the origin systemF052NduN ln(Cs2), whereN
is the number of particles;u5kT; C is a constant~depending
on the system dimensions and the atomic mass and inde
dent of the VTV and the lattice constant!; ands2 is the VTV
of the atoms. The correctionDF5^U2U0&0, where
^•••&0 means averaging overe2U0 /u. It is seen that the cal-
culation of the correction is reduced to the calculation
integrals of the form*ef (x)e2U0 /u, wherex stands for the
appropriate set of variables. In the case of the potential fu
tion ~2!, such integrals are calculated in closed form for
one-dimensional system and under standard assumptio
small atomic displacements from equilibrium positions f
two- and three-dimensional systems. The result of the ca
lations can be formulated as follows. The specific~per one
atom! free energy of a system of atoms interacting accord
to Eq. ~2! is f 5 f 01 1

2 (U8(r i), whereU8(r i) is the same as
in Eq. ~2!, but with temperature-dependent consta
~primed!

U8~r !5(
i

A8e2r i /b2D8e2a8(r i2r 0)2
), A85ea1(m i /2b2),

m i5nx
2~sx0

2 1sxi

2 !1ny
2~sy0

2 1syi

2 !1nz
2~sz0

2 1szi

2 !, ~3!

D85
D

A112am i

, a85
a

112am i
.

Here the subscript 0 indicates the specified atom at the
ordinate origin;r i is the radius vector of thei th atom;nx , ny ,
andnz are direction cosines of the radius-vector; ands lm are
the components of the VTV@the first subscript stands for th
Cartesian coordinate (x.y.z), and the second is the numbe
of the atom#. For the Morse potential@Eq. ~1!#, the free-
energy expression with accuracy up to the first-order corr
tion is8

U8~r !5(
i

@D8~e22a(r i2r 08)22e2a(r i2r 08)!#,

l i5a2@nx
2~sx0

2 1sxi

2 !1ny
2~sy0

2 1syi

2 !1nz
2~sz0

2 1szi

2 !#,

~4!
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D85De2l i /2, r 085r 01
3l i

2a
,

where parametersn, s im , andr i are the same as in Eq.~3!.
Equilibrium thermodynamical parameters of the total s

tem can be found by minimization of the approximate fre
energy expressions~3!, ~4! with respect to a given paramete
Figures 1~a! and 1~b! show the temperature dependencies
the lattice constant and the VTV of the atoms of an infin
copper crystal for both free-energy approximations~3! and
~4!. The minimum of the free energy with respect to the
parameters exists only within a finite-temperature range,
disappears at a temperatureT5Tv* , which below will be
referred to as the bulk critical temperature. This critical po
is the point of a first-order phase transition because the fi
order derivatives of free energy are discontinuous in t
point. On the basis of the universality and scaling hypothe
~see, for instance, Ref. 14! we scale the calculated critica
temperature to the melting temperature, and expect tha
may obtain an appropriate qualitative description of the
havior of the lattice constant and the VTV of the total syst
over the whole temperature range below melting point. Th
are some arguments in favor of this method.

~a! The calculated critical temperature is higher than
real one. However, taking into account the fact that
second-order correction decreases the system critical
perature while not affecting the qualitative system’s beh
ior, and that it is of the same order as the first-order corr

FIG. 1. Temperature dependence of the lattice constant~a! and
the variance of thermal vibrations~b! of an infinite fcc copper crys-
tal. The lattice constant is normalized to a value of 0 K. The te
perature is normalized to a critical valve. Open circles, Eq. 3; clo
circles, Eq.~4!; solid line, Eq.~5!.
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tion ~as we determined earlier in Ref. 8!, it appears to be
reasonable to use the temperature scaling.

~b! The calculated value of the VTV in the vicinity of th
critical point is in agreement with Lindemann’s criterion o
tained in Ref. 15.

Since our model is an Einstein-type model with unh
monic interatomic interactions, we can compare our res
with the classical one. In a harmonic Einstein model, int
ducing the Einstein temperatureuE , s2(T) is given by

s2~T!5
\2

2mkbue
cothS ue

2TD , ~5!

where m is reduced mass of the atom pair~Cu-Cu in our
case!. As shown in Ref. 16, Eq.~5! valid for a quantum-
mechanical Einstein model based on anharmonic effec
pair potential. Our results fors2(T) @Fig. 1~b!, uE from Ref.
17# are close to Eq.~5! ~solid line! far from critical point.

One can note also the sharp growth of the lattice cons
and VTV asT⇒Tv* @Figs. 1~a! and 1~b!#. Mathematically,
this means that functionf (T,d,s2) has no minimum as a
function of variablesd and s2 above critical temperature
Obviously, when the free energy has more parameters@as in
the case with an adatom on the~001! face considered below
in Sec. III A!, some of them will not have a peculiarity lik
T⇒T* . The physical meaning of such a behavior of the fr
energy in these cases will be discussed below.

The relation of the critical point in Eq.~3! to the physical
parameters of a real crystal, in particular to a phase transi
~melting in case of crystal volume!, requires a more detailed
study of expression~3!. In this paper we will restrict our-
selves to the temperature dependence of the lattice con
and the VTV, and will not consider the behavior of oth
critical parameters or the derivatives of the free energy.

III. TEMPERATURE DEPENDENCE OF THE ATOM
POSITIONS ON THE VICINAL FACE OF A FCC CRYSTAL

First, let us consider a low-index~001! face of a fcc crys-
tal atT50 K. As in the case of Ni,10 let us consider a vicina
~119! face with steps of one-atom height close to the~001!
face, such that the step edge contains@ 1̄10# chains and the
length of the terraces is such that the face makes an ang
about 9° with the initial low-index face. Decreasing th
angle of~001! face rotation around the@ 1̄10# axis does not
change the behavior of the atoms which are far from
terrace edges as compared with the~001! plane. The equilib-
rium position of atoms on a~119! face atT50 K is found by
minimization of the system’s potential energy. During min
mization we vary the positions of atoms in the five topmo
layers near the surface, and the problem becomes two dim
sional because the crystal is symmetric in the direction n
mal to the step edge. Displacements of atoms interac
according to expression~2! are much smaller~no more than
0.2 Å! than in the case of the Morse potential.10 On the
whole, the displacements of atoms at the step edge are
rected toward each other so that the step is smoothed
which is in qualitative agreement with the results of Ref. 1

Now we know the atomic positions on the low-index a
vicinal faces atT50 K. Our further steps are as follows:

~1! We shall find the equilibrium thermodynamical p

-
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rameters@in our case, the lattice constantd(T), and the
s2(T)] of an ideal infinite crystal at various temperatures.
this step the VTV@i.e., s2(T)] is assumed to be isotropic
This was done is Sec. II.

~2! We consider the atomic layers near the crystal surf
as a statistical system in a thermostat. The thermostat is
part of the crystal under the surface for whichd(T) and
s2(T) are already known from step~1!. Here s2

5(sx
2 ,sy

2 ,sz
2) and, at least for the uppermost atomic lay

sz
2Þsx

25sy
2 .

The accuracy to which the critical temperature is det
mined depends on the temperature increment used w
finding the minimum of the free energy~in this work, 25 K!.

A. „001… and „111… faces

Let us start our analysis with the first layer of the~001!
and ~111! faces. We will assume for this topmost layer th
sz

2Þsx
25sy

2 , and that the first interplanar distance diffe
from the bulk value. For simplicity we consider the ca
when the lattice constant varies with temperature in the f
plane in the same way as in the bulk of the crystal. Tak
into account a larger number of near-surface layers chan
the result by only a few percent.

The behavior of the first interplanar distance and the V
is shown in Figs. 2~a! and 2~b!. As in Refs. 8 and 9, the

FIG. 2. The normalized first interlayer distanced12(T)/d12(0)
~a! and the components of the variance of thermal vibrationssx

2

5sy
2Þsz

2 . ~b! Dependence of atoms of the~001! face of a Cu
crystal on the reduced temperatureT/Tv* .
t
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critical temperature of the uppermost atomic layer diffe
from the bulk one and is equal to 0.85Tv* for the ~001! face
~it agrees with 0.845Tv* in Ref. 18! and 0.75Tv* for the ~111!
face. The physical sense of critical temperature in this c
differs from the same for the case of crystal volume. Sin
one of the VTV components has a peculiarity, surface ato
are delocalized in this direction. In our case this means
beginning of a roughening transition, i.e., the surface colu
height is changed.

A considerable difference of the critical temperature
low-index faces of a fcc crystal from the bulk value w
reported earlier18 for some fcc crystals, including Cu. Th
calculations were performed by the molecular dynam
~MD! and Monte Carlo methods.5 In Ref. 18 it was found
that critical temperature for the~001! plane in Cu is higher
than for the~111! plane. The values of critical temperature
found in our work differ from those calculated in Refs. 7, 1
and 18 because we used different approaches and intera
potentials. However, the difference between bulk and surf
critical temperatures is in qualitative agreement with the
sults of Refs. 15 and 18. Note that determining thermo
namical parameters and critical temperatures by the propo
method does not require time-consuming MD calculatio
~not reliable near the critical point of system!, and involves
only the finding of the minimum of a function of a few
~2–10! variables.

The anisotropy of the thermal vibrations is expressed
g5sz

2/sx
2 , and presents a nonmonotonic function of te

perature~Fig. 3! for both the ~001! and ~111! faces, but
g001.g111. In view of the lack of any reliable experimenta
data on the anisotropy of thermal vibrations of atoms on
crystal surface over a wide temperature range, we can
verify this result. It may be suggested that the sharp incre
in the anisotropy of thermal vibrations in the vicinity of th
critical point corresponds to the earlier observed19 abrupt in-
crease in the anharmonicity at temperatures near 0.8Tv* .
This result qualitatively corresponds to the fact that a noti
able deviation from the linear growth ofs2(T) occurs near
these temperatures@Fig. 2~b!#.

B. Adatom on the „001… and „111… faces

Now let us consider one adatom on a~001! face of copper
@qualitatively, adatom behavior on the~111! face is the same

FIG. 3. The dependence of thermal vibrations anisotropyg
5sz

2/sx
2 of atoms on the~001! face of Cu on the reduced temper

ture T/Tv* .
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as on the~001! face#. We assume thatsz
2Þsy

25sx
2 . In this

case, one has to vary three coordinates of the adatom and
components of the VTV when minimizing the free energy

An interesting question is which particular component
adatom’s VTV has a peculiarity as a function of temperat
@more precisely, we mean a singularity of a free-energy
rivative ons2(T)] whenT→T* . Figure 4 shows the behav
ior of the normal@sz

2(T)# and tangential@sx
2(T)# compo-

nents of the VTV with temperature. The critical temperatu
is Ta* 50.28Tv* in the case of the~001! face, and Ta*
50.29Tv* for the ~111! face. However, in contrast with th
cases considered above, only the tangential component o
VTV has a peculiarity asT→Ta* ~we recall that was assume
sy

25sx
2). The physical meaning of this result lies in the fa

that atT>Ta* the adatom loses its bonding to a particu
place on the crystal surface, i.e. although it does not
evaporate, it moves freely from one potential pit to anot
on the crystal surface. This picture is similar to exceed cl
ter atom behavior (Cu14 and Cu13) in Ref. 20. The upper
limit of adatom stability on the crystal face is the lower lim
of island formation; i.e., whenT.Ta* , delocalized adatoms
are conjugated and islands begin to grow.

C. Surface of the vicinal face

Let us now consider the upper atomic layer of the~119!
face. In contrast with the case of a low-index face, the d
placements in theX and Z directions~the X axis lies in the
face plane and is perpendicular to the step edge, and tZ
axis is perpendicular to the face! can be different, sosz

2

Þsy
2Þsx

2 . The problem of the free-energy minimization fo
a system composed of several uppermost atomic layers o
vicinal face being in contact with a thermostat~the underly-
ing part of the crystal! is essentially similar to the one dis
cussed earlier, but requires much more elaborate calc
tions. The reason is that, as the number of variables gro
the stipulation of function minimization problem deteriorat
very fast. In this work we used an iteration procedure
which the free energy is minimized for each individual ato
There are a total of nine such atoms in each layer, and
should consider no less than four layers. At each iteration
position and VTV of each atom were found. The proced
was terminated when the sum of the absolute values of
displacements of all the atoms from their positions on
previous iteration step became smaller than 0.01 Å .

FIG. 4. The dependence of the components of the varianc
the thermal vibrations of an adatom on the~001! face of Cu on the
reduced temperatureT/Tv* .
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As in the case of an adatom on the crystal surface, no
thermodynamical parameters, but only one of them, exhib
peculiarity with increasing temperature. AtTc* 50.66Tv* the
componentsx

2 of the VTV has a peculiarity, and, at highe
temperatures, there is no free-energy minimum. Physica
this means that there is a temperature at which an atom l
its bonds to the step edge atoms, and since this critical t
perature is higher than the temperature of the adatom d
calization, the adatom breaks away from the step edge
moves freely over the crystal surface. These results ar
good agreement with Ref. 21 for vicinal faces~113!, ~115!,
and~117! of Al ~in Ref. 21, step mobility was increased ne
Tc* 50.64Tv* ). This abrupt increase of step mobility appea
to be the first stage in the melting of a crystal’s vicinal fac

The displacements of atoms at the step edge slo
change with temperature, and the tendency for smoothing
of the step~occurring already at 0 K! becomes more pro
nounced. But at the critical temperature atomic displa
ments become so large~up to 1 Å at thestep edge! that there
is no sharp step at all, but rather a smooth transition from
terrace to another.

IV. CONCLUSIONS

Function~2! suggested for the description of the pairwi
part of the interatomic interaction not only enables one
derive a closed-form approximate expression for the free
ergy, but also offers a unified description of the interatom
interaction in a wide energy range~from thermal energies to
few keV!. Note that function~2! is infinitely smooth over the
entire definition region, unlike the commonly used sew
potentials.

Displacements of atoms on vicinal faces of a fcc crys
close to the~001! face ~which were found by minimization
of the potential energy! are directed so that the step
smoothed out as the edge atom and the bottom atom m
toward each other. Minimization of the expression obtain
for the crystal free energy enables one to find the equilibri
thermodynamical parameters such as the lattice constant
the VTV of atoms. These equilibrium thermodynamical p
rameters exist only below a certain~critical! temperatureT* .
At temperatures higher thanT* , the free energy is a mono
tonic function of these parameters and has no minimum.

The critical temperatureTs* is lower for the ~001! and
~111! faces thanTv* for an infinite crystal. The degree o
thermal vibration anisotropy of surface atoms on these fa
varies nonmonotonously with temperature, reaching a m
mum at 0 K andTs* . The tangential~parallel to the face
plane! component of the adatom’s VTVsx

2 has a peculiarity
at .Tv* /4, which testifies that long before the premelting
the face (.4Tv* /5) adatoms on the surface become deloc
ized and freely move over the surface.

The only equilibrium thermodynamical parameter to e
hibit a peculiarity as a function of temperature is the comp
nentsx

2 of the VTV of an atom at the step edge~theX axis is
perpendicular to the step edge!. This means that the firs
stage in the surface melting~or, more precisely, the chang
of the surface structure! is the ’’breaking away’’ of an atom
from the step edge. Since this ’’breakaway’’ temperatu
(.2Tv* /3) is higher than the temperature of delocalization

of
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seems that at this temperature the step mobility may incre
sharply and a considerable number of adatoms may appe
the surface. Thus three temperature ranges can be d
guished for a vicinal crystal face:T,Ta* , adatoms occupy
localized sites at the surface and step edges are stableTa*
,T,Tc* , adatoms move freely along the surface and cou
to islands or step edges, but step edges are stable yet
cs
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T.Tc* , step edges are unstable. The proposed approxim
expression for the free energy of a system of atoms inter
ing according to Eq.~2!, and the approach to the study o
temperature dependences of equilibrium thermodynam
parameters of a crystal by minimization of this expressi
may be useful in the study of the surface properties of cr
tals at various temperatures.
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