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Atom positions on the vicinal face of a fcc crystal
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An approximate expression for the free energy of a single crystal is derived to determine equilibrium
positions of atoms on vicinal faces of a fcc crystal at various temperatures thermodynamically. The obtained
free energy has a peculiaritgritical temperaturgin all the considered cases: infinite crystal, low-index face,
adatom on a low-index face, and vicinal face. The physical meaning of the critical temperature is special for
each case. The calculated temperature dependence of the lattice constant agrees well with experiment, and the
critical temperature for an infinite crystal corresponds to the melting temperature of the crystal. The variance
of the thermal vibrations near this critical point of the free energy agrees with the empirical Lindemann
criterion. For an adatom on a low-index face, the critical temperature corresponds to its becoming delocalized
(spread over the surfaceSimilarly, there is a temperature at which an atom at a step edge breaks away and
becomes a delocalized adatom.

l. INTRODUCTION U(r)=D(e 240 — 2g=alr=r0)), (1)

The study of thermodynamical equilibrium positions of
atoms on the surface and in the bulk of a crystal attracts
interest in the context of purely practical applicati¢mscro- ~ where parameters were found by fittiriguinimizing the
electronics, for exampjeand in view of the necessity to root-mean-square deviations between calculated and experi-
understand the processes occurring on the crystal surface aftental values; for more details see, for example, Reftid
in the layers near the surfa¢melting, roughening, etc., see, lattice constant, the elastic constants, and the binding energy
for example, Ref. 1 A theoretical description of surface to their experimental values. In this work we consider a po-
thermodynamics helps reveal the general mechanisms unddential with attraction,
lying the surface phase transitions, and can often serve as the
starting point for numerical experiments and lead to a better
understanding of the nature of these phenomena. Thermody- U(r)=e? "P—Dpe alr—10)? 2
namical equilibrium parameters of a statistical systém
particular, a crystal with a surfagean be found by minimi-
Zation of |tS free energyby the free energy we mean the Wh|Ch was Used earlier in Sputtering Simulatian'ﬁhis ex-
Helmholtz free energyor any other thermodynamical poten- pression is continuous with all derivatives, and correctly de-
tial. An exact expression for the free energy can be calcuscribes the interatomic interaction in the range from thermal
lated only in a few specific cas@sMore real (but simple energies to few keV; this is important for sputtering simula-
enough structures, such as a geometrically ideal threelion, as pointed out in Ref. 9. The upper limit is defined by
dimensional monocrystal with interaction of some neighborsapplicability of the Born-Mayer potential, i.e., the repulsive
are usually described by various approximations of the fre@art in Eq.(2). Any other exponential form for the repulsive
energy®~® which are found either theoretically from the per- Part in Eq.(2) can be used, such as the Moliere approxima-
turbation theory’® or by extension over a parameteor by tion of the Thomas-Fermi-Firsov potential, for example. In
adding a semiempirical term to the known free enerye these cases potentiéd) is also available for the calculation
will derive an approximate expression for the crystal freeof the free-energy approximation in closed form. As a matter
energy in the framework of the thermodynamical perturba©f fact, the closed-form approximation to the free energy of a
tion theory which was used earlier to study some Systemgrystal can be calculated for any exponential-type potentials.
interacting via the Morse potential, and to find the first-order The approximations for the free energy of a monocrystal
correction to the free energy of a system of harmonic oscilbased on potentiald) and(2) will be derived in Sec. Il. We
lators for a rectilinear chain with an ed@ea three-  will use this approximation to describe the temperature de-
dimensional ideal crystal;® and the second-order correction pendence of the lattice constant and the variance of thermal
for these caseSThe main aim of this work is to determine vibrations (in this work abbreviated as VT\Vof an infinite
some properties of crystal bulk and surface in thermodyfcc crystal. The temperature behavior @01 and (111
namical equilibrium. faces’ first-layer relaxation, the adatoms on these faces, and

In an earlier work® we considered equilibrium positions atoms on the vicinal face slightly tilted from t1€01) face,
of atoms on two vicinal face$near the(001) and (111) will be considered in Secs. Il A, Il B, and Il C. Section IV
planeg of a Ni single crystal al=0 K using the pairwise presents brief conclusions. The numerical calculations will
Morse potential be carried out for a fcc copper single crystal.
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TABLE I. Calculated parameters of potent{@) for some metals. The data on the lattice constdit €lastic constantsd;;, C;,) and
binding energy Eg) at T=0 K were taken from Ref. 13. The calculated values are given in brackets.

Cu Ag Au Pt Ni Pd
E, (eV/at) 3.53.5 2.962.96 3.783.79 5.8545.852 4.4354.439 3.943.99
d @A) 3.61 4.09 4.08 3.924 3.524 3.89
Ci1 (eV/IA3) 1.10%1.109) 0.820.82 1.261.26 2.1672.167 1.631.63 1.461.46
Cy, (eVIAY) 0.780.79 0.61(0.64) 1.060.97) 1.571.57) 0.940.94) 1.1011.10
a 9.863 8.113 10.637 11.347 9.995 10.738
D (eV) 0.597 0.492 0.704 1.303 0.481 0.839
a(A7?) 0.659 2.506 1.693 0.830 0.565 1.024
ro (A) 2.33 2.90 2.77 2.37 2.88 2.444
[l. APPROXIMATE EXPRESSION FOR THE FREE known exactly and is the same for the total and the origin
ENERGY OF A CRYSTAL systems. Following the thermodynamical perturbation

Let us consider a crystabystem of atomswith a pair- theory, we writeF=Fy+ AF, whereF, is the known free
. Lo ystdsysten  a pair energy of the origin systeriy=—N46N In(Co?), whereN
wise additive interatomic interaction. The coordinate origin._ o S umber of particlegi—KT: Cis a constantdependin
will be set in one of the atoms of the system. The potentiaf P ’ ' P g

. . 1N : on the system dimensions and the atomic mass and indepen-
energy of this atom isi(r) =32;-,u(r;) where the interac- dent of the VTV and the lattice constdnando? is the VTV
tion potential will be chosen in the form of E¢R).

. ; : . of the atoms. The correctiodAF=(U—Ug),, where
Potential(2) is convenient for a closed-form calculation (---)o means averaging over Yo/? It is seen that the cal
;Jsf;h;gglrsrﬁg'ggrtr? It;]aeyfer??yggep:g{éntig? grritj ttﬁ;mslencﬁd Ongulation of the correction is reduced to the calculation of
: . B ) DA : itegrals of the formfef®e~Yo/? wherex stands for the
1;: ﬁgrssslag,éeag;ﬂlgus%’]pgtheigti(gbof irrgogertg)rﬁggziﬁdsgrmirj appropriate set of variables. In the case of the potential func-
- S€ pol q. Bl P ._tion (2), such integrals are calculated in closed form for a
lations involving a large number of particles. The potential di onal d und dard . f
was truncated at the poiR,, [depending, of course, on the one-dimensional system and under standard assumption o

parameters in Eq2)] in calculations. In this paper we as- small atomic displacements from equilibrium positions for
sume |U(R,)|=0 eV (at this point Ry, =[ro+1/(2ab)] two- and three-dimensional systems. The result of the calcu-

lations can be formulated as follows. The spec{fier one
+J(1/a)[(ro/b) + (1/4ab) —a+In(D)]=9.3 A, values for - - -
Cu from Table | was usedFunction(2) and all its deriva- atom) free energy of a system of atoms interacting according

X . . / - to Eq.(2) is f=fy+ 32U’ (r;), whereU'(r;) is the same as
tives are smooth in the region of function definition. We note; Eq. (2), but with temperature-dependent constants

that the constart in Eq. (2) was fixed(for Cu we used the (primed
values=0.219 A? which are often used in crystal sputter-
ing simulation$. a, «, D, andr, from Eq.(2) were chosen
so as to fit the experimental data on the elastic constants, and’(r)= z Ale Tilb— D’e*“'(fi*fo)z), A’ =ea+(m/2b2),
to satisfy the condition of zero pressure in the crystal bulk [

(diagonal elements of the stress tensor are) ntio elastic

constantsCy; an(_j Cio (§:44= Cypin cub.ic c_:rystals with ad- wi= n)z((g')2<0+ 0')2(i) + n§(g§0+ 0'§i) + ng(a§0+ Ugi), 3
ditive pairwise interactionsand the binding energy were

varied during the fitting. Table | lists the values of constants

from expression2) for some metals. The data on the lattice D= D , o a
constants, binding energy, and elastic constants were taken N 2o ¢TI 2api”

from Ref. 13. Minimization of the potential energy and the

free energy was performed by the simplex method and wagjere the subscript 0 indicates the specified atom at the co-
corrected by a quasi-Newton algorithh. . ordinate origin;is the radius vector of thth atom;n,, ny,

An approximate free-energy expression is derived for aandn, are direction cosines of the radius-vector; ang are
system of particles interacting according to &2). (in what  the components of the VTYthe first subscript stands for the
follows we will call this, for convenience, the total system cartesian coordinatex(y.z), and the second is the number
in the same way as for the Morse _syst%ms an origin - of the aton. For the Morse potentialEqg. (1)], the free-
system we used a system of harmonic oscillators whose freghergy expression with accuracy up to the first-order correc-
energy is known. The potential energy of a harmonic osciltjgn i
lator is taken a&Jy(r,) = %E’:":l)\ari, whereNy=1, 2, and
3 is the spatial dimension of the systeaw=x,y,z; A\, is the , ,
corresponding force constant of the oscillatahen the in- U'(n=2> [D'(e 2" —2e a(ri—ro))],
dex is unessential we will simply writa); andr? is the '
square of the corresponding coordinate. In what follows the o 2 2 ) 5 o ) 5 2 )
term “free energy” will be used to mean the configurational =@ [Ny(o5 + o) +ny(oy +oy)+nz(oy +o7)],
part of the free energy, since the kinetic free-energy part is (4)
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tion (as we determined earlier in Ref),8t appears to be
reasonable to use the temperature scaling.

(b) The calculated value of the VTV in the vicinity of the
critical point is in agreement with Lindemann’s criterion ob-
tained in Ref. 15.

Since our model is an Einstein-type model with unhar-
monic interatomic interactions, we can compare our results
with the classical one. In a harmonic Einstein model, intro-
ducing the Einstein temperatug, o%(T) is given by

0= gt )
U(T)_Z,ukb cot 5T (5)

d(T)/d(0)

T
where u is reduced mass of the atom p&Cu-Cu in our
- casg. As shown in Ref. 16, Eq(5) valid for a quantum-
0.454 b . 52.4 § mechanical Einstein model based on anharmonic effective

pair potential. Our results far?(T) [Fig. 1(b), ¢ from Ref.
17] are close to Eq(5) (solid line) far from critical point.

One can note also the sharp growth of the lattice constant
and VTV asT=T) [Figs. Xa) and 1b)]. Mathematically,
this means that functiof(T,d,o?) has no minimum as a
function of variablesd and o above critical temperature.
Obviously, when the free energy has more paramégersn
the case with an adatom on tf@01) face considered below
in Sec. Il A), some of them will not have a peculiarity like
. T=T*. The physical meaning of such a behavior of the free
T energy in these cases will be discussed below.

The relation of the critical point in Ed3) to the physical
the variance of thermal vibratiorib) of an infinite fcc copper crys- parar_nete_rs of areal crystal, in partlcul_ar to a phase tra_nSItlon
tal. The lattice constant is normalized to a value of 0 K. The tem {(melting in case of crystal volumerequires a more detailed

perature is normalized to a critical valve. Open circles, Eq. 3; closedtudy of expression3). In this paper we will restrict our-
circles, Eq.(4): solid line, Eq.(5). selves to the temperature dependence of the lattice constant

and the VTV, and will not consider the behavior of other
3\, critical parameters or the derivatives of the free energy.

2a’

0.104

0.054

0.00

FIG. 1. Temperature dependence of the lattice congtrgnd

D'=De M2 rl=ro+—
IIl. TEMPERATURE DEPENDENCE OF THE ATOM
where parametens, o;,, andr; are the same as in E). POSITIONS ON THE VICINAL FACE OF A FCC CRYSTAL
Equilibrium thermodynamical parameters of the total sys- _. . .
tem can be found by minimization of the approximate frge- First, let us colnS|der a 'OW"”dS(""Ol) face O.f afec erys-
energy expression@), (4) with respect to a given parameter. tal atT=0 K. As in the case of Ni° let us consider a vicinal
Figures 1a) and 1b) show the temperature dependencies of(119 face with steps of one-atom height close to (681
the lattice constant and the VTV of the atoms of an infiniteface, such that the step edge contdin0] chains and the
copper crystal for both free-energy approximatig@sand  length of the terraces is such that the face makes an angle of
(4). The minimum of the free energy with respect to theseabout 9° with the initial low-index face. Decreasing the
parameters exists only within a finite-temperature range, andngle of(001) face rotation around thgl10] axis does not
disappears at a temperatufe=T; , which below will be  change the behavior of the atoms which are far from the
referred to as the bulk critical temperature. This critical pointterrace edges as compared with (881 plane. The equilib-
is the point of a first-order phase transition because the firstium position of atoms on 6119) face atT=0 K is found by
order derivatives of free energy are discontinuous in thigninimization of the system’s potential energy. During mini-
point. On the basis of the universality and scaling hypothesesiization we vary the positions of atoms in the five topmost
(see, for instance, Ref. 14ve scale the calculated critical layers near the surface, and the problem becomes two dimen-
temperature to the melting temperature, and expect that waonal because the crystal is symmetric in the direction nor-
may obtain an appropriate qualitative description of the bemal to the step edge. Displacements of atoms interacting
havior of the lattice constant and the VTV of the total systemaccording to expressiof2) are much smalle(no more than
over the whole temperature range below melting point. Ther®.2 A) than in the case of the Morse potenfidlOn the
are some arguments in favor of this method. whole, the displacements of atoms at the step edge are di-
(a) The calculated critical temperature is higher than therected toward each other so that the step is smoothed out,
real one. However, taking into account the fact that thewhich is in qualitative agreement with the results of Ref. 10.
second-order correction decreases the system critical tem- Now we know the atomic positions on the low-index and
perature while not affecting the qualitative system'’s behavvicinal faces aff=0 K. Our further steps are as follows:
ior, and that it is of the same order as the first-order correc- (1) We shall find the equilibrium thermodynamical pa-
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critical temperature of the uppermost atomic layer differs
from the bulk one and is equal to 0:B5 for the (001) face
(it agrees with 0.84%} in Ref. 18 and 0.7 for the (111)
face. The physical sense of critical temperature in this case
differs from the same for the case of crystal volume. Since
one of the VTV components has a peculiarity, surface atoms
are delocalized in this direction. In our case this means the
beginning of a roughening transition, i.e., the surface column
height is changed.
A considerable difference of the critical temperature of
low-index faces of a fcc crystal from the bulk value was
T reported earliéf for some fcc crystals, including Cu. The
calculations were performed by the molecular dynamics
FIG. 2. The normalized first interlayer distande,(T)/d;x(0) (MD) and Monte Carlo methodsin Ref. 18 it was found
(@ r;md ghe components of the variance of thermal vibratiofis that critical temperature for th@01) plane in Cu is higher
=oy#0,. (b) Dependence of atoms of theo) face of a Cu  han for the(111) plane. The values of critical temperatures
crystal on the reduced temperatuel,, . found in our work differ from those calculated in Refs. 7, 15,
and 18 because we used different approaches and interaction
rameters[in our case, the lattice constad(T), and the potentials. However, the difference between bulk and surface
o?(T)] of an ideal infinite crystal at various temperatures. Atcritical temperatures is in qualitative agreement with the re-
this step the VTV[i.e., 0*(T)] is assumed to be isotropic. sults of Refs. 15 and 18. Note that determining thermody-
This was done is Sec. II. namical parameters and critical temperatures by the proposed
(2) We consider the atomic layers near the crystal surfacenethod does not require time-consuming MD calculations
as a statistical system in a thermostat. The thermostat is th@ot reliable near the critical point of systgnand involves
part of the crystal under the surface for whid{T) and  only the finding of the minimum of a function of a few
d’(T) are already known from stepl). Here o?  (2—10 variables.
= (0% ,05,0%) and, at least for the uppermost atomic layer, The anisotropy of the thermal vibrations is expressed as
os#oi=05. y=0o2lo?, and presents a nonmonotonic function of tem-
The accuracy to which the critical temperature is deterperature(Fig. 3) for both the (001) and (111) faces, but
mined depends on the temperature increment used wheyy> y111. In view of the lack of any reliable experimental
finding the minimum of the free enerdin this work, 25 K). data on the anisotropy of thermal vibrations of atoms on the
crystal surface over a wide temperature range, we cannot
verify this result. It may be suggested that the sharp increase
A. (00D and (111 faces in tf?(la anisotropy of thirmal vigbgrations in the vicinitF))/ of the
Let us start our analysis with the first layer of tt@01) critical point corresponds to the earlier obseVeabrupt in-
and(111) faces. We will assume for this topmost layer thatcrease in the anharmonicity at temperatures neaf;0.8
os#0i=0, and that the first interplanar distance differs This result qualitatively corresponds to the fact that a notice-
from the bulk value. For simplicity we consider the caseable deviation from the linear growth of?(T) occurs near
when the lattice constant varies with temperature in the facéhese temperaturg&ig. 2(b)].
plane in the same way as in the bulk of the crystal. Taking
into account a larger number of near-surface layers changes
the result by only a few percent. B. Adatom on the (001) and (111) faces
The behavior of the first interplanar distance and the VTV  Now let us consider one adatom oit#®1) face of copper
is shown in Figs. @) and 2b). As in Refs. 8 and 9, the [qualitatively, adatom behavior on tiig11) face is the same




3026 A. S. MOSUNOV PRB 61

As in the case of an adatom on the crystal surface, not all
0871 ‘g’ thermodynamical parameters, but only one of them, exhibit a
0.6l o peculiarity with increasing temperature. At =0.66T., the
’ R componento? of the VTV has a peculiarity, and, at higher
 0.44 temperatures, there is no free-energy minimum. Physically,
R . this means that there is a temperature at which an atom loses
024 o . o} its bonds to the step edge atoms, and since this critical tem-
0o ° : o’ perature is higher than the temperature of the adatom delo-
0.01aese 888" - calization, the adatom breaks away from the step edge and
0.0 0.1 0.2 0.3 moves freely over the crystal surface. These results are in
v good agreement with Ref. 21 for vicinal facgsl3), (115),

and(117) of Al (in Ref. 21, step mobility was increased near
FIG. 4. The d_ependence of the components of the variance of: =0.64T*). This abrupt increase of step mobility appears
the thermal vibrations of an adatom on #®1) face of Cuon the  15'he the first stage in the melting of a crystal’s vicinal face.
reduced temperaturg/T, . The displacements of atoms at the step edge slowly
2., 2 2 . change with temperature, and the tendency for smoothing out
as on the(00D) face]. We assume that; # oy =0 Inthis ot the step(occurring already at 0 Kbecomes more pro-
case, one has to vary three coordinates of the adatom and tW@,,nced. But at the critical temperature atomic displace-
components of the VTV when minimizing the free energy. ments become so largep to 1 A at thestep edggthat there

An interesting question is which particular component ofig g sharp step at all, but rather a smooth transition from one
adatom’s VTV has a peculiarity as a function of temperaturggrace to another.

[more precisely, we mean a singularity of a free-energy de-
rivative ono?(T)] whenT— T*. Figure 4 shows the behav-

ior of the normal[o%(T)] and tangentia[ o2(T)] compo- IV. CONCLUSIONS

nents of the VTV with temperature. The critical temperature Function(2) suggested for the description of the pairwise
: : uncti u ipti irwi
is T;=0.28T, in the case of the(001) face, and T} 99 P P

part of the interatomic interaction not only enables one to

=0.291; for the (111) face. However, in contrast with the . . ;
. . derive a closed-form approximate expression for the free en-
cases considered above, only the tangential component of the

o 3 ergy, but also offers a unified description of the interatomic
VIV h;"‘s a pecullar!ty a§—>T§ (we regall that vyas fa\ssumed interaction in a wide energy rang&om thermal energies to
oy = oy). The physical meaning of this result lies in the fact

N . ) X few keV). Note that functior(2) is infinitely smooth over the
that atT=T; the adatom loses its bonding to a particulargntire definition region, unlike the commonly used sewed
place on the crystal surface, i.e. although it does not yepotentials.

evaporate, it moves freely from one potential pit to another pjsplacements of atoms on vicinal faces of a fcc crystal
on the crystal surface. This picture is similar to exceed clusgjpse to the(001) face (which were found by minimization

ter atom behavior (Gu and Cyg) in Ref. 20. The upper of the potential energyare directed so that the step is
limit of adatom Stab|l|ty on the CI’ySta| face is the lower limit smoothed out as the edge atom and the bottom atom moves
of island formation; i.e., whe>T7 , delocalized adatoms toward each other. Minimization of the expression obtained

are conjugated and islands begin to grow. for the crystal free energy enables one to find the equilibrium
thermodynamical parameters such as the lattice constant and
C. Surface of the vicinal face the VTV of atoms. These equilibrium thermodynamical pa-

rameters exist only below a certdicritical) temperaturd ™.

Let us now consider the upper atomic layer of {h&9 . .
face. In contrast with the case of a low-index face, the disAt temperatures higher thalt', the free energy is a mono-

placements in theX and Z directions(the X axis lies in the tonic func_tl_on of these pararpe_ters and has no minimum.
face plane and is perpendicular to the step edge, and the The critical tenlperaturé'_s s lower for the (001 and

axis is perpendicular to the facean be different, sar§ (111 face; thanTv _for an infinite crystal. The degree of
9&05;&05_ The problem of the free-energy minimization for thermal vibration anisotropy of surface atoms on these faces

a system composed of several uppermost atomic layers of th&'es ?Og rrllono:j?*ous_% W'tth temri')-eraturel,l rle ?Cr:'r?g fa maxi-
vicinal face being in contact with a thermost#tie underly- mum a andTs . The tangentialparallel to the face

ing part of the crystalis essentially similar to the one dis- Plan® component of the adatom’s VT¥; has a peculiarity
cussed earlier, but requires much more elaborate calcul&t =Ty /4, which testifies that long before the premelting of
tions. The reason is that, as the number of variables growshe face &4T]/5) adatoms on the surface become delocal-
the stipulation of function minimization problem deterioratesized and freely move over the surface.

very fast. In this work we used an iteration procedure in The only equilibrium thermodynamical parameter to ex-
which the free energy is minimized for each individual atom.hibit a peculiarity as a function of temperature is the compo-
There are a total of nine such atoms in each layer, and weenta? of the VTV of an atom at the step ed@be X axis is
should consider no less than four layers. At each iteration thperpendicular to the step edgerhis means that the first
position and VTV of each atom were found. The procedurestage in the surface meltingr, more precisely, the change
was terminated when the sum of the absolute values of thef the surface structuyaés the "breaking away” of an atom
displacements of all the atoms from their positions on thefrom the step edge. Since this "breakaway” temperature
previous iteration step became smaller than 0.01 A . (=2T}/3) is higher than the temperature of delocalization, it
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seems that at this temperature the step mobility may increase>T? , step edges are unstable. The proposed approximate
sharply and a considerable number of adatoms may appearefpression for the free energy of a system of atoms interact-
the surface. Thus three temperature ranges can be distihg according to Eq(2), and the approach to the study of
guished for a vicinal crystal fac&<T; , adatoms occupy temperature dependences of equilibrium thermodynamical
localized sites at the surface and step edges are stible; parameters of a crystal by minimization of this expression,
<T<T} , adatoms move freely along the surface and couplenay be useful in the study of the surface properties of crys-

to islands or step edges, but step edges are stable yet; atals at various temperatures.
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