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Quantitative approach to temporal diffraction from stepped surfaces
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We demonstrate how quantitative information on surface kinetics can be obtained from the intensity fluc-
tuations in a diffraction experiment. As an example we have calculated the diffraction intensity time autocor-
relation function from a surface consisting of fluctuating steps. Two different rate limiting atomic processes are
considered as the source of the fluctuations. We show that the mechanism for equilibrium of a step can be
distinguished by the characteristic time decay of the diffraction intensity autocorrelation function. In addition
we discuss limits on experimental parameters necessary to observe the diffraction fluctuations.

I. INTRODUCTION G(r)=(dl (a’t)& (5,t+ e, (1)

Measurements of dynamic properties have recently beegnere 5|(a,t)=|(a,t)—<|(a,t)>- Note that the intensities
demonstrated using either x-ray photon correlationgre integrated over the resolution widthg, of the diffrac-
spectroscopy’ (XPCS or temporal low-energy electron dif- tionmeter. IfAq is large, the coherent diffraction intensity
fraction (LEED) spectroscopy(TLS).> The dynamics of only comes from a small coherent region of size
opaque materials can be measured using XPCS, while TLS: 27/Aq. Since the actual diameted, of the incident beam
offers the ability to measure the dynamics of surfaces dowis much larger thai, the diffraction intensity is an incoher-
to atomic length scales. With the experimental realizatiorent sum over thél incoherent regions in the beam given by
that time correlations can be resolved in a diffraction probeM = (D/¢)?. In the best high-resolution LEED diffraction-
it is necessary to connect the observed time structure witmeter O/¢)?~ 10°. The question is: to what extent does the
the physical surface phenomena that generate them. Asaveraging over these incoherent regions degrade the mea-
specific example, we will discuss how the dynamics of stepsurement ofG(7)? To answer this question we must com-
can be measured using TLS. pare the contributions t&(7) from both the physical signal

Step dynamics and their relationship to crystal grdwth Wwe are interested in measurinG,(7), and from statistical
and equilibration of crystal structures are an important are&0ise in the measurement. . _ _
of researcf. A large volume of experimental work, using  The measured autocorrelation function contains contribu-
both scanning tunneling microscopy and reflection electrofions from both statistical noise and from the correlated mo-
microscopy(REM), exists for both stepped metal surfatds tion of the stru_ctural property measured by the_ diffraction
and stepped Si surfaces, most notably ofiEl (Ref. 10 (e.g., step motion, region size, adsorbate density).els

and S{002) (Ref. 1). A number of models for step dynam- mentioned, the incident electron beam has a finite correlation
ics have been bropbsed and studizd? Bartelt et al. have length, and we must concern ourselves with the number of

used a model for isolated steps to show that step fluctuationlgCOherent scattering regions contained within the area illu-

on S(111) seen in REM images are rate limited by atom min_ated by the beam. The total _coIIected current is given by
. . I . an incoherent sum over théd regions

evaporation/condensation kineti®sIn that work dynamic
variables like the step correlation functiofx(t)x(0)) M
(wherex is the position of a step edgevere calculated and _ o )
compared with REM measurements to infer the step kinetics. M ;1 ) =[pi O+ m(OI} @
In temporal diffraction experiments, however, different dy-
namic variables are measured. Specifically, while the step/herelp;(t) is the diffraction intensity from théth incoher-
correlation function(x(t)x(0)) can be measured in a real- ent region andl,) is the average signal from each region
space probe, a diffraction probe measures correlations prdi-€., {I)=M(l,)). 7(t) is a noise source presumed to be
portional to (cogx(t)Jcogx(0)]) (see below. Therefore, a purely statistical so that its autocorrelation function is
comparison of temporal diffraction fluctuation measurements 7i(t) 7;(t+ 7)) =(I ;) 3 ;6(7). Combining Eqs(1) and (2)
to pertinent surface dynamics variables requires some devednd using the statistical properties oft) gives
opment.

In a TLS measuremer{pr any other time resolved dif- G(7) 1y 1
fraction experimenta time series of the intensity is acquired, m - o)+ W{w' pi(1) 8l pi(t+ 7))
ie., I((i,t). From this series the autocorrelation function, P
G(7) can be generated: F(M—=1)(6l,; ()8l pj+i(t+ 7))} (©)]
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In this harmonic approximatiorg(m)=U"(m).
The time-dependent kinematic scattering amplitude from
the stepped surface in Fig. 1 is given by

A(G ) =AgY, feld T, (5)
r

A is the incident amplitudd,is the atomic scattering factor

andq=k;— IZi is the momentum transfer vector. The position

of each atom can be written conveniently E§,;,=xj(y,t)§<

+p;.n(y,t)—jhz, wherex;(y,t) is the position of thejth

FIG. 1. Schematic drawing of a stepped surface with averaggtep andﬁj .(y,1) is the position of theath atom on thejth

terrace lengtma, .

The first term in Eq(3) is the statistical noise contribution to
the signal. If there are no correlations betweenNhegions,
the last term in brackets is zero. The second term in(8xq.

is the autocorrelation function from a single region, definedj()=1.2,3 ... .[m+A4;;(y,t) —A;(y,)].

asGp(7)=((6lp,(t)dli(t+7)));. SinceM is proportional
to the area of the incident beax)/M is proportional to the

terrace(relative to thejth step edge'® The position of each
step edge can further be rewritten in terms of The0 K
position and a displacement(y,t), as: x;(y)=jma,
+Aj(y,a, . Similarly p; (y,t)=n;(t)a,x+y, where
For conve-
nience we breakﬁ into components perpendicular, and
parallelq; to the low index terrace surface.

incident current density. Therefore, as long as the incident Since the intention is to calculate the intensity fluctuations

current density is large enough so that the second term in Egrom a stepped surface, we can cho(ig'e such a way as to
(3) is comparable to 1G,(7) should be measurable com- maximize the sensitivity to step motion. It is easy to show
pared to the statistical noise. that the diffraction will be maximally sensitive to steps when
As a prototypical system we will explore the intensity gy has only anx component and obeys the equalitya, g
fluctuations from a surface with atomic steps that are fluctu—hq, =n#.2®* For generality we choose q=m(1

ating in time due to a number of possible atomic processesy g)/ma, which requires thahq, =[1+B8—n]x. For B
To illustrate how kinetics information can be derived from a=0, g, will be at an out-of-phase condition so that adjacent

measured TLS autocorrelation function we seek an expreserraces scatter 180° out of phase. The amplitude in(Bq.
- 2 . . =N

sion foer(r_)/<Ip> for.step motion. Oncé?‘p(r) is krjow_n, for this value ofg becomes

we can use it along with surface energetics and kinetics pa-

rameters derived from pervious work to place limits on the

sensitivity of a diffraction fluctuation measurement. A(q,t)=g(B,m)

N 2
X Ayt
Il. TEMPORAL DIFFRACTION FROM STEPS X { > Co{ m(1+B) M}
T y==a2 m
We begin by considering a model system of steps. Figure ”
1 shows a vicinal surface consisting of an ordered staircase ] ¢ ) Ai(y,1)
structure. AtT=0 K the equilibrium surface consists of +'y:2{/2 sin m(1+p) m ' (6a)

straight mono-atomic steps of heightand a terrace width
L=ma, , wherea, is the distance between atomic rows on
the terrace andn is an integer that selects the anghebe-
tween the average stepped surface normal and the low-index
terrace normal. At elevated temperatures kinks form on the _
Step edges with unit |engmH Causing the Steps to meander where the sums are over the coherent size of the bN&;{m
with an amplitude that depends on the kink enesggnd the  =¢/a, .
step-step interactiotf. In order to calculate the diffraction intensity from E¢6)

The instantaneous displacement of jtie step at a posi- We must make some assumptions about the relationship be-
tion y along the step relative to the=0 K position is given ~tween the Aj(y,t)’s. To do this we will use a quasi-
by a, Aj(y,t). Step meandering is limited by interactions mdepender_ﬂ step model. That_ls, we assume that an isolated
V(A,m) between adjacent stefisereV(A,m) is the poten- ~ Step is subject to the potential m_E(e}) caused by neighbor-
tial per unit length of the stdpWe will ignore the case INg steps. Using this potenthl in the Langevin formahsm
where the only interaction is to exclude overlapping of(described in the next sectipnwe calculate the time-
neighboring steps. While this model has been discussed iePendent fluctuations of a single step. For the purpose of
the literature’ it leads to the unphysical result that the in- calculating the diffraction intensity from a surface with many

tensity fluctuations decrease with increasing temperafure. Steps, we assume that the steps are far enough apart or that
The form of the potential for small fluctuationge., A  the step fluctuations are sufficiently small so that fluctuations

<m) is given by on one step do not influence the fluctuations on neighboring
steps. In other words fluctuations on neighboring steps do
not alter the potential an isolated step is subject to. In this
model, the transverse step-step correlation funatjayy(y)

_ Aof cog mpl2)e! T AT/
opm= sin(m(1+ B)/2m) !

(6b)

V(A,m)=U(m+A)+U(m—A)~2U(m)+c(m)a®A2
(4)
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—Ai(y)]?) becomes a constant(&2); twice the mean Egs.(8) and(9) is to calculate the appropriate averages. We

squared amplitude of an isolated step. outline the calculations for two specific dynamic models de-
However, even for relatively large vicinalities, steppedscribing fluctuations of a step about its equilibrium position.

surfaces are generally above their roughening temperature as

low as room temperature. Above the roughening temperature . TIME CORRELATIONS

([Aj(y) —Ai(y)1%) has some type of logarithmic divergence ) . ) ] ) ]
in [i—j|la, .2 The quasi-independent approximation used To illustrate how an atomic mechanism gives rise to in-

here will therefore fail to reproduce the correct diffraction t€nsity fluctuations we will look at two separate models for

line shapes even at relatively large=q, . For the purpose step motion. In the first model diffusion of atoms or vacan-
of calculating diffraction intensities, however, our aSSlJmIO_cies on the terraces is fast enough that the step kinetics are

tion of quasi-independent steps leads to the very physicéir(;‘itted by e>§[<r:]hatnge of S_}_?]P atotr;]ws with eitrlgr \//acagcies t9r
result of a Debye-Waller form df(ﬁ,T) that depends on the adatoms on te terrace. 1his 1S Ih€ evaporationicondensation

mean squared fluctuation of a step as is shown in Sec. III(EC) model. It has been shown that the position of a step in

T : 5
Therefore, in the interest of beginning to understand TLSthIS limit is governed by a Langevin equatfdrt

signals, we shall embrace the idea of weakly interacting steps IA Fe73 P2A  2T'.c 1

and leave the case of coupled step motion or the case of — = A+ — (Y1), (10)
surfaces above their roughening temperature to be explored gt KT gy? kT a,

at a later date.

- herel', is the st bility angB is the step edge stiff
For independent step¥(q,t) [Eq.(6a)] becomes a sum of wherel ¢ Is the step mobility angs is the step edge stiffness

H 2
j independent vectors in the complex plane. In other wordsglven by
this problem is equivalent to al® random walker in the a”af
real-imaginary plane where each step of the walk has com- Fe=—, (17
ponents given by Te
- ~ a”kT
X(h =92 cogaja,d(y.H], (73 B(M=——. (12
y b=(T)
Here, 7, is roughly the time for an atom to attach/detach
9,’(0292 sinfaya, Aj(y.b]. (7b) from the step edgbz. The step diffusivity,b?, is the local
y mean square length of a kink perpendicular to the step. The

ttachment/detachment of atoms from the steps is described

The total scattered amplitude is then a vector sum o : ,
y an uncorrelated thermal noise term given by

A(q,t)’s from each step after a total &, steps. This prob-

lem has been thoroughl;i explored in the literatthdhe (n(y,t)p(y’ t"))=2T8(t—t")8(y—y'). (13
magnitude and phase 6f(q,t) are determined solely by the
statistics ofA;(y,t) for a single step. In the second model, referred to as the step-edge diffusion

To calculate the time-dependent correlation function wemodel (SD), the atom density on the terraces is assumed to
must take the average,(t)!,(t+ 7)). The average will con- be so low that mass transport is primarily along the step
tain terms Iike<7<i(t)§<j(t)7(k(t+ DX (t+ 7)) as well as simi- edges. The _kmetlcs are_llmlted by an atom hopping from one

~ . step edge site to an adjacent one. The analogous equation to
lar terms fory. These terms take on different values depend

ing oni, j, k, andl and can be determined exactly within an Eq. (10) for the step position is

independent step model. For instance, wherj=k=1 the 9A TB A 2lc P#A 1

terms becoméx(t)*), fori, j, k, andl not equal to each other T T i -— — . (14)
1

the terms becoméx(t))*, and so on. By careful counting
and only retaining terms proportional % or higher, the  The noise term is now correlated because of hopping through
time dependent normalized correlation function and diffrac-adjacent sites

tion intensity become
(n(y.)n(y" t"))=2IS(t—t")d"(y—y’), (19
Gp(7) _

_ 4 ~ o~ o 2 3.2
(12 NX&>2{(X(t)X(t+7)> (x(1))7}, €S) FS(T)=a"Ti- 16

S

where . :
Here, 75 is roughly the time for an atom to hop between two

()= N2(7<>2. 9) adjacent edge sit¢d Again we caution that both models fail
P X to accurately represent long wavelength fluctuations of the

Note that the fluctuations are proportional tt\l/ the num-  steps. As mentioned in the last section, stepped surfaces even
ber of statistically independent steps sampled by the cohereat moderate temperatures are rough. When many step effects
part of the beam. Also note that the averages in @). are included, the step edge correlation functigm;(y)
represent an ensemble average over a single step so that the\;(y’)]?) diverges as Ify—y’'|) whereas the models used
subscriptj in Egs. (7) and onAj(y,t) can be dropped in here give rise to an exponentially decaying functieee
subsequent discussions. All that remains in order to evaluateelow).?’?2However, since our intent is to estimate the TLS
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signal and identify relevant physical parameters that affect it, 12
these models should be adequate. We also note that equili- &T,m)=
bration times will be drastically underestimated because
larger fluctuations above the roughening temperature will re- ) ) o )
quire mass transport at levels much higher than predicted bgquation (17) shows that the diffraction intensity decays
the models used in this discussion. with a Debye-Waller-type exponent whose argument is
Equations(10) and(14) can be solved to give the average qﬁwz. This should have been expected from the form of Eq.
intensity and normalized correlation functitsee appendix  (3). For stepped surfaces, only the step edges contribute to
In the continuum limit N,—c and Nya =¢) the average the intensity wher is chosen to be at an out-of-phase con-
intensity is found by substituting the appropriage [Eqs.  dition. While the mean step position is constant, the step
(A4)] and | [Egs.(A6)] for either model into Eq(A17) in  position fluctuates with a mean squared deviationwdf

aHkT

S 22
2b%c(m) 2

order to evaluaté?)z in Eq. (9). This gives wherew? is viewed analogous to the mean square displace-
ment of an atom,(u(T)?), in the normal Debye-Waller
(1 =NZ(¢lap?|lg(m, B)|*exd — qf w?]. (17)  theory?* This means that the ratio?/c(m) can in principle

be obtained by measuring the peak intensity as a function of

temperature. The total intensity at the out-of-phase peak will

be 1(q,T)=exp{—([q-U(T) ) —[g(D13}. Since(u(T)?)=T,

a plot of log() vs T will be a straight line with a slope

(18) proportional tog? in the absence of step fluctuations. Devia-
tions of this plot from a linear behavior would be due to the

Simil_arly, from Eq. (A18) the normalized autocorrelation temperature dependenceb’t In a Terrace-Step-Kink model

function becomes for instance,b?« % sinh %(¢/2kT).}” Using Eq.(18) for w?,

this would contribute a2 term in the Debye-Waller plot

Here w?(T,m) is the mean squared width of a step fluctua-
tion in equilibrium?3

b2kT 1/4

(T, m)= 8c(m)gy

¢
Gp(m) 4 223” ) | whenkTs /2. Assuming that] can be chosen small enough
(1) - Ny(¢lay) St {cosh[qjw]"F(7,))—1}. so that[qg-u(T)]1?<[q;w(T)]? the deviation from a linear
T slope should be observable.
(19 The magnitude of the expected TLS signal can be deter-
The functionF (1) is the relative correlation of two points Mined from ther=0 value of the autocorrelation function,
on a step separated Ibg, G,(0) (the mean squared intensity fluctuation froly
step$. For both models at=0, F(0))=exp(—|l|a/é) so
1 Nay (= that G,(0) contains only equilibrium information about the
F(T,|)=e_“|a”/§—;—2f Cy(7)cogklay)dk. fluctuations. Assuming thaj?w?<1, the cosh can be ex-
4ot == 20 panded in Eq(19) for aj/é<1 to give

We have writtenF(7,1) in terms of the Fourier coefficients G(0)
of the spatial correlation function C (7=[t—1t'|) AN ()
= a%(|E (1)~ K(0)|?) defined by Barteltet al'® For the (19?2 Nx(Z/8)
EC modelC, is given by®

) {1-exp{—¢/&]. (23

Note that the size of the signal is proportional tqa@)“

4w? 1—exd — (7179 {(£k)2+ 1} ] and inversely proportional to a rescaled correlation length
Cu(7)= gN_aﬂ (k)% +1 , (213 (£1€). The (¢/€) ! comes from the fact that points on a step
separated by distances larger thaare independent of one
while for the SD modet? another. Therefore, the number of independent scattering re-
gions within the coherence lengthare reduced by a factor
40® 1—exd — (7/7o9 (8] £)*{ £k + £2Kk?} ] of (1/£). At low temperature where diffusion is slow agd
Cul T):gN_a“ (£K)2+1 ' > ¢, each part of the step is correlated with all others in the

(21b) coherent part of the beam diameter. In this limit the expo-
nential in Eq.(23) can be expanded so that to first order the
where fluctuations are independent of bathand ¢. At high tem-
KT peratures the diffusion is fast ardis small. If ¢ is much
Toe= (210 smaller thary, the fluctuations from Eq23) are reduced by
2l'c(m) the number of statistically independent pieces along the step
edge, i.e., {/£). Note that Eq(23) reduces to Eq.5) of Ref.
3in the limit &> ¢.
aﬁkT Given that{ is known and thaiw?(T,m) has been mea-
TOSIM= (210 sured independently from a Debye-Waller analysis as dis-
s cussed above(T,m) can then be determined from the tem-
are the equilibrium times of a step disturbance. Also, theerature dependence of the fluctuations. By combining the
correlation lengthé, for two points on a step separatedygy results of Debye-Waller and fluctuations measurements, the
i.e., (A(0)A(y))=w?exp(yl/é) is given by? form of the step-step interaction potenti®m) can be de-

and
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termined sincew and ¢ are related through Eq$18) and 0.5
(22): (0?¢) " t=4c(m)(kT) 1.5 ——— RSK
We also note that the fluctuatiof®,(0)/(l) (compared to ok —— TSK ]

the statistical noisedepend on the step separatiothrough
Ny, & o, andq;. Both ¢ and o depend critically on the

2

form of the step interaction potential. For an elastic or dipole Je 03 F -
interactiorf® (with U(L)«1/L2), G4(0)/1) increases pro- %

portional to L whené<< ¢ but decreases asllivhené>{. If, o

as proposed by Alerharet al. for Si(001) steps2® the inter- el §

action potential has a form Ih), then the fluctuation signal
always decreases with larger terrace lendtinsthis case 01k
Gp(0)/(1)y=1/L? and 1L3 for é<¢ and £ ¢, respectively.

At this point we can estimate the size of the TLS signal. : | | . .
There has been extensive research on steppdd %iand 00 = S e e
Si(001) surfaces?® Alfonso et al. have studied Ft)rﬁ)fa high tem- 200400600 800 1000 1200 1400 1600
perature Sil11) “1 X 1" phase on a range of different step T
densities using RENI? From an analysis of their results val-  FiG. 2. Plot of the predicted relative correlation function vs
ues of b?=5.7 A? (at 900°C) and c(m) between temperature for a stepped(8l1) surface. Two terrace widths are
0.72 eVA/(ma)* to 1.32 eVA/ma )* have been assumedt=ma, =200 and 400 A.The instrument transfer width
estimated®2’ Assuming the larger value of(m) and a is 1400 A . The step diffusivityp? is calculated in both the TSK
ma, =200 A terrace givesns~69 A andé~6400 A. If  and RSK models.

we take the coherence length of the beam to dpe 1705 ] )
~1400 A for high-resolution LEEB® then N,=7. The Terrace-Step-Kink*® (TSK) or Restricted-Step-Kink
fluctuations from a single region are given by E@3); (RSK) model to estimate the step diffusivitiassuming a
Gp(0)/(1,)2=0.4. From Eq(3) the measured diffraction sig- Kink energy of 200 meV). We point out that>{ over the

nal, G(0)/(1)2, is an average over thd regions plus a con- €ntire temperature range in Fig. 2 €(0)/(Ip)<L. From
tribution from the statistical noise; 1)+ G(0)/M(I )2, the above discussion it is clear that TLS has sufficient sen-

For a beam diameteD=50 um the number of coherent sitivity_ to measure the fluctuations of steps._
regions isM~ (D/1400 A ¥: giving Gy(0)/(1 )2~3x 1076, To illustrate the differences between the t2|me dependence
In order forG,(0)/(1)? to be measurable it must be compa- of the two models we have plotte@,(7)/(1)“ for the EC
rable to 1(1). If we take the criteria for the minimal detect- @"d SD models in Figs. 3 and 4, respectively, for different
able signal to be greater than 10% of the statistical noise, wialues of¢/&. The time behavior of the two models is quite
would require~30 000 counts per gate period. Finally, the different. The mostlzs'trlklng dlff(a_rgncg, as aIready pointed
necessary count rate depend on the gate time chosen for tREt by Barteltet al,™* is that equilibration by SD is much
experiment that in turn depends on a characteristic time scafRloWer- Givenroe~ 7o, the correlation function from the SD
for the step fluctuations. For a ($L1) stepped surface a mode! decays over three orders of magnitude slower than
typical correlation time, 7o, for step fluctuations is ©G(7) in the EC model. 5. _ ,
~1.0 s Insisting that the time resolution of the TLS ex- At short timesGy(7)/(l)® is not a simple function of
periment be 2% of, (i.e., 0.02 s gate timethe scattered
diffraction intensity would have to be 10° counts/s in or- L3 [T ek T T T
der to detect the step fluctuations. This type of count rate is
certainly within the capability of a typical high-resolution \
LEED gun. Note that for standard LEED systems, the beam B
diameter and { are typically 500um and 200 A,
respectively’® This means that to obtain the same statistics
available to a high-resolution LEED system, a count rate of
~10° counts/s would be needed. This is also an obtainable
countrate but the 200 A resolution would mean tiat
would be an average over mamys further reducing the
signal. For an x-ray scattering experiment with both a beam
diameter and transfer width equal to /m,2 3000 counts/s
would be required, which is about an order of magnitude
higher than most undulator sources provide. 0.0
As an illustration of the temperature dependence of the 0.0
fluctuations we have plotteth(O)/(Ip)2 in Fig. 2 for a
stepped Sil11) surface with terrace sizes of 200 and
400 A . The step interaction is chosen to be proportional to g 3. A plot of Gy(7)/(1)? vs /7, for the EC model K
12 so c(m)=1.32 eVA/ma,)* and £~6400 A at =3 andgw=1). The different curves are for different choices of
900 °C. The temperature dependenceséfand ¢ are calcu- (/¢ The insert shows a log plot of the same curves showing the
lated from Eqs(18) and(22) using either a long time exponential decay.
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FIG. 4. A plot of Gy(7)/{1)? vs 7/, for the SD model Ky
=1 andqyw=1). The different curves are for different choices of
Zl€. The insert shows a log plot vsr(7y) Y of the same curves
showing the long time exponential decay.

FIG. 6. A plot of the relative half time#/ 7g),,, of G,(7) vs the
relative beam coherence lengthé for the SD model N,=1 and
gye=1). The different curves are for different choices of the cor-
relation lengthi¢/a =20 (O), 137 (3), 268 (A). The dotted line
is a guide to the eye.
time for either model. The time at which the correlation

function falls in half, ¢/ 7g)4/,, is a function of the transfer
width ¢, ¢ and qw. Figure 5 is a plot of {/7y),/, deter-
mined from numerical calculation of Eq19) for various ing that the longest time constamk=ro[(§k)2+1]‘1, in

parameters in the EC model. The half time increases WitrEq. (213 is set by the smallest probed by the diffraction,
Zl ¢ for small values of this ratio and then saturates at de K. ~2m/¢. If Ky, is of order 1£, then 7, becomes
=0 min . min !

constant for{/£>2. Note that the scaling of the half time independent of and is completely dominated by the equi-
has a weak dependence érat large{/¢. This size depen- librium time 7o.

dence can be unde_rstood by Ioo_king at théependence_ of The characteristic decay time in the SD model has a simi-
the spatial correlation function in qulab. The _Founer lar behavior(becoming independent @ ¢ at larges/£) as
transforr_n OfCy, v_vhe_n .(T/T°)>1.' IS dom|_nated by its sm_all seen in Fig. 6. Note that the time scale in Fig. 6 is normal-
K ber;awor. IP th/'s I|m|tF(:/,I) IS appgclz;<|matﬁ!yha Fourler ized by (aH/§)2. Unlike in the EC model, step-edge diffusion
transform of ¢/m)exp(-)exp(=£°k), which is an o4 ires the concerted motion of atoms from one point on the
exp(- 71719% times a Gaussian _Who s width isla;  gten 10 another. This means that a simpediffusion model
~(7/79)**¢. In other words, fofay=¢>¢, the sum in EQ. 414 give the diffusion time to be proportional td/y)?,
(19) can be extended to infinity in the long time limit and \hered is some characteristic length. The length sahis
again set by¢, since it is the distance over which step fluc-

becomes independent ¢f For {<¢ the sum, and thus the
time constant, are a function ¢f This is equivalent to not-

030 —————————— T T tuations are correlated.
[ ] The two models for equilibrium of the step can be easily
025 - DA DL AT - distinguished in a TLS measurement. To show this we look
i AT 000000 ] at the long time behavior of the correlation functiof;r
020 L EOD ] >1. While we have not been able to develop an analytic
o é%)' expansion of Eq(19) in this limit, we have deduced an
3 015 [ £ 1 empirical expression from the numerical calculations of Eq.
s L ] (19) for both models. For the EC model the correlation func-
= g@ ] tions decay exponentially as can be seen in the insert of Fig.
0.10 é 1 3
0.05 .
Gl exp{ 2 (1 O(E+ -, (24)
000 ) U — (19)? liml rgee Toe
€S

Equation(24) is reasonably accurate fef 7o.>1. For step-
FIG. 5. A plot of the relative half time{ 7o), of G,(7) Vs the gdg.e Q|ﬁu5|o!’1 the intensity correlation func'qon at _Iong times

relative beam coherence lengthé for the EC model K, =1 and IS distinctly different from Eq(24). From the insert in Fig. 4

gjw=1). The different curves are for different choices of the cor-the long time behavior is exponential but with an argument

relation lengthi¢/a;=10 (O), 100 (), 400 (A). The dotted line ~ proportional to ¢/ 709 Y4, Empirically we find that the long

is a guide to the eye. time behavior can be approximately described as
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possible to measuré by repeating measurements G{ 7)

for different values of the beam coherence lendthat fixed

temperature. This could be done by defocusing the electro

beam in order to degrade

<| p>2 limr/rgg— 0Os

Rather than solving Eq$10) or (14) directly using stan-
flard Fourier techniques, it is more convenient to generate a
probability distribution forA(y,t) since we are interested in
calculating averages of daga, A(y,t)]. To do this we place
A(y,t) on a discrete spatial latticg/=nay, where n
=1,2,...N (N odd and writeA and » as a discrete Fou-

We have derived an analytic expression for the intensityiier series
correlation function in a TLS experiment from a stepped

IV. CONCLUSIONS

N—1
surface for both an evaporation/condensation and step-edge ~ (2
diffusion model. From these results we can determine the A”(t):go Ay(nyelzmanm, (AL)
necessary count rates to extract the intensity autocorrelation
function from statistical noise. We have also demonstrated N-1
that the two models for step equilibrium can be distinguished (D)= p(t)el@mNN, (A2)
from the characteristic decay of the correlation function a k=1
long times. Substituting Eqs(Al) and(A2) into either Eqs(10) or (14)

In principle it may be possible to corroborate the mechagjives a linear equation
nism for step fluctuations by looking for evidence of adatom
diffusion on the terraces. In the EC model the step fluctua- d~ ~ ~
tions must be correlated with terrace adatom fluctuations ﬁAk(t):_VKAk(tH’?k(t)’
while in the SD model step fluctuations are only due to step- _
edge atom diffusion. To see fluctuations due to terrace adavherey, andr(t) are appropriate for the EC or SD model.
tom density changes the TLS measurements would be mader the EC modely, is given by
at an in-phase diffraction condition but with far from the

(A3)

peak. The signal would be small since the diffuse intensity in 2I' s 2wk 2I'c
the wings would be lower by two orders of magnitude from |t AN KT (Ada)
the peak. Helium atom scattering may be more appropriate I
for this measurement than electron or x-ray diffraction be-while for the SC modely, is given by
cause of helium’s higher scattering cross section for point 5
defects(100 times that of electronsWe are currently devel- argB 27k\|%2 4rge 27k
oping the theory of diffraction fluctuations from concentra- 7k~ a4kT[ _CO{T)} + 2kT[ B 05( T) ]
tion fluctuations in adsorbed monolayers that would be di- I 4

(Adb)

rectly applicable to this problem.

In this paper, we have ignored correlations between thahe Fourier components(t), are determined from the sta-
motion of adjacent steps. The dynamics of step fluctuationgstical properties of the noise for each mofgts.(13) and
in the strongly coupled limit has already been investigated by15)] and have the following properties:
others®! We can postulate how strong coupling may effect
the above results. For similar rate limiting kinetics we may ~ ~ Ky
assume that there will be substantial modifications to the ~ (7(t)=0, ()7 (t))=
correlation function. Because of the coupling between steps, ) o
correlated step motion will lead to both breathing and opticaiVhere i in the EC model is given by
type modes for the relative positions of adjacent steps. De- oT
pending on the energetics of these two modes there may be K= — (A6a)
more than one characteristic time scale in the correlation a
function. The mathematical problem of solving a system of, 1..1a for the SD model
coupled Langevin equations and then calculating the diffrac-

Ok 6(t—1"), (A5)

tion intensity is well beyond the scope of the present work. AT 2.7k
We leave the calculation of this more complicated problem Kk=—35{ 1—cos( —)] (ABb)
to others. a| N
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Note, that theN real valued quantities\,(t) have been

mapped onto an equivalent number of independent Fourier

quantities, A, wherek=0, . . . Kma=(N—1)/2 for N odd.
While A, is real, A is in general complex. However, the
number of independeii’s is reduced by half because of the
relationship between the real and complex termds
~Kys. o
We are after the joint probability?(A,t;A’,t")dAdA’
that at a time t the set of displacementsA
={80,A, ... A} has a value betweed and A +dA
and that at’ its value lies betweed’ andA’+dA’. Also
let P(A,t)dA be the probability that at timethe setA has a
value betweerd andA+dA. If we then define the condi-
tional probabilityPc(A,t|A’,t')dAdA’ that the value ofA
is betweenA andA+dA at a timet, given that they were

betweerA’ andA’+dA’ at an earlier time’, then the joint
probability can be written as

PAA LA t)=P(AtJA" t)PA' ). (A7)

Because of the statistical independence of each Fourier co-

efficientA,, P can be written as

kmax

P@,t>=kljo Pe(A . b). (A8)

Since the Langevin EqA3) is linear, the probability den-

sity evolves as a Gaussian with its center relaxing according

to noise free dynamics with a widih,(t) (Ref. 21
1

1 - .
= expl ——— Ry M2} k=0,
2wt r{ 2a§(t)| 0 700 |]
(A9b)

1
2moi(t)

P, = A—A e ™2 k#0,
k Za'i(t)l k ko' |

(A9a)

POZ

whereA,, is the initial value at=0 and the time dependent
width of the distribution is given by

2 Kk/N

20t=, (1—exgd —2wt]) k#0, (A10a)
k

2 KolN

20%= (1—exgd —2y5t]) k=0. (A10b)

Yo

The width grows from zero dt=0 to its steady state value at
t=o0. In the long time limit the probabilities given by Egs.
(A9) approach their stationary values

Py= |Zk|2] k#0,

(Alla)

2mad(w0) EXD[  20%(x)
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1 1 .
Py=———exp — Ao/} k=0.
O 2mol() ’{ 2a§(oc)| o
(A11b)

In effect, therefore, the probabilities in Eq#9) are them-
selves conditional probabilities since they incorporas a
condition the initial step distribution. With this in mind we
can identify Eqs(A9) as

Pex(Ag t/AL " =t—1])

1
X —_—
20'&(7')

Ped Ao, t|Ayt" =t—17])

1

=— ¢ A—A e %2 k#0,
2770_5(7_) | k ko | ]

(A123)

! L Ry—Kee 2 k=0
= ————exp — —5—|Ag— Ay 77 =0.
\/2770'%(7') 20'(2)(7') 0 700

(A12b)

Assuming that the system was set up at some time long in
the past so that it has equilibrated by=0 and assuming
thatt>t’, the joint probability can be written as

kmax
P&, 7A"00=[] P&y, mAL0),  (AL3)
k=0
where
Pyu(A, 7R ,00=Pc (A, 7|AL0PAL). (A1)

We are now in a position to calculate the appropriate av-
erages in Egs.(8) and (9). The average(x(7)x(0))
= 922nn/(co{qHaLAn(T)]cos{qHalAn,(0)]) becomes

{/Zau

>

n= —{/Zau n'= —(/2aH

{/23“
(X(7)x(0))=g?

3 I I )

xcogqga, A, (0)]PAA,7A",0)

kmax

x[] dAdArdA[dA*. (A15)
k=0

Equation(A15) can be readily evaluated by writing tie,’'s

in terms of their Fourier coefficients\, [defined in Eq.
(Al1)] and using Egs.(A9), (A13) and (Al4), with the
resulf?
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<§<(r)§<(0)>=gZNyexp[ -

(Ny—1)/2

(A16)

whereN, = {/a andl=n—n’. Note that asr— the step
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(x)?=g’Njexp — E ZNY q} (A17)

max

By substituting Egs(A16) and (Al17) into Eq. (8) the
intensity correlation function from a single coherent region
can be written as

fluctuations become uncorrelated with those at earlier times.

In this limit (x()x(0)) = (x(s*)}{x(0)). In other words, Eq.
(A16) also represents the average?

Gy7) (Ny—1)/2
—N,+ cosh
(Ip)? "N xNy Y |:—(N2y—1>/2
Kmax 2kl
E ~ o T (A18)
<
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