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Modulational instability and energy localization in anharmonic lattices at finite energy density

Yuriy A. Kosevich*
Max Planck Institute for Physics of Complex Systems, Noethnitzer Str. 38, D-01187 Dresden, Germany

Stefano Lepri†

Dipartimento di Energetica ‘‘S. Stecco,’’ Via Santa Marta 3, I-50139 Florence, Italy
~Received 7 June 1999!

The localization of vibrational energy, induced by the modulational instability of the Brillouin-zone-
boundary mode in a chain of classical anharmonic oscillators with finite initial energy density, is studied within
a continuum theory. We describe the initial localization stage as a gas of envelope solitons and explain their
merging, eventually leading to a single localized object containing a macroscopic fraction of the total energy
of the lattice. The initial-energy-density dependences of all characteristic time scales of the soliton formation
and merging are described analytically. Spatial power spectra are computed and used for the quantitative
explanation of the numerical results.
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I. INTRODUCTION

Despite a large number of studies on localization of
ergy in pure anharmonic lattices,1–4 the mechanism of thei
thermal generation is still under debate. This is clearly
central issue being directly related with the possibility
observing signature of such a class of excitations in exp
ments on real crystals. The problem of nanoscale energy
calization has turned out to be rather important also in v
of its possible application for different physical and biolog
cal systems. The theoretical studies at finite energy per
ticle dealt mainly with one-dimensional models belongi
both to the Fermi-Pasta-Ulam~FPU! class of models5,6 ~with
acoustic spectrum in the harmonic limit! and to the Klein-
Gordon one7 ~with optical-phonon-type spectrum in the ha
monic limit!. Some attention has been also recently paye
the discretized version of the nonlinear Schro¨dinger equation
in one dimension.8,9

Of special interest is the numerically observed fact t
excitation of short-wavelength extended modes of the ch
and their instability with respect to perturbations with no
vanishing wave number leads generically to creation of
calized states. The phenomenology emerging from the
merical studies5,6 can be summarized in three main stages
the first one, after the development of the modulational
stability, energy localizes along the chain in the form of
array of almost standing ‘‘bumps.’’ After a given time~that
increase upon decreasing the energy! those begin to merge
diminishing their number and localization lengths. This s
ond stage~which is reminiscent of the phenomenon of ‘‘so
ton turbulence’’10! ends with the emergence of a single l
calized and moving object~a ‘‘breather’’!, carrying along a
macroscopic fraction of the total energy. In the third sta
the breather continues to slow down radiating its energy
wards the background until it eventually disappears and
equipartition~thermal equilibrium! state is attained.

The aim of this paper is to give a consistent quantitat
explanation of such behavior, in particular of the appar
paradoxical tendence of the system to increase localizatio
time goes by. Namely, we would like to clarify the role
PRB 610163-1829/2000/61~1!/299~9!/$15.00
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the finite vibrational energy density on the formation
strongly localized envelope solitons and breathers and t
temporal evolution in the anharmonic FPU chain. This
accomplished by means of a suitable continuum approxi
tion for the lattice dynamics. The approach in terms of t
envelope-function equation including higher-order nonline
terms has been already introduced to describe sh
wavelength excitations in the FPU chain11 and is reviewed in
Sec. II. It is a useful framework both for computing localize
solution in the form of envelope soliton~ES! and breather
~Sec. III!, and for describing the modulational instabilit
~Sec. IV!. Furthermore, going beyond the usual integra
approximation12 is of crucial importance to explain the loca
ization process~Secs. V and VI!. We described analytically
the initial-energy-density dependence of all characteri
time scales of the envelope soliton formation and mergi
Particular emphasis has been also given to the analytic c
putation and numerical measurements of the spatial po
spectra~‘‘structure functions’’! that, at least in principle, are
of importance for real experiments. Indeed, they turn ou
be extremely useful for the physical interpretation of t
simulation results~see, e.g., Secs. V and VII!. Finally, a brief
discussion of the finite-temperature effects is reported in S
VIII.

II. ENVELOPE-FUNCTION EQUATION FOR THE FPU
MODEL

We start from the classical FPU Lagrangian of a mo
atomic chain ofN particles of massm with anharmonic
nearest-neighbor potential of orderr>3:

L5(
n

F1

2
mu̇n

22 (
g52

r
Kg

g
~un112un!gG , ~1!

whereun is the~real scalar! displacement of thenth particle
from its equilibrium position andKg are the harmonic (g
52) and anharmonic force constants. The lowest order
tential describing the anharmonicity of the longitudinal
pure transverse motion in a centrosymmetric 1D lattice c
299 ©2000 The American Physical Society
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300 PRB 61YURIY A. KOSEVICH AND STEFANO LEPRI
responds, respectively, tor 53 or r 54. From Eq.~1! we
obtain the following equations of motion:

mün5 (
g52

r

Kg@~un112un!g212~un2un21!g21#. ~2!

In the following, periodic boundary conditions are alwa
assumed.

In order to describe the short-wavelength excitations
the chain with wave numberk;p/a (a being the lattice
spacing!, i.e., near the Brillouin-zone boundary, it is conv
nient to introduce an envelope-function of the displaceme
f n5(21)nun , f n[ f (x/a). The latter is assumed to b
slowly varying on the interatomic scale:a fx! f . Substituting
in Eq. ~2! the expansion of the differencesun612un up to
the fourth order, one can obtain a nonlinear partial differ
tial equation forf.11 For instance, in the case of the pure
quartic anharmonicity~i.e., the so-calledb-FPU model with
only K2 andK4 different from zero! such an equation read

m f̈14K2f 1K2a2f xx1
1

12
K2a4f xxxx116K4f 3

16K4a2f ~ f 2!xx50, ~3!

where the subscriptx stands for the spatial derivative of th
corresponding order. A equation, similar to Eq.~3!, can be
also obtained for the cubic anharmonicity (a-FPU model
with g52 andg53) and, more generally, for the FPU cha
~1! with the anharmonic potential of the arbitrary~even or
odd! order r.13

Due to the last term in left-hand side of Eq.~3!, the latter
substantially differs from the conventional nonlinear Klei
Gordon and its nonrelativistic version—the nonlinear Sch¨-
dinger equation. Actually, Eq.~3! can be reduced to the latte
only in the limit of relatively small oscillation amplitude
~see Sec. IV below!. Equation~3! differs also from the well-
known Korteweg–de Vries equation which describes
evolution of the long-wavelength~i.e., the ‘‘acoustic-
phonon-type’’! excitations and can be derived from Eq.~1!
in the limit aux!1 ~see, e.g., Ref. 13!.

In what follows, we will use Eq.~3! for the adequate
analytic description of all the main stages of modulatio
instability-induced dynamic evolution of the hard~with K4
.0) quartic FPU chain. For simplicity of notation, we s
K2 , K4 , a, andm to unity. With such a choice, the~adimen-
sional! energy density~i.e., the energy per particle! e is the
only relevant physical parameter if one does not account
the finite-temperature effects~see Sec. VIII below!. More-
over, we will always deal with the~classical! low-
temperature limit that in our units corresponds toe!1.

III. LOCALIZED SOLUTIONS: ENVELOPE
SOLITONS AND BREATHERS

As a first step, we determine the form of the single ES~or
periodic array of solitons! by looking for solutions of Eq.~3!
in the monochromatic formf (x,t)5f(x)cosvt. The fre-
quencyv can be computed by first substituting such an
satz in Eq.~3! and invoking then the so-called rotating wa
approximation ~RWA!, namely, to replace cos3 vt by
3
4 cosvt. It is worth mentioning that such an approximatio
f

ts

-

e

r

-

is expected to hold for the considered short-wavelength
brations due to the weakness of nonresonant interaction
tween the mode with fundamental frequency and its th
harmonic. By further neglecting the fourth-order dispers
term in Eq.~3! we find its first integral as11

~42v2!f21~119f2!~fx!
216f45const. ~4!

The generic solution of Eq.~4! for a nonvanishing constan
corresponds to a periodic array of ESs, and can be con
niently parametrized by the two extreme values of the a
plitude fmin and fmax ~so thatfmin<f<fmax). Those are
simply determined by the conditions thatfx vanishes forf
5fmin andf5fmax. From those two conditions we deriv
immediately the frequency of the envelope-soliton array a
function of the extreme values of its amplitude:

v25416~fmin
2 1fmax

2 !. ~5!

Then from Eqs.~4!,~5! we can determine the desired solutio
as

S df

dx D 2

56
~fmax

2 2f2!~f22fmin
2 !

119f2
. ~6!

Equation~6! can be solved by quadratures yielding the fo
lowing implicit form for f(x):

ux2x0u5
1

A6
E

f

fmax
A119f82

A~fmax
2 2f82!~f822fmin

2 !
df8,

f~x0!5fmax. ~7!

The single ES corresponds to const50 in Eq. ~4! and to
fmin50 in Eq. ~7!. Although a general explicit form of Eq
~7! is not feasible, we can at least discuss the two limiti
cases of small and large amplitudes. In the small-amplit
limit (9fmax

2 !1), the solution is given by~we include ex-
plicitely the time dependence!

f s~x,t !5fmax

cos~vst1w!

cosh@~x2x0!fmaxA6#
, ~8!

where the frequency as given by Eq.~5! with fmin50 and is
approximatelyvs5213fmax

2 /2, whereasw is the initial
phase.

In the large-amplitude limit (9fmax
2 @1), it follows from

Eq. ~7! that the ES acquires a sinusoidal shape with a sh
amplitude-independent localization length11

f b~x,t !5fmaxcos~vbt1w!cos@kb~x2x0!#

for kbux2x0u,
p

2
~9!

and with f b'0 outside of the above specified domain. T
effective wave number iskb5A2/3 andvb given by Eq.~5!
with fmin50. This is rather accurate approximation for th
exact breather solution of the discrete FPU model~see Ref.
13 for a detailed comparison!. Discrepancies have to be ex
pected because, strictly speaking, the continuum approac
not completely justified in this short-wavelength limit. In
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PRB 61 301MODULATIONAL INSTABILITY AND ENERGY . . .
deed, the analysis of the corresponding discrete-lattice e
tions predicts14 the existence of intrinsic localized mode
~discrete breathers! with ~approximately! sinusoidal envelope
~9! but with kb5p/3 andvb

2531(81/16)fmax
2 .

Having at hand the explicit solution~8!, we can compute
the spatial Fourier transform of the displacement fieldu as-
sociated to the single ES obtaining„notice that, by definition,
the zero wave number forf corresponds to the wav
numbers 6p for u and therefore u(k)5*u(x)eikxdx
5* f (x)eikx cospxdx51

2@f(k2p)1f(k1p)#…

us~k,t !5
1

2
cos~vst1w!@Fs~k2p,x0!1Fs~k1p,x0!#,

~10!

where we have defined the form factor

Fs~k,x0!5
p

A6

eikx0

cosh@pk/fmax2A6#
. ~11!

Accordingly, the power spectrum@i.e., the square modulus o
us(k,t)] is exponentially localized aroundk56p and its
maximal value is independent of the amplitudefmax.

For later purposes, we compute also the total energyEs of
the ES. To this aim, one can use the expression for
Hamiltonian densityh by the variation of which Eq.~3! can
be derived11

h5
1

2
~ ḟ !212 f 214 f 42

1

2
~1112f 2!~ f x!

21
1

24
~ f xx!

2

~12!

~remember that we are working in dimensionless units!. Ne-
glecting again the higher-order dispersive term and ave
ing h over time~in the RWA! and by means of Eq.~4! with
const50, we find that the energy densityhs associated with
the ES is 2f213f4. Using this expression together with E
~8!, we finally find

Es5E
2`

1`

hsdx5E
2`

1`

@2f213f4# dx

5
4

A6
fmax~11fmax

2 !. ~13!

In the leading approximation, the energy scales linearly w
the amplitude.10

The Fourier transform of the breather solution~9! is

ub~k,t !5
1

2
cos~vbt1w!@Fb~k2p,x0!1Fb~k1p,x0!#,

~14!

where we have defined

Fb~k,x0!5fmaxeikx0
2kb

kb
22k2

cosS pk

2kb
D . ~15!

Notice that this function is finite fork5kb . In particular, for
kb5p/3 the Fourier transform of the breather solution h
the following characteristic form:
a-

e

g-

h

s

ub~k,t !5
p

3
fmaxcos~vbt1w!sin~ 3

2 k! eikx0

3F e2 ipx0

~k24p/3!~k22p/3!

2
eipx0

~k14p/3!~k12p/3!G . ~16!

The power spectrum has basically a sinusoidal shape
two absolute maxima atk56p whose height is proportiona
to the square of the breather amplitude.

IV. MODULATIONAL INSTABILITY

In this section, we describe the modulational instability
the Brillouin-zone-boundary mode corresponding to the u
form envelopef (x,t)[ f 0(t)5A cosvt. To compute the fre-
quencyv one can resort again to the RWA mentioned in t
previous section. In the small-amplitude limit 3A2!1 one
obtainsv5213A2, which amounts to a correction to th
zone-boundary frequencyvmax52AK2 /m[2.

Let us consider a spatially inhomogeneous small per
bation d f }coskmx, where the wave numberkm of the
envelope-function modulation is assumed to be much sma
than the Brillouin-zone widthp, an hypotesis that will be
confirmeda posteriori. Then, from the linearization of Eq
~3! we find the equation ford f to be

d f̈ 1@42km
2 124A2~11cos 2vt !#d f 50. ~17!

To obtain the growth rates at the parametric resonance, d
scribed by Eq.~17!, we take a solution of this equation a
~see, e.g., Ref. 15!,

d f 5@a cosvt1b sinvt#est coskmx, ~18!

where the unknown amplitudesa and b are assumed to be
small with respect toA. Therefore, from Eqs.~17! and ~18!
we obtain the dispersion equation for the growth rates:

s412s2@8136A22km
2 #5km

2 ~24A22km
2 !. ~19!

The maximal growth ratesmax and the corresponding
wave numberkm

! of the envelope-function modulational in
stability are thus given in the small-amplitude limit 3A2!1
by

km
! 5AA12, smax53A2, b52a, ~20!

which, consistently, describes a long wavelength modula
with km

! /2!1.16 In the considered limit, such a value ofsmax

coincides with the one computed from the stability analy
of the discrete-lattice equations.17 It is also worth to mention
that there is a minimal~threshold! amplitude Ac for the
modulational instability of the Brillouin-zone-boundar
mode in a finite FPU chain ofN particles, andAc}1/N for
N@1, see, e.g. Ref. 6. We neglect such finite-size effect
our continuum approach which implies, in particular, that t
amplitudeA in Eq. ~20! is well above the threshold one fo
the considered~finite! chain.

By means of Eq.~3! we can also describe the interestin
phenomenon of the further appearance of spatial harmo
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302 PRB 61YURIY A. KOSEVICH AND STEFANO LEPRI
of the ‘‘primary’’ perturbation, i.e., the components wit
wave numbersnkm

! and n50,2,3, . . . . To describe, for in-
stance, the growth of the zeroth and second spatial harm
ics, we assumed f to be of the following form@see Eqs.~18!
and ~20!#:

d f 5a@cosvt2sinvt#esmaxt coskm
! x

1@c cosvt1d sinvt#e2smaxt cos 2km
! x

1@e cosvt1g sinvt#e2smaxt

[d f k
m
! 1d f 2k

m
! 1d f 0 , ~21!

where the amplitudesc, d, e, andg are assumed to be muc
smaller than both the condensate amplitudeA and the ampli-
tudea of the primary perturbation. Using Eq.~3!, we obtain
the following evolution equations ford f 2k

m
! andd f 0 similar

to Eq. ~17! with a driving term248f 0(d f k
m
! )2 on the right-

hand side:

d f̈ 2k
m
! 1@424km

!2124A2~11cos 2vt !#d f 2k
m
!

5212a2A@2 cosvt2sinvt#e2smaxt cos 2km
! x, ~22!

d f̈ 01@4124A2~11cos 2vt !#d f 0

5212a2A@2 cosvt2sinvt#e2smaxt. ~23!

From Eqs.~21!–~23! we find the amplitudesc, d, e, andg:

c5
a2

2A
, d5e52

a2

2A
, g52

3a2

4A
. ~24!

Therefore the zerothd f 0 and secondd f 2k
m
! spatial harmonics

grow exponentially with a rate which is two times larger th
that of the primary instabilityd f k

m
! . Nevertheless, as the

initial amplitudes are of second order with respect to
amplitudea of the primary instability, one expects that the
will come into play only at a later stage.

More generally, we can show that the growth rate of
nth spatial harmonicd f nk

m
! of the primary instability is equa

to nsmax while its initial amplitude is proportional to thenth
power of the amplitudea. Furthermore, it can be shown th
small contributions to the growth of the zeroth harmonicd f 0
are induced by the higher-order harmonics. These arise f
terms such as (d f 2k

m
! )2f 0 , (d f k

m
! )2d f 2k

m
! , etc., to the right-

hand side of Eq.~23!.
The above scenario is illustrated in Fig. 1, where the o

comes of a numerical simulation of the quartic FPU mo
are reported. The equations of motion were integrated wi
third-order symplectic algorithm18 ~microcanonical simula-
tion! starting from the initial conditions

un~0!50, u̇n~0!5~21!n A2e. ~25!

Actually, a small Gaussian white noise~with amplitude
!A2e) has also been added to the initial velocities in ord
to speed up the instability. The left panels of Fig. 1 show
evolution of the energy density
n-

e

e

m

t-
l
a

r
e

hn5
1

2
u̇n

21
1

2 (
g52,4

1

g
@~un112un!g1~un2un21!g#,

~26!

at subsequent times. The spatial power spectrum of the
locities

Sk5
1

NU(
n51

N

u̇n eiknU2

, k50,6
2p

N
,6

4p

N
•••,6p

~27!

shows the growth of the perturbation with the wave numb
p2km

! ~vertical line!. Obviously a symmetric peak at2p
1km

! is also present as well as the further transfer of
energy towards the spatial harmonics with wave numb
nkm

! , n50,2,3, . . . , according to the above describe
mechanism. We also checked that the typical time for dev
oping the instability scales asA22}e21 as prescribed by Eq
~20!.

V. THE FIRST LOCALIZATION STAGE: A SOLITON GAS

As already mentioned, the modulational instability pr
duces a strong localization of the vibrational energy alo
the chain~see Fig. 2!. We wish now to describe such a set
localized objects. More precisely we will show that it is b
sically a gas of ESs and study some of its properties.

Let us consider a set ofNs nonoverlapping ESs of the
form ~8! centered at the pointsxl along the line and with
initial phasesw l . For the sake of simplicity, let us also a
sume them to have approximatively the same amplitude.
cording to Eq.~10!, the spatial Fourier transform of the co
responding displacement field will be

FIG. 1. Modulational instability of the boundary mode for th
quartic FPU model with«50.0330,N51024 The left panels are
snapshots of the energy density, the right ones the spatial Fo
spectrum of the velocities. The vertical lines correspond to the
oretical value ofkm* given by Eq.~20!.
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u~k,t !5
1

2 (
l 51

Ns

cos~vst1w l !@Fs~k2p,xl !1Fs~k1p,xl !#.

~28!

The velocity power spectrumSk as defined by Eq.~27! in the
discrete case, can thus be approximated as~we use the ex-
plicit form of Fs)

Sk5
1

N
^uu̇~k,t !u2&5

p2vs
2

48N

3H 1

cosh2@p~p2k!/fmax2A6#
U(

l
eiw l1 i (k2p)xlU2

1
1

cosh2@p~k1p!/fmax2A6#
U(

l
eiw l2 i (k1p)xlU2J ,

~29!

where the angle brackets denote the averaging over a
interval larger than 2p/vs ~that is performed to remove th
oscillations as well as statistical fluctuations!. In the last ex-
pression we neglected exponentially small overlap betw
the components of Eq.~10! localized, respectively, aroun
k5p andk52p.

Finding a more explicit expression forSk requires of
course some hypotesis on the statistical properties of the
sitions xl and phasesw l . For instance, in the limit of com
pletely uncorrelated ESs one can replace the square mod
of each sum in Eq.~29! by Ns . To take into account weak
partial correlations, we introduce a phenomenological
rameterp (p;1) and replace the mentioned square modu
by pNs . Obviously,p51 corresponds to a completely ra
dom case while the casesp.1 or p,1 describe, respec
tively, the arrays of the partially correlated or anticorrelat
ESs. With such a definition

FIG. 2. The soliton gas generated after the instability forN
51024 for «50.0033, t58000 ~upper panels! and «50.0330, t
5800 ~lower panels!. The corresponding power spectraSk of the
particles’ velocities~right panels! averaged over a time interva
'100. The dashed lines are the best fit with the formula~34!.
e

n

o-

lus

-
s

d

Sk5pns

p2vs
2

48 H 1

cosh2@p~p2k!/fmax2A6#

1
1

cosh2@p~k1p!/fmax2A6#
J , ~30!

wherens5Ns /N is a density of the envelope solitons.
To compare the latter expression with the numerica

measuredSk , one has to relatevs , ns , andfmax in Eq. ~30!
with the energy densitye. As we deal with the limite!1,
one has thatvs'2 sinceA'A2e/2 @see Eq.~25! and the
definition of the amplitudeA]. Moreover, the densityns will
be given by the inverse wavelength of the modulational
stability, namely,

ns5
km

!

2p
5

1

p
A3e

2
. ~31!

This amounts to say that a single localized object emer
from each wavelength. A similar reasoning allows us to
late the total energyEs @which is basically proportional to
fmax, see again Eq.~13!# to e as

Es5q
e

ns
5q 2pAe

6
. ~32!

The phenomenological parameterq, 0<q<1, gives the frac-
tion of the initial vibrational energy which is absorbed by t
set of ESs~and actually accounts for the partial overlap b
tween them!. In particular, fore→0 we expect the soliton
gas to be more and more rarified and to contain almost a
the initial energy in the lattice so thatq→1.

A consequence of Eqs.~31! and ~32! is that the ratio
between the total energy of the ESs and their density is~al-
most! independent one:

Es

ns
5q

2p2

3
. ~33!

Before proceeding further, we numerically checked th
the above picture is correct by evaluating the number
energy of solitons as a function of the initial energy dens
The results reported in Fig. 3 show a very good agreem
with both Eqs.~31! and ~33!. Notice that, as expected, th
data are very well fitted withq51 at least fore,0.01.

Finally, using Eqs.~30!, ~31!, ~32!, and ~13!, we obtain
the desired expression for the velocity power spectrum a
function of e and the~unknown! parametersp andq only:

Sk5p
p

16
Ae

6
vs

2H 1

cosh2@~p2k!/qA6e#

1
1

cosh2@~p1k!/qA6e#
J , ~34!

wherevs52. We obtained a very good fit of our numeric
data, for energy densitye50.0033, using Eq.~34! with p
50.50 andq51.0 ~see the right panels of Fig. 2!. We inter-
pret this by saying that the system is assimilated to a dilu
gas of nonoverlapping and partially anticorrelated~i.e., out
of phase! ESs. For larger initial energy densitye50.033 the
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304 PRB 61YURIY A. KOSEVICH AND STEFANO LEPRI
data are fitted byp51.12 andq50.78 ~lower panels of Fig.
2!. This latter case correspond, as expected, to a more d
gas of partially overlapping ESs, which is characterized
comparison with the previous one, mainly by pair corre
tions between neighbors.

VI. THE SECOND LOCALIZATION STAGE

To understand why a set of almost nonoverlapping sm
amplitude ES finally merge into a large-amplitude one, it
first of all convenient to recast the second order~in time!
equation~3! for the real envelope-function in two first orde
equations. For small-amplitude oscillations with a frequen
close to the bandedgevmax52 this is accomplished intro
ducing the complex functionc(x,t) such that

f ~x,t !5
1

2
@c~x,t !e2 ivmaxt1c* ~x,t !eivmaxt#. ~35!

Substituting this expression into Eq.~3! and assuming tha
ċ!vmaxc, after some algebra one can obtain~in the RWA!
the following coupled nonlinear-Schro¨dinger-type equations
for c andc*

2 ivmaxċ1
1

2
cxx1

1

24
cxxxx16ucu2c

1
3

2
@2c~c* cxx1ucxu2!1c2cxx* 1c* cx

2#50,

ivmaxċ* 1
1

2
cxx* 1

1

24
cxxxx* 16ucu2c*

1
3

2
@2c* ~ccxx* 1ucxu2!1c* 2cxx1ccx*

2#50.

~36!

Equations~36! can be expressed in canonical form as

FIG. 3. The maximal initial densityns of ESs as a function of
the energy density forN51024-. The solid line corresponds t
formula ~31!. The inset shows the ratio between the number a
energy of the solitons: the horizontal line corresponds to Eq.~33!
with q51.
se
n
-

l-
s

y

ivmaxċ5
dH
dc*

, 2 ivmaxċ* 5
dH
dc

,

where the HamiltonianH5*Hdx has the following density
H:

H52
1

2 F ucxu22
1

12
ucxxu226ucu416S ucu2ucxu2

1
1

4
~c2cx*

21cx
2c* 2! D G . ~37!

One can ascertain that Eq.~36! admit the integrals of motion

H5E Hdx, P52
i

2E @ccx* 2c* cx#dx,

N5E ucu2dx, ~38!

which are the energy, momentum and number of qua
respectively.

The inclusion of higher-order and nonlinear dispers
terms make equations~36! nonintegrable~i.e., they do not
have an infinite number of constants of motion!. This simple
fact, together with the conservation laws~38! has deep con-
sequences on the dynamics: it is in fact known19 that in this
case the total number of solitons is not conserved. Actua
they can merge together enhancing their amplitudes and
creasing their number due to an exchange of both energy
number of quanta. Indeed, the Hamiltonian~37! describes an
effective repulsive interaction between quasiparticles wi
negative~and amplitude-dependent! effective mass and it is
therefore equivalent to a system of quasiparticles withposi-
tive effective mass and effectiveattractiveinteraction. As the
solitons merge, the released binding energy is carried a
by free waves and the ‘‘phononic’’ part of the spectrum
gradually populated.

More precisely, the kinematics of the soliton-soliton inte
action process requires an increase of the number of qu
in the stronger soliton and a decrease in the weaker
accompanied by the release of some binding energy
means of free plane waves that give also the recoil mom
tum to the solitons.19 Accordingly, the reverse proces
should include a triple collision~two solitons and a free
wave! and therefore is much less probable than the dir
one. It is therefore clear that eventually only one larg
amplitude soliton survives on the background of sma
amplitude free waves with a continuous frequency spectr
This argument explains qualitatively why the purely dynam
cal process of soliton merging is time irreversible.

The above reasoning can be further carried on to giv
more quantitative description of the phenomenology. For
stance, it is possible to explain the observed fact that
characteristic time for complete soliton merging in the qu
tic FPU chain scales with the energy density ase22 ~Ref. 6,
see also Ref. 5!. To this aim, let us estimate the ES lifetim
~or relaxation time! tss due to the scattering mentione
above. It can be written astss5 l / v̄s , where l and v̄s are
respectively the mean free path and average velocity of
ES during the relaxation process. The mean free path wil

d
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in turn given byl;1/sssns , wherens is a density of ESs and
sss is the scattering cross section.

If we assume the lifetime to be much larger than the
verse frequency of the soliton (tss@1/vs), we can resort to
the Born approximation to estimatesss. As time goes by
and the soliton gas rarifies due to the process of merging
approximation becomes more and more justified. Within t
perturbative treatment and in the low velocity limit, we th
find thatsss is simply proportional to the square modulus
*U intdx, whereU int is the interaction potential. According t
Eq. ~12!, the latter is proportional to the product of the e
velope functions of two small-amplitude ESs:U int} f 1f 2.
Assuming for simplicity that both of them have approxim
tively the same amplitudefmax, it is easy to ascertain from
~8! that the overlap integral scales asfmax, similar to the
energy of a single small-amplitude ES~13!. Therefore, the
cross-sectionsss is proportional tofmax

2 and, according to
Eqs. ~32! and ~13!, this implies thatsss}e. Finally, asns

}Ae, see Eq.~31!, we obtain thatl}e21.5.
To estimatev̄s , we compute first the energy of the mo

ing soliton of Eqs.~36!. In the small-amplitude limit, when
one can neglect the higher-order and nonlinear disper
terms, Eqs.~36! admit the exact solution1,19

c~x,t !5cmax

exp@ i ~kx2Vt !#

cosh@~x2Vgt !cmaxA6#
, ~39!

whereVg is a group velocity of the soliton,k52Vgvmax is
a soliton quasimomentum andV5(3cmax

2 2k2/2)/vmax. Us-
ing Eqs.~37!, ~38!, and~39!, we find the soliton number o
quantaNs , momentumPs , and energyEs ~for vmax52):

Ns5cmaxA2

3
, Ps52kNs52VgNs ,

Es5
3

2
N s

322NsVg
25

3

2
N s

32
P s

2

2Ns
. ~40!

These relations show that small-amplitude moving soli
can be indeed considered as a bound state ofNs negative-
effective-mass quasiparticles~harmonic modes! with a cor-
respondinglypositivebinding energy equal to32 N s

3 ~see Ref.
20!.

If we compare the definition ofNs in Eq. ~40! with ex-
pressions~32! and ~13! for the energy of the ES~8!, we
conclude thatNs}Ae. Let us now assume that a kind o
virial theorem holds for the set of solitons moving along t
chain with periodic ~or fixed! boundary conditions. This
amounts to say that~time! averaged kinetic and potentia
energies of such finite dynamical system should be prop
tional ~see, e.g., Ref. 15!. It then follows from the definition
~40! of Es that ^Vg

2&;^N s
2&}e. The validity of such a rela-

tion can be physically justified by observing that, as a res
of the exchange of the number of quanta during the sca
ing processes, the solitons receive the recoil quasimomen
k from free waves which in turn changes the soliton velo
ties thus providing some form of ‘‘thermalization.’’ From a
the above follows thatv̄s;A^Vg

2&}Ae.

Finally, we obtain the estimatetss5 l / v̄s}e22 and corre-
spondinglytss@1/vs'1/2, that is fully consistent with the
-

he
s

ve

n

r-

lt
r-
m

-

initial assumptions. As already mentioned, this scaling is
agreement with the numerical observation.5,6

VII. THE BREATHER

In the previous section we explained why the scatter
favors the creation of a single localized object. We now g
a brief account of some of its properties. Thehn patterns
reported in the left panels of Figs. 4 and 5 illustrate t
remarkable fact that a macroscopic fraction of the total
ergy accumulates on a few sites. For instance, for the c
e50.033 andN51024, onlythreesites bear an energy 10.
corresponding to about 30% of the total. As expected fr
the previous section, the remaining is distributed along

FIG. 4. Final breather for different energies«50.0033, N
5256, t51.2 106 ~upper panels! and e50.0330, N51024, t
58 104 ~lower panels!. The last spectrum has been averaged ove
time 104. Notice the different vertical scales. Dashed lines cor
spond to Eqs.~10!, ~11!, and ~16! with the numerically measured
value offmax andkb5p/3.

FIG. 5. The position of the maxima and three successive sn
shots of the final breather as a function of time fore50.0330 and
N51024. During this observation time the value of the breat
energy is practically constant.
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chain in the form of small amplitude~harmonic! oscillations
~see again Fig. 4!

If we observe the breather on a time scale during wh
its amplitude does not change considerably, we see th
randomly alternates between a standing and moving s
Figure 5 clearly shows how each motion occurs with an
most constant velocity and is accompanied by changes o
shape. For a given amplitude, the modulus of such a velo
is always the same. We checked that its value is consis
with previous studies on exact breather solutions: for
ample, from Fig. 5 we found indeed the velocity to
0.12~8! in excellent agreement with the value 0.120 obtain
interpolating the data of Ref. 21.

The main issue concerning the velocity is the one of
selection. Although we will not enter into details here, w
just anticipate that some analytic clue can be achieved
studying the moving solutions of Eq.~3!13. In particular, we
expect the velocity to increase with the amplitude~almost
linearly in the large-amplitude limit 9fmax

2 @1), a fact that is
actually consistent with ours as well as with oth
simulations.6,22

Let us now discuss the power spectra of those stron
localized states. The right panels of Fig. 4 show how th
differ depending on the amplitude. At smaller energies~up-
per panels! they resemble more closely an ES and the sp
trum would have the exponentially decaying prescribed
Eq. ~10!. Upon increasing the energy,Sk acquires a sinu-
soidal component similar to Eq.~16! characteristic of a
breather solution. This is simply the consequence of the
that in the continuum approach the two are the only limiti
cases of the general solution~7! with the amplitudefmax
being determined only by the total energy of the lattice.

Obviously, the existence of the vibrational backgrou
affects the structure of the spectra. As the background c
tains a non-negligible energy~the remaining 70% in the cas
mentioned above!, a complete description of the spectra r
quires some information on its features. One conseque
that we can draw from Fig. 4 is that the naive picture o
single breather moving through a gas of small waves is o
simplified. In fact this would imply the spectrum to be a su
of a part similar to Eq.~14! plus an almost flat part. The form
of Sk seems rather to indicate that only the high-frequen
domain of the harmonic spectrum is populated.

To give a complete description of the relaxation proce
we should now consider the final stage of the breather
struction ~see also Ref. 6 for a discussion!. This requires
understanding how energy is transferred from large to sm
wave numbers. This issue involves in turn the interaction
a large-amplitude ES with small-amplitude plane waves. T
latter problem has been studied in Ref. 23. Here we li
ourselves to observe that it is still not clear how to expl
why the tipical time scale for such a process should sc
again ase22. An analytic argument for that can be actua
given only in the very last stage, when the system is su
ciently close to equilibrium and relaxation of Fourier mod
can be described by usual linear-response theory.24

VIII. FINITE-TEMPERATURE EFFECTS

What has been discussed so far refers to a situation w
all the lattice energy is initially fed in the boundary mod
h
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This is clearly not realistic for actual experimental cond
tions, when the system is in contact with a thermal b
which populates all the other modes even at~classically! low
temperatures. One may therefore wonder to what extent
mechanisms described above are effective in localizing
energy.

In the present section we try to approach the problem
first considering a more general class of initial conditio
defined by replacing second expression in Eq.~25! by

u̇n~0!5~21!nV1s8jn , ~41!

wherej l is a Gaussian random number such that^j l&50 and
^j lj l 1m&5dm0. In order to assign the initial energy per pa
ticle to be equal toe, we chooseV52e/A2e1s2 and s8
5sA2e/(2e1s2). The parameters controls thus the
‘‘level of noise’’ in the initial conditions. Indeed, the limi
s2!e ~exactly the one considered in the previous simu
tions! amounts to feeding all the available energy in t

FIG. 6. The maximal initial density of ESsnS as a function of
the parameters for several values ofN ranging between 920 and
1024. Solid lines correspond to formula~42!.

FIG. 7. The distribution of energy densities and power spec
of the velocities fore50.0330,N51024, t58 104 and two differ-
ent amplitudes of initial perturbations50.07 ~upper panels! and
0.12 ~lower panels!.



e

t
a
i
ry

e

n
s

r
n
t

iv

ed
n

e

a-

n-
n-

of
th

Ss
e
int
ke

it-

.S.
l
ck

PRB 61 307MODULATIONAL INSTABILITY AND ENERGY . . .
Brillouin-zone-boundary mode whereas upon increasings,
we can initially excite also the other Fourier modes of th
chain. With our definition, equilibrium~i.e., equipartition of
energy! is attained for s→` ~actually when s2→smax

2

52eN@e).
The results presented before can be first extended to

finite s values by the following reasoning. We showed th
the initial density of ESs is basically determined by the v
brational energy available in the Brillouin-zone-bounda
mode. Therefore, one can straightforwardly replaceA2e by
V in Eq. ~31! obtaining

ns~e,s!5
1

p
A3

4

2e

A2e1s2
. ~42!

As seen in Fig. 6, the numerical data are in good agreem
with this formula, at least for moderate amplitudess2

&e/2. This indicates that the mechanism of vibrational e
ergy localization, induced by the modulational instability i
relatively robust, at least with respect to those type of pe
turbation in the initial conditions.

Remarkably, as soon ass overcomes the valuee/2, ns
seems to be slightly less~around 10%! than what is expected
from the purely energetic argument leading to Eq.~42!. Al-
though in this intermediate regime the numerical measu
ments are definitely less accurate due to the large vibratio
background, we can at least give a qualitative justification
this. In fact, in this case we expect some effective dissipat
:

i

he
t
-

nt

-

r-

e-
al
o
e

mechanisms to enter into play and some of the localiz
excitation will be effectively damped out by the interactio
with the ‘‘thermal bath’’ of the other vibrational modes.24

In order to better clarify this, we performed also som
measurements of the power spectrum~27! for the relatively
large values ofs ~see Fig. 7!. The results confirm that even
for s2'e/2 ~lower panels! some kind of ‘‘localization’’ is
still present, although it is hardly detectable by direct me
surements.

To summarize, the creation of localized excitations, i
duced by the modulational instability, is more and more i
hibited the closer one starts to the equipartition~thermal
equilibrium! state. This is caused both by the less amount
energy available in the corresponding short-waveleng
mode@asV→0 for s2@e, see Eq.~41!# and by the effective
dissipation caused by the interaction of small-amplitude E
with the vibrational background. At least in principle, th
envelope-function approach could be a useful starting po
for a more detailed analysis once one would be able to ta
into account the fluctuating background by casting it in su
able stochastic terms.
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