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Modulational instability and energy localization in anharmonic lattices at finite energy density
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The localization of vibrational energy, induced by the modulational instability of the Brillouin-zone-
boundary mode in a chain of classical anharmonic oscillators with finite initial energy density, is studied within
a continuum theory. We describe the initial localization stage as a gas of envelope solitons and explain their
merging, eventually leading to a single localized object containing a macroscopic fraction of the total energy
of the lattice. The initial-energy-density dependences of all characteristic time scales of the soliton formation
and merging are described analytically. Spatial power spectra are computed and used for the quantitative
explanation of the numerical results.

[. INTRODUCTION the finite vibrational energy density on the formation of
strongly localized envelope solitons and breathers and their
Despite a large number of studies on localization of entemporal evolution in the anharmonic FPU chain. This is
ergy in pure anharmonic |atti(;é§"1 the mechanism of their accomplished by means of a suitable continuum approxima-
thermal generation is still under debate. This is clearly dion for the lattice dynamics. The approach in terms of the
central issue being directly related with the possibility of €nvelope-function equation including higher-order nonlinear
observing signature of such a class of excitations in experil€/Ms has been already introduced to describe short-
ments on real crystals. The problem of nanoscale energy lgvavelength excitations in the FPU chlimnd is reviewed in
calization has turned out to be rather important also in viewS€c. Il. Itis a useful framework both for computing localized
of its possible application for different physical and biologi- Solution in the form of envelope solitofES) and breather
cal systems. The theoretical studies at finite energy per pafSec. ), and for describing the modulational instability
ticle dealt mainly with one-dimensional models belonging(S€c. V. Furthermore, going beyond the usual integrable
both to the Fermi-Pasta-UlaffPU) class of modeR® (with gpp_roxmaﬂoﬁ is of crucial importance to _explaln the_local-
acoustic spectrum in the harmonic limand to the Klein- ization procesgSecs. V and VI We described analytically -
Gordon oné (with optical-phonon-type spectrum in the har- the initial-energy-density depeqdence of .aII characten.stlc
monic limit). Some attention has been also recently payed td§me scales of the envelope soliton formation and merging.
the discretized version of the nonlinear Salinger equation Particular emphasis has been also given to the analytic com-
in one dimensiod:? putation and numerical measurements of the spatial power
Of special interest is the numerically observed fact thagPectra(“structure functions’) that, at least in principle, are
excitation of short-wavelength extended modes of the chaiff importance for real experiments. Indeed, they turn out to
and their instability with respect to perturbations with non-Pe extremely useful for the physical interpretation of the
vanishing wave number leads generically to creation of lo-Simulation result¢see, e.g., Secs. V and VlFinally, a brief
calized states. The phenomenology emerging from the nwdiscussion of the finite-temperature effects is reported in Sec.
merical studie3® can be summarized in three main stages. MALE
the first one, after the development of the modulational in-
stability, energy localizes along the chain in the form of an 1I. ENVELOPE-FUNCTION EQUATION FOR THE FPU
array of almost standing “bumps.” After a given tin{ghat MODEL
increase upon decreasing the enerthose begin to merge ) .
diminishing their number and localization lengths. This sec- e start from the classical FPU Lagrangian of a mon-
ond stageéwhich is reminiscent of the phenomenon of “soli- &0MIC chain ofN particles of massm with anharmonic
ton turbulence® ends with the emergence of a single lo- N€arest-neighbor potential of order 3:

calized and moving objeca “breather”), carrying along a ;

macroscopic fraction of the total energy. In the third stage, o 1 r K_y vy

the breather continues to slow down radiating its energy to- ,,A—En: 2 Mth 2‘2 vy (Un2=Un) ", (1)
wards the background until it eventually disappears and the

equipartition(thermal equilibrium state is attained. whereu, is the(real scalar displacement of thath particle

The aim of this paper is to give a consistent quantitativefrom its equilibrium position and,, are the harmonic ¢
explanation of such behavior, in particular of the apparent=2) and anharmonic force constants. The lowest order po-
paradoxical tendence of the system to increase localization dsntial describing the anharmonicity of the longitudinal or
time goes by. Namely, we would like to clarify the role of pure transverse motion in a centrosymmetric 1D lattice cor-
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responds, respectively, to=3 orr=4. From Eq.(1) we is expected to hold for the considered short-wavelength vi-
obtain the following equations of motion: brations due to the weakness of nonresonant interaction be-

. tween the mode with fundamental frequency and its third

. y—1 y—1 harmonic. By further neglecting the fourth-order dispersive
mun—gz Kyl(Uns2=Un) " "= (Un=Un-1)"" 71 (2 term in Eq.(3) we find its first integral d<

In the following, periodic boundary conditions are always (4= 0?) P>+ (1+9¢%)(¢y) >+ 6 =const.  (4)

assumed. . - _—
. L The generic solution of Eq4) for a nonvanishing constant
In order to describe the short-wavelength excitations of 9 a4 9

he chain with bek— 77/ bei he latt corresponds to a periodic array of ESs, and can be conve-
the chain with wave nUMDbEK™ m/a (a being t_e_ attice niently parametrized by the two extreme values of the am-
spacing, i.e., near the Brillouin-zone boundary, it is conve-

! . i . litude ¢dmin and P max (SO that din< P=< Pna). Those are
nient to introduce an envelope-function of the displacementsg: ; o ;
f.—(—1)",, f.=f(x/a). The latter is assumed to be imply determined by the conditions that vanishes forg

lowl . the interatom @f. <t Substitut = ¢min @and ¢= Pmax. From those two conditions we derive
slowly varying on the interatomic scaial,<T. substituting immediately the frequency of the envelope-soliton array as a
in Eqg. (2) the expansion of the differences.;—u, up to

- . ! . function of the extreme values of its amplitude:
the fourth order, one can obtain a nonlinear partial differen- P

tial equation forf.* For instance, in the case of the purely 0?=4+6( P2+ 2. (5)
quartic anharmonicityi.e., the so-calle¢gB-FPU model with

0n|y K2 and K4 different from Zera) such an equation reads Then from Eqs(4),(5) we can determine the desired solution
as

y 1
M+ 4Kof +Kpa?fut 5 Kaa foct 16K, f° ( d_¢) ?_ o (Phac (7~ S
dx 1+9¢2 '

(6)

+ 6K 4a%f(2),,=0, )

, . o Equation(6) can be solved by quadratures yielding the fol-
where the subscript stands for the spatial derivative of the lowing implicit form for ¢(x):

corresponding order. A equation, similar to Eg), can be

also obtained for the cubic anharmonicitg-FPU model / )

with y=2 andy=3) and, more generally, for the FPU chain | | 1 max 1+9¢ ? o
(1) with the anharmonic potential of the arbitrafgven or X—Xo| = —J - - ,
odd) orderr.'3 Jolo (42 6'2(4'2— b2

Due to the last term in left-hand side of E8), the latter
substantially differs from the conventional nonlinear Klein- ¢(X0) = Pmax- @)
Gordon and its nonrelativistic version—the nonlinear SehroThe single ES corresponds to cont in Eqg. (4) and to
dinger equation. Actually, Eq3) can be reduced to the latter bmin=0 in Eq. (7). Although a general explicit form of Eq.
only in the limit of relati\_/ely sm_aII oscillation amplitudes (7) is not feasible, we can at least discuss the two limiting
(see Sec. IV beloy Equation(3) differs also from the well-  ca5es of small and large amplitudes. In the small-amplitude

known Korteweg—de Vries equatio'n which describe_s LT (9¢2..<1), the solution is given bywe include ex-
evolution of the long-wavelengthii.e., the *“acoustic- plicitely the time dependenge

phonon-type’) excitations and can be derived from Ed)
in the limit au,<1 (see, e.g., Ref. 13

In what follows, we will use Eq.(3) for the adequate fs(X,t) = Prmax ,
analytic description of all the main stages of modulation- COSH (X —X0) rnax/6]
instability-induced dynamic evolution of the hafdith K,
>0) quartic FPU chain. For simplicity of notation, we set
K, K4, a, andmto unity. With such a choice, thedimen-
siona) energy densityi.e., the energy per partidle is the
only relevant physical parameter if one does not account fo
the finite-temperature effectsee Sec. VIII below More-
over, we will always deal with the(classical low-
temperature limit that in our units correspondsetg 1. fo(X,1) = brmax COS @yt + @) COZ Kp(X—Xo) ]

cog wst+ o)

®

where the frequency as given by E§) with ¢,,=0 and is
approximately ws=2+3¢2,/2, wherease is the initial
phase.

In the large-amplitude limit (&ﬁqw}l), it follows from
Eq. (7) that the ES acquires a sinusoidal shape with a short
amplitude-independent localization lentfth

IIl. LOCALIZED SOLUTIONS: ENVELOPE

T
. <_
SOLITONS AND BREATHERS for kp|x—xql 2 ©

As a first step, we determine the form of the single(®6 and with f,~0 outside of the above specified domain. The
periodic array of solitonsby looking for solutions of Eq(3) effective wave number ik,= \/2/3 andw,, given by Eq.(5)
in the monochromatic fornf(x,t)=¢(x)coswt. The fre-  with ¢,;,=0. This is rather accurate approximation for the
guencyw can be computed by first substituting such an anexact breather solution of the discrete FPU madek Ref.
satz in Eq.(3) and invoking then the so-called rotating wave 13 for a detailed comparispnDiscrepancies have to be ex-
approximation (RWA), namely, to replace cdst by pected because, strictly speaking, the continuum approach is
2 coswt. It is worth mentioning that such an approximation not completely justified in this short-wavelength limit. In-
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deed, the analysis of the corresponding discrete-lattice equa-

aa .

tions predicts’ the existence of intrinsic localized modes Up(K,1) = 3 PmaxCOL wpt + @)sin(3k) e'xo
(discrete breathersvith (approximately sinusoidal envelope
(9) but with k= 7/3 andwi=3+ (81/16)¢2.,. e ™o

Having at hand the explicit solutiof8), we can compute X (K—4m/3)(k—27/3)
the spatial Fourier transform of the displacement figlds- )
sociated to the single ES obtainifptice that, by definition, e'm™o
the zero wave number fof corresponds to the wave N (k+4m/3)(k+2m/3) | (16)
numbers =7 for u and therefore u(k)=fu(x)e'**dx . . ) .
= [ f(x) € cosmxdx=1[f(k— )+ f(k+m)]) The power spectrum has basically a sinusoidal shape with

two absolute maxima &= = 7 whose height is proportional
1 to the square of the breather amplitude.
uS(kvt) = Ecoiwst_*— (p)[FS(k_ WIXO) + FS(k+ WIXO)]1

(10) IV. MODULATIONAL INSTABILITY
where we have defined the form factor In this section, we describe the modulational instability of
the Brillouin-zone-boundary mode corresponding to the uni-
- eikxo form envelopef (x,t)=fy(t) = A coswt. To compute the fre-
Fs(k,Xg)=—= : (11)  quencyw one can resort again to the RWA mentioned in the
V6 cost 7k/ a2 /6] previous section. In the small-amplitude limiA3<1 one

obtainsw=2+3A2, which amounts to a correction to the
zone-boundary frequen@y.=2VK,/m=2.

Let us consider a spatially inhomogeneous small pertur-
bation &6f«cosk,x, where the wave numbek,, of the
the ES. To this aim, one can use the expression for th nvelope—fu_nctic_)n modula_tion is assumed to_ be much smaller
Hamiltonian densityh by the variation of which Eq(3) can than the B“”OU'”'?OF‘G widthr, an hyp_ote5|_s th_at will be
be derived! confirmeda posteriori Then, from the linearization of Eqg.
(3) we find the equation fobf to be

Accordingly, the power spectrupne., the square modulus of
ug(k,t)] is exponentially localized around=* 7 and its
maximal value is independent of the amplitugg,y.

For later purposes, we compute also the total en&rgyf

T 5 , 1 5 i 2 2
h=5 (124224414 Z(1+1212) (102 + 55 (0 St +[4—K2+24A%(1+cos wt)]8f=0.  (17)

(12 To obtain the growth rate at the parametric resonance, de-

o : scribed by Eq.17), we take a solution of this equation as
(remember that we are working in dimensionless ynike- g(see, e.g., Ref. 15

glecting again the higher-order dispersive term and averag-
ing h over time(in the RWA) and by means of Eq4) with 5f=[acoswt + b sinwt]es cosk X, (18)
const=0, we find that the energy density associated with

the ES is 26>+ 3¢*. Using this expression together with Eq. where the unknown amplitudesandb are assumed to be

(8), we finally find small with respect tA. Therefore, from Eqs(17) and(18)
we obtain the dispersion equation for the growth ate
+ oo —+ oo
e= | hae [ 120t a0 o s+ 25°(8+36A%— k2] =k3(24A%—K2).  (19)
4 The maximal growth rates,,, and the corresponding
= — a1+ ¢,§1ax)_ (13 Wavg_numbelk;] of.the gnvelope—function. mongaFionaI in-
G stability are thus given in the small-amplitude limia3<1

In the Ieadingu;a\pproximation, the energy scales linearly Withby
the amplitude: * _ _ap2 -
The Fourier transform of the breather soluti@® is kn=AV12,  spa=3A% b=-a, 20
which, consisltéently, describes a long wavelength modulation
1 with k};/2<1.*® In the considered limit, such a value
Up(k,1)= ECOS{wbH @ILFo(k=mX0) FFp(k+ 7. X0) ], coincides with the one computed from the stability analysis
(14)  of the discrete-lattice equatiohSlt is also worth to mention
that there is a minimalthreshold amplitude A, for the
modulational instability of the Brillouin-zone-boundary
mode in a finite FPU chain dfl particles, andA.o1/N for
F (Ko Xo) = o %0 2k, cos(W—k (15) N>1, see, e.g. Ref. 6. We neglect such finite-size effects in
bR 70 max kZ—k? 2ky /" our continuum approach which implies, in particular, that the
amplitudeA in Eq. (20) is well above the threshold one for
Notice that this function is finite fok=ky, . In particular, for  the consideredfinite) chain.
k,= 7/3 the Fourier transform of the breather solution has By means of Eq(3) we can also describe the interesting
the following characteristic form: phenomenon of the further appearance of spatial harmonics

where we have defined
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of the “primary” perturbation, i.e., the components with 0.15
wave numbersik;, andn=0,2,3 ... . Todescribe, for in- o010 |
stance, the growth of the zeroth and second spatial harmon- 0.05 |
ics, we assumeéf to be of the following form see Eqs(18) ‘
and(20)]: 0.00 -
0.15
5f =a[ coswt — sinwt]esmaX cosk;x 0.0 |
+[c coswt + d sinwt]e?smat cos X x 0.05 |
0.00
+[ e coswt+ g sinwt]e?Smat 015
Eéfkr’;‘f‘ 5f2k;1+ 5f0, (21) 0.10
where the amplitudes, d, e, andg are assumed to be much 005 ¢
smaller than both the condensate amplitddand the ampli- 0.00 ~
tudea of the primary perturbation. Using E¢3), we obtain 0.15
the following evolution equations foLiifZl(;1 and ofq similar 0.10 |
to Eq.(17) with a driving term—48f0(5fkr*n)2 on the right- 0.05 |

hand side: 0.00

100 . 200 0 1 2 3
i k

F _ *2 2 .
5f2km+[4 4k +24A%(1+cos 2wt)]6f2km FIG. 1. Modulational instability of the boundary mode for the

quartic FPU model withe =0.0330,N=1024 The left panels are
snapshots of the energy density, the right ones the spatial Fourier
spectrum of the velocities. The vertical lines correspond to the the-

= —12a%A[ 2 coswt — sinwt]e®mat cos X’ x, (22)

5t o+ 4+ 24A%(1+ cos 2wt)] 5, oretical value ofk}, given by Eq.(20).
= —12a°A[ 2 coswt — Sinwt]e?Smat, (23 11 1
hp=sU2+> > —[(Ups1—Up) 7+ (Up— Uy 1)7]
From Egs.(21)—(23) we find the amplitudes, d, e, andg: N2 2 Syt nooneih
(26)
a.2 a2 2
c= A d=e=— oA g=-— A (29 at subsequent times. The spatial power spectrum of the ve-

locities
Therefore the zerothf, and secondf,+ spatial harmonics
m

N
grow exponentially with a rate which is two times larger than Sk=£ 2 U. eikn
that of the primary instability5f,~. Nevertheless, as their N[ "
m

initial amplitudes are of second order with respect to the (27)

amp"t“de‘?‘ of the primary instability, one expects that they shows the growth of the perturbation with the wave numbers
will come into play only at a later stage. * . . . )
7—k;, (vertical ling. Obviously a symmetric peak at =
More generally, we can show that the growth rate of the” ™™
+kp, is also present as well as the further transfer of the

nth spatial harmoni@f ,,« of the primary instability is equal : : .
S m . ) energy towards the spatial harmonics with wave numbers
to ns,. While its initial amplitude is proportional to theth nk*. n=023 according to the above described
m ! L 1 L |

power of the amp"tUda' Furthermore, it can be shown that mechanism. We also checked that the typical time for devel-
small contributions to the growth of the zeroth harmoébig oping the instability scales as 2 e~ ! as prescribed by Eq.
are induced by the higher-order harmonics. These arise fror&o)

terms such asdfzm)zfo, (5fk;1)25f2k;1, etc., to the right-

hand side of Eq(23). o V. THE FIRST LOCALIZATION STAGE: A SOLITON GAS
The above scenario is illustrated in Fig. 1, where the out-

comes of a numerical simulation of the quartic FPU model As already mentioned, the modulational instability pro-
are reported. The equations of motion were integrated with duces a strong localization of the vibrational energy along
third-order symplectic algorithtf (microcanonical simula- the chain(see Fig. 2 We wish now to describe such a set of

2

, k=0xr—,x—... =7

tion) starting from the initial conditions localized objects. More precisely we will show that it is ba-
sically a gas of ESs and study some of its properties.
un(0)=0, Uu,(0)=(—1)" J2e. (25) Let us consider a set dflg nonoverlapping ESs of the

form (8) centered at the points; along the line and with
Actually, a small Gaussian white noisgvith amplitude initial phasesy,. For the sake of simplicity, let us also as-
</2¢) has also been added to the initial velocities in ordersume them to have approximatively the same amplitude. Ac-
to speed up the instability. The left panels of Fig. 1 show thecording to Eq.(10), the spatial Fourier transform of the cor-
evolution of the energy density responding displacement field will be
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0.015 : . ' | s 2w’ { 1
. - S, i =pn
0oto | > 48 | costm(m—K)/ a2 6]
+ ! (30)
0.005 | 4 ,
' cost m(k+ )/ pma2 6]
7/
0.000 il s \ wherens=N,/N is a density of the envelope solitons.
0 100 200 0 1 2 3 To compare the latter expression with the numerically
0.200 measured, , one has to relateg, ng, and ¢,y in Eq. (30)
with the energy densitg. As we deal with the limite<<1,
one has thaw~2 sinceA~ \2¢/2 [see Eq.(25) and the
0.100 definition of the amplitudé\]. Moreover, the densityg will
be given by the inverse wavelength of the modulational in-
stability, namely,
0000 5 100 . 2000 o 1 2 ; 3 ki 1 [3e
t Ng=-—=—\/=. (31
2@ w N 2

FIG. 2. The soliton gas generated after the instability or ) ) ] )
=1024 for e =0.0033, t=8000 (upper panelsand & =0.0330, t This amounts to say that a single localized object emerges
=800 (|0wer pane|$ The Corresponding power Spec@a of the from eaCh WaVeIength A S|m|lar reason'ng a”OWS us to re-
particles’ velocities(right panely averaged over a time interval late the total energf [which is basically proportional to

~100. The dashed lines are the best fit with the forn{Gi. Pmax, S€E again Eql3)] to € as
1 s E.=q—=q2 \f (32
=(—= a .
u(k,t)=§2 cog wgt+ @) [Fo(k—,%) + Fo(k+,%)]. s=dn, 4 6
=1

(28)  The phenomenological parametgiO<g=<1, gives the frac-
tion of the initial vibrational energy which is absorbed by the

The velocity power spectrui@, as defined by Eq27) in the  S€t of ESs(and actually accounts for the partial overlap be-

discrete case, can thus be approximatedvas use the ex- tWeen them In particular, fore—0 we expect the soliton
plicit form of F) gas to be more and more rarified and to contain almost all of

the initial energy in the lattice so thgt—1.

A consequence of Eq€31) and (32) is that the ratio
between the total energy of the ESs and their densitglis
mos) independent orz:

2 2
T Wy

_1 ; 2\
S|(—N<|U(k,t)| >_ 48N

2

2
1 ‘2 giertik=mx E_szqzi_ (33
cOSH[ (7~ K)/ a2 \6] | T ns 3
1 o 2 Before proceeding further, we numerically checked that
+ > eleilkemx the above picture is correct by evaluating the number and
cost 7(K+ 1)/ a2 61| T energy of solitons as a function of the initial energy density.

(29) The results reported in Fig. 3 show a very good agreement
with both Egs.(31) and (33). Notice that, as expected, the

where the angle brackets denote the averaging over a tinfi#t@ are very well fitted witly=1 at least fore<0.01.
interval larger than 2/, (that is performed to remove the  Finally, using Eqs(30), (31), (32), and(13), we obtain
oscillations as well as statistical fluctuationg the last ex- the desired expression for the velocity power spectrum as a

pression we neglected exponentially small overlap betweeftinction of e and the(unknown parameterp andgq only:
the components of Eq10) localized, respectively, around

Finding a more explicit expression fd®, requires of 16 V6 °| cosR[ (7 —k)/q\/6¢€]
course some hypotesis on the statistical properties of the po-
sitionsx; and phasesg, . For instance, in the limit of com- N 1 (34)
pletely uncorrelated ESs one can replace the square modulus COSH[(W"’k)/Q\/&] '

of each sum in Eq(29) by Ns. To take into account weak

partial correlations, we introduce a phenomenological pawherews=2. We obtained a very good fit of our numerical
rameterp (p~1) and replace the mentioned square modulusiata, for energy density=0.0033, using Eq(34) with p

by pNg. Obviously,p=1 corresponds to a completely ran- =0.50 andg= 1.0 (see the right panels of Fig).2We inter-
dom case while the casgs>1 or p<<1 describe, respec- pret this by saying that the system is assimilated to a diluted
tively, the arrays of the partially correlated or anticorrelatedgas of nonoverlapping and partially anticorrelatéd., out
ESs. With such a definition of phase ESs. For larger initial energy densigr 0.033 the
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0.04
03 B ‘ /// | O mad) = ot —iw Xl.//*:&_H
02y s ] /// (] max 5lﬂ* ) ma 5(//7
| A AN /// ] . ) ) i
003 o1y . | e where the Hamiltoniart{= fHdx has the following density
00 ‘ e H:
0.00 0.1 e
& 002 f /’/ 1 1 1
= H=— S| 19 ® = L5161y *+ 8] ][5 ?
e 2 12
/D/ 1
001 i ]
g2 + 7 WP ) } (37
0.00 o . , ‘ One can ascertain that E@6) admit the integrals of motion
~0.00 0.01 0.02 0.03 0.04
(3¢/2)*in

[
r= [ hax, == [ ywt— g udax

FIG. 3. The maximal initial densityg of ESs as a function of
the energy density foN=1024-. The solid line corresponds to
formula (31). The inset shows the ratio between the number and 5
energy of the solitons: the horizontal line corresponds to (B§). N:f [y %dx, (39
with q=1.

which are the energy, momentum and number of quanta,
data are fitted by =1.12 andq=0.78 (lower panels of Fig. respectively. _ _ _ _
2). This latter case correspond, as expected, to a more dense The inclusion of higher-order and nonlinear dispersive
gas of partially overlapping ESs, which is characterized, iff€fms make equations6) nonintegrable(i.e., they do not
tions between neighbors. fact, together with the conservation la&8) has deep con-

sequences on the dynamics: it is in fact knoWhat in this
case the total number of solitons is not conserved. Actually,
V1. THE SECOND LOCALIZATION STAGE they can merge together enhancing their amplitudes and de-

To understand why a set of almost nonoverlapping small€reasing their number due to an exc_hange of both energy and
amplitude ES finally merge into a large-amplitude one, it is"umber of quanta. Indeed, the HamiltoniaT) describes an
first of all convenient to recast the second order time) effect!ve repulsive |'nteract|on between 'quaS|part|cIes'V\{|th
equation(3) for the real envelope-function in two first order Negative(and amplitude-dependgreffective mass and it is
equations. For small-amplitude oscillations with a frequencyn€refore equivalent to a system of quasiparticles wibi-
close to the bandedge, =2 this is accomplished intro- t|vr-_7 effective mass and effectnai.tra_ctlvemteracfuon. A; the
ducing the complex functiogs(x,t) such that solitons merge, the released binding energy is carried away

by free waves and the “phononic” part of the spectrum is
1 gradually populated.
F(x,1)= =[(x,t)e @mat+ y* (x,t)el“mat], (35 More precisely, the kinematics of the soliton-soliton inter-
2 action process requires an increase of the number of quanta
o ) o ) in the stronger soliton and a decrease in the weaker one
Y<wmaty, after some algebra one can obtéimthe RWA)  means of free plane waves that give also the recoil momen-
the following coupled nonlinear-Schdimger-type equations tum to the solitond® Accordingly, the reverse process
for  and * should include a triple collisior{two solitons and a free
wave and therefore is much less probable than the direct
1 1 one. It is therefore clear that eventually only one large-
—lomaf+ 5 Pxx T 5 Yoo 6] | * amplitude soliton survives on the background of small-
amplitude free waves with a continuous frequency spectrum.
3 5 ) ) This argument explains qualitatively why the purely dynami-
S L2004 thoct [Y] D) + 5t % 451 =0, cal process of soliton merging is time irreversible.
The above reasoning can be further carried on to give a
1 1 more quantitative description of the phenomenology. For in-
; Yk ok Lk 2% stance, it is possible to explain the observed fact that the
| maf” 2 Yot 24"’5‘)‘)"0L6| W characteristic time for complete soliton merging in the quar-
tic FPU chain scales with the energy densityea$ (Ref. 6,
+§[21/f*(l/f¢§x+|l//x|2)+ W2+ Wt 2]20_ see also R_ef.)S_To this aim, let us estimate _the ES Iif_etime
(or relaxation timg¢ 75 due to the scattering mentioned
(36) above. It can be written as;s=I/vg, wherel andvg are
respectively the mean free path and average velocity of the
Equations(36) can be expressed in canonical form as ES during the relaxation process. The mean free path will be
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in turn given byl ~ 1/os N, Whereng is a density of ESsand  o0.20
0 IS the scattering cross section. h

If we assume the lifetime to be much larger than the in- 015 |
verse frequency of the solitonr{>1/ws), we can resort to
the Born approximation to estimates;. As time goes by
and the soliton gas rarifies due to the process of merging, the g 05 |
approximation becomes more and more justified. Within this
perturbative treatment and in the low velocity limit, we thus 0.00
find thatog is simply proportional to the square modulus of
JUidx, whereU,, is the interaction potential. According to
Eq. (12), the latter is proportional to the product of the en- g0 |
velope functions of two small-amplitude ESH;,«ff,.
Assuming for simplicity that both of them have approxima- 4.0 | 1 003
tively the same amplitudeé,,,y, it is easy to ascertain from
(8) that the overlap integral scales dsg,,y, Similar to the
energy of a single small-amplitude E$3). Therefore, the 0.0
cross-sectionrgg is proportional to¢2max and, according to
Egs. (32) and (13), this implies thatosce. Finally, asng
oc\/E, see Eq(31), we obtain thatxe 15, FIG. 4. Fingal breather for different energies=0.0033, N

. — ] =256, t=1.210 (upper panels and €=0.0330, N=1024, t

To estimatevs, we compute first the energy of the mov- =8 10" (lower panelsspE)I'he E\st spectrum has been averaged over a

ing soliton of Eqs(36). In the small-amplitude limit, when time 1¢". Notice the different vertical scales. Dashed lines corre-

one can neglect the higher-order and nonlinear dispersive . i
. - d to Eqs(10), (11 d(16) with th Il d
terms, Eqs(36) admit the exact solutidnt® spond to Eqs(10), (11), and (16) with the numerically measure

value of ¢, andk,= /3.

0.10

0 100 200 300

8.0

0.00

0 500 . 1000
i

exdi(kx—Qt)] - . : : o
, (39 initial assumptions. As already mentioned, this scaling is in
cost (X Vgt) ma/6] agreement with the numerical observattdh.

whereVy is a group velocity of the solitork= —Vwmay IS

a soliton quasimomentum arl= (3«//2max— k?/2)/ @may. Us-
ing Egs.(37), (38), and(39), we find the soliton number of

P(X,1) = Ymax

VII. THE BREATHER

quantaNs, momentumPs, and energys (for wma=2): In the previous section we explained why the scattering
favors the creation of a single localized object. We now give

N,= ’zbmax\ﬁa Po= —kN,=2V N, a brief account of some of its properties. Thg patterns
3 9 reported in the left panels of Figs. 4 and 5 illustrate the

remarkable fact that a macroscopic fraction of the total en-

s ergy accumulates on a few sites. For instance, for the case
2N, €=0.033 and\N=1024, onlythreesites bear an energy 10.9

) . ) _corresponding to about 30% of the total. As expected from

These relations show that small-amplitude moving solitonthe previous section, the remaining is distributed along the

can be indeed considered as a bound stat&/ohegative-
effective-mass quasiparticlébarmonic modeswith a cor-

2

3 3 2 3 3
Ea=5N - 2N VE= SN2~ (40)

respondinglypositivebinding energy equal té]\f (see Ref. : i 50
20).
If we compare the definition alV; in Eq. (40) with ex- 20 i 88 |
pressions(32) and (13) for the energy of the E$8), we 4
conclude that\Vge« \/E. Let us now assume that a kind of hy
virial theorem holds for the set of solitons moving along the > 2| < 86|
chain with periodic(or fixed boundary conditions. This & o4 <
amounts to say thaftime) averaged kinetic and potential £ 2 | Equl
energies of such finite dynamical system should be propor- 40 a0 320
tional (see, e.g., Ref. 15It then follows from the definition 4 ‘
(40) of & that(V5)~(NZ)x=e. The validity of such a rela- 2t 82|
tion can be physically justified by observing that, as a result ~ ©
of the exchange of the number of quanta during the scatter- 2 | @
ing processes, the solitons receive the recoil quasimomentun 400 310 320 8'0200 300 400 500 600
k from free waves which in turn changes the soliton veloci- lattice site
ties thus providing some form of “thermalization.” From all FIG. 5. The position of the maxima and three successive snap
the above follows thavs~ V<V9>°c ‘/E shots of the final breather as a function of time &+ 0.0330 and

Finally, we obtain the estimate,;=1/vsxe 2 and corre-  N=1024. During this observation time the value of the breather
spondingly 7, 1/wg~1/2, that is fully consistent with the energy is practically constant.
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chain in the form of small amplitudéharmonig oscillations 0.03 -
(see again Fig. 4 oy

If we observe the breather on a time scale during which
its amplitude does not change considerably, we see that i
randomly alternates between a standing and moving state
Figure 5 clearly shows how each motion occurs with an al-
most constant velocity and is accompanied by changes of the
shape. For a given amplitude, the modulus of such a velocity®
is always the same. We checked that its value is consisten
with previous studies on exact breather solutions: for ex- 001 f
ample, from Fig. 5 we found indeed the velocity to be
0.128) in excellent agreement with the value 0.120 obtained
interpolating the data of Ref. 21.

The main issue concerning the velocity is the one of its

0O e=0.004
—— 075" 2e/m(2e0)”

0.02

0.00

selection. Although we will not enter into details here, we 7 0.00 0.02 0.04 006 0.08 0.10
just anticipate that some analytic clue can be achieved by e
studying the moving solutions of E3)*™*. In particular, we FIG. 6. The maximal initial density of ESss as a function of

expect the velocity to increase with the amplitu@most  the parameter for several values ol ranging between 920 and

linearly in the large-amplitude Iimit&ﬁqag 1), afactthatis 1024. Solid lines correspond to formulé2).

actually consistent with ours as well as with other

simulations>?2 This is clearly not realistic for actual experimental condi-
Let us now discuss the power spectra of those stronglyions, when the system is in contact with a thermal bath

localized states. The right panels of Fig. 4 show how theywhich populates all the other modes evericissically low

differ depending on the amplitude. At smaller enerdigs-  temperatures. One may therefore wonder to what extent the

per panelsthey resemble more closely an ES and the specmechanisms described above are effective in localizing the

trum would have the exponentially decaying prescribed byenergy.

Eqg. (10). Upon increasing the energg, acquires a sinu- In the present section we try to approach the problem by

soidal component similar to Eq.16) characteristic of a first considering a more general class of initial conditions

breather solution. This is simply the consequence of the faalefined by replacing second expression in &%) by

that in the continuum approach the two are the only limiting )

cases of the general solutiqi) with the amplituded .y uy(0)=(—-1)"V+o'¢&,, (47

being determined only by the total energy of the lattice. : . _
Obviously, the existence of the vibrational backgroundWhereg' is a Gaussian random number such tfigX=0 and

affects the structure of the spectra. As the background con- 'lg'““)b: Smo- IT order to erl]sggn trle ”}'tfm;gy %er par-
tains a non-negligible energyhe remaining 70% in the case ticle to be equal toe, we chooseV=2e/y2e+ 0" and o

mentioned above a complete description of the spectra re- = V2€/(2e+07). The parametero controls thus the

quires some information on its features. One consequenc:‘é‘z;:"’eI of noise” in the initial conditions. Indeed, the limit
that we can draw from Fig. 4 is that the naive picture of a? <€ (exactly the one considered in the previous simula-
single breather moving through a gas of small waves is overions amounts to feeding all the available energy in the
simplified. In fact this would imply the spectrum to be a sum

of a part similar to Eq(14) plus an almost flat part. The form 8.00 ' 0.06
of S, seems rather to indicate that only the high-frequency k; 0=0.07 S
domain of the harmonic spectrum is populated. 2.00 ¢

To give a complete description of the relaxation process, 0.03 |

we should now consider the final stage of the breather de- 19 |
struction (see also Ref. 6 for a discussjorThis requires

understanding how energy is transferred from large to small 00 bisacdbit i Joo 0,00 kst ‘ ‘
wave numbers. This issue involves in turn the interaction of " o 500 1000 0 1 2 3
a large-amplitude ES with small-amplitude plane waves. The o.40 ; 0.06

latter problem has been studied in Ref. 23. Here we limit 5=0.12

ourselves to observe that it is still not clear how to explain 030 |
why the tipical time scale for such a process should scale

. 5 : 0.20 | 1 003}
again ase” “. An analytic argument for that can be actually

given only in the very last stage, when the system is suffi- g4q | MWM"“

ciently close to equilibrium and relaxation of Fourier modes M
can be described by usual linear-response th&ory. 0.00 0.00
0 500 ;1000 0 1 2 ;8
VIIl. EINITE-TEMPERATURE EEEECTS FIG. 7. The distribution of energy densities and power spectra

' ' _ of the velocities fore=0.0330,N=1024,t=8 10" and two differ-
What has been discussed so far refers to a situation wheemt amplitudes of initial perturbatioor=0.07 (upper panelsand
all the lattice energy is initially fed in the boundary mode. 0.12 (lower panels
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Brillouin-zone-boundary mode whereas upon increasing mechanisms to enter into play and some of the localized
we can initially excite also the other Fourier modes of theexcitation will be effectively damped out by the interaction
chain. With our definition, equilibriunti.e., equipartition of ~ with the “thermal bath” of the other vibrational modé$.
energy is attained foro—o (actually when az—mfnax In order to better clarify this, we performed also some
=2eN>e¢). measurements of the power spectr(@d) for the relatively
The results presented before can be first extended to tHarge values oir (see Fig. 7. The results confirm that even
finite o values by the following reasoning. We showed thatfor o®~¢/2 (lower panels some kind of “localization” is
the initial density of ESs is basically determined by the vi-still present, although it is hardly detectable by direct mea-
brational energy available in the Brillouin-zone-boundarysurements.

mode. Therefore, one can straightforwardly repla@: by To summarize, the creation of localized excitations, in-

V in Eq. (31) obtaining duced by the modulational instability, is more and more in-
hibited the closer one starts to the equipartitidghermal

1 /3 2e equilibrium) state. This is caused both by the less amount of

ns(€,0)= P ‘R/TTUZ' (42 energy available in the corresponding short-wavelength

mode[asV— 0 for a?> ¢, see Eq(41)] and by the effective
As seen in Fig. 6, the numerical data are in good agreemenlissipation caused by the interaction of small-amplitude ESs
with this formula, at least for moderate amplitude€  with the vibrational background. At least in principle, the
<e/2. This indicates that the mechanism of vibrational en-envelope-function approach could be a useful starting point
ergy localization, induced by the modulational instability is for a more detailed analysis once one would be able to take
relatively robust, at least with respect to those type of perinto account the fluctuating background by casting it in suit-
turbation in the initial conditions. able stochastic terms.

Remarkably, as soon as overcomes the value/2, ng
seems to be slightly lefaround 10%than what is expected
from the purely energetic argument leading to Ef). Al-
though in this intermediate regime the numerical measure- The authors are grateful to |. Barashenkov, S. Flach, A.S.
ments are definitely less accurate due to the large vibrationddovalev, A. Mayer, A. Politi and S. Ruffo for the useful
background, we can at least give a qualitative justification taliscussions. This work was supported by the Max Planck
this. In fact, in this case we expect some effective dissipativésociety.
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