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Confinement of two-dimensional excitons in a nonhomogeneous magnetic field
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The effective Hamiltonian describing the motion of an exciton in an external nonhomogeneous magnetic
field is derived. The magnetic field plays the role of an effective potential for the exciton motion, which results
in an increment of the exciton mass, and modifies the exciton kinetic-energy operator. In contrast to the
homogeneous field case, the exciton in a nonhomogeneous magnetic field can also be trapped in the low-field
region and the field gradient increases the exciton confinement. The trapping energy and wave function of the
exciton in a GaAs two-dimensional electron gas for specific circular magnetic field configurations are calcu-
lated. The results show that excitons can be trapped by nonhomogeneous magnetic fields, and that the trapping
energy is strongly correlated with the shape and strength of the nonhomogeneous magnetic field profile.

[. INTRODUCTION tive Hamiltonian describing the exciton motion in the non-
homogeneous magnetic field is derived. In Sec. Ill we con-
Two-dimensional confinement of excitons or atoms bysider circular symmetric magnetic field profiles and reduce
magnetic fields is an important phenomenon in physics, anthe exciton Hamiltonian to a one-dimensioraD) Schro
is expected to bring a significant improvement to lasers andinger equation subjected to a spatially dependent effective
other functional devices.Numerous works have been car- Potential and effective mass. In Sec. IV we calculate explic-
ried out on the study of the exciton properties in applied'ﬂy the magnetic field profiles used in our work and stu_dy
magnetic field€® However, for the most part, all the atten- how strongly they are able to trap excitons. Our numerical
tion has been focused on the influence of homogenous field§Sults for the exciton trapping energies are discussed in Sec.
on the exciton inner properties. Several theoretical investigaY» @nd the conclusions are given in Sec. VI.
tions and experiments show the possibility of trapping and
guidir17g8 of atoms by means of né)nhomogeneous magnetic Il. THE EFFECTIVE HAMILTONIAN
fields.”® Recently, numerous papérsave appeared on the . . :
properties of charged particles, such as electrons, in different lWe c'or?yder a twor;d|mer.15|on(92[')) sygterﬁ of tWCIJ pal;-_
nonhomogeneous magnetic field profiles. For exampletIC es with opposite charge interacting via the Coulomb in-

guantum-mechanical bound states were found which had ngiraction .and moving in a nonhomogeneous ma_gnet_ic field
characterized by the vector potentis{r). The Hamiltonian

classical analog. Christianast al® and Pulizziet al! per- f that Svstorm is given b
formed photoluminesceng®Ll) measurements on excitons of that system IS given by

in the presence of nonhomogeneous magnetic fields. Strips 52 e 2

of ferromagnetic materialsee, e.g., Ref. 12on top of a H:_[ —iVe+ _A(re)}

guantum well were used to create strong magnetic field gra- 2me hc

dients. They concluded that excitons are forced to regions of 52 e 2 e?

low-field gradient and that magnetic traps for excitons are + —{ —iVp— —A(rh)} - (1
feasible. To the best of our knowledge, there is no theoretical 2my hc elre=ryl

work in the literature on studies of excitons in nonhomogeyhere is the dielectric constant of the material the exciton

neous magnetic fields. _ is moving in,m, (M) is the electror(hole) effective mass,
The purpose of the present paper is to develop a mathsnq 1 are the electron and hole coordinates, respec-
ematical formalism for calculating the quantum—mechanlcaciv

i ! ) @ %tively, in the xy plane. To simplify the above Hamiltonian,
properties of excitons in a nonhomogeneous magnetic fiel

d 1o il h . ibilit £ 1h ; we use the center of ma&s=(mgre+myry)/M and relative
and to illustrate the trapping possibilities of the excitons in i coordinates=r.—r,,, whereM =mg+m, is the to-

some magnetic field profilles..These profiles are created.béél mass of the exciton. Next, in order to obtain the correct
the deposition of magpet|c Q|sks and also SlJperCOn.ducmgsymptotic behavior, we apply a wave-function phase trans-
disks on top of a two-dimensional electron ga®EG) with formation analogous to the one used by Gorkov and

a homqgeneous field applied perpendicu!ar to the ZDEG', Ibzyaloshinskﬁin the case of a homogeneous magnetic field:
results in a nonhomogeneous magnetic dipole type of profile

and in a magnetic antidot profile, respectively, in the W(R,r)—exp—i(elhc)r-A(R) P (R,T) )
2DEG. ’ Y
The layout of the paper is as follows. In Sec. Il the effec-which leads to the following transformed Hamiltonian:
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P Moy iyt Salre™ Wy==S 6B(R) - L+ oo (B(R)X Vo VX B(R
“om| M VRVt " rﬂg (R)- L4507 {B(R) X V= VeXB(R)} -1,
eme Ve{rA(R ° A(R i i 2,2 "
7om VRIA R} — +-AR) W2:8c2,u B(R)%r2.
2
+ ﬁ_ —ij %VR""in_ EA( R— %r) Here the symbol ={r X (—iAV,)} stand_s for the_ exciton
2m, M h M relative angular-momentum operator. Notice that in case of a
em, o 2 @2 homogeneous magnetic field the above Hamiltonian reduces
_ VelrAR)}+ —A(R)} - (3) to the one which can be foun_d in the I_|terqtu$e Ref. 5
hcM hc er and references therginThe exciton Hamiltonian in a homo-

geneous magnetic field consists of a part with no magnetic
field dependence, a linear pétihe angular-momentum teym

d'jn the magnetic field, and a quadratic pétie diamagnetic
shift term in the magnetic field. In the present Hamiltonian,
e‘HhiCh describes the exciton motion in a honhomogeneous
énagnetic field, we also have these terms, but now they are
position dependent. We also have an additional term with a
linear dependence in the magnetic fiflkde last term in the

W, Hamiltonian, Eq(7)] that results from the gradient in the
magnetic field, and which modifies the exciton mass.

Now within the spirit of the above adiabatic approach, the
rgotal exciton wave function is represented as the product of
the wave functions describing its relative and center-of-mass
motions, i.e.,W(R,r)=®(r) y(R). Next, it is supposed that
the relative motion wave functiod®(r) obeys the Schro
dinger equation with the Hamiltonia#'®' which includes all
terms of total Hamiltonian, Eq6), except the last one de-
scribing the kinetic energy of the center-of-mass motion:

In real experimental situation$' the size of the exciton is
smaller than the length scale over which the magnetic fiel
varies, which allows us to use the adiabatic apprdadte
assume that the exciton relative motion is fast as compar
with its center-of-mass motion, and that the characteristi
dimension in the relative coordinatee., the exciton radiys
is much smaller than that of the center-of-mass moftian,
the characteristic length of the magnetic field inhomogene
ity). This allows us to expand the vector potentfs(R
= myer/M) intor power series restricting the consideration
with up to second order terms. Note that the exciton radius i
GaAs, e.g., is typicallyal =e%2/ue’~=120 A, while the
magnetic field inhomogeneity varies typically on a micron
scalet 214 Within the adiabatic approximation, we obtain
the following expression for the exciton Hamiltonian:

h? . e 2 rel _ =
H=ﬂ(—|Vr+§%{(r-VR)A(R)}) {H®'—E(R,Vg)}®(r)=0. €)
h2

+_
2M

A N_ote that.contrary.to the standard adiabatic apprbebie

(iVR+ i[pr(R)]) < 4) relative motion Hamiltoniarisee Eq.7)] depends not only

hc er’ on the center-of-motion coordinaebut also on the gradient
Vr. It does not complicate, however, the effective Hamil-
where u=mym,/M is the exciton reduced mass ard tonian derivation, but one_should_take into_accour_1t that now
=(m,—mg)/M. The first term in the Hamiltonian, Ed4), the elgenvaIL_Je of the rela_tt|ve motion equation, which usually
: : -nolays a role in the effective potential for the center-of-mass
' “equation, is an operator and gives the correction to the ki-
dnetic center-of-mass operator as well. So, the effective
center-of-mass Hamiltonian has to be presented as follows:

which the expressiog(r- Vg)A(R) can be interpreted as an
effective vector potential describing the local magnetic fiel
¢éB(R). We can choose the gauge such thatMg)A(R)

—B(R)Xr/2+V,[(r-VR){r-A(R)}]/2, and simplify the 52
second term of this expression by applying the following HCM=—WV§+ E(R,Vg). 9
transformation:

We solve the relative motion, Ed8), by means of a
perturbation technique in magnetic field strength powers re-
stricting our consideration by the second-order terms. This
assumption is valid in the weak-field regimkaﬁ’g<2R§),
with Q(r)=(r-Ve){r-A(R)}/2. The above transformation \here R* = ue*/26242 is the effective Rydberg, and?
does not change the center-of-mass motion, and leads only ©0epy,c is the cyclotron-resonance frequency. This is the
the appearance of-order terms in the relative motion, magnetic field regime relevant for experiments with nonho-
which are neglected in the present adiabatic approach. Ijogeneous magnetic fiefd8” which contrasts with ex-
doing so, we obtain the following transformed Hamiltonian: heriments in homogeneous magnetic fields where usually the

high-field regimefiwg>2R] is reached. Notice thaiwg

V(R,r)—exp —ié(elhc)Q(r)}WV(R,r), (5)

52 @2 %2 =2Rj corresponds t@~5 T for GaAs.
H=— Z—Vrz— or + Wi+ W;p— mvé, (6) Now taking into account the cylindrical symmetry of the
- zero-order Hamiltonian
where terms of first and second power in the magnetic field _ n? 2 e
Ho=—5—Vi-—, (10

strength are denoted by
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we find the zero-order wave function

1
#(R)= —==exp{imgre} (R, 17
2Npr I . Apl v2m
O™r)=Anm exp imeo— _ _ .
\ag aj wheremg, is the quantum number corresponding to the exci-
ton center-of-mass angular momentum. Hamiltonian(E6).
) 2\, 1 then leads to the following radial Scltioger equation:
X Ln|4r—n\|m\—l (11
a*
® hz d R eff —
corresponding to the zero-order eigenvalue " 2RdR Me(R) dRrR +VEH(R)—E #(R)=0,
Eo(nm)=—AR}, A,=(n-127% (12 19
) where
where the symbols andm stand for the radial and angular
relative motion quantum numberay, is the effective Bohr o
radius, A, ,, is the normalization constant determined by MeH(R) = (19

_ 0 2’
(DY™(r)|P5™M(r))=1, andL{?(x) is the generalized La- 1= ap ¢1B(R)

guerre polynomiat® Solving, in addition, the first-order

; is the effective mass for the center-of-mass motion of the
equation

exciton, and
n,m _ o n,m
{Ho=Eo(n,m)}®17(r) ={E1(n,m) =W} ®g (”'(13) VET(R) =By ¢B,(R)*+m,c3B(R)
with the orthogonality conditio®}'™(r)|®g™(r))=0, we h2 m3
obtain the first and the second eigenvalue corrections +Eo(Np M)+ = — (20)
2M®*"(R) R
ef is the effective potential for the exciton with
Ea(n,m) =(@F (N Wy ()= 5= BRI, b
(14) e?a}? e’a}?
Clz*—z, C2=—2, C3:2—MC§. (21)
Ex(n,m) =(®™(r)|W,| &5 ™(r)) RyMe Buc
(D)W, — E4(n,m)]|d™™(r For GaAs we have typicallya} =120 A, R§:5 meV,
(@o™(DI[Ws = Ea(n.m)][€77(r) €1=6.25x10"% T72, ,=0.44 meV T? and c;
e2a§2 ) ezﬁzagz =0.69 meV T Please note that the 2D exciton ground-
=Bm 80C2 BA(R)“+ anmm state energfq(1,0) is — 4R} = —20 meV and the 2D exci-
pe y Ve ton size is one-half the Bohr radiuaj/2=60 A. From the

X Vr{B,(R)?Vg}. (15) above equations, we notice that the nonhomogeneous mag-
netic field modifies the exciton center-of-mass motion in the
Here the symbols), and 87, are numerical constants that following ways. First the exciton feels B,(R)?* effective
follow from the averages in Eq15). For a magnetic field potential. It implies that excitons will be collected in a region
perpendicular to they plane we obtained the following val- Where the magnetic field strength is minimum. Next, the ex-
ues: ag=21/128, B5=3/8, a5=365/64, B3=35/4, and Cciton mass is enhanced, it increases VBHR)2, which fa-
o?,=145/128, 8%, =11/4. vors the localization of excitons. Third, the kinetic term

Inserting the obtained eigenvalue corrections into @y. 9/VeS & contribution proportional to the gradient in tBe

we obtain the final expression for the effective Hamiltonian fiéld, i.e., adB,(R)/dR term. Finally, we see that the non-
homogeneous magnetic field also interacts with the exciton

2 2.%2 angular momentum, and that this interaction is controlled by
HOM=— ——Vgil—ay 2B —B,(R)? Ve—\2 R} the difference in masg. The reason is that the exciton is a
2M "Mc Ry ' neutral particle, and if the electron and hole would have the
. > %o same mass, the angular-momentum term would not contrib-
e n B 2 ute because the electron and hole give the same contribution
[ r
* 2uc émrBZ(RH’er 8uc? BAR)%, (16) but with opposite sign.
which describes the center-of-mass motion of the exciton IV. MAGNETIC FIELD PROFILES
with relative motion quantum numbers,(,m,) in the non-
homogeneous magnetic fields. We solve Eq(18) numerically using the confinement po-
tential generated by two different nonhomogeneous magnetic
IIl. CYLINDRICAL SYMMETRY field profiles, which experimentally are created by the depo-

sition of (a) a magnetized disk an¢b) a superconducting
From now on we limit ourselves to cylindrical symmetric disk on top of a 2DEG, with a homogeneous magnetic field
magnetic field profilesB,(R)=B,(R). Then, the exciton (B,) applied perpendicular to the 2DEG. Such an experi-
center-of-mass wave functioii(R) can be written as mental configuration results in a nonhomogeneous magnetic
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field profile in the 2DEG. The first profiléa) results in a
magnetic dipole type of profile, and the secaoil is also
called the magnetic antidot. A sketch of the two experi-
mental systems, the magnetized disk and the superconduct-
ing disk, are shown in the inset of Fig(hl and Fig. 3a),
respectively.
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M(R)=hM&(Z—d)f(a—R)e,, (22)

whereh is the disk thicknessa is the disk radiusd is the R (um)
distance of the magnetic disk to the 2DE®( is the mag- ) ]
netization,#(a— R) is the Heaviside step function, addand FIG. 1. (a) Effective potential formg=0 and @ ,m;)=(1,0)
R= \/W are cvlindrical coordinates. The correspondin and the magnetic field profilB(R) of the magnetized disknset—
- y ’ ) P gmagnetic field profile in the 2DEG in the absence of a background

vector potential can be calculated from the differential formﬁeld) with a positive homogeneous applied fil@d=0.35 T, as a

. 2 _ 19 - =Y. :
of Amperes lawVzA(R) = _47T_VRXM(R)' Incylindrical  nction of the radial coordinat®, for d/a=0.1 with VET(R)
coordinates, the vector potential has only an angular compQsolig) and B(R) (dotted, and d/a=0.2 with V°'(R) (dashed-

nent, dotted and B(R) (dashedl (b) Effective potentialve’f(R) for n,
1 2 =2, m;=—1 with (i) mg=0 (solid) with corresponding effective
a P eff iy yyeff —
_1rDL /S 2 L 2 massM®"(R) (dashegl and (i) V¢"'(R) for mg=1 (dotted as a
Aq(R)=48q \/;p{ E(pD)+| 1= 5 KB function of R, for d/a=0.1. We tookBY=0.1 T and the disk radius

(23 a=2.0 um.
with
where we tookB§=0.1 T. We also show in Fig. 18;
B VaR =0.35T) and in Fig. 2 B,= —0.25 7) the effective poten-
p_z\/m’ (24) tial, Eq. (20), for the exciton center-of-mass motion for the
1s [Fig. 1(a) and Fig. 2Za)], and for the »~ [Fig. 1(b) and
whereB('?:hM, andK(x) [E(x)] is the elliptic integral of  Fig. 2(b)] exciton relative motion quantum state, and the
the first(second type. The magnetic field can be evaluatedeffective mas$Fig. 1(b) and Fig. 2Zb)], Eq.(19), for the 2o~

straightforwardly fromB(R) =V X A(R), which results in exciton relative motion quantum state.
BR)=— N (R)+BD—(a2_R2+d2) ~
= > E
z (a+R)2+d2 ® 0 Rz\/a_R 3 -19.396 0.6 e
5 1 E 19398} i 2
38 F 10.0 ™
xp3 = —E(p?) = 5K(p?) E im0 g
| ap? 2 E 19.400 los g
p2 P ) %3 -19.402¢ -—0.6E
+ 1—? &—sz(p ) . (25) % 04082
g g
The magnetic field profile of the magnetized digke :=:; 0'4078§
magnetic dipole profilein the 2DEG ford=0.2 um, a=2 £ 04074 2
wm, andBS=0.1 T is shown in the inset of Fig(d). Due to 2 &
the quadratic dependence of the effective potential on the 2 . . ‘ 040705
magnetic fieldsee Eq(22)], we can maximize the confine- 20 1 2 3 4
ment potential by applying a homogeneous fild to the R (um)

magngtic dipole prOﬁIeBtZOtal(R):B?;_BZ(R)' We use the FIG. 2. (a) Effective potential formg=0 and f,,m;)=(1,0)
experimental reSF"tS O,f Dubones al.™ in order to take ygl- and the magnetic field profilB(R) of the magnetized disk with a
ues for the applied field&,) smaller than the coercivity eyative homogeneous applied fig= — 0.25 T, as a function of
field, which hz_:ls a strong dependence with the radius of thee radial coordinat®, for d/a=0.1 withVe"(R) (solid) andB(R)
magnetized disk? (dotted, and d/a=0.2 with Ve'(R) (dashed-dottedand B(R)
The magnetic dipole profile in the 2DEG for different (gashedl (b) Effective potentiale'’(R) for n,=2, m,= —1 with
values of the relationl/a are shown in Fig. @ [Fig. 2a8)] (i) mg=0 (solid) with corresponding effective masm®’(R)
as a function of the radial coordinate, in the presence of &ashet| and(ii) V¢'(R) for mg=1 (dotted as a function oR, for
homogeneous magnetic fieB®,=0.35 T B,=—0.25 7), d/a=0.1. We tookBj=0.1 T and the radiua=2.0 um.
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Notice that the effective potential, Figs. 1 and 2, is nega-
tive. This is due to the energy shift resulting from the zero-
field exciton relative motiorEqy(n,,m,) in the equation of
the effective potentialsee Eq.(20)]. This energy increases
with the increasing principal relative motion quantum num-
bern, [see Eq(12)]. Also notice that the effective potential
of the excited levels of the exciton relative moting., see
Figs. 1 and @) for the 2p~ statd has a confinement region
larger than the & relative quantum level. The reason for this
is as follows: the coefficient of the diamagnetic term in the
effective potential equatiofthe term with quadratic depen-

dence in the magnetic field in EQRO)], ,B”mr, is related to the

averaging ofr? in the wave function of the exciton relative
motion, i-e-,B”ij(CD(”;’mf(r)lrzlq)g"m’(r)) [see Eq.(19)] 00 02 04 06 08
which increases for increasimg . Then, the confinement for R (um)
the n, exciton relative motion states should be stronger than
the one for then,—1 relative state. Further, the exciton
angu!ar—mqmentum term Ir.] the equton Hamllt.onllan IS, Inconducting disk, as a function of the radial coordin®efor d/a
practice, bigger than the diamagnetic term. This is because ;1 it Ve'(R) (dashed-dot and B(R) (dashed and d/a
the effective potential for the exciton relative motion quan-_ 91 with Ve'(R) (solid) and B(R) (dotted, and (b) effective
tum states withm, #0 has confinement energies larger thanpgentialvef(R) for n,=2, m,=—1, mg=0 (solid) with corre-
the one for the relative levels witi, =0 [compare, e.g., the sponding effective mass1®'(R) (dashed, and Ve'(R) for mg
energy range in Figs.(@ and 1b)]. =1 (dotted, as a function oR, for d/a=0.1. We took the radius
The last term in our effective potential, EQO), is related  a=0.3 um and an applied fiel®, of (a) 2 T and(b) 1 T.
to the angular momentum of the exciton center-of-mass mo-
tion, mg. In that case, it contributes to the potential like afor d/a=0.1 (dashed and dashed-dot curvesnd d/a
centrifugal term (z/R?), and leads to a peak neR=0  —0.01 (solid and dotted curvgsThe effective mass, Eq.
[see the dotted curve in Figs. 1 an®Q. Also notice thatthe (19, and the effective potential for thep2 exciton relative
effective mass is position dependesee dashed curve in motion quantum state is plotted in Fig(b3 for d/a=0.1.
Figs. 1 and ®)]. It is larger than the normal exciton mass we took in Fig. 3a) [Fig. 3(b)] an applied magnetic fielB,
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FIG. 3. (a) Effective potentialVe'(R) for mg=0, (n,,m,)
=(1,0) and corresponding magnetic field proBlER) of the super-

M =0.407 although its increase is small. of 2 T (1 T). Notice that the magnetic field in the 2DEG is
suppressed below the superconducting disk and an overshoot
B. Superconducting disk is found near the edge of the disk, which becomes smoother

¥vith increasing distancd between the superconducting disk
and the 2DEG. The exciton will prefer to localize below the
0(lihisk becaus&/¢'" is smaller there. This is no longer true for
Jhe 2p~ state[see Fig. 8)] where nowVe'f has a local
minimum near the edge of the disk where the magnetic field
exhibits the largest gradient. This occurs when the applied
} field B, is such that the diamagnetic terfguadratic in the

The magnetic antidot was recently discussed by Reijnier
et al,'® where the properties of electrons in a two-
dimensional system confined by such a magnetic antid
were investigated. They found that the magnetic field profil
below a very thin type-l superconducting disk is given by

a; trﬁa
@ ) arcta 7

2B, ay(a®—7?)

magnetic field in the effective potential, Eq20), becomes
comparable to the angular-momentum teflimear in the
magnetic fieldl.

s

[ 2
B,(R)=B,{ 1+ —

, (26)
T (@%+ {3 (P 7P) V. NUMERICAL RESULTS FOR THE EXCITON

. TRAPPING ENERGY
with

We have calculated the trapping energy and wave func-
tions of an exciton in a GaAs 2DEG in the presence of the
above nonhomogeneous magnetic field profileagnetic di-
pole and magnetic antidot profilesThe electron and hole

1 mass and the dieletric constant used in our calculatiorfs are
7°=5[N(RP+d*—a%)?+4a’d” — (R?+ d*~a%)], m,=0.067n,, m,=0.34mn,, and e=12.53, respectively.
27 The problem of finding the eigenfunctions and energies of

Eq. (18) was solved by using a similar numerical discretiza-
wherea is the disk radius, and the distance of the super- tion technique as was used in Ref. 20.
conducting disk to the 2DEG. In Fig(&® the magnetic field We define the exciton trapping energy as the difference
profile resulting from the superconducting diskagnetic an- between the exciton energy in the homogeneous applied field
tidot), and the effective potential, E(R0), for the 1s exciton B, and the energy of the exciton in the nonhomogeneous
relative motion quantum state is shown 0.3 um and  magnetic field profile for the same exciton state. Following

1
=5 [V(R*+d?~a’)*+4a°d*+ (R*+d*~a?)],
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gion. The fg,mg)=(1,1) is an excited state and requires

slightly larger magnetic fields to become bound. With in-

creasing magnetic field the exciton becomes more and more

confined, which increases the trapping endegy The mag-

netic disk in the presence of a negative applied fiélid).

- 4(b)] has a critical field where the trapping energy starts to
() decrease with increasing field. This is due to the competition

between the magnetic field generated by the &gkand the

applied fieldB,. When the field of the disk increases, the

center region of the corresponding effective poteiiiak the

] solid curve in Fig. 2a)] which has a peak structure can be-

‘ come comparable tv®'f at the edge of the disk which for

/ large B§ [e.g., for (ig,mg)=(1,0) in Fig. 4b) this occurs

() for B)>0.06 T| may lead to a complete vanishing of the

confinement region. One can increase the trapping energy by

e applying a stronger homogeneous fidgd, which is not

trivial due to the limited coercivity field and for sufficient

FIG. 4. Exciton trapping enerdyg for (ng,mg)=(1,0) (dashed

curve and (1,1 (triangles, and (, ,m,)=(1,0), for the magnetic up in the situation of Fig. ().

dipole profile as a function a8y, for (a) B,=0.35 T and(b) B,
=-0.25 T, and fom=2 um andd/a=0.1.

largeB, it will flip the magnetization of the disk and we end

The angular-momentum interaction with the magnetic
field is responsible for important effects in the trapping of

atoms by nonhomogeneous magnetic fiéld&n two-
this definition, a positive exciton trapping energy implies thatdimensional exciton systems, the momentum-field interac-
the exciton is trapped in the effective potential created by thdion is of importance in a variety of exciton properties. The
field inhomogeneity. The influence of all the terms in Eqs.€Xciton trapping energies for the seven lowest levels of the
(21) and (22) on the exciton trapping is extensively dis- center-of-mass motion, for th@) 2p~, (b) 2s, and(c) 2p*
cussed. The possibility of exciton trapping by using the con£xciton relative motion quantum states are shown in Fig. 6
finement potential created by the magnetic dipole, Figs. 1Fig. 7) for the magnetic dipole profile withB,
and 2, and the magnetic antidot, Fig. 3, are analyzed. In a#0.35 T (B,=—0.25T) as a function 0B, and in Fig. 8
the following figures, if not explicitly stated otherwise, the for the magnetic antidot as a function Bf,. In the case of
disk radius and the distance to the 2DEG used for the maghe magnetic dipole profile, the exciton in the2 states is

netized disk and for the superconducting disk are2 um

much more confined than thes 3tate. The reason is that the

anda=0.3 um, respectively, and we took the distance to theangular-momentum term in E(R0) gives a confinement po-

2DEG equal tad=0.1a.

The trapping energy for the ground-state of the exciton,
for the center-of-mass quantum numbers (mg)=(1,0)
(dashed curvesand(1,1) (triangles are shown in Fig. 4 for
the magnetic dipole profile with a homogeneous applied field
of (a) B,=0.35 T and(b) B,=—0.25 T as a function of the
magnetization of the disB . Similar results are shown in
Fig. 5 for the magnetic antidot profile as a function of the
applied magnetic field,. Notice that for both profiles in
low fields, the trapping energy is negativee., unbound
statg, indicating that a large part of the center-of-mass exci-
ton wave function is extended into the magnetic barrier re-

80

60}
~ 40f L
T (nmy) = (1,0) P
= 20} L7 . i
o 2T A
0 P

0.0 0.5 1.0 1.5 2.0

- ()

FIG. 6. Exciton trapping enerd§g as a function oB(E,’ , for the

B, (T) magnetic dipole profile for a homogeneous applied fi@g
=0.35 T, fora=2 um andd/a=0.1, and forn,=2, and(a) m,

FIG. 5. Exciton trapping energyeg for (ng,mg)=(1,0) =

(dashed curveand (1,1) (triangles, and (,,m,)=(1,0), for the
magnetic antidot profile as a function Bf,, and ford/a=0.1 with
a=0.3 um.

—1,(b) m,=0, and(c) m,= + 1. The different curves correspond
to the different exciton center-of-mass levelag(mg)=(1,0)
dashed curve(l,1) triangles,(2,0) dotted curve(2,1) squares(3,0)
solid curve,(3,1) circles, and4,0) dashed-dotted curve.
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04} @
03}
Tof i
0.1} = &
=] ‘4.‘ = =2
= 0.0 >
&
>
R (um)

000 002 004 006 008 0.0 FIG. 9. Exciton center-of-mass radial wave functig(R) as a

B, (T) function of the radial coordinat®, for the magnetic dipole profile,
for (8 B,=0.35 T and(b) B,=—0.25 T, for (hg,mg)=(1,0),
FIG. 7. The same as in Fig. 6 but now for the magnetic dipole(n m)=(1,0), for a=2 um and d/a=0.1, and for BY
profile with a homogeneous applied field Bf=—0.25 T. =0.02 T(dotted, 0.06 T (solid), and 0.1 T(dashed

tential stronger than the diamagnetic term. Notice that in thgqp, js pecause theg=0 term in the effective potential, Eq.
case of a negf\tive applied field, due to this strong confine(zo), only is responsible for a very small peak né@e0
ment of the D~ states(Fig. 7), only the  state is affected yhich gives a very small contribution to the total effective
by the competition between the field and B, as was potential. The trapping energy in Figs. 6-8 is typically two
discussed for Fig. 4. The trapping energy of the supercongrders of magnitude larger than the one for tisestate of the
ducting disk profile also increases with increasing magnetigxciton relative motion. In general, the trapping energy cor-
field but for the 2™ exciton relative motion quantum state responding to the, exciton relative quantum state resulting
[Fig. 8(a)] there is a local maximum in the trapping energy. from the magnetic field inhomogeneity should be bigger than
This energy starts to decrease after some fi@ig=1 Tin  the one corresponding to te—1 quantum state. This can
Fig. 8@, which is exactly when the quadratic terfposi-  pe easily understood from the effective potential equation,
tive) begins to be comparable to the angular momentum terrgq. (20). The coefficient of the diamagnetic terﬁﬂ{ in-
(negative in Eq. (20) [see effective potential in Fig.(B)]. o i o T

Also notice that the exciton center-of-mass quantum leycreéases with increasing, which increases the exciton trap-
els with non zero angular momenturmg+0) have only PINg energy. _
slightly higher energy than the levels with;=0. The rea- ~_Figures 9a) and 9b) and Fig. 10 show the ground-state

radial wave function of the exciton center-of-mass motion

[see Eq.(18)] for the magnetic dipole profile foB,

008 =0.35 T andB,=—0.25 T, and for the superconducting
! disk, respectively, as a function of the radial coordirRfer
g 004 the quantum numbers of the relative motiom, (m,)
op 0.02¢ =(1,0), for different values oBE (magnetized diskandB,
0.00§ (superconducting digkNotice that with increasing magnetic
20l field the exciton becomes more localized. The wave func-
Lsh tions in Figs. 9b) and 10 correspond to the effective poten-
P
z Lo 12
o 03}
0.0
L6 ¢ ~
%\ 1.2+ ;.
g os}
o 04r
0.0 0.6
0.0 0.5 1.0 15 2.0 R (um)

B (T)
FIG. 10. The same as in Fig(& but now for the magnetic

FIG. 8. The same as in Fig. 6 but now as a functioBgf for antidot profile, fora=0.3 um andd/a=0.1, and forB,=1 T
the magnetic antidot profile, fa=0.3 um andd/a=0.1. (dotted, 1.5 T (solid), and 2.0 T(dashed
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0.04} (a) [
0.03f AT e .
E 0.02}+ ,’A r ___________ %
= e E 003t/ /
uf® 0.01F - : o
B=0.35T
0.00 " 0.03}
0,03 025 050 075 100 125
a (um)
~ 002} I .
E L FIG. 12. The same as in Fig. () but now for the magnetic
= 001} antidot profile, ford=0.03 um andB,=0.5 T.
] iy .
0.00h27 longer the depth and consequently, the trapﬁlng energy be-
. . . . comes equal to the depth of the minimum\A''.
025 100 175 250 325 400
a (um) VI. CONCLUSIONS

In conclusion, we have developed a formalism to describe
the exciton motion in a two-dimensional system, in the pres-
ence of a nonhomogeneous magnetic field. We assumed that
the length scale for the variation of the magnetic field is large
as compared to the exciton radius. We have theoretically
calculated the exciton trapping energies for the nonhomoge-
neous magnetic fields created by a magnetized disk
magnetic dipole type profi)eand by a superconducting disk
tial profiles of Fig. Za) and Fig. 3a) which have the mini- (t_he magnetic antideFTh_e_ results have shown than the_trap-
mum of the potential near the center of the disk, and that i®iNg energy has a significant dependence on the radius and
where the exciton is localized. In contrast to the case of FigProfile of the nonhomogeneous magnetic field, as well as on
9(a) the effective potentialsee Fig. 1a)] has its minimum ~the homogeneous applied background magnetic fi/d
near the outer edge of the disk where the exciton becomegurther, the exciton angular-momentum interaction with the
localized. In the latter case the center-of-mass wave functioRonhomogeneous magnetic field can be responsible for shifts
will have a ringlike structure. as big as a factor of 10 in comparison with the states with

In order to investigate the dependence of the exciton trap?er® angular momentum. In the present analysis we ne-
ping energy on the size of the magnetic field inhomogeneityd'ected the spin of the electron and the hole which may have

we calculated the trapping energy for the 2s exciton relativén important effect on the trapping energy when the effective
motion quantum statg.e., (n,,m,)=(2,0)], as a function of 9 factor is substantially different from zero. The analysis of

FIG. 11. Exciton trapping energlig for (n, ,m,)=(2,0), as a
function of the disk radius, for the magnetic dipole profile fdia)
B,=0.35 T and (b) B,=—0.25 T, for d=0.2 um and B}
=0.05 T, and for center-of-mass quantum numbeng,(ng)
=(1,0) dashed curve(1,1) triangles, (2,0) dotted curve,(2,1)
squares,(3,0) solid curve, (3,1 circles, and(4,0 dashed-dotted
curve.

the disk radiusa. The results are shown in Figs. (&L and
11(b) for the magnetic dipole profile WitBSz0.0S Tand a
homogeneous field 0B,=0.35 T andB,=—-0.25 T, re-

spectively, and in Fig. 12 for the magnetic antidot profile

the latter will be left for future research.

ACKNOWLEDGMENTS

This work was supported by the Inter-university Micro-

with Bo=0.5 T, in each case for the seven lowest quantunElectronics Cente(IMEC, Leuven, the Flemish Science

numbers of the center-of-mass motion. In Fig. (Fig. 12
we took the distance to the 2DE@=0.2 um (0.03 um).

Foundation(FWO-VI), and IUAP(Belgium). J. A. K. Freire
was supported by the Brazilian Ministry of Culture and Edu-

The trapping energy increases with disk radius but it satueation (MEC-CAPES and F. M. Peeters was supported by

rates for largea. The reason is that for sufficiently large

the FWO-VI. We acknowledge stimulating discussions with

only the width of the potential minimum increases but noF. Pullizzi.

*Permanent address: Departamento &icB) Universidade Fed-
eral do CearaCentro de Ciacias Exatas, Campus do Pici, Caixa
Postal 6030, 60455-760 Fortaleza, Ce@®zil.
TPermanent address: Semiconductor Physics Institutéa@osl 1,
2600 Vilnius, Lithuania.
*Electronic address: peeters@uia.ua.ac.be
IM. -O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn,
D. S. Durfee, and W. Ketterle, Phys. Rev. Lei#t7, 416
(1997). ;

2L. P. Gor'kov and I. E. Dzyaloshinsky, Zh kBp. Teor. Fiz53,
717 (1967 [Sov. Phys. JETR6, 449 (1968].

31. V. Lerner and Yu. E. Lozovik, Zh. Esp. Teor. Fiz.78, 1167
(1978 [Sov. Phys. JETB1, 588(1980].

4N. R. Cooper and D. B. Chklovskii, Phys. Rev. &5, 2436
(1996. )

5A. B. Dzyubenko, Pis’'ma Zh. sp. Teor. Fiz.66, 588 (1997
[JETP Lett.66, 617 (1997)].

6V, D. Kulakovskii, M. Bayer, M. Michel, A. Forchel, T. Gutbrod,
and F. Faller, Pis’ma zZh.ksp. Teor. Fiz66, 263(1997 [JETP
Lett. 66, 285(1997)].

"W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell,
Phys. Rev. Lett74, 3352(1995.

83. J. Tollett, C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys.
Rev. A51, R22(1995.

9For a recent review see F. M. Peeters and J. De BoedKaird-
book of Nanostructured Materials and Nanotechnologgited



PRB 61 CONFINEMENT OF TWO-DIMENSIONAL EXCITONS IN . .. 2903

by H. S. Nalwa(Academic Press, New York, 1999Vol. 3, 259(1997.

p. 345. 15Dynamical Theory of Crystal Lattice#!. Born and Kun Huang
0p_ C. M. Christianen, F. Piazza, J. G. S. Lok, J. C. Maan, and W. (Clarendon Press, Oxford, 1968

van der Vleuten, Physica B49-251 624 (1998. 165, V. Dubonos, A. K. Geim, K. S. Novoselov, J. G. S. Lok, J. C.

11E pulizzi, P. C. M. Christianen, J. C. Maan, T. Wojtowicz, G. Maan, and M. Henini, Physica &o be published
Karczewski, and J. Kossut, Phys. Status Solidité be pub- 17v. Kubrak, F. Rahman, B. L. Gallagher, P. C. Main, M. Henini,
lished. C. H. Marrows, and M. A. Howson, Appl. Phys. Lef4, 2507
127, K. Geim, S. V. Dubonos, J. G. S. Lok, I. V. Grigorieva, J. C.  (1999.
Maan, L. Theil Hansen, and P. E. Lindelof, Appl. Phys. Léft. 8Handbook of Mathematical Functionsl. Abramowitz and 1. A.

2379(1997. Stegun(Dover, New York, 1972 p. 775.
133, Reijniers, A. Matulis, and F. M. Peeters, Phys. Re982817 19Classical Electrodynami¢sJ. D. JacksonWiley, New York,
(1999. 1962, p. 153.

¥A. K. Geim, I. V. Grigorieva, S. V. Dubonos, J. G. S. Lok, J. C. °F. M. Peeters and V. A. Schweigert, Phys. Rev.58 1468
Maan, A. E. Lindelof, and F. M. Peeters, Natitendon 390, (1995.



