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Confinement of two-dimensional excitons in a nonhomogeneous magnetic field
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The effective Hamiltonian describing the motion of an exciton in an external nonhomogeneous magnetic
field is derived. The magnetic field plays the role of an effective potential for the exciton motion, which results
in an increment of the exciton mass, and modifies the exciton kinetic-energy operator. In contrast to the
homogeneous field case, the exciton in a nonhomogeneous magnetic field can also be trapped in the low-field
region and the field gradient increases the exciton confinement. The trapping energy and wave function of the
exciton in a GaAs two-dimensional electron gas for specific circular magnetic field configurations are calcu-
lated. The results show that excitons can be trapped by nonhomogeneous magnetic fields, and that the trapping
energy is strongly correlated with the shape and strength of the nonhomogeneous magnetic field profile.
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I. INTRODUCTION

Two-dimensional confinement of excitons or atoms
magnetic fields is an important phenomenon in physics,
is expected to bring a significant improvement to lasers
other functional devices.1 Numerous works have been ca
ried out on the study of the exciton properties in appl
magnetic fields.2–6 However, for the most part, all the atten
tion has been focused on the influence of homogenous fi
on the exciton inner properties. Several theoretical invest
tions and experiments show the possibility of trapping a
guiding of atoms by means of nonhomogeneous magn
fields.7,8 Recently, numerous papers9 have appeared on th
properties of charged particles, such as electrons, in diffe
nonhomogeneous magnetic field profiles. For exam
quantum-mechanical bound states were found which had
classical analog. Christianenet al.10 and Pulizziet al.11 per-
formed photoluminescense~PL! measurements on exciton
in the presence of nonhomogeneous magnetic fields. S
of ferromagnetic material~see, e.g., Ref. 12! on top of a
quantum well were used to create strong magnetic field
dients. They concluded that excitons are forced to region
low-field gradient and that magnetic traps for excitons
feasible. To the best of our knowledge, there is no theoret
work in the literature on studies of excitons in nonhomog
neous magnetic fields.

The purpose of the present paper is to develop a m
ematical formalism for calculating the quantum-mechani
properties of excitons in a nonhomogeneous magnetic fi
and to illustrate the trapping possibilities of the excitons
some magnetic field profiles. These profiles are created
the deposition of magnetic disks and also superconduc
disks on top of a two-dimensional electron gas~2DEG! with
a homogeneous field applied perpendicular to the 2DEG
results in a nonhomogeneous magnetic dipole type of pro
and in a magnetic antidot13 profile, respectively, in the
2DEG.

The layout of the paper is as follows. In Sec. II the effe
PRB 610163-1829/2000/61~4!/2895~9!/$15.00
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tive Hamiltonian describing the exciton motion in the no
homogeneous magnetic field is derived. In Sec. III we c
sider circular symmetric magnetic field profiles and redu
the exciton Hamiltonian to a one-dimensional~1D! Schrö-
dinger equation subjected to a spatially dependent effec
potential and effective mass. In Sec. IV we calculate exp
itly the magnetic field profiles used in our work and stu
how strongly they are able to trap excitons. Our numeri
results for the exciton trapping energies are discussed in
V, and the conclusions are given in Sec. VI.

II. THE EFFECTIVE HAMILTONIAN

We consider a two-dimensional~2D! system of two par-
ticles with opposite charge interacting via the Coulomb
teraction and moving in a nonhomogeneous magnetic fi
characterized by the vector potentialA(r ). The Hamiltonian
of that system is given by

H5
\2

2me
H 2 i¹e1

e

\c
A~re!J 2

1
\2

2mh
H 2 i¹h2

e

\c
A~rh!J 2

2
e2

«ure2rhu
, ~1!

where« is the dielectric constant of the material the excit
is moving in,me (mh) is the electron~hole! effective mass,
and re , rh are the electron and hole coordinates, resp
tively, in the xy plane. To simplify the above Hamiltonian
we use the center of massR5(mere1mhrh)/M and relative
motion coordinatesr5re2rh , whereM5me1mh is the to-
tal mass of the exciton. Next, in order to obtain the corr
asymptotic behavior, we apply a wave-function phase tra
formation analogous to the one used by Gor’kov a
Dzyaloshinsky2 in the case of a homogeneous magnetic fie

C~R,r !→exp$2 i ~e/\c!r•A~R!%C~R,r !, ~2!

which leads to the following transformed Hamiltonian:
2895 ©2000 The American Physical Society
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H5
\2

2me
H 2 i

me

M
¹R2 i¹ r1

e

\c
AS R1

mh

M
r D

2
eme

\cM
¹R$rA „R!%2

e

\c
A~R!J 2

1
\2

2mh
H 2 i

mh

M
¹R1 i¹ r2

e

\c
AS R2

me

M
r D

2
emh

\cM
¹R$rA „R!%1

e

\c
A~R!J 2

2
e2

«r
. ~3!

In real experimental situations9,11 the size of the exciton is
smaller than the length scale over which the magnetic fi
varies, which allows us to use the adiabatic approach.4 We
assume that the exciton relative motion is fast as compa
with its center-of-mass motion, and that the characteri
dimension in the relative coordinate~i.e., the exciton radius!
is much smaller than that of the center-of-mass motion~i.e.,
the characteristic length of the magnetic field inhomoge
ity!. This allows us to expand the vector potentialA(R
6mh(e)r /M ) into r power series restricting the considerati
with up to second order terms. Note that the exciton radiu
GaAs, e.g., is typicallyaB* 5«\2/me2.120 Å, while the
magnetic field inhomogeneity varies typically on a micr
scale.11,12,14 Within the adiabatic approximation, we obta
the following expression for the exciton Hamiltonian:

H5
\2

2m S 2 i¹ r1j
e

\c
$~r•¹R!A~R!% D 2

1
\2

2M S i¹R1
e

\c
@r3B~R!# D 2

2
e2

«r
, ~4!

where m5memh /M is the exciton reduced mass andj
5(mh2me)/M . The first term in the Hamiltonian, Eq.~4!,
describes the kinetic energy of the exciton relative motion
which the expressionj(r•¹R)A(R) can be interpreted as a
effective vector potential describing the local magnetic fi
jB(R…. We can choose the gauge such that (r•¹R)A(R)
5B„R)3r /21¹ r@(r•¹R)$r•A(R)%#/2, and simplify the
second term of this expression by applying the followi
transformation:

C~R,r !→exp$2 i j~e/\c!V~r !%C~R,r !, ~5!

with V(r )5(r•¹R)$r•A(R)%/2. The above transformatio
does not change the center-of-mass motion, and leads on
the appearance ofr 3-order terms in the relative motion
which are neglected in the present adiabatic approach
doing so, we obtain the following transformed Hamiltonia

H52
\2

2m
¹ r

22
e2

«r
1W11W22

\2

2M
¹R

2 , ~6!

where terms of first and second power in the magnetic fi
strength are denoted by
ld

ed
ic

-

in

n

to

In
:

ld

W15
e

2cm
jB~R!•L1

ie\

2Mc
$B~R!3¹R2¹R3B„R!%•r ,

~7!

W25
e2

8c2m
B~R!2r 2.

Here the symbolL5$r3(2 i\¹ r)% stands for the exciton
relative angular-momentum operator. Notice that in case
homogeneous magnetic field the above Hamiltonian redu
to the one which can be found in the literature~see Ref. 5
and references therein!. The exciton Hamiltonian in a homo
geneous magnetic field consists of a part with no magn
field dependence, a linear part~the angular-momentum term!
in the magnetic field, and a quadratic part~the diamagnetic
shift term! in the magnetic field. In the present Hamiltonia
which describes the exciton motion in a nonhomogene
magnetic field, we also have these terms, but now they
position dependent. We also have an additional term wit
linear dependence in the magnetic field@the last term in the
W1 Hamiltonian, Eq.~7!# that results from the gradient in th
magnetic field, and which modifies the exciton mass.

Now within the spirit of the above adiabatic approach, t
total exciton wave function is represented as the produc
the wave functions describing its relative and center-of-m
motions, i.e.,C(R,r )5F(r )c(R). Next, it is supposed tha
the relative motion wave functionF(r ) obeys the Schro¨-
dinger equation with the HamiltonianHrel which includes all
terms of total Hamiltonian, Eq.~6!, except the last one de
scribing the kinetic energy of the center-of-mass motion:

$Hrel2E~R,¹R!%F~r !50. ~8!

Note that contrary to the standard adiabatic approach15 the
relative motion Hamiltonian@see Eq.~7!# depends not only
on the center-of-motion coordinateR but also on the gradien
¹R . It does not complicate, however, the effective Ham
tonian derivation, but one should take into account that n
the eigenvalue of the relative motion equation, which usua
plays a role in the effective potential for the center-of-ma
equation, is an operator and gives the correction to the
netic center-of-mass operator as well. So, the effec
center-of-mass Hamiltonian has to be presented as follo

HCM52
\2

2M
¹R

21E~R,¹R!. ~9!

We solve the relative motion, Eq.~8!, by means of a
perturbation technique in magnetic field strength powers
stricting our consideration by the second-order terms. T
assumption is valid in the weak-field regime (\vc* ,2Ry* ),
where Ry* 5me4/2«2\2 is the effective Rydberg, andvc*
5eB/mc is the cyclotron-resonance frequency. This is t
magnetic field regime relevant for experiments with nonh
mogeneous magnetic fields14,16,17 which contrasts with ex-
periments in homogeneous magnetic fields where usually
high-field regime\vc* @2Ry* is reached. Notice that\vc*
52Ry* corresponds toB'5 T for GaAs.

Now taking into account the cylindrical symmetry of th
zero-order Hamiltonian

H052
\2

2m
¹ r

22
e2

«r
, ~10!
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we find the zero-order wave function

F0
n,m~r !5An,mS 2lnr

aB*
D umu

expS imw2
lnr

aB*
D

3Ln1umu21
2umu S 2lnr

aB*
D , ~11!

corresponding to the zero-order eigenvalue

E0~n,m!52ln
2Ry* , ln5~n21/2!21, ~12!

where the symbolsn andm stand for the radial and angula
relative motion quantum numbers,aB* is the effective Bohr
radius, An,m is the normalization constant determined
^F0

n,m(r )uF0
n,m(r )&51, and Ln

(a)(x) is the generalized La
guerre polynomial.18 Solving, in addition, the first-orde
equation

$H02E0~n,m!%F1
n,m~r !5$E1~n,m!2W1%F0

n,m~r !,
~13!

with the orthogonality condition̂F1
n,m(r )uF0

n,m(r )&50, we
obtain the first and the second eigenvalue corrections

E1~n,m!5^F0
n,m~r !uW1uF0

n,m~r !&5
e\

2mc
jBz~R!m,

~14!

E2~n,m!5^F0
n,m~r !uW2uF0

n,m~r !&

1^F0
n,m~r !u@W12E1~n,m!#uF1

n,m~r !&

5bm
n

e2aB*
2

8mc2
Bz~R!21am

n
e2\2aB*

2

2Ry* M2c2

3¹R$Bz~R!2¹R%. ~15!

Here the symbolsam
n andbm

n are numerical constants tha
follow from the averages in Eq.~15!. For a magnetic field
perpendicular to thexy plane we obtained the following val
ues: a0

1521/128, b0
153/8, a0

25365/64, b0
2535/4, and

a61
2 5145/128,b61

2 511/4.
Inserting the obtained eigenvalue corrections into Eq.~9!

we obtain the final expression for the effective Hamiltoni

HCM52
\2

2M
¹RH 12amr

nr
e2aB*

2

Mc2Ry*
Bz~R!2J ¹R2lnr

2 Ry*

1
e\

2mc
jmrBz~R!1bmr

nr
e2aB*

2

8mc2
Bz~R!2, ~16!

which describes the center-of-mass motion of the exc
with relative motion quantum numbers (nr ,mr) in the non-
homogeneous magnetic fields.

III. CYLINDRICAL SYMMETRY

From now on we limit ourselves to cylindrical symmetr
magnetic field profilesBz(R)5Bz(R). Then, the exciton
center-of-mass wave functionc(R) can be written as
n

c~R!5
1

A2p
exp$ imRf%c~R!, ~17!

wheremR is the quantum number corresponding to the ex
ton center-of-mass angular momentum. Hamiltonian Eq.~16!
then leads to the following radial Schro¨dinger equation:

H 2
\2

2R

d

dRF R

Me f f~R!

d

dRG1Ve f f~R!2EJ c~R!50,

~18!

where

Me f f~R!5
M

12amr

nr c1Bz~R!2
, ~19!

is the effective mass for the center-of-mass motion of
exciton, and

Ve f f~R!5bmr

nr c2Bz~R!21mrc3Bz~R!

1E0~nr ,mr !1
\2

2Me f f~R!

mR
2

R2
~20!

is the effective potential for the exciton with

c15
e2aB*

2

Ry* Mc2
, c25

e2aB*
2

8mc2
, c35

e\

2mc
j. ~21!

For GaAs we have typicallyaB* .120 Å, Ry* .5 meV,
c1.6.2531023 T22, c2.0.44 meV T22, and c3
.0.69 meV T21. Please note that the 2D exciton groun
state energyE0(1,0) is24Ry* .220 meV and the 2D exci-
ton size is one-half the Bohr radius,aB* /2560 Å. From the
above equations, we notice that the nonhomogeneous m
netic field modifies the exciton center-of-mass motion in
following ways. First the exciton feels aBz(R)2 effective
potential. It implies that excitons will be collected in a regio
where the magnetic field strength is minimum. Next, the
citon mass is enhanced, it increases withBz(R)2, which fa-
vors the localization of excitons. Third, the kinetic ter
gives a contribution proportional to the gradient in theB
field, i.e., adBz(R)/dR term. Finally, we see that the non
homogeneous magnetic field also interacts with the exc
angular momentum, and that this interaction is controlled
the difference in massj. The reason is that the exciton is
neutral particle, and if the electron and hole would have
same mass, the angular-momentum term would not con
ute because the electron and hole give the same contribu
but with opposite sign.

IV. MAGNETIC FIELD PROFILES

We solve Eq.~18! numerically using the confinement po
tential generated by two different nonhomogeneous magn
field profiles, which experimentally are created by the de
sition of ~a! a magnetized disk and~b! a superconducting
disk on top of a 2DEG, with a homogeneous magnetic fi
(Ba) applied perpendicular to the 2DEG. Such an expe
mental configuration results in a nonhomogeneous magn
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field profile in the 2DEG. The first profile~a! results in a
magnetic dipole type of profile, and the second~b! is also
called the magnetic antidot.13 A sketch of the two experi-
mental systems, the magnetized disk and the supercond
ing disk, are shown in the inset of Fig. 1~b! and Fig. 3~a!,
respectively.

A. Magnetized disk

To calculate the magnetic field created by a magneti
disk, we assume that the disk is very thin and is comple
magnetized in thez direction. Therefore, we can write th
magnetization in the following way:

M ~R!5hMd~Z2d!u~a2R!eZ , ~22!

whereh is the disk thickness,a is the disk radius,d is the
distance of the magnetic disk to the 2DEG,M is the mag-
netization,u(a2R) is the Heaviside step function, andZ and
R5AX21Y2 are cylindrical coordinates. The correspondi
vector potential can be calculated from the differential fo
of Ampéres law¹R

2A(R)524p¹R3M (R).19 In cylindrical
coordinates, the vector potential has only an angular com
nent,

Aw~R!54B0
DAa

R

1

p H 2E~p2!1S 12
p2

2 DK~p2!J ,

~23!

with

p52
AaR

A~a1R!21d2
, ~24!

whereB0
D5hM, andK(x) @E(x)# is the elliptic integral of

the first ~second! type. The magnetic field can be evaluat
straightforwardly fromB(R)5¹3A(R), which results in

Bz~R!5
~a1R!

~a1R!21d2
Aw~R!1B0

D ~a22R21d2!

R2AaR

3p3H 2
]

]p2
E~p2!2

1

2
K~p2!

1S 12
p2

2 D ]

]p2
K~p2!J . ~25!

The magnetic field profile of the magnetized disk~the
magnetic dipole profile! in the 2DEG ford50.2 mm, a52
mm, andB0

D50.1 T is shown in the inset of Fig. 1~a!. Due to
the quadratic dependence of the effective potential on
magnetic field@see Eq.~22!#, we can maximize the confine
ment potential by applying a homogeneous fieldBa to the
magnetic dipole profile,Bz

total(R)5Ba1Bz(R). We use the
experimental results of Dubonoset al.16 in order to take val-
ues for the applied field (Ba) smaller than the coercivity
field, which has a strong dependence with the radius of
magnetized disk.16

The magnetic dipole profile in the 2DEG for differe
values of the relationd/a are shown in Fig. 1~a! @Fig. 2~a!#
as a function of the radial coordinate, in the presence o
homogeneous magnetic fieldBa50.35 T (Ba520.25 T!,
ct-

d
ly

o-

e

e

a

where we tookB0
D50.1 T. We also show in Fig. 1 (Ba

50.35 T! and in Fig. 2 (Ba520.25 T! the effective poten-
tial, Eq. ~20!, for the exciton center-of-mass motion for th
1s @Fig. 1~a! and Fig. 2~a!#, and for the 2p2 @Fig. 1~b! and
Fig. 2~b!# exciton relative motion quantum state, and t
effective mass@Fig. 1~b! and Fig. 2~b!#, Eq.~19!, for the 2p2

exciton relative motion quantum state.

FIG. 1. ~a! Effective potential formR50 and (nr ,mr)5(1,0)
and the magnetic field profileB(R) of the magnetized disk~inset—
magnetic field profile in the 2DEG in the absence of a backgro
field! with a positive homogeneous applied fieldBa50.35 T, as a
function of the radial coordinateR, for d/a50.1 with Ve f f(R)
~solid! and B(R) ~dotted!, and d/a50.2 with Ve f f(R) ~dashed-
dotted! and B(R) ~dashed!. ~b! Effective potentialVe f f(R) for nr

52, mr521 with ~i! mR50 ~solid! with corresponding effective
massMe f f(R) ~dashed!, and ~ii ! Ve f f(R) for mR51 ~dotted! as a
function ofR, for d/a50.1. We tookB0

D50.1 T and the disk radius
a52.0 mm.

FIG. 2. ~a! Effective potential formR50 and (nr ,mr)5(1,0)
and the magnetic field profileB(R) of the magnetized disk with a
negative homogeneous applied fieldBa520.25 T, as a function of
the radial coordinateR, for d/a50.1 withVe f f(R) ~solid! andB(R)
~dotted!, and d/a50.2 with Ve f f(R) ~dashed-dotted! and B(R)
~dashed!. ~b! Effective potentialVe f f(R) for nr52, mr521 with
~i! mR50 ~solid! with corresponding effective massMe f f(R)
~dashed!, and~ii ! Ve f f(R) for mR51 ~dotted! as a function ofR, for
d/a50.1. We tookB0

D50.1 T and the radiusa52.0 mm.
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Notice that the effective potential, Figs. 1 and 2, is ne
tive. This is due to the energy shift resulting from the ze
field exciton relative motionE0(nr ,mr) in the equation of
the effective potential@see Eq.~20!#. This energy increase
with the increasing principal relative motion quantum nu
ber nr @see Eq.~12!#. Also notice that the effective potentia
of the excited levels of the exciton relative motion@e.g., see
Figs. 1 and 2~b! for the 2p2 state# has a confinement regio
larger than the 1s relative quantum level. The reason for th
is as follows: the coefficient of the diamagnetic term in t
effective potential equation@the term with quadratic depen
dence in the magnetic field in Eq.~20!#, bmr

nr , is related to the

averaging ofr 2 in the wave function of the exciton relativ
motion, i.e., bmr

nr }^F0
nr ,mr(r )ur 2uF0

nr ,mr(r )& @see Eq.~15!#

which increases for increasingnr . Then, the confinement fo
the nr exciton relative motion states should be stronger th
the one for thenr21 relative state. Further, the excito
angular-momentum term in the exciton Hamiltonian is,
practice, bigger than the diamagnetic term. This is beca
the effective potential for the exciton relative motion qua
tum states withmrÞ0 has confinement energies larger th
the one for the relative levels withmr50 @compare, e.g., the
energy range in Figs. 1~a! and 1~b!#.

The last term in our effective potential, Eq.~20!, is related
to the angular momentum of the exciton center-of-mass
tion, mR . In that case, it contributes to the potential like
centrifugal term (mR /R2), and leads to a peak nearR50
@see the dotted curve in Figs. 1 and 2~b!#. Also notice that the
effective mass is position dependent@see dashed curve i
Figs. 1 and 2~b!#. It is larger than the normal exciton mas
M50.407 although its increase is small.

B. Superconducting disk

The magnetic antidot was recently discussed by Reijn
et al.,13 where the properties of electrons in a tw
dimensional system confined by such a magnetic ant
were investigated. They found that the magnetic field pro
below a very thin type-I superconducting disk is given by

Bz~R!5BaH 11
2

p F az

~a21z2!
2arctanS a

z D G J
1

2Ba

p

az~a22h2!

~a21z2!~z21h2!
, ~26!

with

z25
1

2
@A~R21d22a2!214a2d21~R21d22a2!#,

h25
1

2
@A~R21d22a2!214a2d22~R21d22a2!#,

~27!

wherea is the disk radius, andd the distance of the super
conducting disk to the 2DEG. In Fig. 3~a! the magnetic field
profile resulting from the superconducting disk~magnetic an-
tidot!, and the effective potential, Eq.~20!, for the 1s exciton
relative motion quantum state is shown fora50.3 mm and
-
-

-

n

se
-

o-

rs

ot
e

for d/a50.1 ~dashed and dashed-dot curves! and d/a
50.01 ~solid and dotted curves!. The effective mass, Eq
~19!, and the effective potential for the 2p2 exciton relative
motion quantum state is plotted in Fig. 3~b! for d/a50.1.
We took in Fig. 3~a! @Fig. 3~b!# an applied magnetic fieldBa
of 2 T ~1 T!. Notice that the magnetic field in the 2DEG
suppressed below the superconducting disk and an overs
is found near the edge of the disk, which becomes smoo
with increasing distanced between the superconducting dis
and the 2DEG. The exciton will prefer to localize below th
disk becauseVe f f is smaller there. This is no longer true fo
the 2p2 state @see Fig. 3~b!# where nowVe f f has a local
minimum near the edge of the disk where the magnetic fi
exhibits the largest gradient. This occurs when the app
field Ba is such that the diamagnetic term~quadratic in the
magnetic field! in the effective potential, Eq.~20!, becomes
comparable to the angular-momentum term~linear in the
magnetic field!.

V. NUMERICAL RESULTS FOR THE EXCITON
TRAPPING ENERGY

We have calculated the trapping energy and wave fu
tions of an exciton in a GaAs 2DEG in the presence of
above nonhomogeneous magnetic field profiles~magnetic di-
pole and magnetic antidot profiles!. The electron and hole
mass and the dieletric constant used in our calculations4

me50.067m0 , mh50.34m0, and «512.53, respectively.
The problem of finding the eigenfunctions and energies
Eq. ~18! was solved by using a similar numerical discretiz
tion technique as was used in Ref. 20.

We define the exciton trapping energy as the differen
between the exciton energy in the homogeneous applied
Ba and the energy of the exciton in the nonhomogene
magnetic field profile for the same exciton state. Followi

FIG. 3. ~a! Effective potentialVe f f(R) for mR50, (nr ,mr)
5(1,0) and corresponding magnetic field profileB(R) of the super-
conducting disk, as a function of the radial coordinateR, for d/a
50.1 with Ve f f(R) ~dashed-dot! and B(R) ~dashed!, and d/a
50.01 with Ve f f(R) ~solid! and B(R) ~dotted!, and ~b! effective
potentialVe f f(R) for nr52, mr521, mR50 ~solid! with corre-
sponding effective massMe f f(R) ~dashed!, and Ve f f(R) for mR

51 ~dotted!, as a function ofR, for d/a50.1. We took the radius
a50.3 mm and an applied fieldB0 of ~a! 2 T and~b! 1 T.
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this definition, a positive exciton trapping energy implies th
the exciton is trapped in the effective potential created by
field inhomogeneity. The influence of all the terms in Eq
~21! and ~22! on the exciton trapping is extensively di
cussed. The possibility of exciton trapping by using the c
finement potential created by the magnetic dipole, Figs
and 2, and the magnetic antidot, Fig. 3, are analyzed. In
the following figures, if not explicitly stated otherwise, th
disk radius and the distance to the 2DEG used for the m
netized disk and for the superconducting disk area52 mm
anda50.3mm, respectively, and we took the distance to t
2DEG equal tod50.1a.

The trapping energy for the ground-state of the excit
for the center-of-mass quantum numbers (nR ,mR)5(1,0)
~dashed curves! and~1,1! ~triangles! are shown in Fig. 4 for
the magnetic dipole profile with a homogeneous applied fi
of ~a! Ba50.35 T and~b! Ba520.25 T as a function of the
magnetization of the diskB0

D . Similar results are shown in
Fig. 5 for the magnetic antidot profile as a function of t
applied magnetic fieldBa . Notice that for both profiles in
low fields, the trapping energy is negative~i.e., unbound
state!, indicating that a large part of the center-of-mass ex
ton wave function is extended into the magnetic barrier

FIG. 4. Exciton trapping energyEB for (nR ,mR)5(1,0) ~dashed
curve! and ~1,1! ~triangles!, and (nr ,mr)5(1,0), for the magnetic
dipole profile as a function ofB0

D , for ~a! Ba50.35 T and~b! Ba

520.25 T, and fora52 mm andd/a50.1.

FIG. 5. Exciton trapping energyEB for (nR ,mR)5(1,0)
~dashed curve! and ~1,1! ~triangles!, and (nr ,mr)5(1,0), for the
magnetic antidot profile as a function ofBa , and ford/a50.1 with
a50.3 mm.
t
e
.

-
1
ll

g-

,

d

i-
-

gion. The (nR ,mR)5(1,1) is an excited state and require
slightly larger magnetic fields to become bound. With i
creasing magnetic field the exciton becomes more and m
confined, which increases the trapping energyEB . The mag-
netic disk in the presence of a negative applied field@Fig.
4~b!# has a critical field where the trapping energy starts
decrease with increasing field. This is due to the competit
between the magnetic field generated by the diskB0

D and the
applied fieldBa . When the field of the disk increases, th
center region of the corresponding effective potential@see the
solid curve in Fig. 2~a!# which has a peak structure can b
come comparable toVe f f at the edge of the disk which fo
large B0

D @e.g., for (nR ,mR)5(1,0) in Fig. 4~b! this occurs
for B0

D.0.06 T# may lead to a complete vanishing of th
confinement region. One can increase the trapping energ
applying a stronger homogeneous fieldBa , which is not
trivial due to the limited coercivity field and for sufficien
largeBa it will flip the magnetization of the disk and we en
up in the situation of Fig. 1~a!.

The angular-momentum interaction with the magne
field is responsible for important effects in the trapping
atoms by nonhomogeneous magnetic fields.7 In two-
dimensional exciton systems, the momentum-field inter
tion is of importance in a variety of exciton properties. T
exciton trapping energies for the seven lowest levels of
center-of-mass motion, for the~a! 2p2, ~b! 2s, and~c! 2p1

exciton relative motion quantum states are shown in Fig
~Fig. 7! for the magnetic dipole profile with Ba

50.35 T (Ba520.25 T! as a function ofB0
D , and in Fig. 8

for the magnetic antidot as a function ofBa . In the case of
the magnetic dipole profile, the exciton in the 2p6 states is
much more confined than the 2s state. The reason is that th
angular-momentum term in Eq.~20! gives a confinement po

FIG. 6. Exciton trapping energyEB as a function ofB0
D , for the

magnetic dipole profile for a homogeneous applied fieldBa

50.35 T, fora52 mm andd/a50.1, and fornr52, and~a! mr

521, ~b! mr50, and~c! mr511. The different curves correspon
to the different exciton center-of-mass levels (nR ,mR)5(1,0)
dashed curve,~1,1! triangles,~2,0! dotted curve,~2,1! squares,~3,0!
solid curve,~3,1! circles, and~4,0! dashed-dotted curve.
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tential stronger than the diamagnetic term. Notice that in
case of a negative applied field, due to this strong confi
ment of the 2p6 states~Fig. 7!, only the 2s state is affected
by the competition between the fieldsB0

D and Ba as was
discussed for Fig. 4. The trapping energy of the superc
ducting disk profile also increases with increasing magn
field but for the 2p2 exciton relative motion quantum sta
@Fig. 8~a!# there is a local maximum in the trapping energ
This energy starts to decrease after some field@Ba51 T in
Fig. 8~a!#, which is exactly when the quadratic term~posi-
tive! begins to be comparable to the angular momentum t
~negative! in Eq. ~20! @see effective potential in Fig. 3~b!#.

Also notice that the exciton center-of-mass quantum l
els with non zero angular momentum (mRÞ0) have only
slightly higher energy than the levels withmR50. The rea-

FIG. 7. The same as in Fig. 6 but now for the magnetic dip
profile with a homogeneous applied field ofBa520.25 T.

FIG. 8. The same as in Fig. 6 but now as a function ofBa , for
the magnetic antidot profile, fora50.3 mm andd/a50.1.
e
e-

n-
ic

.

m

-

son is because themR50 term in the effective potential, Eq
~20!, only is responsible for a very small peak nearR50
which gives a very small contribution to the total effectiv
potential. The trapping energy in Figs. 6–8 is typically tw
orders of magnitude larger than the one for the 1s state of the
exciton relative motion. In general, the trapping energy c
responding to thenr exciton relative quantum state resultin
from the magnetic field inhomogeneity should be bigger th
the one corresponding to thenr21 quantum state. This ca
be easily understood from the effective potential equati
Eq. ~20!. The coefficient of the diamagnetic termbmr

nr in-

creases with increasingnr which increases the exciton trap
ping energy.

Figures 9~a! and 9~b! and Fig. 10 show the ground-sta
radial wave function of the exciton center-of-mass moti
@see Eq. ~18!# for the magnetic dipole profile forBa
50.35 T andBa520.25 T, and for the superconductin
disk, respectively, as a function of the radial coordinateR for
the quantum numbers of the relative motion (nr ,mr)
5(1,0), for different values ofB0

D ~magnetized disk! andBa

~superconducting disk!. Notice that with increasing magneti
field the exciton becomes more localized. The wave fu
tions in Figs. 9~b! and 10 correspond to the effective pote

e

FIG. 9. Exciton center-of-mass radial wave functionc(R) as a
function of the radial coordinateR, for the magnetic dipole profile
for ~a! Ba50.35 T and~b! Ba520.25 T, for (nR ,mR)5(1,0),
(nr ,mr)5(1,0), for a52 mm and d/a50.1, and for B0

D

50.02 T ~dotted!, 0.06 T ~solid!, and 0.1 T~dashed!.

FIG. 10. The same as in Fig. 9~a! but now for the magnetic
antidot profile, fora50.3 mm and d/a50.1, and forBa51 T
~dotted!, 1.5 T ~solid!, and 2.0 T~dashed!.
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tial profiles of Fig. 2~a! and Fig. 3~a! which have the mini-
mum of the potential near the center of the disk, and that
where the exciton is localized. In contrast to the case of F
9~a! the effective potential@see Fig. 1~a!# has its minimum
near the outer edge of the disk where the exciton becom
localized. In the latter case the center-of-mass wave funct
will have a ringlike structure.

In order to investigate the dependence of the exciton tra
ping energy on the size of the magnetic field inhomogenei
we calculated the trapping energy for the 2s exciton relati
motion quantum state@i.e., (nr ,mr)5(2,0)], as a function of
the disk radiusa. The results are shown in Figs. 11~a! and
11~b! for the magnetic dipole profile withB0

D50.05 T and a
homogeneous field ofBa50.35 T andBa520.25 T, re-
spectively, and in Fig. 12 for the magnetic antidot profi
with B050.5 T, in each case for the seven lowest quantu
numbers of the center-of-mass motion. In Fig. 11~Fig. 12!
we took the distance to the 2DEGd50.2 mm (0.03 mm).
The trapping energy increases with disk radius but it sa
rates for largea. The reason is that for sufficiently largea
only the width of the potential minimum increases but n

FIG. 11. Exciton trapping energyEB for (nr ,mr)5(2,0), as a
function of the disk radiusa, for the magnetic dipole profile for~a!
Ba50.35 T and ~b! Ba520.25 T, for d50.2 mm and B0

D

50.05 T, and for center-of-mass quantum numbers (nR ,mR)
5(1,0) dashed curve,~1,1! triangles, ~2,0! dotted curve,~2,1!
squares,~3,0! solid curve, ~3,1! circles, and~4,0! dashed-dotted
curve.
a

is
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n

p-
y,
e

-

longer the depth and consequently, the trapping energy
comes equal to the depth of the minimum inVe f f.

VI. CONCLUSIONS

In conclusion, we have developed a formalism to descr
the exciton motion in a two-dimensional system, in the pr
ence of a nonhomogeneous magnetic field. We assumed
the length scale for the variation of the magnetic field is la
as compared to the exciton radius. We have theoretic
calculated the exciton trapping energies for the nonhomo
neous magnetic fields created by a magnetized disk~the
magnetic dipole type profile! and by a superconducting dis
~the magnetic antidot!. The results have shown than the tra
ping energy has a significant dependence on the radius
profile of the nonhomogeneous magnetic field, as well as
the homogeneous applied background magnetic fieldBa .
Further, the exciton angular-momentum interaction with
nonhomogeneous magnetic field can be responsible for s
as big as a factor of 10 in comparison with the states w
zero angular momentum. In the present analysis we
glected the spin of the electron and the hole which may h
an important effect on the trapping energy when the effec
g factor is substantially different from zero. The analysis
the latter will be left for future research.
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