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Exciton wave function, binding energy, and lifetime in InAs/GaSb coupled quantum wells
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We studied theoretically excitons in narrow-coupled InAs/GaSb quantum wells where there is not any
overlap between the InAs conduction subband and the GaSb valence subband. In this case, excitons do not
exist in the equilibrium and the luminescence of pumped excitons can be observed. We calculated the exciton
binding energy making use of the variational method. The resulting binding energy is around 4 meV. We also
calculated the exciton lifetime for both radiative recombination and nonradiative recombination. Due to the
unique band alignment of InAs/GaSb, the recombination can happen via two channels: first, mixing of the
conduction band of InAs with the valence band of GaSb and second, electron tunneling from InAs conduction
band to GaSb conduction band and hole tunneling from GaSb valence band to InAs valence band. The fastest
recombination process is the radiative process in the second channel. The lifetime varies with the well widths
from 45 ps for narrow wells to 400 ps for wider wells.

[. INTRODUCTION InAs conduction subband and GaSb valence subband or
semiconducting, where there is no such overlap. If the gap in

Spatially indirect excitons in coupled quantum wells at-semiconducting InAs/GaSh heterostructure is larger than the
tract much interest recently both for possible applications irexciton binding energy then excitons do not exist in equilib-
light-emitting devices and from the fundamental point of rium and they have to be pumped optically or with the help
view, e.g., Bose Einstein condensation of excitbd$.Con-  of an external electric field as in laser systeth&'
finement of excitons in quantum well increases their binding The first problem that is considered in the present paper is
energy and spatial separation of electrons and holes increasg® exciton binding energy and wave function in InAs/GaSh
the exciton lifetime'?~16 coupled quantum wells. Strictly speaking, this calculation is

Most of the attempts to detect exciton Bose-Einstein consimilar for equilibrium and nonequilibrium excitons, i.e., for
densation have been made in GaAg4 _,As coupled semimetallic and semiconducting samples. The important pa-
wells. Electrons and holes in this structure were pumped oprameters are, however, the widths of the wells.
tically and in order to increase the exciton lifetime they were  An important parameter of nonequilibrium excitons that
separated spatially by the application of an external electridetermines their luminescence intensity and affects the pos-
field.}’~*! During the last years, a lot of work has been donesibility of their Bose condensation is the recombination life-
also in InAs/GaSb heterostructures due to the unique bangime. And the second problem that we consider is the evalu-
alignment of these materials. The bottom of the conductioration of the exciton lifetime in semiconducting InAs/GaSh
band in bulk InAs lays below the top of the valence band incoupled quantum wells.
bulk GaSb, so there is an overlap between these bands. Due The photon emission, however, is not the only recombi-
to this overlap electrons from the full valence band of GaSkation mechanism. An exciton can recombine also by emit-
are transferred to the empty conduction band of InAs leavinging phonons. To compare the radiative and nonradiative
holes behind in the GaSb layer. As a result, a double layer if.e., with phonon emissigrrecombination mechanisms we
formed where electrons are confined in InAs while holes arealculate the nonradiative lifetime with emission of one
confined in GaSh and the exciton state can be the grounacoustic phonon. This mechanism may work in case of not-
state of the systeff.° very-narrow quantum wells where the total energy of the

However, the advantage of excitons formation in equilib-exciton (the separation between the electron and hole levels
rium leads also to a difficulty in their observation. Equilib- minus the exciton binding enerpys not larger than the
rium excitons do not luminesce and the only optical experi-maximal acoustic phonon energy. The nonradiative lifetime
ment that can be used is infrared absorption. A success in theppears to be by a few orders of magnitude larger than the
exciton infrared absorption has been reported so far only imadiative one. For this reason, we do not consider high-order
the presence of high-magnetic fiét?2 All these results processes with emission of more than one phonon or phonon
motivated us to consider narrow InAs/GaSbh quantum wellsand photon emission. We also do not consider recombination
where excitons do not exist in equilibrium and therefore, carwith optical phonon emission, which is relevant only in a
be detected by luminescence measurements. very narrow exciton energy region.

In InAs/GaSb quantum wells the overlap between the In the next section, we present our model for the calcula-
ground electron subband in InAs and the ground hole subtion of the exciton envelope function and the exciton life-
band in GaSb is reduced compared to the band overlap itime. In Sec. Ill, we calculate the exciton wave function and
bulk materials or even completely eliminated by the sizeit's binding energy using the variational principle, neglecting
guantization energy. Depending on their width, such coupledhe penetration of electron and hole wave function between
wells can be semimetallic, where there is an overlap betweethe wells. In Sec. IV, we describe this penetration, which is
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Conduction Conduction Another simplification that we used in the calculation of
the exciton structure is parabolic in-plane dispersion laws for
both electrons and holes. This is a usual approximation for
the electron spectrum, however, for the hole spectrum this
Condustion approximation deserves a justification.

In quantum wells the degeneracy of the bulk valence band
is lifted due to the size quantization. In a GaSb well of
100-A width, the separation between the first subbéitd1)

£ and the next levelLH1) is 45 meV. This separation is much
PO valence larger than the exciton binding energy. In InAs/GaSh semi-
HH1 conducting heterostructures, the width of the GaSb well is
typically smaller than 100 A so the main contribution to the
RV -~ exciton envelop wave function comes from the first subband.
valence The dispersion law of HH1 subband is nonparabolic and
strongly anisotropié}*2However, close to the subband edge
the spectrum has a parabolic “pocket” with the mass signifi-

FIG. 1. InAs/GaSb-coupled quantum wells sandwiched betweegantly smaller than the bulk hole ma$s®® For infinite
bulk samples of AISb. The dashed line in the InAs layer in the firstquantum well the “pocket” effective mass is given by the
electron subband and the dashed line in the GaSb layer is the firgixpressior->°
heavy-hole subband. In this example the structure is semiconduct-
ing, i.e., there is no overlap between InAs first conduction subband
and Gasb first valence subband. 1 7% yg\/m [( \/mﬂ')

—=y;+7y,—3—+3 co
m Y2 Y3 Y1t+2v;

AISb InAs GaSb AISb

. L 2)
necessary for the calculation of the exciton lifetime. In Sec. 27
V, we obtain an expression for the exciton radiative lifetime. 2.9

In Sec. VI, we calculate the recombination rate due to pho-

non emi_ssi_on. In the last section, we show numerical resultﬁ,hereyl, v,, and y, are Luttinger parameters. For a small
for the lifetime in few cases and discuss them. enough wave vectok=<1/L,, whereL, is the well width, the
parabolic description is a good approximation of the spec-
trum. Our calculation shows that the exciton radius is by a
few times larger than the width of the GaSb layer so the
The physical system that we consider consists of two thirtelevant wave vectors is smaller tharL 1/ Due to a finite
layers, one of InAs and the other of GaSh, sandwiched todepth of the well, the effective mass depends on the well
gether in between bulk samples of a material that suppliewidth and the maximum of the corresponding correction to
high potential barrier for the carriers, e.g., Al&8ee Fig. L Eqg. (2.1) reaches 25% for the well widths that we consider
The offset between the InAs and the AISb bulk conduction(L, =50 A). The exciton binding energy and wave function
bands is about 2 eV, and between the InAs and the GaSttepend on the reduced magss mem;/(mg+my). Here, the
conduction bands is about 0.85 82°These barriers form a electron massn, is by approximately three times smaller
quantum well for electrons in the InAs layer. The offset be-than the hole mass) so that the resulting correction fois
tween the GaSb and the AlSb bulk valence band is 0.4 eVabout 8% and we neglect it. So, for the calculation of the
and between the GaSb and the InAs bulk valence band igxciton structure it is possible to use the isotropic parabolic
0.51 eV?>?®these barriers form a quantum well for holes in hole spectrum with the effective mass given by E2.1),
the GaSb layer. which in GaSb is 0.08n, (for y;=11.8, y,=4.03, andy;
In the calculation of the exciton wave function and bind- =5.26).
ing energy we assumed that electrons and holes are confined Another important point of the calculation of the exciton
separately in infinite quantum wells. The neglect of the carbinding energy and wave function is that different dielectric
rier penetration between adjacent wells is justified as folconstants in different layers of a heterostructure can strongly
lows. affect Coulomb interactio’~*! Dielectric constants of InAs
There are two penetration channels in this heterostructurand GaSb are 15.15 and 15.69, respectively and their differ-
One is due to tunneling of electrons to the GaSb conductioence can be neglected. The dielectric constant of AISb is
band and tunneling of holes to the InAs valence band. Thid2.04. The difference between the dielectric constant of the
tunneling is weak due to the high-potential barriers. double layer and the cladding layers is important only at the
Another penetration channel is due to the mixing of InAsdistances larger than the width of the double layer. The ex-
conduction electrons and GaSb valence electrons. Accordingjiton radius is a few times larger than the width of the double
to vertical transport experiments this mixing is also quitelayer and one can expect that the effect of the dielectric
small. For example, in GaSbh-InAs-GaSb heterostructure theonstant difference of 20% is small. However, this is not
current is evidently due to resonant tunneling, which indi-obvious because the dependence of the exciton energy and
cates the formation of energy levels in the InAs layer due tadhe wave function on the dielectric constant can be stronger
size quantizatioR’ >°Such levels can be formed only in the than linear(the energy of a bulk exciton is inverse propor-
case of a weak penetration of carriers from InAs layer totional to the dielectric constant squajedo obtain the cor-
GaSh. rect result and to estimate the effect of the different dielectric

Il. GENERAL DESCRIPTION OF THE MODEL
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constants, we carry out the calculation of the exciton bindingsources(which is not sufficiently appreciated in many pub-

energy and wave function for two cases. In the first one, wdished calculations E.g., we prefer to use perturbation

neglect the difference of the dielectric constagtm differ-  theory even in the cases when the exact solution is known,

ent layers and assume= 15 all over the whole heterostruc- for instance, in the calculation of the electron wave-function

ture. In the second case, we consider the dielectric constatsil in the GaSb conduction band.

x=15 inside the quantum wells angd =12 in the cladding

layers. Ill. EXCITON ENVELOPE FUNCTION

In the second part of the paper, we calculate the radiative AND BINDING ENERGY

and nonradiative lifetime of the exciton. For this calculation,

we have to go beyond the infinite wells approximation due to \We consider a system with the following geometry: to the

the following argument. Recombination is a transition of anleft, —L.<z<O0, there is an InAs layer that is a quantum

electron from an initial state with the wave functidn,(r) ~ Well for electrons. To the right, €z<L,, there is a GaSb

to a final state with the wave functiobi,¢(r) with emission layer, which is a quantum well for holes. The layers are

of a photon or a phonon. The same process can be describé@ndwiched in between a material that supplies high-

as the annihilation of an electron from the stitg(r) and a  potential barriers for both InAs electrons and GaSb holes,

hole from the statel,,(r)=¥#(r). The matrix element of €.9., AlSb(see Fig. 1 In this section, we find the exciton

this process is envelope function and binding energy assuming complete
confinement of the holes in the GaSb layer and the electrons

. - - . o in the InAs layer.
M :f W) Hind(r)Wei(r)dr The Schrdinger equation for the exciton envelope func-
tion is
=] oGy, [Hoet Hun—ViFe, Fo) 10 (e, Fo) = E@(F ), (3.0
(2.2

Wheretb(Fe,Fh) is the exciton envelope function, and

whereH;(r) is electron-photon or electron-phonon interac-
tion Hamiltonian. When theeelectroan and the hole are bound Hee= — 1 (3.29
in exciton the product¥;(r,)Wei(re) is replaced by the
exciton wave function? . (r,ry), so that

Hyp=—A— — (3.2b

M=f S(re= 1) Hin(Te) WexTe,Tn)dredry . (2.3
Here, V. and Vy, | are the derivatives with respect to in-
It is important that the matrix element contains the excitonp|ane coordinates of electroﬁe |, and hoIe,Fh |, respec-
function (or its derivativeg at zero distance between electron tively. A~150 meV is the enérgy difference between the
and hole’” Electron and hole in InAs/GaSb-coupled quan-pottom of the conduction band in bulk InAs and the top of
tum wells can appear at one point only if electrons from thene valence band in bulk GaSin,= 0.026m, is the electron
conduction band of InAs pass to the GaSb conduction Ogfective mass in InAsn, =0.27m, andm;=0.08m, are the
valence band or if holes from the GaSb valence band passcEerpendicular and parallel to the layer plane GaSb heavy-

the InAs conduction or valence band. As we explainedhgje effective masses. The electron-hole Coulomb interac-
above, the penetration is small in all possible tunneling chan:

nels. That means that the tails of the electron wave functiorﬁ'on’ V(re.rn), in the case of the same d'eleCt.”C _constants

in GaSb and the tails of the hole wave function in InAs" the quantum wells and the cladding material is

necessary for calculation of the matrix elemé€aB) can be o2

found with the help of the perturbation theory. V(Feth)z _ (3.3
We realize that the accuracy of our calculation is limited. \/(z —7 )2+(; -r )2

One of the fundamental reasons for such a limitation is that XN Le™ % el "hl

presently the exact form of the boundary conditions at interin the case when the dielectric constantin the cladding

faces between different materials is not known. We mean nghyers is different from the dielectric constaptn the quan-

only the boundary condition connecting conduction bandum wells, the solution of the Poisson equation will result in
wave function in InAs with the valence-band wave function

in GaSb. Even the boundary conditions connecting wave = g2 d2
functions of the conduction band of two different materials V(r,r,) = J —2e_lkr\l[tze_k(l-\/"'Lc)ek(zh_ze)
are not known exactly. In general, these boundary conditions X J (2m)°kg

contain an unknown parametthat is usually taken to be
equal unity without any reason except the simplification of
calculations. This and similar reasons convinced us to chose +s%ekbvtlogkzn—ze)], (3.9
in our calculations a simple model, which is easy to use.

Indeed, any sophistication of the model makes the calcuIaNhereF“:Fe,||—Fh,||, t=1—(x1/x), s=1+(x1/x), and
tion much more difficult but do not improve its reliability

because the uncertainty of the result comes from other g=s?ekbvTlo —2gkLytLlo) (3.5

+2stcoshk(z,+ze+L.—L,)
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we takey=15 andy, = 12. - V(Lo L, f+e |#(T)=0, (313
The boundary conditions for the unperturbed problem, #

i.e., two infinite quantum wells are where

As it has already been mentioned, for numerical calculations [ A2y2

D(re, )= 1, =P(Te,Mp)],,—0=0,  (3.69 . L, (o , ,
V(LCva:rH):_ 0 dZh L dze|¢c(ze)| |‘/’v(zh)|

(Mo M)y, =P(Te T, -0=0. (3.6 .
XV(re,rn), (3.14
To simplify the solution of the Schdinger equation we

assume that the quantization energyzidirection is much and the eigenvalue of E@.1) is

larger than the in-plane kinetic energy and the Coulomb en- 22
ergy. This assumption is confirmed by the result of the cal- E=EO+ —e. (3.15
culation. So, in the leading order E@.1) is reduced to M
B2 2 K2 52 Here,M =mg+m.
- A ) =EOd(r. r The substitution of Eq43.9) and (3.3 in Eqg. (3.14 re-
2me 922 om, o2 D(rg,r)=EQd(rg,ry,). e qs3.9 (3.3 q.(3.19
o0 — -k c
The solution to this equation is found by separation of vari- V(Lo L )= — 16W4ezf (1-e ¥
ables el XLy Jo k(a2 +K2L2)
S Fy= S r 1-e kv
qj(re!rh) wc(ze)lﬂv(zh)f(rh,“ ’re,H)! (38) Xk((4 2+k2L)2) Jo(kl’”)dk, (316)
wheref(ry, o) is an arbitrary functiony, andy, for the T v
ground state are whereJy(kr) is the Bessel function.
5 When we consider the different dielectric constants of the
. cladding materials and use .4) instead of Eq(3.3), we
e(ze) = \/L: sinkeze, (3.9a . g E@4 a3
c get:
Uy(zn)=\/ 2 sink (395  V(Lg,Ly.rp) 16”262f°° Jo(krp)dk
zn)= \/ — sinknz,, . Ly rp)=-—
vion L, o et XLy Jo k(4m2+ KL k(472 + KPL2)g
for —L.<z.<0, 0<z,<L, and equal zero outside of these X {t?(1—e k) (1—e *e) + s?(eke—1)
regions. Alsoke= /L., ky=/L,, E9Q=E.+E,, and
X(ekbv—1)+st (ektv—1)(1—e KLe)
252 272
B T +(1—e Kb (ekte—1)]}. (317
2m,L2 2m, L2

We are interested in the ground state of the exciton for
To find the first order correction to the energy due to theyhich ¢’(FH) depends only on the modulus ‘if- We find

electron-hole interaction we have to calculate the diagonalunction ¢(r) with the help of variational method. To obtain
matrix element of ther, | andr dependent part of the more confident results we made the calculation for a few trial
Hamiltonian(3.1) between the functiong. i, . This calcu-  functions. We chose them making use of the asymptotic be-
lation leads to an equation fdj(r*h'H ,Fe]”)_ We factorize this havior of th_e Coulomb potential. At a distance much larger
function into a part that describes the in-plane exciton mothan the width of the wellsy=—e?/yr. That means that
tion as a whole, and a part that describes the relative motiob(r) falls off at larger as a simple exponent. So we took
of the electron and the hole,

1 r
R _ eIKQ”FEH R ¢1(r,a): —eX4 - 2_] (318
ey o) == 00 (3.1 V2ma @

as the first trial function. At small the Coulomb potential
(3.16 goes to a constarfthe confinement in the direction
leads to cutoff of the Coulomb potential at=0, so that
V(0)~—(e?/xL)2In2, for L;=L,=L). That is¢(r) can
be expanded in powers of at smallr. So as the second trial
(3.1  function we took

where S is the normalization are&{H is the exciton wave
vector and

IO - > meI?eY”-F m||Fh’||
MI=Te =T Rn=—me+m”

: : . 1 r2
The part that describes the exciton structure satisfies the (r)=——exp — _} (3.19
equation b2 Jma 2a°
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TABLE I. The values of the variational parameters, the exciton binding energies of the three trail
functions and the rms of the third trail functionsj for two well widths.

L AT LJA] rfA] b[A] a[A] «[A] ryA] e,[meV] &,[meV] e;3[meV] E[meV]

50 80 121 137 323 165 359 2.93 2.77 3.00 36

60 60 113 135 318 162 352 3.02 2.83 3.09 118

that is quite often used in variational calculations. As thewave function, ¢3 (see Appendix B and compared the
third trial function we took a function that satisfied both value|q,|? for k=1/L, with | ¢50%. It appears that for the

asymptotes, structures that we studied the rafig,|%/| p3o? is smaller
than 10°3.
a(r buro) 1 p{ \/r2+r(2)—r0] Finally, we compare the quantization energies in the well
rbrg)=—m————exp —————— i indi iusti imati
3 0 /—27Tb(b+ ro) 2b with the binding energy to justify the approximation that was

(3.20 made in the transition from Eq$3.1) to (3.7) and (3.13.

' The separation between the first and the second levels in the
(compare Refs. 44—47a, a, ry andb in Egs.(3.18—(3.20 InAs well is about 490 meV and in GaSb well is about 80
are variational parameters. meV, both are well above the binding energy.

Relatively simple expressions for variational functionals

in all three cases are presented in Appendix A. The values of
the variational parameters are found from the minimization IV. PENETRATION OF ELECTRONS AND HOLES TO
of these functionals. The results of the calculation for all THE NEIGHBORING WELLS
three trial functions for two different well widths in the case | this section, we will calculate the tails of the electron
of the Coulomb potential Eq3.3) are presented in Table I. \yave function in the GaSb quantum well and of the hole
There g; is the binding energy corresponding to the trial yaye function in the InAs quantum well that are necessary
function ¢; andE was defined in Eq(3.15. To get an un-  for the calculation of the transition rate matrix element.
derstanding of an overall width of the wave functio_n, We e treat the penetration of the wave function into the
presented in Table | also the root mean squames) radius  pejghboring well with the help of perturbation theory. We
of the third trial functiongs(r) that is calculated according have to distinguish here between two different parameters of
to the perturbation theory. The first one, the ratio of the exciton

3b(b+rg)+r2
r§=2b(b+—r030. (3.21) 0.16

For both well widths the second trial functigthe Gauss- 0.14
ian ong gives the smallest binding energy, i.e., the worst
approximation and the third trial function gives the largest
binding energy, i.e., is the best approximation. Comparing 0121
our results for the binding energy with the results of Monte-
Carlo study that were done for similar systéfnse see that
the binding energy scales are similabout 3 meV.

The difference between the binding energies of all trial —
functions is not large but it is more pronounced in their shape=
and radius. In Fig. 2, we present the shape of the three dif &
ferent trail wave functions for the casg=L.=L=60 A.

For the third trial function, we calculated the exciton
binding energy also with the interaction potentiall?) that
includes the difference of dielectric constants in the barriers
and the wells. The results are presented in Table Il. The g4 |
binding energy is larger by about 25% and the rms is smallel
by about 10% since the attraction is stronger. We see that th
correction due to the different dielectric constant is substan- g2
tial for the binding energy and the exciton radius. In Fig. 3,
the change in the shape of the wave function due to the
different dielectric constant of the cladding material is pre-  0.00
sented. We see that the wave-function amplitude is increase
nearr =0 and that the tail decreases faster due to the smaller
dielectric constant of the barriers. FIG. 2. The three trial functions of the relative coordinates in

To check the parabolic spectrum approximation for holeshe case.,=L.=L=60 A. r is presented in units df and ¢, is
in GaSb we calculated the Fourier transform of the third trialmultiplied by L for convenience.

0.10

0.08 -

0.06

riL]



PRB 61 EXCITON WAVE FUNCTION, BINDING ENERGY, AND. .. 2879

TABLE II. The values of the variational parameters, the exciton 0.16
binding energy and rms of trail functiof; calculated for different
dielectric constants in quantum wells and cladding layers.

0.14 1

LIAT  LJAT  rofA]  B[A]  riA]l  e3[meV]

50 80 126 121 324 3.98 012 ]

60 60 133 116 313 4.12

0.10

binding energy to the quantization energy in the wells, has_.
been used in the previous section and allowed us to factorizi=,
the exciton wave function to the form E3.9). In that sec- &
tion, we went beyond the leading order in this parameter anc
obtained EQq.(3.13 to calculate the in-plane exciton wave

functionf(r*h'H ,Fe,u)- As soon as this wave function is known
it is enough to work only in the leading order and neglect the
in-plane kinetic energy and the electron-hole interaction g4
compared to the quantization energy in the wells.

The second parameter of the perturbation theory describe
the penetration between the wells. In the previous section .02
we used the boundary conditior§8.6) and neglected the
penetration. This corresponds to the leading order of the per

i i 0.00 ‘ . . . . ‘
turbation theory. Now we have to go beyond the leading o0 20 20 &0 80 160 130 140

0.08 -

order and use the boundary conditions including the penetra L]
tion. The corresponding step is the calculationdeffr o ,r},)
in the regions & z,,z,<L, and —L.<Zz.,z,<0 assuming FIG. 3. The third trial function in the cade,=L.=L=60 A.

that in the region— L .<z,<0<z,<L, it is already known, The continuous line is for potential E€B.3), i.e., dielectric constant

Egs.(3.8), (3.9), and(3.20. The pertubation parameter is the X=15 everywhere. The dashed line is for the potential(Bef), i.e.

ratio of the energy shift due to the penetration to the quantiX=15 in the wells,y=12 in the cladding materials.

zation energy. However, to calculate the shift it is necessary

to go to the second order of the perturbation theory that wavhere we neglect in-plane kinetic energy. As a result of this

are not going to do. Another way to estimate this parametefeglect in each of the regions<®,,z,<L,, and —L.

will be discussed at the end of Secs. IV A and IV B. <z.,2,<0, the exciton wave function is factorized in a bit
As it was mentioned in Sec. II, there are two penetratiordifferent way than in Eq(3.8),

channels. In Sec. IV A, we calculate tails of the electron

wave function in the valence band of GaSb and of the hole cI)(Fe,Fh): be(Ze) h(Z), 4.2

wave function in the conduction band of InAs. In Sec. IV B,

we consider the penetration between conduction bands of (z,) and ¢,(z,) depend orree,” and O”Fh,H as on param-

these materials and between their valence bands. eters. The functiony.(z,) in the region—L.<z,<0, and
the functiony, (z,) in the region 6<z,<L, are defined in
A. Conduction-valence band mixing Eqg. (3.9 while in the other regions these functions satisfy

, S s . the equation
To find ®(re,ry,) in the regions &z,,z,<L, and — L, quations

<Z+,2,<0 we solve the Schdinger equation in these re- 52 2
gions and use boundary conditions that allow penetration (A+——2) Ye=Ecife, 0<zo<L,, (4.33
between the quantum wells instead of E8.6). The Schre 2m, Jzg

dinger equation that describes GaSb hole tunneling to the

InAs conduction band and the Schinger equation that de- h2 %y,

scribes InAs electron tunneling to the GaSb valence band are om0 Evibv, —Lc<z,<0, (4.3b
similar to Eq.(3.7). The differences are that when an elec- e “oh

tron penetrates into the GaSb layer we need to repthce
with H,¢, and when a hole penetrates into the InAs layer w
need to replaced,,, with H.,, which are defined in the
following way

whereE, andE, are defined in Eq(3.10. The solutions to
&hese equations are

e(ze)= Ce(re,H irh,H)SinKeZe"' De(re,H arh,H)COSKeZey

h? 92
H =A+ , 4.1 o<z.<L,, 4.4
ve zmla_zg ( 3) € \ ( a
h? 92 U (20)=Cn(T e . Th ) SiNKKZy+ Dh(Fe,H T ) COSKRZp

=5— >, (4.1b
T 2m, 9722 —L.<2z,<0, (4.4b
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where k,=+2m, (A—E.) /4 and k,=v—2m.E,/#%. Note (4.5 and (4.6) give nonzero values for the interface wave
that «, is real only whenE,= 7?42/2m,L2<A, and «, is  function. The ratio of these values to the values of the wave
real only whenE, <0, i.e.,wzhz/ZmLL\2,<A. function in the middlg of the wells also gives'us the param-

To find the value of the coefficien®,, D, Cy,, andD,,  ©ter of the perturbation theory. Such an estimate gives the
we need boundary conditions for the electron and hole enveRarameten .= ask.x,/b® for the electron penetration and
lope functions. The barrier for electrons and holes created bin=a3Knx,/b? for the hole penetration whete is one of
the cladding material is quite high and we neglect any penthe parameters of wave functiaB8.20. The values of the
etration there. So, the boundary conditions at the interfacegarameters vary from.=0.004, x,=0.01 (L,=50 A L,
with the cladding material remain unchanged, B36). We =80 A) to\,=0.07,\,=0.025 (,=120 A, L.=70 A).
need just correct boundary conditions at the interface be-
tween the wells that a_lll_ow a penetration across this interf:_;\ce. B. Conduction-conduction and valence-valence band mixing
Such boundary conditions for electrons have been obtained ) ) o
in Ref. 49. For the perturbation calculation that we use only The results for the second channel are obtained in a simi-
one of them is necessary and it has the form lar way. Again, we have the factorizati¢.2) wherey(z.)

in the region—L . <z,<0 and ,(z,) in the region G<z,

a, m [ d 9 \oP <L, are defined in Eq(3.9. In the other regions, these
Py s0= 2 Vmg| ax, Iﬁ_)/e Iz, s (49 functions satisfy the equations
e
Here, a, is a phenomenological parameter that is close to hZ 92
aL, wherea is the lattice constant. The appearance of the ¢ SmGash 2 be=Ecipe, 0<z<L,, (4.89
e e

derivative with respect ta andy in Eq. (4.5) (see also Ref.
50) is the results of the symmetry limitations.

Equation(4.5) describes the mixing of electron states be-
tween InAs conduction band and GaSb valence band. To U,—A-
describe similar mixing of hole states we make use of the

relation between electron and hole wave functiong(r) (4.8b
= zp;f(F). With the help of Ref. 49 we have

12 9

ZanAs 0_Zﬁ) h=Ey,, —L<z,<0,

where U,=0.51 eV is the offset between the InAs and
GaSb valence bands, ahid=0.85 eV is the offset between

|, H_O:_% Me i.}.ii)@ . (4.6) their conduction bandsm$®>"=0.042m, is the effective
" 2 Nm\dxy - dyn) 9], electron mass in GaSh amd™=0.4m, is the heavy-hole
mass in InAs.
With the help of these boundary conditions we obtain The energy offsets between the bands in the different lay-
ers present barriers for tunneling of electrons into the GaSb
By(Fui)= Knhay /E (ﬂ_fﬂ ﬂ) layer and holes intp InAs Iayer._ The_:se barriers are so hi_gh
1 Terth \/m m, \dx,  dyp that the wave functions fall off significantly under the barri-

ers at the distance smaller than the widths of the layers. For
sinkp(zp+Le) . this reason, we can neglect the finite widths of the barriers.
T sinkle sinkeZe, —Lc<2y,2e<0, For the calculation of under the barrier functions we use
perturbation theory. This means that we neglect the change
(4.79 due to the penetration under the barrier of the electron func-
tion in InAs well and of the hole function in the GaSb well.
ﬂ+. ﬂ Then the only necessary boundary conditions at the interface
IXe : e between the layers are the relation between the normal
derivatives?®51:3552-55

- kea, [m;
q)l(revrh)__\/m Fe

Sinkg(ze—L,) .
 Ysinknzy,, 0<ze,zp<L,.

sinkely 1 dye(zo) _ 1 dye(zo) 49
(47b) mSaSb dZe zeﬂ+0_me dZe ZH,()’ ( . 3
We use the notatiod; for the tails of the exciton wave
function resulting from the mixing of InAs conduction and 1 d 1 d
GaSb valence bands, to distinguish them from the other tails - M S Y(2n) (4.9b
obtained in the next subsection.df or «y, are imaginary the m, dz, [BT70 pias dg, - '

sin containing it in Eq(4.7) should be replaced by sinh.
Tc_> justify the per_turbanon theory with respect to the PeN-1he resulting exciton envelope function is

etration across the interface we have to check that the energy

shift due to the penetration is much smaller than the separa- A

tion between the first and the second levels in the wells. Theq) - - kp My (P Fo et sink

same estimate can be made also in another way. In the lead- 2(TesTh) = JLL an m, (T sTn, )€™ sinkeZe,

. . c=v

ing order of the perturbation theory the value of the wave

function at the interface is zero. The boundary conditions —L.<2z,,2.<0, (4.10a9
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GaSh e
B e,i) =~ JLZ_L (';— B (Fuy ape esinkz, Yolletn) e )
ey | Purern)Ucinas(Fe)Uc inas(Tn)s  —Lc<Ze,27<0,
0<Z.zn<Ly, (4.100 - Cbl(Fe,Fh)Uv,Gast(Fe)Uv,GasﬂFh)a 0<z,z,<L,,
where (5.2
whereucy,nAS(r*) is Bloch function of InAs conduction band
Je=\2mS*YU — E|/A2, andu, gs{r) is Bloch function of GaSb valence band.

The conduction-conduction and the valence-valence band
coupling results in the tails of the exciton complete wave
function of the form

= v2m"™U, —E,— A|/72.

We use the notatio, for the tails of the exciton wave Ww_(r, r})
function originated from conduction-conduction and

valence-valence band miXing' q)Z(Fe th)uc,InAs(Fe)uv,InAs(Fh): - Lc<Ze,Zh<0,
The approximation of the infinite widths of the barriers = - - - -

that has been used to obtain H4.10 is valid if q.L,>1 P5(re Mn)Uc,GasFe)Uy,casMn),  0<Ze,Zn<Ly,

andguL.>1. For the cases that we have checked we have (5.3

qeL, equals 4.5 ,=50A, L,.=80A) and 10.5 [, . ,
=120 A, L,=70 A) andq,L. equals 10.41,=60 A, L, Whereul,,mAs(r) is Bloch function of InAs valence band and
=60 A) and 13.7(,=50 A, L,=80 A). The check of the U casfr) is Bloch function of GaSh conduction band.
perturbation theory with respect to the penetration across the When we calculate the matrix element we break the inte-
interface can be made in the same way as in the Sec. IV Agration over the sample into the sum of integrals over unit
That is, we compare the interface values of the wave funceells. In the case of the wave functigb 2) whenf)e operates
tions obtained from Eq4.10 with the values of the electron on the Bloch function the integrals over unit cell give zero
wave function in the middle of InAs well and the hole wave because two Bloch functions in each integral are identical
function in the middle of GaSb well. This gives the param-and hence have the same parity. Therefore, the only nonzero
eter go= (Mm% m,)/q.L for the electron penetration and contribution comes from derivatives of the envelope func-
gn=(m{™/m,)/q,L, for the hole penetration. For the well tions. In the case of E¢5.3), Bloch functions in each inte-
widths that we have considered we hayearound 0.3 and gral have different parity and hence nonzero contributions
Op in the range 0.06—0.15. comes only from derivatives of the Bloch functions. The
resulting matrix elements are

V. RADIATIVE RECOMBINATION TIME OF EXCITON Mex1§<0|ge_iqreﬁe|‘1’ex,|i>
The radiative recombination raténe inverse recombina- .
tion time) is calculated according to the Fermi golden rule =—iﬁf e 1 eS(rg— 1) eV e®y(rg,ry)d3rd3ry,
when the interaction with the photon-is(e/myc) Ap, Where
m, is the free electron mass ardis the vector potential of (549
light in the sample. The recombination rate is for the conduction-valence-band coupling and
1 4ne?_ 1 Mexo=(0| €6~V epe| Wy k)

Traa(K) = mzvnzzq,sw_KO Eavseiiqrepehpe)gﬁ 2 -
' - . .- - -
: ° ! =epor® J e 1MeS(Ie— ) Dy(Te M) dr dr,
X S(E-fhwg). (5.9 2<0
- i at +epS| e eI Do, M) drdlr
Heree; s andw are respectively the polarization vector and v ), e 'h/F2lle th e” Ths

the frequency of a photon with the wave vectprand the

o . : - 5.4b
polarization mode s. The refraction indexiis- 3.6, p, is the (5.4
electron momentum operato¥,, ¢ is the wave function of for the conduction-conduction and valence-valence band

the exciton with the wave vectdt andV is the normaliza-  cOUPling. Here,

tion volume. The matrix element in E¢.1) is the same as 1

Eq. (2.3 with specified interaction Hamiltonian. *Gasb:_f Ul cas 1) PUc cas )%, (5.5
The complete exciton wave function is a product of enve- v Q) een 8 '

lope function and Bloch functions. The Bloch functions that

we need to consider depend on the tunneling channel. The ~InAs._ T - - 3

coupling between the InAs conduction band and the GaSh ov _ﬁfce”“v,lnAs(r)p“cylnAs(r)d r, (5.3b

valence band results in the following tails of the exciton

complete wave function where(} is the volume of a unit cell.



2882 S. DE-LEON AND B. LAIKHTMAN PRB 61

First, we find the radiative transition rate for valence- Ke /m oMy, (Lv COSko(z—L,)
conduction coupling. With the help of the exciton envelope P,= Snrl sink,zdz
function calculated in the previous section, E4.7), 0 ey
me khmh” Sinkp(z+L¢)
- coskezdz,
i f 2 d2r (1 o1y e 9] Sinnl-c
Xl:|ﬁ€ d r h , - h €
z ; e l.e™ "l (5.89
of of Me me (0 sSinky(z+L,)
X | —— +i— | eknk _ e f n(ztle)
[ Xy ayn) 2 e N mg, Pr=kp M) 1, sinkplo sinkezdz
0 sinkp(z+L of of ;
J LLC) coskezdz+ —+|—> Tk /mmJ"-v sinke(z—L,) sink.zdz
—L¢ SINkpL¢ 0"Xe &ye e me 0 SinKeLV h
m LyCcoSke(z—L,) . 5.8b
X €,Kekeo\/ mf .L\')smkhzdz (580
me Jo Sinkel, . ) .
Let x axis be directed along the vectdr soq is in thexz
d d of  of Mg plane. One of possible polarization directions is perpendicu-
- exa_&jreya_% e ayn M lar to the plane, i.e., along direction[ e=(0,1,0)] and the
] other is inside the planez For the in-plane mode
0 sinkp(z+L.) .
X —————sink.zdz
—L, Sinkpl¢ . 9 0 (5.93
XTq . L2 2’ .
J o\l af  of M, Gon  VK=+0;
|l exztey—— || i — ke \V
IXe e/ \ IXe e Me ey:o, (5.9b
LvSinke(z—L
xf .E(—V)sinkhzdz . (5.6 K K
0 SInKeLV (5_9@

€= =T =,
“ Oph VK242

The photon wave length corresponding to this transition issnd after the integration with respect ¢g we obtain the
a few orders of magnitude larger than the wells widthsi; ~ transition rate as the sum of contributions from the different
crons compared to hundred angstrons we assume that polarization directions
exp(~ig,2)=1 in the integrand. .

I's more convenient to change the variables of the inte-

_ 9 g T(K)+Ty(K)+T(K), (510

gration to the electron and hole center of mass coordirtes Trad(K)
and their relative coordinateﬁ?ﬂ. Near the pointr|=0 the  which are
potential is regular and hence the part of the wave function

(3.1) depending orr| behaves asp(r))~ ¢o+ ¢1rf. So Amcie’h k2 n’E? -1z
only the second derivatives dfare finite. As a result the — I'2(K)= |Pz|2K4|¢(0)|2( 72 —KZ)
. h“c
terms in the right-hand side containiagare proportional to
K, which is relativistically smalldue to the momentum con- hcK
servation K=g=wn/c). The main contribution to terms XO|E- T) (5.11a
containinge, and e, comes from the second derivatives of
o(r)) with respect tax; andy; . zﬁa a2¢‘2 n2E?2 12
After the substituting of the result in E¢5.1) and the (K )_ pCRER 1P, |2 == ( — —KZ)
summation over the in-plane momentuip, the transition oE n X |r:0 h%c
rate for the conduction-valence-band mixing is hcK
X0 E_T)’ (5.11h
1 472e? h2as da, ¢
Trad(K)_ mgnz LcL, fZWwK,qZ Prexm K _47'rcge2h b2 ,92(1)‘2 <n2E2 K2)—1/2
, y( )= mgcz | r| ayz‘r=o /202

P .
+|Pr6y&—y2+ Pzezke(le_ Ky) ¢(O)

( th)

X0 E- —], (5.119
(5.7) n

whereco=a,/LcL,.

where the in-plane derivatives are takerr at0, the photon Now we find the radiative transition rate in the second
frequencwa,qzzc\/Ker qZZ/n and channel(valence-valence, conduction-conduction coupling
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Substituting®,(r.r},), Eq. (4.10, in Eq. (5.4b we get the
matrix elemenM.,, . According to Eq(5.1), after the sum-
mation with respect to the in-plane vecigr we obtain Eq.
(5.10 with

4me*hK2d2 L(MPEZ T
fickK
o|E-—], (5.12a
K 47Te2hd)2( 0 ) n2E2 Kz l/2® . hcK
x( )—WW( | 7252 - )
(5.12b
242 22 —1/2
I (K) = me dy|¢(0)|2 n‘E k2 ol E— ficK
Y m2fi c2 h2c? n )’
(5.129
where
d=BinasPty >~ BoassPor ", (5.133
B 2 k“m:‘nAsfo o sink.zdz (5.13H
=— e%7Z sink,zdz (5.
ST JLL, Gn M Joi e
B 2 ke meGaSbfLV ~9Z sink,.zd
_—— e % sink,zdz
G2 LL, 9 Me Jo "
(5.130
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the wave vectoﬁ and the brancls, vy is the sound velocity
and p is the lattice density dnas=5.7 gcm 3 pcash
=5.6 gcm 3).

The inverse nonradiative lifetime for an exciton in the
ground state as a function of the center of mass wave vector
is

1

2
Ton(K) qu,s|(1|<0|th|‘1'ex,k>|va0>|25(E—ﬁws(’;),g)

Here,|vac> and|1> are the initial and the final state of the
phonon field, respectively.

Bloch wave functions of the conduction and valence
bands have different parity and hence for snoghe matrix
element between them is zero. That is, the only contribution
to the recombination rate comes from the first tunneling
channel, i.e., valence-conduction band mixing, &R). Ac-

cording to Eq.(4.7) d)l(F,F) contains first derivatives of
f(r}u ,Fh,||) at Fe,|‘=Fh,|‘. This function is a product of two

factors, Eq(3.11), and the first derivative of the fact@ﬁr(F 0

at zero argument equals zero. A nonzero contribution comes
only from derivatives of the factor describing the exciton
motion as a whole. This contribution is proportional to the
small exciton wave vectoK. So, after the substitution of

®,(r,r) in Eq. (6.3, and summation with respect the in-
plane vectoﬁ we obtain

1 |Cinad 1

a_ZP—EK2|¢>(0)|ZESJ (G€s,0) %82/ inas(a,)|?

X 6(E-hwsq)dq,

|CGaSt12ﬁ 2 2 > > bV
VI. NONRADIATIVE TRANSITION RATE +2p—EK |#(0)|*2s | | geqs ay+ >
In this section, we calculate the exciton recombination 3b 2
0 ) . v
rate due to emission of acoustic phonons with a wave vector - TQZez,q,s) |l asf 02 |2 8(E—frwg g)dq, .
much smaller than the inverse lattice constant. The calcula-
tion is similar to that in the previous section. However, as we (6.4)
will show below, the recombination time due to phonon
emission contains only a contribution from the first tunnelingHere,q” =K and:
channel, i.e., from the conduction-valence coupling.
The electron-phonon interaction is described by the fol- 2 a, [mmy
lowing Hamiltonian: Cinas= Kh———= & Vel
g InAs h\/m 2 M, M
acu“ s z<0,
— 2 a My, M,
Hpn= by o Z2 [hie
a, (U UyyF Uy ) + ?(uxx+uyy—2uzz), >0, CGas™ — Ke t2Vm M (6.59
(6.

0 _ i +
wherea,=5.8 eV,a,=8.3 eV, anth,,=2 eV are the defor- |InAs(qz):f e 197 sink,z Mdz,
mation potential parameters of InAs and GaSh, respectively —L¢ Sinkplc
and (6.5b

& L oo sinkg(z—Ly)
=i A iqr _ AT 4—iqgr = 19,2 -
U =i3qs 2prq’SqJe,,qys(aque ag e '), | Gastd2) fo e %% sinkpz sinkaly
(6.2) (6.50

is the strain tensor. Hermq’S: Vq andéqu are respective|y In InAs only the |0ng|£[id|na| phOﬂOﬂS contribute to the re-
the frequency and the polarization vector of the phonon wittcombination rate andq(e|,q)2=q2= K2+q2. In GaSh both
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longitudinal and transverse phonons contribute to the product The resulting transition rate for the ground state is

0.8.q.c - We assume tha€ =K X, henceq is in thexz plane.

There are two transverse modes, one is perpendicular to the =T 1nas(K) + T gasp (K) + Tgasm(K),  (6.6)

Xz plane and does not contributedge, o . The other mode Tpn(K)
is in the planexz, we get for it @,€,,4.1)%=K?q2/q?. where
|
|CInAs|2 2 2.2 70, !
[ inas(K) = 25 K?|#(0)|%ag L. sinnLe) E Viar
4k2q2(cosL g, + coskpl )+ (sinkpLo(k2+ 02— (/L)% + 2k, SiNG,Le)? 6.7
X , .
[(7/Le+ rn) =512 (7L~ k) *— 012
|CGaSklZ 2 2 qu(av_bv) 2 1
I Gaspi (K) = 2 K?[#(0)| L, sinkaly | E Voasn
><4;<§q§(cosL\,qZ+ coskely) 2+ (Sinkel (k2+ 02— (7/Ly)%) + 2k.q, Sing,L,)? 675
[(m/Ly+ke)* =717 (m/L,— Ke)*—qZ]? ’ '
|Casd® ,[ 3mKb, \* 1
FGaSbt(K)_ 2p K |¢(0)| 4LV SinKeLV E VGaSbt
><4;<§q§(cosL\,qZ+ coskely) 2+ (sinkely (k2+q2— (7/L,)?) +2keq, SiNG,L, )2 6.7

[(m/Ly+ ko) = Az (/L — ke)*— ]

Here, we used the approximati@ifiv,=q=0;+K*~0,  mentsp™s, pS° Eq. (5.5), we followed Ref. 56. There
sinceK<q;. the Kane model is used, which givps, = VE,my/2 and the
values of E, extracted from experiments ar&"®
=21.11 eV andES*™=22.88 eV™*

The lifetime in the second channel appears by more than

In this section, we present the numerical results for thefive orders of magnitude shorter than the lifetime in the first
exciton wave function, the binding energy and the recombichannel. Such a big difference results from two main rea-
nation lifetime. We made extensive calculations only for thesons. The first is that the Bloch function changes much faster
trail function which gave the maximal binding energy, than the envelope wave function. As a result the dipole mo-
¢3(r), Eq. (3.20. The results are given in Table IIl. ment for the interband transition in the second channel is by

To understand a qualitative picture, we considered a fewyhot two orders of magnitude larger than the dipole moment
structures with different well widths of both wells. The dif- ¢ the intraband transition in the first channel. The second
ference of dielectric constants in quantum wells and Cladd'ngeason is that the amplitude of the envelope wave function at
layers is taken into account in the calculation. First of all, weEe interface in the second channel is much larger than that in

VII. DISCUSSION

see that the wave function and the binding energy depen e first channelfA rough comparison of Eq4.7) with Eq.

mainly on the average distance between electron and ho&.m gives the large parameteré or 1ka.] So, in spite

that is determined by sum of the well widthg+L, . For a ) . N
larger sum the exciton binding energy is smaller and theof very short tunneling tails in the second channel this gives
d’;mother order of magnitude to the matrix element.

exciton radius is larger. If we keep this sum constant an : oI A :
The main contribution to the recombination rate in the

second channel comes from the electron tunneling from the

+L,=140 A). The accuracy of the absolute values of theInAs guantum well to the conduction band of GaAs quantum

calculated parameters is no more than three digits and w ell. Due to small electron mass compared to the hole mass

give more digits only to show their relative change due to thene part of the matrix element E¢p.139, which describes

.. . . . i ~InAsy
variation ofL.—L, . The overall size of the wave function is the hole tunneling to the InAs valence barBifaspc, ) is

vary the differenceé..—L,, the wave function parameters and
the binding energy nearly do not chan@ee results fot

characterized by the rms value of its radius by an order of magnitude smaller than the part describing
In Table IIl, we present the exciton radiative lifetime electron tunneling Bg,spS2sy.
separately for the firstr(,4;) and the secondr{,4,) recom- The dependence of the lifetime on the well widths comes

bination channels & =0. Sincel',(0)=0 in both channels mainly from the confinement energy. In the recombination
the only contribution to the lifetime comes froti,(0), rate, Eqs(5.120 and(5.129, this energy enters through the
I'y(0). For theevaluation of the microscopic matrix ele- factorsd)z(/E and di/E, respectively{due to the dependence
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TABLE Ill. The results of the calculation for a few heterosturtures using the trail funetipnHerer
andb are the values of the wave-function parametegss the rms,e; is the exciton binding energ¥ is the
total exciton energy, ane,41(0) and r,,42(0) are the radiative recombination times in the first and the
second channel, respectively for zero exciton wave vector.

LJAT LJA] Le+LJAT 1o b rgA] e3[meVl E[meV] 7aq(0)[sed 7aqg2(0)sed

60 60 120 133 116 312 4.12 118 xa0 ° 6.6x 10"
50 80 130 126 121 322 3.98 36 X7L0°® 4.5x10" 1
60 80 140 130.7 1251 332.6 3.8528 26 x40 ® 5.2x107 1
65 75 140 134.3 124.4 332.0 3.8519 40 x107° 7.5x10° 1
70 70 140 135.4 1242 331.8 3.8516 57 X 2075 9.7x10 1
75 65 140 135.8 124.1 331.7 3.8519 79 X 4075 1.2x10 10
80 60 140 135.9 124.0 3315 3.8528 106 xXB0° 1.3x10° 1
120 70 190 158 151 402 3.47 45 X805 4x10°10

of dj? onke, Eq.(5.13]. E.g., if we compare the lifetimes for tunneling. The AISb Iayer. does not affect. much the_ hole

L,=80 A andL.=60 A with the lifetime forL,=60 A and tunneling bec.ausfe the barrier for holes that it presents is only

L.=80 A, we see that the total energydecreases by four of 0.4 eV, which is lower than the InAs potential barrier. But

times, from 106 meV to 26 meV. At the same time the elecWithout the barrier the hole tunneling is about two orders of

tron confinement energy decreases only by about 1.6 timeg_jagnitude weaker t_han_ the electron one. So the actual_ red_uc-

from 243 to 153 meV. As a resuttdecreases by 2.5 times. tion of the recombmatlon. rate due to the AISb barrier is
As we discussed above, the nonradiative recombinatioRPOUt two orders of magnitude.

may be important only for wide-enough wells where the total

exciton energy is larger than the highest acoustic phonon Vill. CONCLUSIONS

energy in InAs and GaStabout 29 meY. To check its im- We have calculated the exciton wave function, binding

portance we give one example of such a cdsg=60 A, energy, and lifetime in InAs/GaSb semiconducting coupled
L=80 A where the total exciton energy is about 26 MeV.quantum wells where exciton luminescence can occur. The
The nonradiative lifetime is infinite foK =0 since the re- eqyiting binding energy for the wells that we have consid-
combination rate vanishes at this po[see Eqs(6.6) and  greq is about 3.5-4 meV. The exciton radiative lifetime
(6.7)]. As K increases the recombination rate increases andiongly depends on the wells widths and can reach hundreds
the l'fet'[nle reaches the value of 0.007 s fé&¢=2 4 icoseconds. A thin AISb layer in between InAs and GaSb
X 10° cm™* and then it decreases again. At this lakgeec-  an increase the lifetime by two orders of magnitude. The

tor the radiative process is impossible due to momentumyonradiative lifetime appears to be a few orders of magni-
conservation. Since the energy relaxation processes are Usiye larger than the radiative one.

ally much faster than the nonradiative recombination we be-

lieve tha_t excitons with such_higl( vectors re_lax to lower ACKNOWLEDGMENTS
energy first and then recombine with the emission of a pho-
ton. We appreciate discussions with L. D. Shvartsman. The

Thus, we see that the radiative recombination in the secwork was supported by The Israel Science Foundation, Grant
ond channel is the most important process that limits théNo. 174/98.
exciton lifetime. Due to the fact that the main contribution to
the recombination comes from electron tunneling from InAs APPENDIX A: BINDING ENERGY OF THE EXCITON IN
to GaSb layer this lifetime can easily be increased if a thin THE VARIATION METHOD
AlISh layer is grown in between InAs and GaSb layers. As
we mentioned in Sec. I, AlSb present®Ja=2 eV potential
barrier for InAs conduction electrons. The AISb layer of the
width d will add a factor of exp{-q,d) to the electron wave 72
J 12
ﬁZ
2

Multiplying Eq. (3.13 by ¢*(r) and integrating by parts
the kinetic energy we get

d’r, (Ala)

function in GaSb conduction band, whereq, &;(a)= Vi(r,a)|>+V(r)| ¢i(r,a)l?
= \2mSPU—E |/ and m'P=0.33m, is the electron H
mass in AISb. The layer of 12 &wo lattice constanjgives

about expfq,d)=0.01. Such a barrier practically does not e,(a)=
affect the Coulomb potential and reduces the recombination

rate by four orders of magnitude. Actually, this reduction is h?
y g Y 83<b,ro>=f [ﬂ|v¢3(r,b:ro)|2+v(r)|¢3(r,b,ro)|2}d2r-

d’r, (Alb)

M Va(r,a)| 2+ V(r)| a(r,a)|?

overestimated because if the electron tunneling is completely
suppressed the recombination is still possible due to hole (Alc)
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Some of the integrations can be done analytically, which results in

72 167%e? [=[1—exp—kL¢)] [1—exp(—kLv)]( 1 >—3’2
= - +K? dk, A2a
@) =g chLva:”fo K(4m+KL2)  k(4m?+K2L2) \a? (A29)
72 167%? (=[1—exp —kL.)] [1—exp —kL —(k%a?
ea(2)= 5 g — f[ Pbo)] [ K] o 2 4k (A2b)
2ua® xLcby Jo k(4m?+K2LE)  k(4m2+K2L2) 4

_ #2[_ rir(0ro/b) “[1—exp(—kLg)] [1—exp —kL,)]
83(b,r0)—8Mb2[1 b(bi1y exmo/b)} XLLb(bHO)exp(ro/b)f KA +IPL2)  KAm2+ L)

1+r0\152 exr{—rO\/ +Kk?|d

APPENDIX B: FOURIER TRANSFORM OF THE EXCITON WAVE FUNCTION

1 -3/2

“b

+k2)

02 (A2c)

To justify the parabolic spectrum approximation for holes in GaSb it is necessary to check that the Fourier components of
the exciton wave function ak~1/L, are small. The Fourier transform a@bs(r,b,rg), Eqg. (3.20 that we used in our
calculation is

[8mbry 1 2b o,
3= N D1y | 11 ak0? | (1+4k2b2)3’2] eXp[ 2p VIO (&1
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