
PHYSICAL REVIEW B 15 JANUARY 2000-IIVOLUME 61, NUMBER 4
Renormalized bosonic interaction of excitons
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An effective bosonic Hamiltonian of 1s excitons with ‘‘spin’’ degrees of freedom in two dimensions is
obtained through a projection procedure, starting from a conventional electron-hole HamiltonianHeh . We first
demonstrate that a straightforward transformation ofHeh into a Hamiltonian of bosonic excitons does not give
the two-body interaction between an ‘‘up-spin’’ exciton and a ‘‘down-spin’’ exciton, which are created by the
left- and right-circularly polarized light beams, respectively. We then show that this interaction is generated
through a projection procedure onto the subspace spanned by 1s excitons, as a renormalization effect coming
from higher exciton states. The projection also renormalizes the interaction between 1s excitons with the same
spins by a large amount. These renormalization effects are crucial for the polarization dependence of the
optical responses from semiconductors. The present theory gives the microscopic foundation of the phenom-
enology that was successfully applied to the analysis of four-wave mixing experiments in GaAs quantum wells
strongly coupled to the radiation field in a high-Q microcavity.
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I. INTRODUCTION

Various theoretical methods have been developed to s
optical properties of semiconductors.1–5 These methods ca
be divided into two groups: a ‘‘fermionic method’’ and
‘‘bosonic method.’’ The fermionic method1,2 is formulated
on the Hilbert space of two fermionic species, i.e., photo
cited electrons and holes in semiconductors. In this meth
one solves the coupled equations of motions, the semic
ductor Bloch equations~SBE!,2 for the particle densities o
electrons and of holes, and for the expectation value of
polarization of the system. Since this method basically re
on the Hartree-Fock~HF! approximation for electrons an
holes, it is suitable for higher excitation density, where Co
lombic screening effects guarantee that exciton correla
effects become less crucial. In order to extend this metho
lower excitation density, where exciton correlations beco
important, the three- and four-particle correlations should
taken into account and the truncation scheme should be
proved.

On the other hand, the bosonic method3–5 is based on
excitons, bound states of an electron and a hole. Regar
this elementary excitation as a bosonic particle, one c
structs an effective Hamiltonian of bosonic excitons, fro
which physical quantities, such as linear and nonlinear
sponse functions, can be calculated. Here, the effec
Hamiltonian should be constructed very carefully, as we w
show in this paper. The bosonic method is believed to
valid when the optical excitation is weak and when the p
ton energy is close to the exciton energy~see Sec. II A!,
because under these conditions main contributions to the
tical properties should come from the excitons created in
system. With increasing the photoexcitation intensity,
Coulombic force becomes weaker by increased scree
and/or increased Fermi energy, and the contribution fr
free carriers becomes more important. Hence the bos
method is not valid at high excitation intensity.

A remarkable feature of the light field as a probing tool
PRB 610163-1829/2000/61~4!/2863~11!/$15.00
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materials is that it has the polarization degrees of freed
Recent experimental studies of semiconductor optics m
the best use of this fact to reveal more detailed propertie
excited states. The polarization degrees of freedom of p
tons induce ‘‘spin’’ degrees of freedom of excitations~see
below!. Experiments, including the four-wave mixing ex
periment in the time domain, have revealed the crucial ro
of the interaction between an exciton~or aneh pair! created
by the left-circularly polarized light and the one created
the right-circularly polarized light.6,7 However, most of the
existing theories could not treat the polarization depende
correctly. For example, since the SBE~in its original form!
were discussed within HF theory,2 the excitations with dif-
ferent polarization degrees of freedom~e.g., left and right!
are completely decoupled. Hence it is impossible to expl
the polarization dependence of the optical response. It is
the case with bosonic theories: in Ref. 3, the polarizat
degrees of freedom were not included in the derivation of
interaction of excitons. References 8 and 9 treated the po
ization degrees of freedom of excitons. However, since t
essentially end up with the HF approximation of 1s excitons,
the excitons with opposite spins are completely decouple10

as will be discussed in Sec. III C.
In this paper, we show that it is not at all trivial to deriv

the interaction of excitons created by opposite polarized li
in a bosonic theory. One crucial result is that to go beyo
the HF approximation of 1s excitons becomes of paramou
importance. One of such investigations is seen in Ref.
where the modification of exciton binding energy is d
cussed.

Up to now, a strong objection against the bosonic meth
was that excitons are not bosonic particles. Moreover, u
recently there were almost no experimental evidence wh
verifies an effective bosonic theory both qualitatively a
quantitatively. However, important experimental eviden
for the validity of the boson picture has been reported
cently in a two-dimensional system.12,13The experiment, dis-
cussed in detail below, is a nonlinear version of norm
2863 ©2000 The American Physical Society
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mode coupling in a high-Q microcavity. This experimen
was stimulated by the fact that optical responses from se
conductors that are strongly coupled to the photon field h
received much attention in recent years. The strong coup
is obtained by confining optically active regions in a high-Q
microcavity, which is made possible by the development
nanostructure technology. For linear optical responses,
most noticeable phenomenon is a large Rabi splitting, wh
has been observed in both inorganic14 and organic15 semi-
conductors~insulators!.

Kuwata-Gonokami and co-workers have performed fo
wave mixing in a GaAs quantum well~QW! that is strongly
coupled to the radiation field in a high-Q microcavity.12,13

They investigated several polarization configurations un
the condition that the excitation density is very low, a
measured the polariton-polariton scattering signals. The
perimental results were successfully reproduced by a p
nomenological model, which is called the weakly interacti
boson model~WIBM !.12,13,16 In the WIBM, excitons are
treated as interacting bosons. The good agreement with
experimental results demonstrated that the bosonic pictu
reliable in the lower-excitation regime. The Hamiltonian
the WIBM is

HWIBM5(
k,s

@vcak s
† ak s1vebk s

† bk s

1g~ak s
† bk s1bk s

† ak s!#

1W (
k1 ,k2 ,k3

bk1 1
† bk2 1bk3 2

† bk12k21k3 2

1R (
k1 ,k2 ,k3 ,s

bk1 s
† bk2 s

† bk3 sbk12k21k3 s

2gn (
k1 ,k2 ,k3 ,s

~bk1 s
† bk2 sak3 s

† bk12k21k3 s

1bk1 s
† ak2 sbk3 s

† bk12k21k3 s!, ~1!

where photons and excitons are described by boson oper
ak s andbk s , respectively, with the spin indexs56. This
Hamiltonian has three parameters:W is the interaction
strength of the excitons with opposite spin,R is the interac-
tion strength of the excitons with the same spin, a
n(.0) is the filling factor.17 The ratios of these three param
eters were measured asW/gn523.0 andR/gn50.2. Once
these three parameters are fixed, the experimental result
all polarization configurations are fitted very well. This ind
cates that a bosonic method is quite reliable in the low
excitation density. Nevertheless, existing bosonic theorie3–5

could not give amicroscopicfoundation of the WIBM. In
particular, they could not derive the ‘‘W term,’’ the second
term of the right-hand side of Eq.~1!, see Sec. III. The term
was introduced intuitively by an analogy with the discuss
of a hydrogen molecule, when polarization dependence
discussed.5,12 Namely, from the analogy of a four-body prob
lem corresponding to a hydrogen molecule, it was expec
intuitively that the attractive interaction~the interaction term
with a negative prefactor! should exist in a many-body
Hamiltonian. It was also considered that the crucial inter
tion of exciton for biexciton formation has the form o
i-
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† b2b1 with a negative prefactor, corresponding to t
W term in Eq.~1!, and that the binding energy of a biexcito
is uWu. However, we will show that such a simple picture
wrong; it is not this term which is responsible for biexcito
formation. The excitons which are not dipole active play
important role for the formation, as shown in Sec. V E.

The purpose of our paper is to derive an effective bos
Hamiltonian of 1s excitons with ‘‘spin’’ degrees of freedom
under the three conditions cited in Sec. II A. Through th
derivation, a microscopic foundation of the WIBM, esp
cially the interaction terms of excitons with the scatteri
amplitudeW andR in the WIBM, is obtained. We show tha
effects of exciton states higher than 1s are crucial when de-
riving the effective Hamiltonian of 1s excitons:18 these ef-
fects yield the two-body interaction term corresponding toW
in Eq. ~1!, and largely modify the strength of the interactio
term corresponding toR in Eq. ~1!. The higher exciton state
are taken into account through a projection procedure, a
as shown in Sec. II B, it is crucial to project the whole ex
ton space onto the 1s excitons subspace and to reconstruct
the interaction of 1s excitons. In a more general sense, t
bosonic description of fermionic systems in two-dimensi
is one of the most attractive fields in condensed-ma
theory.19,20 If the bosonic method is useful in two
dimensional semiconductors, it would be one of the e
amples of the success of a two-dimensional ‘‘bosonizatio
We also discuss the relation of the exciton-exciton inter
tion and the formation of a biexciton.

The organization of this paper is as follows: In Sec.
after explaining the necessity of the projection, excit
bosonic operators are introduced and exciton spins are
fined. In Sec. III, the exciton interaction is discussed witho
the projection, which corresponds to the two-dimensio
case of the existing bosonic theory.3 It is shown that the
exciton interaction corresponding to theW term in WIBM is
not obtained in this approximation. In Sec. IV, which is th
main part of this paper, the projection procedure
introduced,18 resulting in appearance of theW term and
modifications of the interaction strength of excitons with t
same spins. Discussions and remarks are presented in Se
In Sec. VI, the results obtained in this paper are summariz
Throughout this paper, the units\51,e51,e051 are used.

II. MODEL AND STRATEGY

A. Conditions for the validity of the effective theory

The purpose of the present paper is to derive aneffective
Hamiltonian of 1s excitons in a QW. Here, the ‘‘effective
Hamiltonian’’ means that it~approximately! describes the
optical responses of the QW correctly, although it is a fun
tion of 1s exciton operators only.

Since any effective theory is valid only in some speci
physical situations, we first clarify the physical situations
conditions under which we construct the effective theory.
compensation for this limitation, the effective theory d
scribes the physics simply. In contrast, such insights
hardly obtainable from straightforward calculations using
electron-hole Hamiltonian.

We construct an effective Hamiltonian that describes
tical responses of semiconductor QW’s under the follow
conditions:~i! The excitation is weak~weak excitation re-
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gime! so that the mean distancel ex of photocreated~virtual
and/or real! excitons is much larger than the Bohr radiusa0
of the 1s exciton;

l ex@a0 , ~2!

and ~ii ! all the photon energies~pump, probe, and signal!
\v i are close to the energyE1s of the 1s exciton;

uE1s2\v i u!uE2p2\v i u ~ i 5 pump, probe, signal!,
~3!

whereE2p is the energy of 2p excitons, and~iii ! the line-
width G1s of 1s exciton is smaller than the detuning ene
gies;

G1s,uE1s2\v i u ~ i 5 pump, probe, signal!. ~4!

Physical meaning of these conditions will be explained
Sec. V D.

Under these conditions, nonlinear optical signals wo
not be strong in general. One must therefore devise exp
mental methods for detecting the signals with a high se
tivity. For this purpose, a well-prepared method was p
posed by Kuwata-Gonokamiet al.,12 in which an optical
cavity with a high-Q value is utilized. This point will be
discussed later in Sec. V D.

B. Necessity of projection and renormalization

The Hamiltonian of aneh system is defined on theeh
Hilbert spaceHeh that is an fermionic Hilbert space spann
by e andh states. As long as photo excitations are concern
all excited states are charge neutral. We can thus limit o
selves in the charge neutral sector ofHeh . The effective
Hamiltonian of excitons, which is defined on a bosonic H
bert space spanned by the exciton states, should describ
dynamics of theeh system in this charge neutral sector
Heh . Note that there are two~or more! choices for the
bosonic Hilbert space: one is the whole exciton spaceHex
that is spanned by all exciton states, whereas the other
subspaceH1s that is spanned by the 1s states only. The
effective Hamiltonian depends on the choice of the boso
Hilbert space.

We will first consider in Sec. III the effective Hamiltonia
defined onHex . Its interaction part takes the following form

H f ull 2 int5
1

2V (
$S%

(
$n%

(
k,k8,q

Vex~q;$n%;$S%!

3bk1q n1 S1

† bk82q n2 S2

† bk8 n4 S4
bk n3 S3

1 . . . ,

~5!

wherebk n S denotes the excitonic boson operators~defined
later!, andV is the area of the QW. The first term denot
the two-body interactions between excitons of various sta
and ••• denotes three- and more-body interactions. Si
exactcalculations, which take account ofall terms of Eq.~5!
to infinite order, are impossible,one has to make approxima
tions. Because of conditions~i!–~iii ! in Sec. II A, it is tempt-
ing to take only the two-body interactions of 1s excitons,
H 1s

int , among many terms of Eq.~5!;
d
ri-
i-
-

d,
r-

the

its

ic

s,
e

H 1s
int5

1

2V (
$S%

(
k,k8,q

Vex

3~q;$n51s%;$S%!bk1q S1

† bk82q S2

† bk8 S4
bk S3

,

~6!

wherebk S denotesbk n S with n51s.21 Unfortunately, how-
ever, we will show later that the replacementH f ull 2 int

→H 1s
int is a very poor approximation, which cannot expla

the experimental resultseven qualitatively. This originates
from the complete neglect of effects of higher exciton sta
n52p,3d, . . . , which, however, play important roles as in
termediate states.

To resolve this difficulty, we will then consider in Sec. I
the effective Hamiltonian defined onH1s . It is obtained by
the projection procedure, by which the dynamics inHI ex is
projected onto the subspaceH1s that is spanned by 1s exci-
tons only. In general, a projection procedure generates d
pative terms in the projected dynamics in the subspace.
der conditions ~i!–~iii ! of Sec. II A, however, we may
neglect the dissipative terms. Namely, the dynamics inH1s

can be described by an Hamiltonian dynamics, whose Ha
tonian~effective Hamiltonian! is a function of the boson op
erators bk S for 1s excitons only. Its interaction part

H̃1s
f ull 2 int , consists of two- and more-body interaction

among 1s excitons. For example, the two-body interactio

H̃1s
int takes the following form:

H̃1s
int5

1

2V (
$S%

(
k,k8,q

Ṽex~q;$S%!bk1q S1

† bk82q S2

† bk8 S4
bk S3

.

~7!

In this two-body interaction, effects of higher exciton stat
have been~partly! included as ‘‘renormalization effects,’
which have modified~renormalized! the forms and the

strengths ofH̃1s
int . Therefore, in contrast to the case

H 1s
f ull 2 int , it is reasonable to takeH̃1s

int as an approximation

to H̃1s
f ull 2 int . In fact, we will show that the replacemen

H̃1s
f ull 2 int→H̃1s

int is a good approximation, which agrees wi
the WIBM and experimental results.

In short, one must perform the projection onto the su
spaceH1s to get a correct effective interaction of 1s exci-
tons. The projection procedure modifies both the form a
strengths of the effective interaction. This is essential to j
tify the WIBM. In what follows, we will derive the effective
interactionH̃1s

int of 1s excitons in a QW from the conven
tional interacting electron-hole Hamiltonian.

C. Model

We consider the conduction and the heavy-hole bands
GaAs QW, which has a direct band gap. We start from
following conventional form of the electron-hole Hami
tonianHeh :
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Heh5(
i
E dxĉ i

†~x!S 2
¹2

2mi
1Ei D ĉ i~x!

1(
i ,i 8

zizi 8
2 E dxdx8ĉ i

†~x!ĉ i 8
†

~x8!

3V~r i2r i 8
8 !ĉ i 8~x8!ĉ i~x!. ~8!

Here,V(r ) denotes the Coulomb potential, which behaves
a QW of widthL asV(r )'e2/er for ur u*L, wheree is the
static dielectric constant, andV(r )' constant forur u&L.
The calculation is simplified by taking the limitL→0 wher-
ever the singularity atr50 is irrelevant. In Eq.~8!, ĉe(h)(x)
is the field operator of an electron~hole!, i 5$e,h%, ze(h)

51 (21), x[(re(h) ,Je(h)
z ), *dx[(J

i
z*d2r i , and similarly

for i 8 andx8. The indexJe(h)
z denotes thez component of the

total angular momentum, which is a good quantum numb
when thez axis is taken in the direction normal to the QW
layers. TheJh

z is defined as21 timesJz of the corresponding
valence band electron. In a GaAs QW,Jh

z563/2 for a heavy
hole, andJe

z561/2.1 A photon withJph
z 511(21) creates

an electron-hole pair withJe
z521/2 (11/2) and Jh

z5
13/2 (23/2) to conserve the total angular momentum.

D. Strategy

Since all states that are excited by photons are electric
neutral, the discussion is confined to the charge-neutral
tor. Then the following exciton operator can be defined:22

bqnS[ (
Je

z ,Jh
z
E d2r ed

2r h

1

AV
expS iq•

mere1mhrh

M D
3wn~re2rh!^SuJe

z ,Jh
z&ĉe~re ,Je

z!ĉh~rh ,Jh
z!. ~9!

Here, the plane wave corresponds to the center-of-mass
tion of an electron-hole pair,wn(r ) is a wave function for the
e-h relative motion,̂ SuJe

z ,Jh
z& the Clebsch-Gordan~CG! co-

efficient, V the QW area, andM[me1mh . In the follow-
ing, the heavy hole condition 0,me!mh is assumed, and
m(m8)[me(h) /M .

From the explicit calculation of the commutation relatio
for these operators, they can be treated as bosonic oper
when the particle density is very low. This is satisfied und
condition ~i! in Sec. II A. Whenwn(r ) is the wave function
with the quantum numbern(51s,2p1 ,2p2 , . . . ) of a hy-
drogen atom in two dimensions,1 the operatorbqnS is identi-
fied with the bosonic operator for an exciton with the relat
motion indexn. Then, the exciton states are labeled by in
cesq, n andS, whereq is the momentum of the center-o
mass motion,n denotes the set of quantum numbers for
relative motionn, andSdenotes combinations ofJe

z andJh
z ,

as shown in Eq.~10!. SinceS is related to the total angula
momentum, it is referred to as ‘‘spin’’ index in the follow
ing. For transitions from the heavy-hole band to the elect
band in a GaAs QW, possible changes of the total ang
momentum areDJz561 and 62. We here take the fina
states corresponding toDJz511,21,12,22 as S51,
2,a,b, respectively. They are related withuJe

z ,Jh
z& as
n

r,

lly
c-

o-

ors
r

-

e

n
ar

S u1&

u2&

ua&

ub&

D 5S u21/2,13/2&

u11/2,23/2&

u11/2,13/2&

u21/2,23/2&

D . ~10!

Since the dipole transition is associated withDJz561,
u1& and u2& are dipole active, coupling to circularly polar
ized light with Jph

z 561, whereasua& and ub& are dipole
inactive. The general form of Eq.~10! for elliptically polar-
ized light is discussed in Ref. 8.

III. INTERACTION OF EXCITONS BEFORE PROJECTION

In this section, the interaction Hamiltonian correspondi
to Eq. ~6! is obtained in order to clarify the difference from
the two-body interaction obtained through the projection p
cedure which is discussed in the next section. For this p
pose, we calculate the scattering amplitude of excitons w
out any intermediate states.

A. 1s exciton scattering amplitude

In this subsection, scattering processes which invo
only 1s excitons are considered without the projection p
cedure, resulting to the interaction Hamiltonian of 1s exci-
tons through a straightforward transformation.

Such scattering processes are schematically shown in
1, where the index ‘‘ex.i ’’ should be read as the set o
indices$k i ,n i ,Si%. In this subsection,n i51s for any i and
the index is dropped if any confusion is not expected. Th
processes are composed of two parts: one is a direct pro
Figs. 1~a!–1~d!, and the other is a fermionic exchange pr
cess, Figs. 1~e!–1~h!. The form of the interaction Hamil-
tonian of 1s excitons is

H 1s
int5

1

2V ( U~q;$S%!bk1q,S1

† bk82q,S2

† bk8,S3
bk,S4

,

~11!

where the scattering amplitude is written as

U~q;$S%!5UD
o ~q!UD

s ~S1 ,S2 ;S3 ,S4!

1UEx
o ~q!UEx

s ~S1 ,S2 ;S3 ,S4!. ~12!

The UD
o (q)UD

s (S1 ,S2 ;S3 ,S4) and UEx
o (q)UEx

s (S1 ,S2 ;
S3 ,S4) are the direct and the exchange scattering amplitud
respectively. The expressions of each component in Eq.~12!
are

UD
o ~q!5VE dredre8drhdrh8fk1q~re ,rh!fk82q~re8 ,rh8!

3$V~re2re8!1V~rh2rh8!2V~re2rh8!

2V~re82rh!%fk~re ,rh!fk8~re8 ,rh8!, ~13!

UD
s ~S1 ,S2 ;S3 ,S4!5 (

Je
z ,Je

z8 ,Jh
z ,Jh

z
^S1uJe

z ,Jh
z&^S2uJe

z8 ,Jh
z8&

3^S3uJe
z ,Jh

z&^S4uJe
z8 ,Jh

z8&, ~14!
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FIG. 1. Diagramatically expression of direc
~a!–~d! and fermionic exchange interaction~e!–
~h! of 1s excitons. The horizontal lines represe
an electron and a hole and the verical line Co
lomb interaction of two particles connected b
the line.
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UEx
o ~q!52VE dredre8drhdrh8fk1q~re ,rh!fk82q~re8 ,rh8!

3$V~re2re8!1V~rh2rh8!2V~re2rh8!

2V~re82rh!%fk~re8 ,rh!fk8~re ,rh8!, ~15!

and

UEx
s ~S1 ,S2 ;S3 ,S4!5 (

Je
z ,Je

z8 ,Jh
z ,Jh

z8
^S1uJe

z ,Jh
z&^S2uJe

z8 ,Jh
z8&

3^S3uJe
z8 ,Jh

z&^S4uJe
z ,Jh

z8&, ~16!

wherefq(re ,rh) is the product of the wave functions of th
center of mass and the relative motion of excitons,

fq~re ,rh![
1

AV
eiq•(mre1m8rh)w~re2rh!. ~17!

The wave function of the relative motionw is the 1s wave
function of a hydrogen atom in two dimensions:

w~r !5
2A2

Apa0

e22ur u/a0, ~18!

wherea0 is the exciton Bohr radius. In the following,UD(Ex)
o

and UD(Ex)
s are referred to as ‘‘orbital’’ and ‘‘spin’’ parts,

respectively.
First, the orbital parts are calculated. Fourier represe

tions of orbital parts in direct and exchange scattering am
tude are
a-
i-

UD~q!5 (
p1 ,p2

Ṽ~q!@ uw̃~p1!u2uw̃~p2!u21w̃~p1!w̃*

3~p11q!w̃~p2!w̃* ~p22q!22w̃~p1!uw̃~p2!u2w̃*

3~p11q!#, ~19!

UEx~q!52 (
p1 ,p2

Ṽ~q1p12p2!@ uw̃~p1!u2uw̃~p2!u2

1w̃~p1!w̃* ~p11q!w̃~p2!w̃* ~p22q!

22w̃~p1!uw̃~p2!u2w̃* ~p22q!#. ~20!

Here, the notations with tilde are defined as

Ṽ~p!5E d2reip•r
1

ur u
5

2p

upu
, ~21!

w̃~p!5
1

AV
E d2reip•rw~r !

5
1

AV

A2pa0

@11~ upua0/2!2#3/2
. ~22!

Since the transferred momentum in the exciton scatte
processes is fairly small, which is of the order of the phot
momentum, the direct and the double fermionic exchan
interactions are negligible8 and the momentum dependen
of the exchange interaction can be omitted. This allows
approximation UD

o (q)'UD
o (q50)[UD

o and UEx
o (q)

'UEx
o (q50)[UEx

o . The q dependence of the interactio
strength is discussed in Ref. 8. Under these conditions,UD

o

andUEx
o can be directly obtained from Eqs.~19! and~20! for
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q→0:

UD
o 50, ~23!

UEx
o 52(

p,p8
Ṽ~p2p8!@ uw̃~p!u2w̃~p!* w̃~p8!

2uw̃~p!u2uw̃~p8!u2#. ~24!

Equation~23! reflects the charge neutrality of the system.

B. Scattering amplitude of higher exciton states than 1s

The calculation of the exciton scattering amplitude wh
includes excitons withn.1s is quite similar to the previous
calculation involving excitons with onlyn51s. For such
scattering processes that satisfy the conservation laws
amplitude for scattering from initial state (n1 ,n2) to the final
state (n3 ,n4) is obtained as

UD$n%
o 50, ~25!

UEx$n%
o 52(

p,p8
Ṽ~p2p8!@w̃n1

~p!* w̃n2
~p!* w̃n3

~p!w̃n4
~p8!

2w̃n1
~p!* w̃n2

~p8!* w̃n3
~p!w̃n4

~p8!#, ~26!

under the same assumptions as in the previous calcula
Here, w̃n(p) is the Fourier transform of the correspondin
wave function in the real space:

w̃n~p!5
1

AV
E d2reip•rwn~r !. ~27!

C. Interaction Hamiltonian of excitons before projection

From the results in previous two subsections, the boso
Hamiltonian of excitonsH[H 01H int is obtained when it
is assumed that the exciton density is low, whereH 0 is the
free part of excitons. The general form ofH int through a
straightforward transformation is

H int5 (
kk8q$n%$S%

UEx$n%
o UEx$S%

s

2V
bk1qn1S1

†

3bk82qn2S2

† bk8n4S4
bkn3S3

. ~28!

Using this formula, we expressH as

H5H 01H 1s
6 1H1s8 1Hothers, ~29!

whereH 1s
6 1H1s8 [H 1s

int , @see Eq.~6!#, includes then51s
operators only, andHothers denotes such remaining terms
the interaction between 1s and 2p excitons, the interaction
between 2p and 2p excitons and other similar interaction
The H 1s

6 consists only of the operators withS56, corre-
sponding to dipole active excitons, whereasH1s8 consists of
terms ofS5a and b operators, including cross terms wit
S56 operators.

From the explicit calculation of the spin part of the e
change scattering amplitude,UEx$S%

s , for all combinations of
$S1 ,S2 ,S3 ,S4%5$1,2,a,b%, H 1s

6 andH1s8 are obtained as
he

n.

ic

H 1s
6 5

U

2V (
S56

(
kk8q

bk1q S
† bk82q S

† bk8 Sbk S , ~30!

H1s8 5
U

V (
kk8q

F (
S5a,b

S 1

2
bk1q S

† bk82q S
† bk8 Sbk S

1bk1q1
† bk82q S

† bk8 Sbk11bk1q2
† bk82q S

† bk8 Sbk 2D
1~bk1q 1

† bk82q 2
† bk8 abk b1H.c.!G , ~31!

where bqS[bq1sS, and the effective interaction strengt
U[UEx$n%5$1s%

o .
For d52, and in the limit ofL→0, Eq.~24! is evaluated

as

U52pa0
2S 12

315p2

4096 DEex
b '1.52a0

2Eex
2D , ~32!

wherea0 is the exciton Bohr radius andEex
2D is the binding

energy of the two-dimensional exciton.17 Note that the esti-
mation of Eq.~24! in the three-dimensional case, using thre
dimensional 1s wave function, gives the hard-core scatteri
strength obtained in Ref. 3. This fact shows that the the
presented in this section corresponds to the result obta
by the Usui transformation.23

The point which should be emphasized in the dipole
tive part is that there are no interaction terms between
exciton withS51 and the exciton withS52 ~opposite spin
exciton interaction!, which are represented in the form o
}b1

† b2
† b2b1 , and that there are only the interaction term

between the excitons withS51(2) ~equal spin exciton in-
teraction!. This is due to vanishing ofUEx$S%

s for the corre-
sponding combination of$S%. The absence of the interactio
betweenS51 andS52 excitons agrees with the result o
Ref. 8, in which the case of elliptic polarization with a
elliptic polarization anglea is discussed. See the fifth row o
Table I in Ref. 8. The case ofa50 in Ref. 8 corresponds to
the case of circular polarization discussed in this section.
existence of the interaction in the case ofaÞ0 in Ref. 8 is
due to the finite inner product ofS51 and 1, and that of
S52 and2.

Here two ways of thinking are possible. One is that t
excitons withS51 and the excitons withS521 will not
interact with each other. The other is that the absence of s
an interaction term is due to the fact that so far we calcula
to lowest order only. A large number of experiments sh
that excitons with the opposite spins do interact and that s
an interaction is crucial, for instance, for four-wave mixin
in the time domain. So it is not appropriate to interpretH 1s

6

as the effective Hamiltonian for dipole active 1s excitons.
The straightforward transformation presented in this sec
is not appropriate for deriving the effective Hamiltonian
1s excitons and the projection procedure discussed in
next section is indispensable.

IV. PROJECTION PROCEDURE

In this section, the interaction Hamiltonian of 1s excitons,
which corresponds to Eq.~7!, is obtained through the projec
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tion procedure.18 This procedure yields the correct two-bod
interactions of 1s excitons in the subspace of 1s excitons. In
particular, the interaction term of excitons with the oppos
spins is obtained through the projection, whereas such
interaction was not obtained in the previous section. In ot
words, such an interaction is obtained when going bey
the HF approximation of 1s excitons alone. Moreover, th
projection yields a large renormalization of the interacti
strength of excitons with the same spins. Among wo
which have the similar motivation of going beyond H
modification of the exciton binding energy beyond HF
discussed by considering screening effects in Ref. 11.

In the previous section, the effects of higher exciton sta
have been completely excluded in deriving the interact
Hamiltonian of 1s excitons, Eqs.~30! and ~31!. In this sec-
tion, the theory is discussed in the subspace spanned bs
excitons, where the effects of higher exciton states are re
malized. Since this scenario is quite similar to the derivat
of an effective Hamiltonian from the Hubbard model wi
large on-site Coulomb repulsion through a projecti
procedure,24 the method used here is referred to as proj
tion. In other words, this is nothing but the real part of t
second-order vertex correction in the filed theory, yieldi
the energy shift.

The higher exciton states are taken as the intermed
states in the scattering processes of 1s excitons. Schemati-
cally, the scattering processes of excitons shown in Fig. 2
considered. Since our purpose is to obtain the effective
teraction of 1s excitons, the relative motion indices of fou
external lines must ben51s. As for the intermediate states
excitons which are connected with 1s excitons by dipole
transitions are considered. Then, the lowest energy exci
for the intermediate states are 2p6 excitons. Note that in a
two-dimensional system, thep states are doubly degenerate

The Hamiltonian for the 1s2n interaction processes is

FIG. 2. Successive exchange scattering processes of exc
taken into the projection procedure. The bullet shows the sum o
single exchange scattering processes between the 1s andn excitons.
e
an
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Hout[(
n

H1s2n

5(
n

(
$S%

(
kk8q

gn~q!b1s,k1q,S1

† b1s,k82q,S2

† bn,k8,S4
bn,k,S3

1H.c. ~33!

Let Horg be the Hamiltonian which includes the kinetic an
the interaction terms of 1s and n excitons, and with eigen-
states and eigenenergies defined by

HorguF&5EFuF&. ~34!

Consider the following Schro¨dinger equation:

~Horg1Hout!uC&5EuC&. ~35!

Symbolically, the solution of this equation is shown as

uC&5
Hout

E2Horg
uC&5(

F
uF&

^FuHoutuC&
E2EF

1
P

E2Horg
HoutuC&, ~36!

where the projection operatorP is defined as

P[12(
F

uF&^Fu. ~37!

The uC& is rewritten as

uC&5(
F

aFuCF&, ~38!

where

aF[
^FuHoutuC&

E2EF
, ~39!

and

uCF&[uF&1
P

E2Horg
HoutuCF&. ~40!

In lowest order, this wave function can be approximated

uCF&.uF&1
1

E2Horg
HoutuF&. ~41!

From them, the Schro¨dinger equation for the projected ou
Hamiltonian, that is, the effective Hamiltonian is obtained

~E2EF!aF5(
F8

aF8^FuHout

1

E2Horg
HoutuF8&. ~42!

Here, two successive exchange scattering processes
considered, whose individual scattering amplitudes are
tained from Eq.~26!. The resolvent 1/(E2Horg) is replaced
with the difference of the kinetic energy between twon ex-
citons and two 1s excitons, because the interaction energy
each exciton can be assumed to be small as compared to
kinetic energy. The orbital part of the renormalized scatt
ing amplitude of 1s excitons,UEx

o8, which is calculated by
second-order perturbative calculation, is

ns
e
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UEx
o85

1

V (
K ,nÞ1s

ugn~K !u2

2~En1K2/2M !22E1s

5
1

V (
K ,nÞ1s

1

2~En1K2/2M !22E1s
U(

p,p8
Ṽ~p2p81K !

3@2w̃1s* ~p!w̃1s* ~p8!w̃n~p!w̃n~p8!12w̃1s* ~p!w̃1s*

3~p2K !w̃n~p!w̃n~p8!2w̃1s* ~p!w̃1s* ~p8!w̃n~p2K !

3w̃n~p81K !#U2

. ~43!

Note that the long-range part of Eq.~43! compared with the
exciton Bohr radius describes the van der Waals force.

As for the spin part,UEx
s8 , it is obtained by the simple

product of two successive spin weightsUEx
s ,

UEx
s8 ~S1 ,S2 ;S3 ,S4!

5 (
S,S8

UEx
s ~S1 ,S2 ;S,S8!UEx

s ~S,S8;S3 ,S4!.

~44!

From the explicit representation of the renormalized scat

ing amplitudeU8[UEx
o8 UEx

s8 , the renormalized Hamiltonian
of 1s excitons is written in the form

H̃1s5H̃1s
0 1H̃1s

6 1H̃1s8 , ~45!

whereH̃1s
0 is the Hamiltonian of free 1s excitons, andH̃1s

6

1H̃1s8 [H̃1s
int , @see Eq.~7!#, includes then51s operators

only. The H̃1s
6 consists only of operators withS56,

whereasH̃1s8 consists of terms ofS5a and b operators,
including cross terms withS56 operators.

The interaction Hamiltonian which has only dipole acti
1s excitonsH̃1s

6 , is

H̃1s
6 5

U2U8

2V (
S56

(
kk8q

bk1q S
† bk82q S

† bk8 Sbk S

2
U8

V (
kk8q

bk1q 1
† bk82q 2

† bk8 2bk 1 , ~46!

whereU85UEx
o 8 is a positive constant which arises from th

renormalization of higher exciton states (n
52p1 , 2p2 , . . . ). Comparing the right-hand side of Eq
~46! with that of Eq.~30!, we see that the coefficient of th
first term is renormalized asU→U2U8, and that the second
term is generated through the projection procedure, wh
leads to the opposite spin exciton interaction. This is due
the fact that though the spin weightUEx

s (1,2;1,2) van-
ishes, the spin weightUEx

s 8(1,2,;1,2)Þ0 because the
intermediate states can make use of the state with thS
5$a,b%, and UEx

s (1,2;a,b)Þ0. This shows that the
renormalization of higher exciton states results in a ren
malized HamiltonianH̃1s

6 , which differs, both quantitatively
r-

h
to

r-

and qualitatively, from the HamiltonianH 1s
6 , where higher

exciton states than 1s exciton are completely ignored.
The renormalized interaction Hamiltonian which includ

dipole inactive excitons is obtained similarly as

H̃1s8 5
U2U8

V (
S5a,b

(
kk8q

F1

2
bk1q S

† bk82q S
† bk8 Sbk S

1bk1q 1
† bk82q S

† bk8 Sbk 11bk1q 2
† bk82q S

† bk8 Sbk 2G
1

U

V (
kk8q

~bk1q 1
† bk82q 2

† bk8 abk b1H.c.!

2
U8

V (
kk8q

bk1q a
† bk82q b

† bk8 bbk a . ~47!

SinceH̃1s8 includes dipole inactive 1s excitons withS5a,
b, it does not contribute to the optical response in its low
order.25,26

V. DISCUSSIONS AND REMARKS

A. Microscopic foundation of the WIBM

Kuwata-Gonokamiet al.12 introduced a phenomenolog
cal Hamiltonian, WIBM, which yields good agreement wi
the experimental four-wave mixing data. The WIBM has tw
kinds of interaction terms of excitons: One is a repuls
term R for the same spin excitons. The other is an attract
interaction W for the opposite spin excitons. As our firs
important result, we note that the phenomenologi
Hamiltonian12 has the same form as ourH̃1s

6 , the dipole

active part ofH̃1s . This is quite reasonable because the ot
part H̃1s8 , which is dipole inactive, should be invisible i
low-order optical experiments.26 We can therefore identify
the parametersR and W of the phenomenologica
Hamiltonian12 as

R5
U2U8

2V
, ~48!

W52
U8

V
. ~49!

The value ofU8, as given by Eq.~43!, depends on the ma
terial parameters such asM ande, and hence is different for
different materials. It also depends on the QW parameteL.
Moreover, when imperfections in the QW are non-negligib
the expressions ofU8 should be modified accordingly
Therefore even for the same material the values ofR andW
could vary from sample to sample, which seems to be c
sistent with recent experimental results.27 Note, however,
that theexistenceof both interaction terms of excitonsH̃1s

6 is
independent of such details.

Since the accurate evaluation of Eq.~43! is rather tedious,
we here estimate the typical value ofU8 as follows. TheK
summation in Eq.~43! is cut off for K*CL /L ~through the

cut off of Ṽ) and/or forK*Ca0
/a0 ~throughw̃n), whereCL

andCa0
are cutoff parameters of the order of unity. For t
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case of the QW sample of Ref. 12,L'a0, hence we may
cutoff the K summation forK*C/a0, where C is of the
order of unity. For then summation, we may considern
52p6 states only, because higher exciton states give m
smaller overlap integrals. The summations forp andp8 are
replaced with integrals andU8 is roughly evaluated, asU8
'16.5a0

2C2Eex
2D .

Reference 12 reported the ratioR:W as 1:215. From
Eqs. ~48! and ~49!, we find that this ratio is reproduced b
the present theory when the cutoff parameterC;0.3, which
is consistent with the requirement thatC is of the order of
unity. Considering that the values ofR andW vary slightly
from sample to sample,27 the agreement seems satisfacto
Note that such a small value ofR reported in Ref. 12 is due
to the renormalization ofU→U2U8. Once the agreement o
H̃1s

6 with the phenomenological Hamiltonian is establishe
the agreement with the experiment follows, as presente
Refs. 12, 13, and 28. That is, lowest-order perturbative
culations for the polariton-polariton scattering amplitud
agree with the experiment.12,25 From the above discussion
we conclude that the present theory yields the microsco
background of the two exciton interaction terms in t
WIBM.

B. Correct effective Hamiltonian of 1s excitons

The correct form of the effective Hamiltonian of 1s exci-
tons is the renormalized one instead of the Hamilton
which is obtained without the projection procedure, i.e.,

H 1s
e f f5H̃1s

6 1H̃1s8 . ~50!

In fact, the opposite spin exciton interaction inH̃1s
6 , which is

absent inH 1s
6 , has been clearly observed experimentally

Refs. 6 and 12. We have used a low-order perturba
theory to deriveH̃1s , where successive scatterings in t
intermediate processes are not considered. However,
does not imply a total neglect of multiscattering process
because we have calculated a Hamiltonian rather than
servables. In fact, a systematic summing up of higher-or
scattering processes is incorporated in our theory if one
culates higher-order perturbation terms fromH̃1s by writing
down the Bethe-Salpeter equation.

Note thatH̃1s is not positive definite to the fourth-order i
the exciton operators. The stability of the system should
preserved by higher-order terms. In general situations, p
erties of a system described by such a Hamiltonian sho
not be analyzed by a perturbation theory based on
vacuum of the free part. Nevertheless, we can use su
perturbation theory in our case, because our exciton the
has the built-in constraint that the ground state is the s
with no excitons, i.e., the vacuum ofH̃1s

0 . The effective

Hamiltonian H̃1s together with this constraint constitutes
consistent theory, which justifies the low-order perturbat
theory based on the given vacuum, if the optical excitation
sufficiently weak.

C. Comparison with existing bosonic theories

As shown in Sec. I, existing bosonic theories treated sp
less excitons,3 or spinfull excitons without the renormaliza
ch
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tion procedure.8,9 In the spinless theory,3 the result is that
excitons interact repulsively. The attractive interaction of e
citons with opposite spins is suggested from a variatio
calculation for the biexciton state. However, the existence
biexcitons is not directly related to the attractive interacti
term of excitons with the opposite spins~the W term in
WIBM !, as will be discussed in Sec. V E. In the spinfu
theories,8,9 on the other hand, an interaction Hamiltonian
1s excitons with opposite spins was not derived. Since
theories essentially end up with the HF approximation ofs
excitons, the excitons with opposite spins are complet
decoupled,10 as confirmed in many papers29 ~see Sec. III C!.
Such theories will not yield the interaction of excitons wi
opposite spins, as shown in Sec. III C.

The projection method discussed in this paper proves
one can obtain the explicit form of the interaction Ham
tonian of excitons with opposite spins beyond HF appro
mation of only 1s excitons. There are several papers whe
such an approach is motivated,11 however, only the modifi-
cation of the exciton binding energy is discussed. Using
interaction Hamiltonian, one can reproduce these results29

D. Validity of the theory

In deriving the effective Hamiltonian of 1s excitons, we
have assumed three conditions listed in Sec. II A:~i! the
excitation is weak so that the mean distance of photocre
excitons is much larger than the Bohr radius of the 1s exci-
ton, ~ii ! all the photon energies~pump, probe, and signal! are
close to the energy of the 1s exciton, and~iii ! the linewidth
of 1s exciton is smaller than the detuning energies.

The condition~i! allows us to use the boson represen
tion of excitons. This condition may be confirmed expe
mentally by the fact that the signal intensity is precisely p
portional to the square of the pump intensity, i.e., the opti
response is well described byx (3). This suggests that the
two-body scattering processes would be dominant. Whenl ex
is increased tol ex;a0, the deviation from the boson statis
tics of the operatorsbqnS and bqnS

† will become non-
negligible, which invalidates the boson representation.30 The
condition~ii ! means that the 1s excitons give dominant con
tributions. This allows us to project out all states higher th
1s.

The final condition~iii ! allows us to neglect relaxation
process of 1s excitons. Namely, the equation of motion o
the reduced density operatorr̃1s in the 1s exciton subspace
generally takes the following form:

]r̃1s

]t
5

1

i
@H̃1s ,r̃1s#1G̃r̃1s . ~51!

Here, H̃1s describes the unitary evolution ofr̃1s , and G̃ is
the relaxation operator, which is described by the imagin
part of a vertex correction. Since the relaxation processes
less crucial under the condition~iii !, one may disregardG̃,
i.e., one may consider only the real part of the vertex corr
tion. One might think that under these conditions the opti
signals would not be strong enough to obtain experime
data. However, Kuwata-Gonokamiet al.12 proposed a well-
prepared method to overcome this difficulty: they confine
GaAs QW in a high-Q microcavity. This results in a large
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splitting of excitonic polariton spectrum. Some nonlinear o
tical signals are strongest at the polariton energies~upper and
lower ones! because of the polariton resonance. On the ot
hand, the dissipation~which creates real excitons in the QW!
is weak at these energies.@This may be understood by con
sidering possible final states: When the initial state is a sin
photon state~coming from an external light source! that has
the energy of the lower-polariton peak, the final state can
be an exciton state~without a photon! because the energy i
short to create a real exciton.# Therefore one can obtai
strong signals without significant dissipation when the p
ton energies are close to the polariton energies in a higQ
optical cavity. Using this idea, Kuwata-Gonokamiet al.12

measured nonlinear optical responses under the condi
~i!–~iii !, and showed the validity of the WIBM. Our theory
valid in such a case.

On the other hand, Shiraneet al. recently demonstrated
that the dissipation becomes important when theQ value of
the optical cavity is lowered.13 In this case the relaxation
processes of 1s exciton becomes important, which mea
that G̃ must be fully considered. These are closely related
the excitation induced dephasing~EID! discussed below. The
relaxation effect is one of the future problems.

Another example to which the present theory is applica
may be the optical Stark effect in high quality samples at l
temperature. In the past experiments of the optical Stark
fect, one had to take the detuning rather large@hence condi-
tion ~ii ! is not satisfied# in order to avoid the absorption tai
The absorption tail would be reduced for samples with be
quality and at lower temperatures.

E. Biexciton formation and attractive interaction of excitons

It has been conjectured12 that a ‘‘biexciton effect’’ would
be the origin of the ‘‘W term,’’ i.e., the opposite spin excito
interaction. However, this argument is misleading. The bi
citon state is analogous to a hydrogen molecule and
formed essentially through the mixing of two 1s states hav-
ing different centers. The mixing of two hydrogen atom
yields the bonding and antibonding states, which are re
sented as (1/A2)(c1↑

† c2↓
† 6c1↓

† c2↑
† )h1s

† h2s8
† u0&. Here, c1(2)

†

creates an electron in the 1s state located at nucleus 1~2!, and
h1(2)

† creates the nucleus. The lower energy state is the bo
ing, that is, molecular state. In the case of excitons withJe

z

561/2 andJh
z563/2, the corresponding states are (1/A2)

3@b1
† b2

† 6ba
†bb

† #u0&, where thek dependence is omitted in
order to focus on theS dependence. The bonding state (2
sign for a positive coupling constant! has a lower energy an
is called biexciton. This energy splitting between the bon
ing and antibonding states is induced by an interaction of
form of b1

† b2
† babb1H.c., which is included inH̃1s8 @or, be-

fore the renormalization, inH1s8 of Eq. ~31!#. From a more
general point of view, a typical bound state in an interact
boson model is the eigenstate

ubound&5@a†b†2sign~g!c†d†#u0& ~52!

of a boson Hamiltonian in the following form:

H5v~a†a1b†b1c†c1d†d!1g~a†b†cd1d†c†ba!.
~53!
-

er

le

ot

-

ns

o

e

f-

r

-
is

e-

d-

-
e

g

The eigenenergy ofubound& is 2v2ugu. Note that the exis-
tence of the bound state is independent of the sign of
interactiong.

On the other hand, theW term lowers the energies ofboth
statesby the same amount, hence does not play a central ro
in the formation of the biexciton state. The most importa
effect of theW term is to lower the energy ofb1

† b2
† u0&,

relative to those ofb1
† b1

† u0& and b2
† b2

† u0&, and this effect
was detected experimentally.12 In the framework of the

present bosonic theory,H̃1s8 lowers the energy of the bondin
~biexciton! state relative to that of the antibonding state, a
thus is crucial for the formation of the biexciton stat
whereas theW term lowers the energy of both bonding an
antibonding states. The point that should be emphasize
that the crucial interaction for biexciton formation is no
2U8b1

† b2
† b2b1 but U(b1

† b2
† babb1H.c.). The g in Eq.

~53! corresponds toU in the present case.

F. Dipole decoupling and HF approximation

The original SBE are a theory within HF. There are tw
reasons that an extension beyond HF approximation beco
necessary. One reason is that it is necessary to take exc
exciton correlation effects into account. When the excitat
is low, the optical response from semiconductors are att
uted to excitons. Similar features appear under high magn
fields,31 where the most striking feature is that the signal
time-domain four-wave mixing does not decay expone
tially, whereas the SBE predict a single-exponential dec
These typical two cases are beyond the scope of SBE.

As for the spin degrees of freedom, the excitations crea
by photons with the opposite circularly polarization are co
pletely decoupled within HF. Furthermore, the experimen
results of the polarization dependence of four-wave mix
signals and quantum beats are not treated within HF.
coupling of the excitation with the opposite spin is obtain
beyond HF approximation.

Finally, we discuss the relation between the fermion
theories1,2,7,32,33and the present bosonic theory. The HF fa
torization treatment of the SBE~Ref. 2! cannot produce the
interaction between the excitation created by right-circula
polarized light and the excitation by left-circularly polarize
light. The HF theory therefore corresponds toH 1s

6 , Eq. ~30!.
It was argued in Refs. 7, 32, and 33 that the interactions
an exciton with higher states~including free carriers! are
important, and that the interactions result in the energy sh
the EID, and the ‘‘biexcitonic correlations.’’ In the boson
theory in the form of Eq.~29!, these effects are included i
H1s8 andHothers. After the projection is made, the relation

roughly as follows. The renormalized HamiltonianH̃1s
6 , Eq.

~46!, would include the HF term. The EID may be describ
by bothG̃ andH̃1s8 . The ‘‘biexcitonic correlation’’ would be

included in H̃1s8 . We believe that the present theory th
helps to bridge the gap between the bosonic theories3–5,12

and the fermionic theories1,2,7,32,33of e-h systems. However
more detailed comparisons will be a subject of future stud

As another future problem, the microscopic expression
the filling factorn should be discussed on the same footin
Although such an expression was derived in Ref. 34, it c
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responds to the ‘‘before projection’’ in our theory, so that th
corresponding term ‘‘after projection’’ remains a subject o
future research.

VI. CONCLUSIONS

In this paper, we have derived the effective Hamiltonia
for 1s excitons with spin degree of freedom in two dimen
sions. This theory is valid when excitation density is wea
and when the photon energy is close to the 1s exciton en-
ergy, because the boson operators of 1s excitons are used.
Relaxation processes of excitons should be less import
like, e.g., a QW in microcavity with high-Q value. What
should be most emphasized is that the projection is crucia
obtain the effective Hamiltonian of excitons: the correct e
fective Hamiltonian of 1s excitons is not the one which is
obtained by discarding the all exciton operators ofnÞ1s
among the full interaction of excitons@see Eqs.~5! and~6!#,
because it cannot explain the experimental results ev
qualitatively, as discussed in Sec. III. The higher excito
statesn52p,3d, . . . play important roles as intermediate
J

P

a

p
e

R

,

f

k

nt

to
-

n
n

states. In order to include such effects, the projection is us
Through this procedure, the interactions of excitons with t
opposite spins are obtained and the interaction strength
excitons with the same spins is drastically modified~renor-
malized! as shown in Sec. IV. In short, the procedure reno
malizes both the form and strength of the effective intera
tion.

It is also shown that the effective Hamiltonian obtaine
through the projection provides the microscopic foundati
of the phenomenological HamiltonianHWIBM , proposed in
Ref. 12. The agreement of the present theory with expe
ments supports the validity of a description of a fermion
system by bosonic fields in two dimensions, if the excitati
is weak. This is a strong indication that bosonization can
a powerful tool also in higher than one dimension.
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