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An effective bosonic Hamiltonian ofslexcitons with “spin” degrees of freedom in two dimensions is
obtained through a projection procedure, starting from a conventional electron-hole Hamilttypiawe first
demonstrate that a straightforward transformatioft{gf into a Hamiltonian of bosonic excitons does not give
the two-body interaction between an “up-spin” exciton and a “down-spin” exciton, which are created by the
left- and right-circularly polarized light beams, respectively. We then show that this interaction is generated
through a projection procedure onto the subspace spanned bxycitons, as a renormalization effect coming
from higher exciton states. The projection also renormalizes the interaction bet&eanitbns with the same
spins by a large amount. These renormalization effects are crucial for the polarization dependence of the
optical responses from semiconductors. The present theory gives the microscopic foundation of the phenom-
enology that was successfully applied to the analysis of four-wave mixing experiments in GaAs quantum wells
strongly coupled to the radiation field in a highmicrocavity.

I. INTRODUCTION materials is that it has the polarization degrees of freedom.
Recent experimental studies of semiconductor optics make
Various theoretical methods have been developed to studyne best use of this fact to reveal more detailed properties of
optical properties of semiconductdrs. These methods can excited states. The polarization degrees of freedom of pho-
be divided into two groups: a “fermionic method” and a tons induce “spin” degrees of freedom of excitatiofsee
“bosonic method.” The fermionic methdd is formulated below). Experiments, including the four-wave mixing ex-
on the Hilbert space of two fermionic species, i.e., photoexperiment in the time domain, have revealed the crucial roles
cited electrons and holes in semiconductors. In this methodyf the interaction between an excitor aneh pair) created
one solves the coupled equations of motions, the semicory the left-circularly polarized light and the one created by
ductor Bloch equation$SBE),? for the particle densities of the right-circularly polarized light” However, most of the
electrons and of holes, and for the expectation value of thexisting theories could not treat the polarization dependence
polarization of the system. Since this method basically reliesorrectly. For example, since the SBia its original form
on the Hartree-FockHF) approximation for electrons and were discussed within HF theofythe excitations with dif-
holes, it is suitable for higher excitation density, where Cou-ferent polarization degrees of freeddmevg., left and right
lombic screening effects guarantee that exciton correlatioare completely decoupled. Hence it is impossible to explain
effects become less crucial. In order to extend this method tthe polarization dependence of the optical response. It is also
lower excitation density, where exciton correlations becoméhe case with bosonic theories: in Ref. 3, the polarization
important, the three- and four-particle correlations should belegrees of freedom were not included in the derivation of the
taken into account and the truncation scheme should be imnteraction of excitons. References 8 and 9 treated the polar-
proved. ization degrees of freedom of excitons. However, since they
On the other hand, the bosonic metfiotis based on essentially end up with the HF approximation aféxcitons,
excitons, bound states of an electron and a hole. Regardirthe excitons with opposite spins are completely decouffled,
this elementary excitation as a bosonic particle, one conas will be discussed in Sec. Ill C.
structs an effective Hamiltonian of bosonic excitons, from In this paper, we show that it is not at all trivial to derive
which physical quantities, such as linear and nonlinear rethe interaction of excitons created by opposite polarized light
sponse functions, can be calculated. Here, the effectiven a bosonic theory. One crucial result is that to go beyond
Hamiltonian should be constructed very carefully, as we willthe HF approximation of 4 excitons becomes of paramount
show in this paper. The bosonic method is believed to bémportance. One of such investigations is seen in Ref. 11,
valid when the optical excitation is weak and when the phowhere the modification of exciton binding energy is dis-
ton energy is close to the exciton energgee Sec. Il A cussed.
because under these conditions main contributions to the op- Up to now, a strong objection against the bosonic method
tical properties should come from the excitons created in thevas that excitons are not bosonic particles. Moreover, until
system. With increasing the photoexcitation intensity, therecently there were almost no experimental evidence which
Coulombic force becomes weaker by increased screeningerifies an effective bosonic theory both qualitatively and
and/or increased Fermi energy, and the contribution fronguantitatively. However, important experimental evidence
free carriers becomes more important. Hence the bosonior the validity of the boson picture has been reported re-
method is not valid at high excitation intensity. cently in a two-dimensional systetfi’®The experiment, dis-
A remarkable feature of the light field as a probing tool of cussed in detail below, is a nonlinear version of normal-
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mode coupling in a higlQ) microcavity. This experiment bib’[b_b+ with a negative prefactor, corresponding to the
was stimulated by the fact that optical responses from semiw/ term in Eq.(1), and that the binding energy of a biexciton
conductors that are strongly coupled to the photon field havés |W|. However, we will show that such a simple picture is
received much attention in recent years. The strong couplingrrong; it is not this term which is responsible for biexciton
is obtained by confining optically active regions in a high- formation. The excitons which are not dipole active play an
microcavity, which is made possible by the development ofimportant role for the formation, as shown in Sec. V E.
nanostructure technology. For linear optical responses, the The purpose of our paper is to derive an effective boson
most noticeable phenomenon is a large Rabi splitting, whiclHamiltonian of Is excitons with “spin” degrees of freedom
has been observed in both inorgdfiiend organi®® semi-  under the three conditions cited in Sec. Il A. Through this
conductorginsulators. derivation, a microscopic foundation of the WIBM, espe-
Kuwata-Gonokami and co-workers have performed fourcially the interaction terms of excitons with the scattering
wave mixing in a GaAs quantum welQW) that is strongly  amplitudeW andR in the WIBM, is obtained. We show that
coupled to the radiation field in a higd-microcavity’**  effects of exciton states higher thas are crucial when de-
They investigated several polarization configurations undefiving the effective Hamiltonian of 4 excitons'® these ef-
the condition that the excitation density is very low, andfects yield the two-body interaction term corresponding\to
measured the polariton-polariton scattering signals. The exn Eq. (1), and largely modify the strength of the interaction
perimental results were successfully reproduced by a phaerm corresponding tR in Eq. (1). The higher exciton states
nomenological model, which is called the weakly interactingare taken into account through a projection procedure, and,
boson model(WIBM).*2*31¢ |n the WIBM, excitons are as shown in Sec. Il B, it is crucial to project the whole exci-
treated as interacting bosons. The good agreement with then space onto theslexcitons subspace and to reconstruct of
experimental results demonstrated that the bosonic picture ife interaction of $ excitons. In a more general sense, the
reliable in the lower-excitation regime. The Hamiltonian of hosonic description of fermionic systems in two-dimension

the WIBM is is one of the most attractive fields in condensed-matter
theory’®?® |f the bosonic method is useful in two-
_ + + dimensional semiconductors, it would be one of the ex-
Hwiem ;T [0k o3 o webic Do amples of the success of a two-dimensional “bosonization.”
+ + We also discuss the relation of the exciton-exciton interac-
98y by ot Py o8k )] tion and the formation of a biexciton.
The organization of this paper is as follows: In Sec. I,
+W 2 bl L by +bl I after explaining the necessity of the projection, exciton
kikpkg 12T T T2 bosonic operators are introduced and exciton spins are de-
fined. In Sec. I, the exciton interaction is discussed without
+Rk1 kzzks ) bk, oBi, Dicy oD, ey ey - the projection, which corresponds to the two-dimensional
2:K3, case of the existing bosonic thedhyjt is shown that the
exciton interaction corresponding to tiéterm in WIBM is
—gv > (b b Al b kKo not obtained in this approximation. In Sec. 1V, which is the
kyKgkg,o T 2T TSTL 2T main part of this paper, the projection procedure is
+bll A, o‘bls gbkl—k2+k3 ), 1) introduced'® resulting in appearance of the/ term and

modifications of the interaction strength of excitons with the
where photons and excitons are described by boson operatdi@me spins. Discussions and remarks are presented in Sec. V.
a, , andb, ,, respectively, with the spin index==. This  In Sec. VI, the results obtained in this paper are summarized.
Hamiltonian has three parameterg/ is the interaction Throughout this paper, the units=1.e=1,e,=1 are used.
strength of the excitons with opposite spijs the interac-
tion strength of the excitons with the same spin, and Il. MODEL AND STRATEGY
v(>0) is the filling factor’ The ratios of these three param-
eters were measured 8¢ grv=—3.0 andR/gr=0.2. Once
these three parameters are fixed, the experimental results for The purpose of the present paper is to deriveeHiactive
all polarization configurations are fitted very well. This indi- Hamiltonian of Is excitons in a QW. Here, the “effective
cates that a bosonic method is quite reliable in the loweHamiltonian” means that if{approximately describes the
excitation density. Nevertheless, existing bosonic thedties optical responses of the QW correctly, although it is a func-
could not give amicroscopicfoundation of the WIBM. In tion of 1s exciton operators only.
particular, they could not derive theW term,” the second Since any effective theory is valid only in some specific
term of the right-hand side of Eql), see Sec. Ill. The term physical situations, we first clarify the physical situations or
was introduced intuitively by an analogy with the discussionconditions under which we construct the effective theory. In
of a hydrogen molecule, when polarization dependence wasompensation for this limitation, the effective theory de-
discussed:*> Namely, from the analogy of a four-body prob- scribes the physics simply. In contrast, such insights are
lem corresponding to a hydrogen molecule, it was expectetiardly obtainable from straightforward calculations using the
intuitively that the attractive interactiofthe interaction term electron-hole Hamiltonian.
with a negative prefactorshould exist in a many-body We construct an effective Hamiltonian that describes op-
Hamiltonian. It was also considered that the crucial interactical responses of semiconductor QW’s under the following
tion of exciton for biexciton formation has the form of conditions:(i) The excitation is weakweak excitation re-

A. Conditions for the validity of the effective theory
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gime) so that the mean distantg, of photocreatedvirtual
and/or real excitons is much larger than the Bohr radas
of the 1s exciton;

> 2 Ve

{S kk'.q

X (qi{r=18}{SHb, g5 be g5 b 5,bks,,

. 1
Mi=30

)

and (ii) all the photon energie§pump, probe, and signal
hw; are close to the enerdy, ¢ of the 1s exciton;

lex>ag,

(6)

whereb, s denotesb, , s with v=1s.2* Unfortunately, how-
ever, we will show later that the replacemert™!~int
®) —>Hi1“5‘ is a very poor approximation, which cannot explain

whereE,, is the energy of @ excitons, andiii) the line-  the experimental resultsven qualitatively This originates
width I';5 of 1s exciton is smaller than the detuning ener- from the complete neglect of effects of higher exciton states
gies; v=2p,3d, . ..,which, however, play important roles as in-
termediate states.

To resolve this difficulty, we will then consider in Sec. IV
the effective Hamiltonian defined df,. It is obtained by
the projection procedure, by which the dynamicsHp, is

Under these conditions, nonlinear optical signals woulopro]ec’[ed onto the SUbSpatﬁS Fhat is spanned byslexci- -
not be strong in general. One must therefore devise experfonS only. In general, a projection procedure generates dissi-
mental methods for detecting the signals with a high sensiPative terms in the projected dynamics in the subspace. Un-

tivity. For this purpose, a well-prepared method was pro-der conditions (i)—(iii) of Sec. Il A, however, we may
posed by Kuwata-Gonokamst al,'? in which an optical ~neglect the dissipative terms. Namely, the dynamicsiin
cavity with a highQ value is utilized. This point will be can be described by an Hamiltonian dynamics, whose Hamil-

discussed later in Sec. V D. tonian (effective Hamiltonianis a function of the boson op-
erators b, g for 1s excitons only. Its interaction part,
ANt consists of two- and more-body interactions
among k excitons. For example, the two-body interaction

" takes the following form:

|E1s—fwi|<|Exp—fiwi| (i= pump, probe, signgl

1_‘1s<|Els_h“’i| (4)

Physical meaning of these conditions will be explained in
Sec. VD.

(i= pump, probe, signal

B. Necessity of projection and renormalization

The Hamiltonian of areh system is defined on theh
Hilbert spaceH,, that is an fermionic Hilbert space spanned ™
by e andh states. As long as photo excitations are concerned,
all excited states are charge neutral. We can thus limit our-
selves in the charge neutral sector lf,,. The effective
Hamiltonian of excitons, which is defined on a bosonic Hil-
bert space spanned by the exciton states, should describe the
dynamics of theeh system in this charge neutral sector of
Hen. Note that there are twdor more choices for the
bosonic Hilbert space: one is the whole exciton spege  In this two-body interaction, effects of higher exciton states
that is spanned by all exciton states, whereas the other is itsave been(partly) included as ‘“renormalization effects,”
subspaceH ¢ that is spanned by theslstates only. The which have modified(renormalized the forms and the
effective Hamiltonian depends on the choice of the bosonigyrengths of 7', Therefore, in contrast to the case of
Hilbert space. H U=t Vit is reasonable to tak&Y' as an approximation

We will first consider in Sec. Il the effective Hamiltonian 13 =~ * i 1s P
defined orH,,. Its interaction part takes the following form: t© His" . In fact, we will show that the replacement

Hiu-Int_, H" is a good approximation, which agrees with

2/int _

15_29

+
k+qS;

> 2 Vea:{Shb

bl, b ebys.
S KK g k'—q$S, k’ S,Mk S3

(7)

- 1 the WIBM and experimental results.
full—int _ . .
H 20 % % k%‘ Vex(@:{#}{Sh In short, one must perform the projection onto the sub-
’T 4 spaceH s to get a correct effective interaction o&Zkxci-
X by q ” S;1bk,7q vy 32ka vy SPk s, T tons. The projection procedure modifies both the form and

strengths of the effective interaction. This is essential to jus-
tify the WIBM. In what follows, we will derive the effective

5
whereb, , s denotes the excitonic boson operat@sfined interactionHyy of 1s excitons in a QW from the conven-

laten), and ) is the area of the QW. The first term denotestional interacting electron-hole Hamiltonian.
the two-body interactions between excitons of various states,
and - - - denotes three- and more-body interactions. Since

exactcalculations, which take account all terms of Eq.(5)

to infinite order, are impossiblene has to make approxima-
tions Because of conditiong)—(iii ) in Sec. Il A, it is tempt-
ing to take only the two-body interactions of Excitons,

Hilnst, among many terms of E¢5);

C. Model

We consider the conduction and the heavy-hole bands in a
GaAs QW, which has a direct band gap. We start from the
following conventional form of the electron-hole Hamil-
tonian Hep:
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) V2 ) + —-1/2,+3/2
Hehzzi det//iT(X)(—z—mi‘l‘Ei i (X) :_i :+1/2—3/2i
. la) | | [+21/243/2) | 10
i i ot At ’
DR | oo dio0d 0 By \I-v2-32
XV(I’i_rilr)lAﬁi’(X/)lZi(X)' ) Since the dipole transition is associated witJ*=+1,

|+) and|—) are dipole active, coupling to circularly polar-
Here,V(r) denotes the Coulomb potential, which behaves infZ€d light with Jpn=*1, whereaga) and |B) are dipole
a QW of widthL asV(r)~e?/er for |r|=L, wheree is the inactive. The .general fqrm of Eq10) for elliptically polar-
static dielectric constant, and(r)~ constant for|r|<L. iz€d lightis discussed in Ref. 8.
The calculation is simplified by taking the limit—0 wher-
ever the singularity at=0 is irrelevant. In Eq(8), z,?;e(h)(x)
is the field operator of an electrofole), i={e,h}, Ze(n In this section, the interaction Hamiltonian corresponding
=1(=1), x=(rem) o), JdX=Zyfd’r;, and similarly 1o Eq.(6) is obtained in order to clarify the difference from
fori’ andx’. The indexJ%, denotes the component of the  the two-body interaction obtained through the projection pro-
total angular momentum, which is a good quantum numbercedure which is discussed in the next section. For this pur-
when thez axis is taken in the direction normal to the QW Pose, we calculate the scattering amplitude of excitons with-
layers. Thel? is defined as- 1 timesJ? of the corresponding Out any intermediate states.
valence band electron. In a GaAs QW= = 3/2 for a heavy

Ill. INTERACTION OF EXCITONS BEFORE PROJECTION

hole, andJZ= +1/2* A photon withJ;,=+1(—1) creates A. 1s exciton scattering amplitude
an electron-hole pair withJg=—1/2(+1/2) and Jj= In this subsection, scattering processes which involve
+3/2(—3/2) to conserve the total angular momentum.  only 1s excitons are considered without the projection pro-
cedure, resulting to the interaction Hamiltonian of éxci-
D. Strategy tons through a straightforward transformation.

Such scattering processes are schematically shown in Fig.

X, where the index “exi” should be read as the set of
fﬁdices{ki ,vi,5;}. In this subsectiony;=1s for anyi and
the index is dropped if any confusion is not expected. These
processes are composed of two parts: one is a direct process,
b, = 2 J’ Prr iex iq. Mel e+ Myl Figs. ](a_l)—l(d), and the other is a fermi_onic ex_change pro-

q"S_JZ Z e h\/ﬁ q M cess, Figs. (8)—1(h). The form of the interaction Hamil-

erh tonian of 1s excitons is

Since all states that are excited by photons are electricall
neutral, the discussion is confined to the charge-neutral se
tor. Then the following exciton operator can be defiféd:

X @, (o= Tp){S|IZ, Iy e(r e, D) dn(rn ). (9)

. 1
HIM=_— > U(qi{SHb] .,y bl b s by s,
Here, the plane wave corresponds to the center-of-mass mo- 20 s KHaS; 0 K" S5k
tion of an electron-hole pait,(r) is a wave function for the (11)

e-h relative motion(S|J;, Jy) the Clebsch-Gorda(CG) co-  \yhere the scattering amplitude is written as
efficient, O the QW area, and=m,+my,. In the follow-

ing, the heavy hole condition<Om.,<m, is assumed, and U(g;{SH=U(U(S1,5,;S3.Ss)
H(p')=Megry /M.
From the explicit calculation of the commutation relation +UR(Q)UEL(S1,S;:S3,Ss). (12

for these operators, they can be treated as bosonic operators o s _ o s _
when the particle density is very low. This is satisfied under' "€  Up(@)Up(S1,5,:55,Ss)  and  Ug(Q)Ue(S1,S;
condition (i) in Sec. Il A. Wheng (1) is the wave function ~S3.S4) are the direct and the exchange scattering amplitudes,
with the quantum number(=1s,2p. ,2p_, ...) of a hy- respectively. The expressions of each component i E2).
drogen atom in two dimensiorighe operatob,s is identi- '€

fied with the bosonic operator for an exciton with the relative

motion indexv. Then, th_e exciton states are labeled by indi- U%(q)zﬂf dredfédrhdré¢k+q(re,fh)¢kr—q(fé )

cesq, v andS whereq is the momentum of the center-of-

mass motiony denotes the set of quantum numbers for the XAV (T o= L)+ V(F—TL) = V(Fe—T)
relative motionv, andS denotes combinations df andJ;,, ¢ e noh e n
as shown in Eq(10). SinceSis related to the total angular =V(re—rn)tde(re,rn) i (re,ri), (13

momentum, it is referred to as “spin” index in the follow-

ing. For transitions from the heavy-hole band to the electron .,
band in a GaAs QW, possible changes of the total angular U5(S1,52;S5,.S))= X (Si|92,I00(S,3% \3E)
momentum areAJ*’==*1 and +2. We here take the final LRI N

states corresponding taJ’=+1,—1,+2,—2 as S=+, .

—,a, (3, respectively. They are related withZ,J?) as X(Ss|Jg, IpN(Sal g \In ), 14
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@) (b)
ex.1 AN p &3

>4

©

@
0]

OO\,

> o
>

I o

w2 * 7 e T

h h
(c) (d) . .
RN NN PN
777 W ZZZZZZZ 5 (a and termonic exchange imeracide)-
(h) of 1s excitons. The horizontal lines represent
an electron and a hole and the verical line Cou-
© . e ® e e lomb interaction of two particles connected by
NN I RN the line.
 TRRL TR
N N2> SRRNNNS>>>) 3¢
TR & /AL
Ug(a)=—0 f dredr o drndr by o(Te ) Bicr —q(Fe 1) uD<q>:p2p V(@) e(p)?e(p2)|*+ e(py) ¢

X{V(re=re) +V(rh—rp) = V(re=rp) X (P1+ Q) @(P2) @ (P2~ ) — 29(p1) | P (p2) |26

—V(re=rn)}du(re.,rn) dir(re,rp), (19 X (p1+q)], (19

and ~ ~ 21~ 2
UEX<q>:prp V(a+pi—pa)[le(p)?[e(po)]
1:P2

Up($18:i8,80= 2 (SININSIE )

R +(P1)@* (P1+A)e(P2) ¢* (P~ )
e'Ye "Yh’
><<S3|JZ, Jﬁ><S4|JZ r21’> (16) _2;(p1)|;’(p2)|2:9*(p2_qn- (20)
¢ ¢ Here, the notations with tilde are defined as
where ¢4(re,rp) is the product of the wave functions of the 1 2
center of mass and the relative motion of excitons, v(p):f d2reip»rm _ ﬁ (21)
by(r rh)EieiQ'(Mre‘L/‘«’rh)(P(r _rh) (17) 1
qiler 7Y e : ~ N 20 Aip-T
Q ( )——f d?reP T o(r)
N #(P)=75 ¢(
The wave function of the relative motiop is the 1s wave
function of a hydrogen atom in two dimensions: _ L V2mag 22
VO [1+(Iplag/2)°]*
o(r)= Z\E e 2lrl/ag (18) Since the transferred momentum in the exciton scattering
\/an ’ processes is fairly small, which is of the order of the photon
momentum, the direct and the double fermionic exchange
wherea, is the exciton Bohr radius. In the followinglg(EX) interactions are negligibfeand the momentum dependence
and USD(Ex) are referred to as “orbital” and “spin” parts, Of the exchange interaction can be omitted. This allows the
respectively. approximation UR(q)~Up(q=0)=Up and Ug,(q)

First, the orbital parts are calculated. Fourier representa=Ug,(q=0)=Ug,. The q dependence of the interaction
tions of orbital parts in direct and exchange scattering amplistrength is discussed in Ref. 8. Under these conditibtfs,
tude are andUg, can be directly obtained from Eq4.9) and(20) for
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g—0: . U
His=5q > qustuqsbk' sbks, (30
Up=0, (23 S== kk'q
U 1
v N (25 1% = 1y His=o ~bl. bt oD b
g=22 V(p—p")l[e(p)*e(p)* ¢(p") 0 kkzq LEM (2 +a STk ~q ST STk
P.p
- |;(p)|2|;(p’)|z] (24) +bE+q+bl’qubk’ Sbk++bl+q,bl,7qsbk/ Sbk )

Equation(23) reflects the charge neutrality of the system.

+ (bl 4Dl by by gHH.C|, (31)

—q-

B. Scattering amplitude of higher exciton states than &

The calculation of the exciton scattering amplitude whichwhere bqs=bg1ss, and the effective interaction strength
includes excitons with/>1s is quite similar to the previous UEUEX{V}:{ls}.
calculation involving excitons with onlw=1s. For such Ford=2, and in the limit ofL—0, Eq.(24) is evaluated
scattering processes that satisfy the conservation laws, tl&s
amplitude for scattering from initial state’{, v,) to the final

: ; 31572
state (3,v,) is obtained as U=2ma3| 1- 4096) ngm1.5m35§5, (32)
[0} —
o} =0, 29 wherea, is the exciton Bohr radius andZY is the binding

energy of the two-dimensional excitdhNote that the esti-
EX{V}ZZZ V(p— p/)[(”pvl(p)*’(z,yz(p)*;%(p)(;%(pf) mation _of Eq.(24) in the thfee-di-mensional case, using thrge-
p.p’ dimensional & wave function, gives the hard-core scattering
~ o~ e ~ ) strength obtained in Ref. 3. This fact shows that the theory
— ¢, (P* e, (P) @, (P e, (P)], (26)  presented in this section corresponds to the result obtained

. : . by the Usui transformatiof?’
under the same assumptions as in the previous calculatmR. The point which should be emphasized in the dipole ac-

Here, ¢,(p) is the Fourier trans.form of the corresponding tjye part is that there are no interaction terms between the
wave function in the real space: exciton withS= + and the exciton witls= — (opposite spin
exciton interactiojy which are represented in the form of
Z’V(p):if RrelPo (1), 27 «btb'b_b,, and that there are only the interaction terms
NO) between the excitons wits= + (—) (equal spin exciton in-
teraction). This is due to vanishing otﬂéx{s} for the corre-
C. Interaction Hamiltonian of excitons before projection sponding combination dfS}. The absence of the interaction
. . . betweenS= + and S= — excitons agrees with the result of
From the results in previous two subsections, the bosonig.¢ 8, in which the case of elliptic polarization with an

Hamiltonian of excitons=7{°+7'" is obtained when it elliptic polarization angle is discussed. See the fifth row of
is assumed that_the exciton density is low, i\;\{hﬁf% isthe  tople Iin Ref. 8. The case af=0 in Ref. 8 corresponds to
free part of excitons. The general form &f™ through & ¢ case of circular polarization discussed in this section. The
straightforward transformation is existence of the interaction in the caseaf 0 in Ref. 8 is
ue., us due to the finite inner product &=+ and +, and that of
Hint= > MbL S S=— and—.
Kk’ q{v}{S} 20 R Here two ways of thinking are possible. One is that the
+ excitons withS= + and the excitons witts= —1 will not
X bk'*quszbk"’4s4bk”353' (28) interact with each other. The other is that the absence of such
an interaction term is due to the fact that so far we calculated
to lowest order only. A large number of experiments show
that excitons with the opposite spins do interact and that such
an interaction is crucial, for instance, for four-wave mixing
where H |+ HiSEHilnst, [see Eq.(6)], includes ther=1s in the time domain. So it is not appropriate to intergket,
operators only, an@,;,.rs denotes such remaining terms as as the effective Hamiltonian for dipole actives Excitons.
the interaction betweensland 2o excitons, the interaction The straightforward transformation presented in this section
between » and 2 excitons and other similar interactions. is not appropriate for deriving the effective Hamiltonian of
The H 1 consists only of the operators wits=+, corre-  1s excito_ns an_d the projection procedure discussed in the
sponding to dipole active excitons, wherd, consists of ~Next section is indispensable.
terms of S= « and B operators, including cross terms with
S=* operators.
From the explicit calculation of the spin part of the ex-
change scattering amplitudeg s, , for all combinations of In this section, the interaction Hamiltonian of &xcitons,
{51,$,,5;,S}={+,—,a,8}, Hfs andH;, are obtained as which corresponds to Eq7), is obtained through the projec-

Using this formula, we expresq as

H=H+H i+ H;+ Hothers: (29

IV. PROJECTION PROCEDURE
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1s, 81 v, 83
Hou= > His—y
(e)+(N+(g)+(h)= +
:2 2 2 QV(Q)bIs,kJrq,slbls,kr_q,s bv,k’,S4bv,k,S3
v 1S} kk'q 2
1s, S2 v, 84 +H.c. (33)

Let Horq be the Hamiltonian which includes the kinetic and
the interaction terms ofdand v excitons, and with eigen-
states and eigenenergies defined by

Horg| (I)) = ECIJ| (I)> (34)

1s, Ss - .
Consider the following Schdinger equation:

1s, 81

(Horg+ Hout)|‘I,>:E|q’>' (395
Symbolically, the solution of this equation is shown as
H D\ Houd V¥
1s, 82 1s, St W)= —2 | py=> |¢>M
) ) _ E—Horg ) E—Eg
FIG. 2. Successive exchange scattering processes of excitons
taken into the projection procedure. The bullet shows the sum of the P
single exchange scattering processes betweenshedy excitons. + E—Hy, Houd\w’ (36)

]
where the projection operat@? is defined as

tion proceduré® This procedure yields the correct two-body
interactions of & excitons in the subspace of Excitons. In
particular, the interaction term of excitons with the opposite
spins is obtained through the projection, whereas such an
interaction was not obtained in the previous section. In other
words, such an interaction is obtained when going beyond
the HF approximation of 4 excitons alone. Moreover, the |)Y=> ag|¥q), (39
projection yields a large renormalization of the interaction ¢
strength of excitons with the same spins. Among workswhere
which have the similar motivation of going beyond HF,
modification of the exciton binding energy beyond HF is (P Houl V)
discussed by considering screening effects in Ref. 11. o E-Eo '’

In the previous section, the effects of higher exciton stateg,q
have been completely excluded in deriving the interaction
Hamiltonian of Is excitons, Eqs(30) and (31). In this sec- P
tion, the theory is discussed in the subspace spannedby 1 |‘I’¢>E|¢)>+WHOUJ\I’@>- (40)
excitons, where the effects of higher exciton states are renor- o9
malized. Since this scenario is quite similar to the derivatiorl" lowest order, this wave function can be approximated as
of an effective Hamiltonian from the Hubbard model with 1
large on-site Coulomb repulsion through a projection -
proceduré’ the method used here is referred to as projec- [Wo)=|)+ E—HorgHOUJq)>' “y
tion. In other WordS, this is nothing but the real part of theFrom them, the Scﬁdjnger equation for the projected out
second-order vertex correction in the filed theory, yieldingHamiltonian, that is, the effective Hamiltonian is obtained as
the energy shift.

The higher exciton states are taken as the intermediate
states in the scattering processes sfekcitons. Schemati-

cally, the scattering processes of excitons shown in Fig. 2 are ) _
considered. Since our purpose is to obtain the effective in- Here, two successive exchange scattering processes are
teraction of & excitons, the relative motion indices of four considered, whose individual scattering amplitudes are ob-

exte_rnal Iine_s; must be=1s. As for_ the inte_rmediate states, Ealt?]eg‘g%?;feﬁgﬁi?'oms enla(isr? é\;iin;r}ggy?-éoég\avseaeﬂxid
excitons which are connected witls Iexcitons by dipole  gjtons and two $ excitons, because the interaction energy of
transitions are considered. Then, the lowest energy excitons;ch exciton can be assumed to be small as compared to their
for the intermediate states arg2 excitons. Note that in a kinetic energy. The orbital part of the renormalized scatter-
two-dimensional system, thestates are doubly degenerated. ing amplitude of 5 excitons,Ug,, which is calculated by

The Hamiltonian for the 4— v interaction processes is  second-order perturbative calculation, is

le—% |DYD|. (37)

he |¥) is rewritten as

(39

Hou @) (42

E—Eg)ap= >, d|H !
( [} alb_(:I), a(I)’< OUtE_Horg
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1 |9,(K)[?
O k715 2(E,+K?/2M) — 2E ;4

or _
Ex—

1 1

1 V(p—p' +K
O k%15 2(E,+K?/2M) — 2E ;5 2 Vip=p :

p.p’

X[ = @t(P)et(P ) eu(P) e, (P)+20T(P) ¢t

X (p—K) e (P ep')—ei(P)et(p ). (p—K)
2

X, (p'+K)| . (43

Note that the long-range part of E@3) compared with the
exciton Bohr radius describes the van der Waals force.

As for the spin part,UE’x, it is obtained by the simple
product of two successive spin weights,,

2 (S1,52:53.5)
= US(S1,S,;S,S')UL(S,S';S;,S,y).

ss'
(44)
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and qualitatively, from the Hamiltoniak( fs, where higher
exciton states thanslexciton are completely ignored.

The renormalized interaction Hamiltonian which includes
dipole inactive excitons is obtained similarly as

> >

Q S=a,B kk'q

~, u-u’
His=

EbL obls g Pir sbis
2 q -qS
s Pt
0yt g + 0 - g Pk s+ Tt by g sPrr b -

U
+5 2 (bl by b byt H.C)
Q kqu

U!
R R N - LN . DN B (47)
Q g k+qa-k'—qp-kK' B

Since H] includes dipole inactive 4 excitons withS= a,
B, it does not contribute to the optical response in its lowest
order?26

V. DISCUSSIONS AND REMARKS
A. Microscopic foundation of the WIBM
Kuwata-Gonokamiet al1? introduced a phenomenologi-

From the explicit representation of the renormalized scatterc@l Hamiltonian, WIBM, which yields good agreement with

ing ampIitudeU’EU‘,’E; E’X, the renormalized Hamiltonian
of 1s excitons is written in the form

ﬂls: ﬂgs”_ ﬂlis+ ﬂis ) (45)
where 72, is the Hamiltonian of free 4 excitons, andH;
+H; =HN, [see Eq.(7)], includes thev=1s operators
only. The ﬂfs consists only of operators witls= =+,

whereasH, consists of terms oS8=« and 8 operators,
including cross terms witls= + operators.

The interaction Hamiltonian which has only dipole active

1s excitonsHiy, is

u-u’

~ t
HISZ—ZQ ;i kkz[q bl+qsbk/_q Sbk’ Sbks
U’
- ﬁ 2 lerq +bl;,q,bk’ —bk+ ’ (46)

kk'q

the experimental four-wave mixing data. The WIBM has two
kinds of interaction terms of excitons: One is a repulsive
term R for the same spin excitons. The other is an attractive
interaction W for the opposite spin excitons. As our first

important result, we note that the phenomenological

Hamiltoniart? has the same form as odt;;, the dipole
active part ofH{;. This is quite reasonable because the other

part ﬂis, which is dipole inactive, should be invisible in
low-order optical experimentS. We can therefore identify
the parametersR and W of the phenomenological
Hamiltoniart® as

_UY 48
~ a0 “8
W= Y 49
=—q (49

The value ofU’, as given by Eq(43), depends on the ma-
terial parameters such & ande, and hence is different for

whereU’ = EX, is a positive constant which arises from the different materials. It also depends on the QW pararﬂeter

renormalization ~ of  higher  exciton states v (

=2p,,2p_, ...). Comparing the right-hand side of Eq.

Moreover, when imperfections in the QW are non-negligible,
the expressions olJ’ should be modified accordingly.

(46) with that of Eq.(30), we see that the coefficient of the Therefore even for the same material the valueR ahdW

first term is renormalized d4—U —U’, and that the second

could vary from sample to sample, which seems to be con-

term is generated through the projection procedure, whicistent with recent experimental resiisNote, hoxv:ever,
leads to the opposite spin exciton interaction. This is due téhat theexistenceof both interaction terms of excitorig  is

the fact that though the spin weightg (+,—;+,—) van-
ishes, the spin weighUg,’(+,—,;+,—)#0 because the

independent of such details.
Since the accurate evaluation of E493) is rather tedious,

intermediate states can make use of the state withSthe We here estimate the typical value df as follows. TheK

={a,B}, and UE,(+,—;a,B)#0. This shows that the

summation in Eq(43) is cut off for K=C /L (through the

renormalization of higher exciton states results in a renorcut off of V) and/or foerCaO/aO (througheg,), whereC,

malized Hamiltoniari{;;, which differs, both quantitatively

and CElo are cutoff parameters of the order of unity. For the
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case of the QW sample of Ref. 1R~a,, hence we may tion proceduré?® In the spinless theorythe result is that
cutoff the K summation forKk=C/a,, where C is of the excitons interact repulsively. The attractive interaction of ex-
order of unity. For thev summation, we may consider  citons with opposite spins is suggested from a variational
=2p.. states only, because higher exciton states give muchalculation for the biexciton state. However, the existence of
smaller overlap integrals. The summations floandp’ are  biexcitons is not directly related to the attractive interaction
replaced with integrals and’ is roughly evaluated, a8’  term of excitons with the opposite spirithe W term in
~16.5aSC2E§E. WIBM), as will be discussed in Sec. VE. In the spinfull
Reference 12 reported the ratRiW as 1:—15. From theoriesS® on the other hand, an interaction Hamiltonian of
Egs. (48) and (49), we find that this ratio is reproduced by 1s excitons with opposite spins was not derived. Since the
the present theory when the cutoff parame@er0.3, which  theories essentially end up with the HF approximation &f 1
is consistent with the requirement th@tis of the order of ~ €Xxcitons, the excitons with opposite spins are completely
unity. Considering that the values BfandW vary slightly ~ decoupled as confirmed in many papéfgsee Sec. Il G.
from sample to sampl@, the agreement seems satisfactory.SUCh theories will not yield the interaction of excitons with
Note that such a small value &freported in Ref. 12 is due Opposite spins, as shown in Sec. IIl C.
to the renormalization dff —U—U’. Once the agreement of ~ The projection method discussed in this paper proves that

7~_(1¢S with the phenomenological Hamiltonian is established ON€ can obtain the explicit form of the interaction Hamil-

the agreement with the experiment follows, as presented ihonlgn of excitons W'Fh opposite spins beyond HF approxi-
Refs. 12, 13, and 28. That is, lowest-order perturbative calMation of only Is excitons. There are several papers where

culations for the polariton-polariton scattering amplitudessuc.h an approaqh IS mot!vaté]dhoweyer,. only the mo_d|f|-
agree with the experime?®25 From the above discussion, cation of the exciton binding energy is discussed. Using our

we conclude that the present theory yields the microscopiH1teraCtI0n Hamiltonian, one can reproduce these resuts.

background of the two exciton interaction terms in the
WIBM. D. Validity of the theory

In deriving the effective Hamiltonian ofslexcitons, we
B. Correct effective Hamiltonian of 1s excitons have assumed three conditions listed in Sec. Il(i:the
The correct form of the effective Hamiltonian of Bxci-  €Xcitation is weak so that the mean distance of photocreated

tons is the renormalized one instead of the HamiltoniarfXCitoNs is much larger than the Bohr radius of trseekci-
which is obtained without the projection procedure, i.e., oM (i) all the photon energiepump, probe, and signaire
close to the energy of theslexciton, and(iii) the linewidth

Hi;f:ﬂfﬁ 7”:[15_ (50) of 1s exciton is smaller than the detuning energies.

The condition(i) allows us to use the boson representa-
In fact, the opposite spin exciton interactionif],, whichis  tion of excitons. This condition may be confirmed experi-
absent inH 5, has been clearly observed experimentally inmentally by the fact that the signal intensity is precisely pro-
Refs. 6 and 12. We have used a low-order perturbatiofportional to the square of the pump intensity, i.e., the optical
theory to deriveT{,., where successive scatterings in the'®SPonse is well described by®). This suggests that the
intermediate processes are not considered. However, thf¢/0-body scattering processes would be dominant. Wpen
does not imply a total neglect of multiscattering processedS increased te,~ay, the deV|at|oTn from the boson statis-
because we have calculated a Hamiltonian rather than oBics Of the operatorsby,s and bg,s will become non-
servables. In fact, a systematic summing up of higher-ordefegligible, which invalidates the boson representatfofie
scattering processes is incorporated in our theory if one cafondition(ii) means that the excitons give dominant con-
culates higher-order perturbation terms ffaf@s by writing tributions. This allows us to project out all states higher than

down the Bethe-Salpeter equation. 1s.

~ . . - . The final condition(iii) allows us to neglect relaxation
Note'thatHls I not positive de_flnlte to the fourth-order in rocess of § excitonsf l\}amely, the equati%n of motion of
the exciton operators. The stability of the system should bg . ~ .
preserved by higher-order terms. In general situations, proﬁ-he reduced density operqtpfs in the 1s exciton subspace
erties of a system described by such a Hamiltonian shoul§enerally takes the following form:
not be analyzed by a perturbation theory based on the ~
vacuum of the free part. Nevertheless, we can use such a 5”15: E[ﬂ ~ ]+'1=~ (51)
perturbation theory in our case, because our exciton theory at i/t Ps Pis:
has the built-in constraint that the ground state is the state ~ ) ) o~ ~ .
with no excitons, i.e., the vacuum &f3,. The effective Here, 713 describes the unitary evolution ghs, andI" is
the relaxation operator, which is described by the imaginary

Hamiltonian ;s together with this constraint constitutes a part of a vertex correction. Since the relaxation processes are
consistent theory, which justifies the low-order perturbauonIess crucial under the conditiaiii), one may disregar®

theory based on the given vacuum, if the optical excitation i%.e. one may consider only the real part of the vertex correc-

sufficiently weak. tion. One might think that under these conditions the optical
signals would not be strong enough to obtain experimental
data. However, Kuwata-Gonokarat al'? proposed a well-
As shown in Sec. |, existing bosonic theories treated spinprepared method to overcome this difficulty: they confined a
less excitons, or spinfull excitons without the renormaliza- GaAs QW in a high@ microcavity. This results in a large

C. Comparison with existing bosonic theories
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splitting of excitonic polariton spectrum. Some nonlinear op-The eigenenergy dbound is 2o —|g|. Note that the exis-

tical signals are strongest at the polariton energipper and tence of the bound state is independent of the sign of the

lower one$ because of the polariton resonance. On the otheinteractiong.

hand, the dissipatiotwhich creates real excitons in the QW On the other hand, thé&/ term lowers the energies bbth

is weak at these energigSthis may be understood by con- stateshy the same amounttence does not play a central role

sidering possible final states: When the initial state is a singlgy the formation of the biexciton state. The most important

photon statécoming from an _external light spur):mat has  affect of theW term is to lower the energy dﬁIbHO),

the energy of the Iovyer-polanton peak, the final state Car.mo}elative to those ob’ﬂrbilO) and b1b1|0), and this effect

be an exciton statévithout a photoin because the energy is detected . @l In the f K of th

short to create a real excitgnTherefore one can obtain was detecte .exper|r11en afly.in he framework o .e

strong signals without significant dissipation when the pho{resent bosonic theor§{; lowers the energy of the bonding

ton energies are close to the polariton energies in a Qigh- (biexciton state relative to that of the antibonding state, and

optical cavity. Using this idea, Kuwata-Gonokami al!?  thus is crucial for the formation of the biexciton state,

measured nonlinear optical responses under the conditionghereas theé/V term lowers the energy of both bonding and

(i)—(iii), and showed the validity of the WIBM. Our theory is antibonding states. The point that should be emphasized is

valid in such a case. that the crucial interaction for biexciton formation is not
On the other hand, Shiraret al. recently demonstrated —U’b"b'b_b, but U(bib’[bab[fr H.c.). Theg in Eq.

that the dissipation becomes important when@healue of  (53) corresponds tdJ in the present case.

the optical cavity is lowere& In this case the relaxation

processes of 4 exciton becomes important, which means

thatT must be fully considered. These are closely related to F. Dipole decoupling and HF approximation

the excitation induced dephasifigID) discussed below. The  The original SBE are a theory within HF. There are two

relaxation effect is one of the future problems. - ___reasons that an extension beyond HF approximation becomes
Another example to which the present theory is applicablg,ecessary. One reason is that it is necessary to take exciton-

may be the optical Stark effect in high quality samples at loweyciton correlation effects into account. When the excitation

temperature. In the past experiments of the optical Stark efs |ow, the optical response from semiconductors are attrib-

fect, one had to take the detuning rather Igigence condi-  yted to excitons. Similar features appear under high magnetic

tion (ii) is not satisfiedlin order to avoid the absorption tail. fie|gs3! where the most striking feature is that the signal of
The absorption tail would be reduced for samples with bettefjme-domain four-wave mixing does not decay exponen-

quality and at lower temperatures. tially, whereas the SBE predict a single-exponential decay.
These typical two cases are beyond the scope of SBE.
E. Biexciton formation and attractive interaction of excitons As for the spin degrees of freedom, the excitations created

It has been conjectur&ithat a “biexciton effect” would by photons with the opposite circularly polarization are com-

be the origin of the W term,” i.e., the opposite spin exciton pletely decoupled within HF. Furthermore, the experimental

interaction. However, this argument is misleading. The biex/€Sults of the polarization dependence of four-wave mixing

citon state is analogous to a hydrogen molecule and i§igna!s and quantum .beats. are not tree}ted vyithin HF'. The
formed essentially through the mixing of twa States hav- coupling of the excitation with the opposite spin is obtained

ing different centers. The mixing of two hydrogen atomsbeyond HF approximation.

. : . ; ; Finally, we discuss the relation between the fermionic
yields the bonding and antibonding states, which are repre: ' . “ % 2573 :
sented as (W)(CITC;FCLCZT)hIgh;Jm- Here, CI(z) theorie$ and the present bosonic theory. The HF fac-

| in th | | | p torization treatment of the SBERef. 2) cannot produce the
creates an electron in thes tate located at nucleus2), and  jyeraction between the excitation created by right-circularly

hI(Z) creates the nucleus. The lower energy state is the bongsyarized light and the excitation by left-circularly polarized
ing, that is, molecular state. In the case of excitons Wih light. The HF theory therefore correspondsHd, , Eq. (30).
=*1/2 andJ;=*3/2, the corresponding states are\) |t was argued in Refs. 7, 32, and 33 that the interactions of
X[bb" =b!b}]|0), where thek dependence is omitted in an exciton with higher stateéncluding free carriers are
order to focus on thé& dependence. The bonding state (  important, and that the interactions result in the energy shift,
sign for a positive coupling constarftas a lower energy and the EID, and the “biexcitonic correlations.” In the bosonic
is called biexciton. This energy splitting between the bond+theory in the form of Eq(29), these effects are included in
ing and antibonding states is induced by an interaction of the; _ and,c,s. After the projection is made, the relation is

form of b b" b,bs+H.c., which is included irftj [or, be-  roughly as follows. The renormalized Hamiltoni&, , Eq.
fore the renormalization, ifi{} of Eq. (31)]. From a more  (46), would include the HF term. The EID may be described

general p‘g”f _oft\;]iew,_ a typtic?I bound state in an interactingyy pothT* and ;. The “biexcitonic correlation” would be
oson modet s the eigenstate included in ;.. We believe that the present theory thus

—Tatht—« Tyt helps to bridge the gap between the bosonic thebried
[boung =[ab" —sigr(g)c’d"1l0) 62 and the fermionic theorié$"323%f e-h systems. However,
of a boson Hamiltonian in the following form: more detailed comparisons will be a subject of future studies.
As another future problem, the microscopic expression of
H=w(a'a+b'b+c’c+d'd)+g(a’b'cd+dic’ba). the filling factor » should be discussed on the same footing.

(53 Although such an expression was derived in Ref. 34, it cor-
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responds to the “before projection” in our theory, so that thestates. In order to include such effects, the projection is used.
corresponding term “after projection” remains a subject of Through this procedure, the interactions of excitons with the
future research. opposite spins are obtained and the interaction strength of
excitons with the same spins is drastically modifieghor-
VI]. CONCLUSIONS malized as shown in Sec. IV. In short, the procedure renor-

) ) . ~_ malizes both the form and strength of the effective interac-
In this paper, we have derived the effective Hamiltonianjgp,

for 1s excitons with spin degree of freedom in two dimen- t js also shown that the effective Hamiltonian obtained
sions. This theory is valid when excitation density is weakthrough the projection provides the microscopic foundation
and when the photon energy is close to treekciton en-  of the phenomenological Hamiltoniaty,gy , proposed in

ergy, because the boson operators sfekcitons are used. Ref. 12. The agreement of the present theory with experi-
Relaxation processes of excitons should be less importanfents supports the validity of a description of a fermionic
like, e.g., a QW in microcavity with higl value. What  system by bosonic fields in two dimensions, if the excitation

should be most emphasized is that the projection is crucial if5 weak. This is a strong indication that bosonization can be
obtain the effective Hamiltonian of excitons: the correct ef-3 powerful tool also in higher than one dimension.

fective Hamiltonian of & excitons is not the one which is
obtained by discarding the all exciton operatorsicf 1s
among the full interaction of excitorisee Eqs(5) and(6)],
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