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Charge relaxation and dephasing in Coulomb-coupled conductors
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The dephasing time in coupled mesoscopic conductors is caused by the fluctuations of the dipolar charge
permitted by the long-range Coulomb interaction. We relate the phase breaking time to elementary transport
coefficients that describe the dynamics of this dipole: the capacitance, an equilibrium charge relaxation resis-
tance, and in the presence of transport through one of the conductors a nonequilibrium charge relaxation
resistance. The discussion is illustrated for a quantum point contact in a high magnetic field in proximity to a
guantum dot.

Mesoscopic systems coupled only via the long-rangen the literature on the Coulomb blockade. Second, the elec-
Coulomb forces are of importance since one of the systemgon dynamics in each conductéi is described with the
can be used to perform measurements on the otbespite  help of its scattering matriﬁg};(E,Ui), which relates the
the absence of carrier transfer between the two conductorgmplitudes of incoming currents at contg&to the ampli-
their proximity affects the dephasing rate. Of particular in-tudes of the outgoing currents at The scattering matrix is a
terest arevhich pathdetectors that can provide information function of the energy of the carriers and is a function of the
on the paths of a carrier in an interference experifiehtt  electrostatic potentiall; inside conductoii. In caseA, the
is understood that at very low temperatures the basic praotal excess charge on the conductor is of importance. Below
cesses that limit the time,, over which a carrier preserves we show that in this case the charge dynamics of the meso-
its quantum-mechanical phase are electron-electron interascopic conductor can be described with the help of a density-
tion processe$’ The Coulomb interaction ensures overall of-states matri¥*¢
charge neutrality. Consequently, for the two coupled zero- .
dimensional conductors of interest here, the basic process is - 1 i ds(al)

10rs , _ ND=_— 3 it oy
a charge accumulation in one of the conductors accompanied v 2mi 4 T dE
by a charge depletion in the other conductor. The Coulomb . .
coupling of two conductors manifests itself in the formation EAuation(1) can be obtained from the frequency-dependent
of a charge dipole, and the fluctuations of this dipole governsecond-quantization current operdtti{)(w) for the total
the dephasing process. The dynamics of this dipole, and thusirrent in leada of conductori. We havé® Eafg)(w)
the dephqsing rate, can be characterized by elemgntary tran,_s-lwe/vi(w) where the charge operateNi(w) for a con-
port coefficients: In the absence of an external bias, exces§,ctori is determined by
charge relaxes, into the leads, towards its equilibrium value
with an RC time. In mesoscopic conduct8rthe RC time is . ~ .
determined by an electrochemical capacitai@g and a Ni(w)=52 0 dsrf dEal(E)N ) (v,r;E,E+fiw)
charge relaxation resistan&g . In the presence of transport A

@

thrngh one of the condu_ctors, ;hot ndiseads to a non- Xéy(EJrﬁw)’ )
equilibrium charge relaxation resistah®®&, . Below we re-
late R, andR, to the dephasing rate. where the first integral is over the volume of the conductor

Renewed interest in dephasing was also generated by e(@i),éy(éf;) annihilategcreateg a carrier in leady, and the
periments on metallic diffusive conductors and a suggestegdero-frequency limit OfoVdSrEV/\/gg/(yyr;E,E—i—ﬁw) is
role of zero-point fluctuations: We refer to the resulting :
discussion only with a recent iteth More closely related to
our work are experiments by Huibees al’® in which the
dephasing rate in chaotic cavities is measured. At low fre- Qa
guencies such cavities can be treated as zero-dimensional T
systems?

Consider two mesoscopic conductors coupled by long-
range Coulomb interactions. An example of such a system,
suggested in Ref. 15, is shown in Fig. 1. In césea quan-
tum point contacfQPQ in a high magnetic field is close to
a quantum dot, and in cagethe QPC is some distance away
from a quantum dot. First, we focus on caseTo describe
the charge dynamics of such a system, we use two basic
elements. First, we characterize the long-range Coulomb in- FIG. 1. Quantum point contact coupled to a quantum dot either
teraction with the help of a geometrical capacitance, much ai position A or B.
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given by Eq.(1). Equation(1) is valid in the WKB limitin  Note § is the charge operator of the dipole. Equati¢fs
which derivatives with regard to the pOtentIal can be re'and (6) ensure Charge conservation. UsiDgEezNi for the

placed by an energy derivativé Equation(1) are elements  density of states, we find that we can write the following:
of the Wigner-Smith delay-time matriX:'® Later, we also

consider situations in which energy derivatives are not suffi- 0, 1\/C+D, C el
cient. The diagonal elements of this matrix determine the ~ 1=lg ~ 1, (7)
density of states of the conductdr==, Tr(A})); the trace U, c C+Da/\el;

is over all quantum channels. The nondiagonal elements agﬁhered:(CJrD )(C+D,)—C?
essential to describe fluctuations. spectra is givenlby 2
At equilibrium, if all contacts of conductarare held at
the same potential, the two conductors can be viewed, as the;s | (w)8(w+w’)
plates of a capacitor holding a dipolar charge distribution K
with an electrochemical capacitaficeC,*=C *+D;* .- - -
Iz = ) ! U
+D, !, which is the series combination of the geometrical VAUi(@)U(o) + Ui )Ui(w), ®
Capacitancélzof the two conductors and the quantum capaci-where() denotes a quantum statistical average over products
tancesD; =e°N; determined by their density of states. An of four a operators. The potential fluctuation spectra is re-
excess charge relaxes with a resistance determingd by lated to the charge fluctuation spectra VB o (o)
i~k

=C25uiuk(w)- Combining Egs(1), (2), (7) and(8), we find

. The potential fluctuation

h 2; Tr(N NV the potential fluctuation spect?a’
=2 o ol @ 2\ 1
> iV N (i) AR T
Y i SUiUk(w) c2/ NijNg % dEFﬁvTr[Nr?y(N(ﬁy) !
Consider now the total current at all contacts of condurtor (€)

I==2,1{. The low-frequency current spectral densisy ~ whereF ,;=f (E)[1—f{(E+%iw)]+fs(E+hw)[1—f,(E)]
conductor 1 or 2is determined byS(w)szZCfLY, with is a combination of Fermi functions, whefg is the Fermi
Y=RykT andR, =R+ R if both conductors are at equi- function in contacty with a chemical potential, . In the
librium. In the presence of transport through one of the conlow-frequency limit of interest here, the elements of the
ductors (say 2, the current noise spectrur® exhibits a  density-of-states matrix/” (,/'39 are specified by Eq1). From
crossovel’ from the equilibrium value €/V|<kT) deter- the above we find that at equilibrium the low-frequency fluc-
mined by R, to a spectrum determined by:Rgl)kT tuations of the potential in conductor 1 are given by
+RPe|V| for (e|V|>kT) where®

C,\?[[{C+D,\? C\2
o S =2<—"“> (—) R 4+ —) R kT (10
o TN . e e ®
vooe? ' with R{) determined by Eq(3). Similar results hold for

2
Tr(NVY) ) . .
Ey S Su,u, and the correlation spectrusy u, - If a biaseV is
. . li for instance to th nductor 2, we find th m
Next we relate these resistances to the voltage fluctuations PP ed, for instance to the co d)uc or s, we d € same
; ectrum as above, except th%if KT is replaced, to first
the two coupled mesoscopic conductors and subsequently )

i (2)
the dephasing time. Our starting point is the Poisson equef?rder ine| V], by Ry "e]V] for e|V_|>kT. .
tion for the charge deviations away from their value in the 1© relate the voltage fluctuation spectra to the dephasing
ate, we follow Ref. 4. A carrier in conductor 1 moves in the

equilibrium state. Since we are interested in fluctuations, w - ;
express the Poisson equation in operator form. Assumin uctuating potentiall; . As a consequence, the_phase of the
arrier is not sharp but on the average determined by

that the geometrical capacitan€ecoupling the two conduc-
tors dominates all other capacitan¢@sye can express the e (t
charge on the two conductors in two ways: First, with the <exp[i(fj>(t)—&(O))]>=<'Al'ex+ _f dt'ol(t')b
help of the potential operator§l; and U,, we haveQ fiJo

=C(U;-U,) for the charge on conductor 1 andQ (12)
=C(U,-0,) for the charge on conductor 2. Second, we A e giot_ 1\
can express these same two charges in terms of the bare =<Tex+gf dw( iw )Ul(w) > (12

chargesel; [see Eq.(1)] and a screening charge propor- _ . _ _
tional to the average density of sta&#\; on the conductor Assuming that the fluctuations are Gaussian, this quantum-

times the induced potentid); . Thus charge and potential Mechanical average is given by exfi(r,) with
fluctuations are related by _
7, =(€%12h%)Sy u,- (13

A s ot o
Q=C(U;—-Uz)=eN1—eN;Uy, 4 Since the voltage fluctuation spectryiag. (10)] consists of

R L R R two additive terms, we can decompose the dephasing rate
—Q=C(U,—U,)=eN,—e?N,U,. (6)  into two contributions (1#,) 11y and (1k) (12, where the
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index pair (k) indicates that we deal with the dephasing rate 0.030 4
in conductori generated by the presence of condudtor
Before discussing the results, it is useful to clarify the
limit in which we are interested. Typically, the Coulomb
charging energyJ =e?/2C is large compared to the level
spacingA in the conductors of interest. Sindg=1/N;, this
has the consequence that any deviations of the electrochemi- RV
cal capacitance from its geometrical value are very small.

g

14

[

3
T

We can thus tak€,~C and (C+D,)/D,~1 in Eq. (10). 0.010
Now we are interested in the dephasing rater i/, in
conductor 1 due to the presence of conductor 2. Fvgﬁw
=(€?/21%)Sy u, We obtain 0.000
1 €(C\%
(T_d))(lz):; (D_:L) Ry KT (14 FiG. 2. R, (solid ling) in units of h/e? and G (dashed lingin

units of e?/h as a function ofEg—V, for a saddle QPC with
with R, given by Eq.(3) if conductor 2 is at equilibrium and  w,/wy,=1 and w./w,=4, wherew, is the cyclotron frequency
(we=|eB|/mo).

2 2
(i> _e ( ) RPe|V| (15) . . .
7o/ (12) £2\ Dy e_ff|C|ent with ATz(dTll/SjE)_(dd)l/dE) . Ou_r result pro-

. ) o . vides a complete specification of the dephasing rate in terms
with R, given by Eq.(4) if it is in a transport state with  of the scattering matrix and geometrical capacitances. We
e|V|>KT. Note that for closed 2D conductorse scattering  take screening into account and thus can clarify the depen-
leads to a rafeprqportional toT? vyhgreas for open conduc- dence on the quantum dot propertigia I') and the capaci-
tors Eq.(14) predicts a rate that is linear i ~ tive coupling constanC. R, has been evaluated for zero

~ We now specify that transport in conductor 1 is via amagnetic field in Ref. 10. For the high magnetic-field case,
single resonant tunneling state. Thus the relevant density qhe nonequilibrium charge relaxation resistance for a QPC is
states in conductor 1 is a Breit-Wigner expression. For simshown in Fig. 2. We have used a saddle-pbipotential
plicity, we assume that we are at resonance and héhce V(x,y)=VO—(1/2)mw>2(x2+(1/2)mw§y2 and, as in Ref. 10
=(2/mT’), wherel"is the half-width of the resonance. The paye evaluated the density of states semiclassically. Note the
resistanc&?, andR, for a QPC in the absence of a magnetic syrong suppression of the dephasing rate at threshold of the
field has already been discussed in Refs. 10 and 20. For gyening of a new channel. Indeed the experiment of Buks
quantum point contact with transmission probabillyand gt 512 shows adouble pealstructure in the visibility of the

reflection probabilityR,,, the relaxation resistand{” is Aharonov-Bohm oscillations.
So far we always assumed that the QPC and the dot are
S 1 (débJdE)2+ d7-/dE)2 located such that the total charge piled up in the QPC mat-
@ (dba/dE) 4Tn73n( o/ 4E) g s Thus the above results involve only the energy deriva-
Rq T 282 [3,(dé/dE)]? . (16 tives of the scattering matrix of the QPC and the dot. Con-

) ) ) sider now the situatioB shown in Fig. 1, where the quantum
where ¢, is the phase accumulated by carriers in tite ot js |ocated away from the QPC downstream along an
eigenchannel of the QPC traversing the region in which the,gge. Clearly, now the predominant interaction effect is due
potential is not screened. Thus in the one-channel limit, they the charge fluctuations on the edge state adjacent to the
_dep_hasmg caused in conductor 1 due to a QPC at equmbrlurauamum dot. The charge that counts is that in a reglgn
is given by Very importantly, the approach introduced above can now

a2 2 be extended to this more general situation. To generalize the
(U74) 1= (m T/ (RUDKT. A9 above results, we need to find the charge and its fluctuations

Next consider the case where a current is driven througf! "€9ion{Qg. This can be accomplished by taking the de-

the QPC. The nonequilibrium charge relaxation resistance dfvative of the scattering matrix with respect to a small po-
a QPC with transmissioff;, and reflection probabiliie®,  (€ntial perturbation that extends over the region of interest.
in the eigenchannels that follows from E@) is' Thus in general we arrive at a density-of-states matrix by

replacing the energy derivative in E¢l) by a functional
5 1 (d7, 2 derivative?
h & 47,R,\ dE
R(2)=__
v 2

- (18) ,
didE—— | Proh

(19

€ [E (depy/dE)

This result depends on the detailed shape of the QPC even lret us apply this prescription to cageof Fig. 1.

the single-channel limit. The similarity of this result with the  First, let us establish the scattering matrix for this system.
one-channel i{=1) result of Bukset al? can be seen by For the QPC with transmission probabilitf=1—7R, we
identifying the effective variatiot 7 of the transmission co- choser =s;;=s,,= —i R Y2 andt=s,,=s,,=7*2. A carrier
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traversing the regio) adjacent to the quantum dot ac- invariant? But the additional edge channel contributes to
quires a phase,(U,) whereU, characterizes the potential screening. If we take the two edge channels to be close to-
of the edge state iz . We assume that only the charge pile gether in the regiorflg, both edge channels will see the
up in the regio)g matters, and consequently, all additional same potentidl,. Now the total density of states of the two
phases in the scattering problem are here without relevancedge channels in regidig has a contribution from both the
The total scattering matrix of the QPC and the traversal operfectly transmitted edge stat@) and edge staté2) N,

regionQg is then simplys;;=r, s;,=t, S,;=texp(¢,), and  =N,;+N»s,. As a consequence, the dephasing rate is now
Sy=T explp,). reduced and given by
Consider next the charge operator. We have to evaluate
the variation of the scattering matrix with respect to the po- 1 T2 Ny |2
tential U,. Only s;, ands,, depend on this potential. We T_¢ - hU2 m TRe|V|. (24)
find ds;,/edU,=(ds;,/de,) (d¢,/edU,). But (12)

(d¢,/edU,)=—2mN,, whereN, is the density of states of Equation(24) is valid if there is no population equilibration
the edge state in regioflg of conductor 2. Simple algebra among the two edge channels between the QPC and the dot.

givesN{D=7N,, If there is equilibrationwhich can be achieved by placing a
voltage probe between the QPC and the"tptve will show
N@=NZ*=r*tN,, (200 elsewher® that the dephasing rate becomes
and V=RN,. At equilibrium we findR{")=h/2e? as is _ap2
typical for an edge state that is perfectly connected to a (1/7(,,)(12):(_) TRe|V|, (25)
.20 S . ; 2.2
reservoir’®> The nonequilibrium resistance is hU%v
R§2)=(h/e2)TR. (21) where v is the number of edge states. In particular, if only

one edge state is present, the dephasing rate is unaffected by
Note that in the one-channel case b&handR, are inde- the presence of a phase randomizing reservoir. This result
pendent of the density of statél. The additional dephas- provides a simple test of the theory presented here.
ing rate generated by the edge at equilibrium in the quantum |f the magnetic polarity is reversed, the additional dephas-
dot at resonance is ing rate is only due to equilibrium fluctuations, independent
of whether or not a bias is applied to the QPC.

In this work we have presented a discussion of the
dephasing in Coulomb coupled mesoscopic conductors,
which is based on the fluctuations of the dipolar charge that
Note that this rate depends on the edge state only through ifs generated by the long-range Coulomb interaction. This
geometrical capacitance. In the nonequilibrium case, the adtipole is associated with a capacitance and its dissipative
ditional dephasing rate caused by the charge fluctuations dfenavior is characterized by charge relaxation resistaRges

41'*2
1/ =| ——|KkT. 22
(Uty)(12) hU? (22

the edge state is and R,. These resistances are determined by the low-
a2 frequency collective modes of the Coulomb coupled conduc-
N tors.
(1/T¢)(12)_( hUu?2 )TRe|V|. 23 Note addedAfter this paper was submitted, Levingén

. ] . ;s also addressed the problem of charge fluctuations in edge
A rate proportional to7R is also obtained by Buket al. states and dephasing. In contrast to our work, no attempt to

Of interest is the effect of screening: While in the one-jntroduce a self-consistent treatment of charge fluctuations is
channel case, the rate depends on the capacitance of the edggqe.

channel only, such a universal result does not apply as soon

as additional edge states are present. Thus consider an addi-This work was supported by the Swiss National Science
tional edge state that is transmitted with probability 1. ItFoundation and by the TMR network Dynamics of Nano-
generates no additional noise and leaves the dc- shot noisgructures.
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