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Charge relaxation and dephasing in Coulomb-coupled conductors
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~Received 25 February 1999!

The dephasing time in coupled mesoscopic conductors is caused by the fluctuations of the dipolar charge
permitted by the long-range Coulomb interaction. We relate the phase breaking time to elementary transport
coefficients that describe the dynamics of this dipole: the capacitance, an equilibrium charge relaxation resis-
tance, and in the presence of transport through one of the conductors a nonequilibrium charge relaxation
resistance. The discussion is illustrated for a quantum point contact in a high magnetic field in proximity to a
quantum dot.
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Mesoscopic systems coupled only via the long-ran
Coulomb forces are of importance since one of the syst
can be used to perform measurements on the other.1 Despite
the absence of carrier transfer between the two conduc
their proximity affects the dephasing rate. Of particular
terest arewhich pathdetectors that can provide informatio
on the paths of a carrier in an interference experiment.2–5 It
is understood that at very low temperatures the basic
cesses that limit the timetf over which a carrier preserve
its quantum-mechanical phase are electron-electron inte
tion processes.6,7 The Coulomb interaction ensures over
charge neutrality. Consequently, for the two coupled ze
dimensional conductors of interest here, the basic proce
a charge accumulation in one of the conductors accompa
by a charge depletion in the other conductor. The Coulo
coupling of two conductors manifests itself in the formati
of a charge dipole, and the fluctuations of this dipole gove
the dephasing process. The dynamics of this dipole, and
the dephasing rate, can be characterized by elementary t
port coefficients: In the absence of an external bias, exc
charge relaxes, into the leads, towards its equilibrium va
with an RC time. In mesoscopic conductors8 the RC time is
determined by an electrochemical capacitanceCm and a
charge relaxation resistanceRq . In the presence of transpo
through one of the conductors, shot noise9 leads to a non-
equilibrium charge relaxation resistance10 Rv . Below we re-
late Rq andRv to the dephasing rate.

Renewed interest in dephasing was also generated by
periments on metallic diffusive conductors and a sugges
role of zero-point fluctuations.11 We refer to the resulting
discussion only with a recent item.12 More closely related to
our work are experiments by Huiberset al.13 in which the
dephasing rate in chaotic cavities is measured. At low
quencies such cavities can be treated as zero-dimens
systems.14

Consider two mesoscopic conductors coupled by lo
range Coulomb interactions. An example of such a syst
suggested in Ref. 15, is shown in Fig. 1. In caseA, a quan-
tum point contact~QPC! in a high magnetic field is close t
a quantum dot, and in caseB the QPC is some distance awa
from a quantum dot. First, we focus on caseA. To describe
the charge dynamics of such a system, we use two b
elements. First, we characterize the long-range Coulomb
teraction with the help of a geometrical capacitance, muc
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in the literature on the Coulomb blockade. Second, the e
tron dynamics in each conductor~i! is described with the
help of its scattering matrixsab

( i ) (E,Ui), which relates the
amplitudes of incoming currents at contactb to the ampli-
tudes of the outgoing currents ata. The scattering matrix is a
function of the energy of the carriers and is a function of t
electrostatic potentialUi inside conductori. In caseA, the
total excess charge on the conductor is of importance. Be
we show that in this case the charge dynamics of the me
scopic conductor can be described with the help of a dens
of-states matrix10,16

N dg
( i )5

1

2p i (
a

sad
( i )†

dsag
( i )

dE
. ~1!

Equation~1! can be obtained from the frequency-depend
second-quantization current operator9,10 Î a

( i )(v) for the total

current in leada of conductor i. We have10 (a Î a
( i )(v)

5 iveN̂i(v) where the charge operatoreN̂i(v) for a con-
ductor i is determined by

N̂i~v!5 (
d,g,n

E
V i

d3rE dEâd
†~E!N dg

( i )~n,r ;E,E1\v!

3âg~E1\v!, ~2!

where the first integral is over the volume of the conduc
(V i),âg(âg

†) annihilates~creates! a carrier in leadg, and the
zero-frequency limit of *V i

d3r(nNdg
( i )(n,r ;E,E1\v) is

FIG. 1. Quantum point contact coupled to a quantum dot eit
in position A or B.
2737 ©2000 The American Physical Society
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given by Eq.~1!. Equation~1! is valid in the WKB limit in
which derivatives with regard to the potential can be
placed by an energy derivative.16 Equation~1! are elements
of the Wigner-Smith delay-time matrix.17,18 Later, we also
consider situations in which energy derivatives are not su
cient. The diagonal elements of this matrix determine
density of states of the conductorNi5(g Tr(N gg

( i ) ); the trace
is over all quantum channels. The nondiagonal elements
essential to describe fluctuations.

At equilibrium, if all contacts of conductori are held at
the same potential, the two conductors can be viewed, as
plates of a capacitor holding a dipolar charge distribut
with an electrochemical capacitance8 Cm

215C211D1
21

1D2
21, which is the series combination of the geometric

capacitanceC of the two conductors and the quantum capa
tancesDi5e2Ni determined by their density of states. A
excess charge relaxes with a resistance determined by8

Rq
( i )5

h

2e2

(
gd

Tr~N gd
( i )N gd

( i )†!

F(
g

Tr~N gg
( i ) !G2 . ~3!

Consider now the total current at all contacts of conductoi,
I tot

( i )5(a Î a
( i ) . The low-frequency current spectral density~at

conductor 1 or 2! is determined byS(v)52v2Cm
2 Y, with

Y5RqkT andRq5Rq
(1)1Rq

(2) if both conductors are at equ
librium. In the presence of transport through one of the c
ductors ~say 2!, the current noise spectrumS exhibits a
crossover10 from the equilibrium value (euVu!kT) deter-
mined by Rq to a spectrum determined byY5Rq

(1)kT
1Rv

(2)euVu for (euVu@kT) where10

Rv
( i )5

h

e2

Tr~N 21
( i )N 21

( i )†!

F(
g

Tr~N gg
( i ) !G2 . ~4!

Next we relate these resistances to the voltage fluctuation
the two coupled mesoscopic conductors and subsequent
the dephasing time. Our starting point is the Poisson eq
tion for the charge deviations away from their value in t
equilibrium state. Since we are interested in fluctuations,
express the Poisson equation in operator form. Assum
that the geometrical capacitanceC coupling the two conduc-
tors dominates all other capacitances,19 we can express the
charge on the two conductors in two ways: First, with t
help of the potential operatorsÛ1 and Û2, we have Q̂

5C(Û12Û2) for the charge on conductor 1 and2Q̂

5C(Û12Û2) for the charge on conductor 2. Second, w
can express these same two charges in terms of the
chargeseN̂i @see Eq.~1!# and a screening charge propo
tional to the average density of statese2Ni on the conductor
times the induced potentialÛ i . Thus charge and potentia
fluctuations are related by

Q̂5C~Û12Û2!5eN̂12e2N1Û1 , ~5!

2Q̂5C~Û22Û1!5eN̂22e2N2Û2 . ~6!
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Note Q̂ is the charge operator of the dipole. Equations~5!
and ~6! ensure charge conservation. UsingDi[e2Ni for the
density of states, we find that we can write the following:

S Û1

Û2
D 5S 1

dD S C1D2 C

C C1D1
D S eN̂1

eN̂2
D , ~7!

whered5(C1D1)(C1D2)2C2 . The potential fluctuation
spectra is given by

2pSUiUk
~v!d~v1v8!

51/2̂ Û i~v!Ûk~v8!1Ûk~v8!Û i~v!&, ~8!

where^ & denotes a quantum statistical average over prod
of four â operators. The potential fluctuation spectra is
lated to the charge fluctuation spectra viaSQiQk

(v)

5C2SUiUk
(v). Combining Eqs.~1!, ~2!, ~7! and~8!, we find

the potential fluctuation spectra,8,10

SUiUk
~v!5S Cm

2

C2 D 1

NiNk
(
g,d

E dEFdg Tr@N dg
( i )~Ndg

(k)!†#,

~9!

whereFgd5f g(E)@12f d(E1\v)#1 f d(E1\v)@12 f g(E)#
is a combination of Fermi functions, wheref g is the Fermi
function in contactg with a chemical potentialmg . In the
low-frequency limit of interest here, the elements of t
density-of-states matrixN gd

( i ) are specified by Eq.~1!. From
the above we find that at equilibrium the low-frequency flu
tuations of the potential in conductor 1 are given by

SU1U1
52S Cm

C D 2F S C1D2

D2
D 2

Rq
(1)1S C

D1
D 2

Rq
(2)GkT ~10!

with Rq
( i ) determined by Eq.~3!. Similar results hold for

SU2U2
and the correlation spectrumSU1U2

. If a bias eV is
applied, for instance to the conductor 2, we find the sa
spectrum as above, except thatRq

(2)kT is replaced, to first
order ineuVu, by Rv

(2)euVu for euVu.kT.
To relate the voltage fluctuation spectra to the dephas

rate, we follow Ref. 4. A carrier in conductor 1 moves in th
fluctuating potentialU1 . As a consequence, the phase of t
carrier is not sharp but on the average determined by

^exp@ i „f̂~ t !2f̂~0!…#&5K T̂ expF i
e

\E0

t

dt8Û1~ t8!G L
~11!

5 K T̂ expF i
e

\E dvS eivt21

iv D Û1~v!G L . ~12!

Assuming that the fluctuations are Gaussian, this quant
mechanical average is given by exp(2t/tf) with

tf
215~e2/2\2!SU1U1

. ~13!

Since the voltage fluctuation spectrum@Eq. ~10!# consists of
two additive terms, we can decompose the dephasing
into two contributions (1/tf)(11) and (1/tf)(12) , where the
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index pair (ik) indicates that we deal with the dephasing ra
in conductori generated by the presence of conductork.

Before discussing the results, it is useful to clarify t
limit in which we are interested. Typically, the Coulom
charging energyU5e2/2C is large compared to the leve
spacingD in the conductors of interest. SinceD i51/Ni , this
has the consequence that any deviations of the electroch
cal capacitance from its geometrical value are very sm
We can thus takeCm'C and (C1D2)/D2'1 in Eq. ~10!.
Now we are interested in the dephasing rate (1/tf)(12) in
conductor 1 due to the presence of conductor 2. Fromtf

21

5(e2/2\2)SU1U1
we obtain

S 1

tf
D

(12)

5
e2

\2 S C

D1
D 2

Rq
(2)kT ~14!

with Rq given by Eq.~3! if conductor 2 is at equilibrium and

S 1

tf
D

(12)

5
e2

\2 S C

D1
D 2

Rv
(2)euVu ~15!

with Rv given by Eq.~4! if it is in a transport state with
euVu.kT. Note that for closed 2D conductors,e-e scattering
leads to a rate7 proportional toT2 whereas for open conduc
tors Eq.~14! predicts a rate that is linear inT.

We now specify that transport in conductor 1 is via
single resonant tunneling state. Thus the relevant densit
states in conductor 1 is a Breit-Wigner expression. For s
plicity, we assume that we are at resonance and henceN1
5(2/pG), whereG is the half-width of the resonance. Th
resistanceRq andRv for a QPC in the absence of a magne
field has already been discussed in Refs. 10 and 20. F
quantum point contact with transmission probabilityTn and
reflection probabilityRn, the relaxation resistanceRq

(2) is

Rq
~2!5

h

4e2

SnF ~dfn/dE!21
1

4TnRn
~dTn/dE!2G

@Sn~dfn/dE!#2 , ~16!

where fn is the phase accumulated by carriers in thenth
eigenchannel of the QPC traversing the region in which
potential is not screened. Thus in the one-channel limit,
dephasing caused in conductor 1 due to a QPC at equilibr
is given by

~1/tf!(12)5~p4G2!/~hU2!kT. ~17!

Next consider the case where a current is driven thro
the QPC. The nonequilibrium charge relaxation resistanc
a QPC with transmissionTn and reflection probabilitiesRn
in the eigenchannels that follows from Eq.~3! is10

Rv
(2)5

h

e2

(
n

1

4TnRn
S dTn

dE D 2

F(
n

~dfn /dE!G2 . ~18!

This result depends on the detailed shape of the QPC eve
the single-channel limit. The similarity of this result with th
one-channel (n51) result of Bukset al.2 can be seen by
identifying the effective variationDT of the transmission co
mi-
ll.
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efficient with DT5(dT1 /dE)(df1 /dE)21 . Our result pro-
vides a complete specification of the dephasing rate in te
of the scattering matrix and geometrical capacitances.
take screening into account and thus can clarify the dep
dence on the quantum dot properties~via G! and the capaci-
tive coupling constantC. Rv has been evaluated for zer
magnetic field in Ref. 10. For the high magnetic-field ca
the nonequilibrium charge relaxation resistance for a QPC
shown in Fig. 2. We have used a saddle-point9 potential
V(x,y)5V02(1/2)mvx

2x21(1/2)mvy
2y2 and, as in Ref. 10

have evaluated the density of states semiclassically. Note
strong suppression of the dephasing rate at threshold of
opening of a new channel. Indeed the experiment of B
et al.2 shows adouble peakstructure in the visibility of the
Aharonov-Bohm oscillations.

So far we always assumed that the QPC and the dot
located such that the total charge piled up in the QPC m
ters. Thus the above results involve only the energy der
tives of the scattering matrix of the QPC and the dot. Co
sider now the situationB shown in Fig. 1, where the quantum
dot is located away from the QPC downstream along
edge. Clearly, now the predominant interaction effect is d
to the charge fluctuations on the edge state adjacent to
quantum dot. The charge that counts is that in a regionVB .

Very importantly, the approach introduced above can n
be extended to this more general situation. To generalize
above results, we need to find the charge and its fluctuat
in region VB . This can be accomplished by taking the d
rivative of the scattering matrix with respect to a small p
tential perturbation that extends over the region of intere
Thus in general we arrive at a density-of-states matrix
replacing the energy derivative in Eq.~1! by a functional
derivative,21

d/dE→2E
VV

d3r
]

]eU~r !
. ~19!

Let us apply this prescription to caseB of Fig. 1.
First, let us establish the scattering matrix for this syste

For the QPC with transmission probabilityT512R, we
choser[s115s2252 iR 1/2 andt[s215s125T 1/2. A carrier

FIG. 2. Rv ~solid line! in units of h/e2 and G ~dashed line! in
units of e2/h as a function ofEF2V0 for a saddle QPC with
vx /vy51 and vc /vx54, wherevc is the cyclotron frequency
(vc5ueBu/mc).
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traversing the regionVB adjacent to the quantum dot a
quires a phasef2(U2) whereU2 characterizes the potentia
of the edge state inVB . We assume that only the charge p
up in the regionVB matters, and consequently, all addition
phases in the scattering problem are here without releva
The total scattering matrix of the QPC and the traversa
regionVB is then simplys115r , s125t, s215t exp(if2), and
s225r exp(if2).

Consider next the charge operator. We have to evalu
the variation of the scattering matrix with respect to the p
tential U2 . Only s12 and s22 depend on this potential. W
find ds12/edU25(ds12/df2)(df2 /edU2). But
(df2 /edU2)522pN2, whereN2 is the density of states o
the edge state in regionVB of conductor 2. Simple algebr
givesN 11

(2)5TN2,

N 21
(2)5N 12

(2)* 5r * tN2 , ~20!

and N 22
(2)5RN2 . At equilibrium we findRq

(2)5h/2e2 as is
typical for an edge state that is perfectly connected t
reservoir.22 The nonequilibrium resistance is

Rv
(2)5~h/e2!TR. ~21!

Note that in the one-channel case bothRq andRv are inde-
pendent of the density of statesN2 . The additional dephas
ing rate generated by the edge at equilibrium in the quan
dot at resonance is

~1/tf!(12)5S p4G2

2hU2D kT. ~22!

Note that this rate depends on the edge state only throug
geometrical capacitance. In the nonequilibrium case, the
ditional dephasing rate caused by the charge fluctuation
the edge state is

~1/tf!(12)5S p4G2

hU2 D TReuVu. ~23!

A rate proportional toTR is also obtained by Bukset al.15

Of interest is the effect of screening: While in the on
channel case, the rate depends on the capacitance of the
channel only, such a universal result does not apply as s
as additional edge states are present. Thus consider an
tional edge state that is transmitted with probability 1.
generates no additional noise and leaves the dc- shot n
A
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l
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invariant.9 But the additional edge channel contributes
screening. If we take the two edge channels to be close
gether in the regionVB , both edge channels will see th
same potentialU2 . Now the total density of states of the tw
edge channels in regionVB has a contribution from both the
perfectly transmitted edge state~1! and edge state~2! N2
5N211N22. As a consequence, the dephasing rate is n
reduced and given by

S 1

tf
D

(12)

5
p4G2

hU2 S N22

N211N22
D 2

TReuVu. ~24!

Equation~24! is valid if there is no population equilibration
among the two edge channels between the QPC and the
If there is equilibration~which can be achieved by placing
voltage probe between the QPC and the dot15!, we will show
elsewhere23 that the dephasing rate becomes

~1/tf!(12)5S p4G2

hU2n2D TReuVu, ~25!

wheren is the number of edge states. In particular, if on
one edge state is present, the dephasing rate is unaffecte
the presence of a phase randomizing reservoir. This re
provides a simple test of the theory presented here.

If the magnetic polarity is reversed, the additional deph
ing rate is only due to equilibrium fluctuations, independe
of whether or not a bias is applied to the QPC.

In this work we have presented a discussion of
dephasing in Coulomb coupled mesoscopic conduct
which is based on the fluctuations of the dipolar charge t
is generated by the long-range Coulomb interaction. T
dipole is associated with a capacitance and its dissipa
behavior is characterized by charge relaxation resistanceRq
and Rv . These resistances are determined by the lo
frequency collective modes of the Coulomb coupled cond
tors.

Note added.After this paper was submitted, Levinson24

also addressed the problem of charge fluctuations in e
states and dephasing. In contrast to our work, no attemp
introduce a self-consistent treatment of charge fluctuation
made.

This work was supported by the Swiss National Scien
Foundation and by the TMR network Dynamics of Nan
structures.
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