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Conductance-phase determination in double-slit transmission across a quantum dot
using a Hilbert transform method
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Recent mesoscopic two-arm experiments involving quantum dots, electron interferometry, and Aharonov-
Bohm effects have enabled measurements of both electron transmission probabilities and phases. Unexpected
features in the phases as function of the gap voltageU have stimulated several theoretical works. It is shown
in this paper that the phases~f ! and conductances~uCu!, appearing both in the experimental and in theoretical
studies, are interrelated through integral expressions, causingf and ln(uCu) to be Hilbert transforms. The
empirically found interrelations imply certain analytical properties of theU dependence of wave functions in
mesoscopic systems.
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I. INTRODUCTION

A few years ago the conductivity and phase of transmit
electrons were jointly determined by employment of
double-slit arrangement in conjunction with a quantu
dot.1–3 The role of the latter, when inserted in one arm of t
interferometer, was to induce a measurable phase shift in
component of the electron wave function representing p
sage along that arm. In the experiments the gate voltagU
was varied~keeping other essential parameters fixed! and the
transmission amplitude modulus or some related quan
~named ‘‘conductance’’ here for short, following Ref. 1, an
denoted byuCu!, and phasef were determined as the syste
passed through several resonances. Surprise was occas
by more recent experiments in which the phase increase
p across the resonances~manifested by maxima in the trans
mission probability! but dropped sharply by the sam
amount at antiresonances.4 Several theoretical treatmen
have been published to account for these results,5–9 and fur-
ther efforts of interpretation are in progress.10,11These works
employ a variety of physical models and compare them
the conductance and phase curves.

In contrast the these works, the present paper points o
consistency relationship between the observed phases
transmission amplitudes, which, whenever it holds, is mo
independent and is grounded in the analyticity properties
the wave transmission. The relation makes lnuCu andf Hilbert
transform,12 explicitly shown in Eqs.~3! and ~4! below as
functions of the externally applied gate voltage parame
Hints as to the existence of such relationship can indeed
found in several papers~and indeed, with the extension ind
cated below, the Breit-Wigner formula in Refs. 2, 14, and
is a particular instance of the applicability of the Hilbe
transform!, but neither the precise form~e.g., the relevance
of theLOGARITHM of the conductance! nor the conditions for
the validity of the theory have been stated. We shall s
these conditions in a later section with the aim of channe
future theoretical attempts to building physical models su
that the conditions are explicitly taken care of.

The present work is an outgrowth of previous publicatio
PRB 610163-1829/2000/61~4!/2716~5!/$15.00
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in which reciprocal relations between the phase and mo
of a time-dependent wave function and of optical wave fie
were obtained and applied.13,16–19These relations operated i
the time domain. Reciprocal relations in the frequency d
main, taking the form of Kramers-Kronig relations, have
course been widely known.20 These are based on the caus
ity principle, and~although mathematically similar! are logi-
cally unrelated to those in Refs. 13, 16, and 19. The pres
work extends the formalism to a consideration of the anal
cal properties of the wave function in a mesoscopic syste
as function of an external parameter, the gate voltage.

II. COMPLEX CONDUCTANCE

We consider solutions of a Schro¨dinger equation or the
corresponding propagator or Green function. The Sch¨-
dinger equation contains the gate voltageU, and therefore
the solutions will be functions ofU. The same will be true
for a generic quantityC(U) that derives from the solutions
like the conductance, the transmission amplitude, or ‘‘
interference term.’’ The various ‘‘uCu-equivalent’’ quantities
are listed in Table I, with sources given. We now make
supposition~presently to be confirmed by the observed da!
that the conductanceuCu is the modulus of a complex quan
tity

C5C~U !, ~1!

which depends on the real variableU. To complete the defi-
nition of C we introduce the phasef, as

C~U !5u~U !uexp@ i f ~U !#. ~2!

Under certain conditions, the following relations hold b
tween the phase and the conductance:

2~1/p!PE
2`

`

dU8@ lnuC~U8!u#Y ~U82U !56 f ~U !

~3!

and
2716 ©2000 The American Physical Society
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~1/p!PE
2`

`

dU8@ f ~U8!#Y ~U82U !56 lnuC~U !u.

~4!

HereP denotes the principal value of the integral. lnuC(U)u,
and6 f (U) are ‘‘Hilbert transforms.’’12 We now turn to the
conditions for the validity of Eqs.~3! and ~4!.

Let us assume thatC can be analytically continued to be
function of the complex ‘‘gate voltage’’

W5U1 iV, ~5!

in the sense that ifW is inserted into the Schro¨dinger equa-
tion, then the solutions reduce to the physical solutions w
V→0. We thus defineC as a complex function of the com
plex variableW,

C5C~W!, ~6!

and suppose that~a! ln C(W) is analytic in the lower~or
upper! half W plane, ~b! ln C(W) tends to zero on a larg
semicircle in that half plane, and~c! C(W) can have zeros o
poles on the real lineV50 ~Refs. 12, 16, and 19!. The lower
~or upper! signs are appropriate for functions analytic in t
lower ~or upper! halves.

Some extension of the formalism is possible. Thus, wh
the complex conductance behaves for largeW as some power
W2k, wherek may positive or negative, a standard proced
in complex variable theory enables the use of relations~3!
and~4! for a modifiedC(U). This is obtained by multiplying
the complex conductance by (U2 i )k @or by (U1 i )k#, com-
puting the integrands with the modified functions and co
pensating in the result by subtracting the algebraically ev
ated quantities, e.g., arg(U2i)k 52karctan(1/U). ~This
procedure was used in Ref. 19, and is analogous to tha
Ref. 12, Sec. 11.17.! Of course, when the functional form o
C(W) is fully known, the procedure of Eqs.~3! and ~4! is
unnecessary, but we are mainly concerned with those o
cases in whichuC(U)u is available only numerically, as dat
values, or as a complicated function for realU @while its
analytical behavior is presumed to be as in~a!–~c!#.

The location ofZEROSof C(W) is an important feature in
this work, and we discuss it now. In previous works16–19, in
which time was the independent variable, it was establis
that in several physically significant cases the analytic
conditions are met. Thus a proof was given for the pro
analyticity of the ground states of an adiabatically evolvi
system, including the location of the zeros of the wa
function.19 ~The same form of analyticity is also present
coherent and squeezed wave packet states.! Regarding the
underlying causes for the location of the zeros, discuss
of the zeros of time-dependent wave functions have invol

TABLE I. Physical quantities represented in this work byuCu.

‘‘Modulus’’ quantity Reference

Conductance 1, 7
Transmission amplitude 4, 8
Transmission coefficient 3, 9
Amplitude of Aharonov-Bohm oscillations 4, 6
Interference term amplitude 8
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suggestions to link these to the number of modes~p. 209 in
Ref. 21! or to the environment-induced coupling betwe
modes,22 while complex-valued zeros of grand partitio
functions for finite systems herald phase transitions in
Yang-Lee theory of condensation.23 In a recent papers, trans
mission zeros in a one-dimensional channel were show
regulate phase jumps.24 The zeros~which lie on the real en-
ergy axis! arise from phase interference between waves. J
as in the present study, the analyticity properties of
LOGARITHM of the transmission are linked to the location
the zeros in Ref. 24.

We further note that in Eq.~4! the phase has the freedo
of choice of an additive constant, and in Eq.~3! the conduc-
tance that of a multiplicative constant, since the Hilb
transform of a constant is zero. This permits us to treat ot
quantities related to the conductance on the same footing
long as they differ from it only through a multiplicative con
stant. Moreover, when the physical quantities are some p
ers of each other, then the corresponding derived phase
simply multiples of each other, so that if the unit of the pha
is not specified; then the relation in Eq.~3! can be used for
all of them. With this understanding, our results hold equa
for conductance, Aharonov-Bohm oscillation amplitude
transmission probabilities, and other quantities. As alre
stated, we refer to them generically as ‘‘conductanc
~Table I!.

It is clear from Eqs.~3! and ~4! that @provided the stated
conditions~a!–~c! hold# the phase is uniquely given from th
conductance, and vice versa. Any physical model or the
needs to account of one type of quantity alone. In the f
lowing figures we present graphically several types of pha
and conductance amplitudes~not the logarithms! as functions
of the real gate voltageU, and relate them to published ex
perimental and theoretical results. The quantities plotted
us satisfy Eqs.~3! and~4! and are Hilbert transforms in theU
~or W! domain. The actual expressions on which the plots
based are listed in Table II. We can now state the followin
Any (observed) conductance that, as function of (real) U
numerically similar to any of theuC(U)u ’ s in the list and has
the same analytical behavior for (complex) W, will also yie
a corresponding phase f(U) that is numerically similar. Any
conductance that is numerically similar, but is analytical
dissimilar, can yield a phase that is completely dissimil.
These properties are reflections of the fact that the cond
tance derives from equations that are defined for comp
values of the gate voltage.

III. GRAPHICAL REPRESENTATIONS

The curves in Fig. 1 have the shapes of the experime
values of Ref. 4 shown in their Figs. 3~b! and 3~c! ~or Fig. 2

FIG. 1. Symmetric, periodic resonances. Conductances~or
transmission probability amplitudes, etc! and phases are plotte
against the gap voltageU ~all in arbitrary units!. The source of the
plots in this and the following four figures are shown in Table I



h

s
pe

s

iff
on
T

u

v

d,

e

o
th

ro

aw

-

q
th

ra

rict
-

e
.
ical
ex-
d-

l-
rther
ues

eri-

tant
ds

ably
in-

cy

the
uc-
n

on
ty

ob-
hase

.

se

2718 PRB 61R. ENGLMAN AND A. YAHALOM
in Ref. 8! except that the experimental values are somew
skewed and not quite periodic. The latter property~if not an
instrumental effect! can have its origin in the difference
between levels of the quantum dots. Since the effects ap
to be small, we ignore them in this work.

The strong antiresonances near integral multiple value
p, whereC(U)'0, and the sudden ‘‘phase lapses’’~Ref. 8!
between resonances are evident. The curves in Fig. 2 d
from the previous set only by allowing skewness in the c
ductances, present in the observational curves of Ref. 4.
phase does not significantly differ from that in Fig. 1.

The conductance curves of Fig. 3 are still oscillatory, b
they do not get close to the horizontal axis, i.e.,uC(U)u
@0. Yet, the phases oscillate, contrary to what might ha
been anticipated.~Note, e.g., the caption to Fig. 2 in Ref. 9!.
The downward slopes of the phase are now moderate an
fact, they scale with@C(p)#21 @with the zeros ofC(W)
being simple, as in Table II#.

The elementary curves in Fig. 4 resemble some exp
mental and theoretical curves@e.g., Figs. 4~a! and 4~c! in
Ref. 1, Fig. 2~c! in Ref. 4 and Fig. 1 in Ref. 6#, indicating
that mathematical consistency relations hold between the
servational quantities. The curves in Fig. 5 resemble the
oretical curves of Ref. 8~Fig. 3!. The source function shown
in Table II has poles in one half-plane only, and has no ze
in the finite portion of the complex plane.

IV. HILBERT TRANSFORM FOR RAW DATA VALUES

In this section we derive the phase directly from the r
observational data of the magnitudes~‘‘conductance’’! by
the Hilbert transform method~that is, without using an inter
polating function!. Specifically, we start withDISCRETEdata
values shown by dots in Fig. 3b of Ref. 4, and employ E
~3! on these. A slight problem arises, though, in that
range of integration in Eq.~3! is infinite, while the data
points cover only a finite range of the gate voltage. A natu
~but perhaps oversimplified! solution of this problem is to
assume that the experimental data possess a periodicity~im-

FIG. 2. Skewness effects.~Quantities and units as in Fig. 1.!

TABLE II. Sources of the plots in Figs. 1–5. In each ca
uC(U)u and argC(U) were plotted. lnuC(U)u, and argC(U)([f ) are
Hilbert transforms.

Figure C(U)

1 (110.95eiU)/(120.4eiU)
2 1.01(110.95eiU)/@120.4(110.75 sinU)eiU#

3 (1.7eiU)/(120.4eiU)
4 @(U23)1 i&#21

5 @U2610.35i #212@U21410.35i #21
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plying, as we have done before, that deviations from st
periodicity are negligible!. We have taken as basis, the ‘‘con
ductance’’ ~more accurately: ‘‘the magnitude of th
Aharonov-Bohm oscillations’’! data values in Fig. 3b of Ref
4 contained in the resonance peak just following the vert
dotted line~since these seem to be the least affected by
perimental errors! and used these experimental points a
justed to periodicity. They are shown in Fig. 6~a! below by
dots. We have then replaced the infinite integral in Eq.~3!
~with the positive sign! by a sum over the experimental va
ues inside the elementary resonance peak and by a fu
discrete sum over all equivalent, identical peaks. The val
for the phases that are thus obtained from the integral in~3!
are shown in Fig. 6~b! by stars.

These are in reasonably close agreement with the exp
mental values of the phase, also given by Schusteret al.4 in
their Fig. 3c, and shown by us in Fig. 6~b! by dots ~again
imposing a periodic recurrence of the peaks!. The only ad-
justment that was made in the calculated phase~plotted in
units of p! is a constant vertical shift.~We recall our previ-
ous remark, in Sec. II, about an arbitrariness of a cons
shift in the phase.! The range of the computed phase excee
the observed one by about 15%: this excess is presum
due to the inaccuracy involved in replacing the principal
tegral by a sum over the data points~comprising only 16
values!. This is probably also the source of the discrepan
near odd-integral values ofU. However, the calculated
‘‘phase lapses’’ are similar to the observed ones, and
horizontal displacements in the maxima between the cond
tance and the phase are1

4 of the fundamental period, as give
by experiment.

Considering that the Hilbert transform method is based
continuous functions, it is gratifying to note its applicabili
to discrete, raw, numerical data.

V. DISCUSSION

In this work relations have been formulated between
served phases and transmission amplitudes, so that the p

FIG. 3. Conductance not having nodes.~Quantities and units as
in Fig. 1.!

FIG. 4. Lorentzian conductance.~Quantities and units as in Fig
1.!
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and the log of the ‘‘conductance’’ are Hilbert transforms a
function of the gap voltage. The relations are continge
upon certain analyticity conditions, rather than absolute. W
have found that, to a good accuracy, available~low tempera-
ture! experimental and several theoretical curves obey t
relationships. In particular, for the remarkable, sharp d
creases in the experimental phases between resonances,
ted out in Fig. 6~b!, we have found that the slope of the
decrease depends on the value of the conductance minim
positioned midway between the resonances.~Compare Fig. 1
and 3 and Table II.!

The relations do not replace physical models, but provi
a check on them. Regarding models in previous works, t
transmission amplitude modulus, shown in Ref. 3 as Eq.~1!
and based on simplified one-dimensional models of Refs.
and 15, is derivable from a complex conductance

C~w!}@12r 1r 2 exp~ iw!#21. ~7!

Herer 1 andr 2 are reflectivities, andw is the sum of a mag-
netic flux term and the phase acquired by the partial wa
traveling along the ring’s arm in the absence of a magne
field.15 The latter part is an essentially linear function of th
gate voltageU @as shown in Fig. 2~c! in Ref. 3#. Since
ur 1r 2u,1, this approximate expression has the postulat
analytical behavior inU. Similarly, the transmission ampli-
tude of Ref. 9 appearing in their Eq.~1!, is essentially the
difference of two terms of the form in Eq.~7!, in which r 1r 2
take opposite signs: this again has the analyticity propert
~a!–~c!.

In spite of the agreements found in this paper for eve
studied case, it may well happen that in some other instan
~coming from either future experiments or some new the
retical model! there be discrepancies from the integral rel
tions ~3! or ~4!. According to the theory in this work, these
can be assigned to deviations from the analyticity condition
for whose validity we have noa priori reason.@As an ex-
ample, we might choose to extendC(U) beyond the two
Breit-Wigner terms in Table II for Fig. 5, by adding to it
several further resonances. Then the new resonances
look like those in Fig. 5~a!. But the dispersion relations~3!
and ~4! can only be applied if the proper analyticity is en
sured, that is, if no new zeros have been introduced in

FIG. 5. Stepwise phases.~Quantities and units as in Fig. 1.!
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wrong half-plane. This illustrates the role of analyticity, a
set out in the italicized sentences of Sec. II.# Let it be re-
marked, however, that a correction term is available for tho
cases that have extra zeros in the wrong half-plane.13,25 The
contribution from this term is of a fixed sign~and if the zeros
are simple and are either very far from, or very close to th
real U axis, their effect is limited!.13

It is suggested that future experimental or theoretic
work on electron transmission in mesoscopic systems sho
check for the existence of Hilbert transform relationships b
tween phase and transmission probability. Condition~a! im-
poses extremely strict constraints on the possible forms
the complex conductance, precluding as it does the existen
of branch cuts for lnC(W) in a half-plane.~These constraints
are clearly more stringent than that whose satisfaction
guaranteed by Poincare´’s theorem, quoted in Ref. 26.! Our
present findings@which are consistent with condition~a!#,
raises the questions of whether there is any underlying ph
ics in these mesoscopic devices that induces the validity
this analyticity condition, and whether future ones will stil
preserve it. In principle, the validity would be immediately
verifiable from numerical integration of the data according t
Eqs.~3! and ~4!. However, from a practical angle, since the
conductance is available only for a finite range of the ga
voltage, the infinite integration may not be feasible, and, in
deed, the asymptotic behavior of the conductance, necess
to carry out the prescription in Sec. II may be hard to com
by.
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FIG. 6. Discrete application of Hilbert transform.~a! Observed
oscillation magnitudes. The values shown by dots are from Ref.
here designated as ‘‘Conductance,’’ in arbitrary units. Broken line
connect dots, which are the input in the computation.~b! Phase
angle~in units ofp!. The stars show the values forf (U) that are the
output from expression~3!, after adding a uniform upward shift of
approximatelyp/2. They are connected by broken lines. The do
show observed values taken from Ref. 4.
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