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Conductance-phase determination in double-slit transmission across a quantum dot
using a Hilbert transform method
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Recent mesoscopic two-arm experiments involving quantum dots, electron interferometry, and Aharonov-
Bohm effects have enabled measurements of both electron transmission probabilities and phases. Unexpected
features in the phases as function of the gap voltddeve stimulated several theoretical works. It is shown
in this paper that the phasés and conductance$C|), appearing both in the experimental and in theoretical
studies, are interrelated through integral expressions, cadisimgl In{C|) to be Hilbert transforms. The
empirically found interrelations imply certain analytical properties oflthdependence of wave functions in
mesoscopic systems.

[. INTRODUCTION in which reciprocal relations between the phase and moduli
of a time-dependent wave function and of optical wave fields
A few years ago the conductivity and phase of transmittedvere obtained and appliéd®~1°These relations operated in
electrons were jointly determined by employment of athe time domain. Reciprocal relations in the frequency do-
double-slit arrangement in conjunction with a quantummain, taking the form of Kramers-Kronig relations, have of
dot}3The role of the latter, when inserted in one arm of thecourse been widely knowf?. These are based on the causal-
interferometer, was to induce a measurable phase shift in thty principle, and(although mathematically similaare logi-
component of the electron wave function representing passally unrelated to those in Refs. 13, 16, and 19. The present
sage along that arm. In the experiments the gate volthge work extends the formalism to a consideration of the analyti-
was varied keeping other essential parameters fjxaad the  cal properties of the wave function in a mesoscopic system a
transmission amplitude modulus or some related quantit@s function of an external parameter, the gate voltage.
(named “conductance” here for short, following Ref. 1, and
denoted by|C|), and phasé were determined as the system Il. COMPLEX CONDUCTANCE
passed through several resonances. Surprise was occasioned .
by more recent experiments in which the phase increased by We consider solutions of a Scluiager equation or the
 across the resonanc@sanifested by maxima in the trans- corresponding propagator or Green function. The Schro
mission probability but dropped sharply by the same dinger equation contains the gate voltddeand therefore
amount at antiresonancésSeveral theoretical treatments the solutions will be functions of). The same will be true
have been published to account for these restftand fur- ~ for a generic quantityC(U) that derives from the solutions,
ther efforts of interpretation are in progré§s! These works  like the conductance, the transmission amplitude, or “the
employ a variety of physical models and compare them tdnterference term.” The various|C|-equivalent” quantities
the conductance and phase curves. are listed in Table I, with sources given. We now make the
In contrast the these works, the present paper points out${pposition(presently to be confirmed by the observed gata
consistency relationship between the observed phases aHtht the conductanci€] is the modulus of a complex quan-
transmission amplitudes, which, whenever it holds, is modelity
independent and is grounded in the analyticity properties of
the wave transmission. The relation makd€|mndf Hilbert C=C(U), (1)

12 i ;
transform, explicitly shown in Eqs.(S) and (4) below as which depends on the real varialile To complete the defi-
functions of the externally applied gate voltage parameter,

Hints as to the existence of such relationship can indeed brémon of C we introduce the phasieas
found in several papefand indeed, with the extension indi- _ ;
cated below, the Breit-Wigner formula in Refs. 2, 14, and 15 CU)=IW)lexiif (U)]. @
is a particular instance of the applicability of the Hilbert Under certain conditions, the following relations hold be-
transform), but neither the precise forite.g., the relevance tween the phase and the conductance:
of the LOGARITHM of the conductangenor the conditions for
the validity of the theory have been stated. We shall state o0
these conditions in a later section with the aim of channeling —(1/77)Pfiwdu’[ln|C(U ')H/ (U'=U)==1(U)
future theoretical attempts to building physical models such &)
that the conditions are explicitly taken care of.

The present work is an outgrowth of previous publicationsand
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TABLE I. Physical quantities represented in this work .
Conductance.
. (arb. units)
“Modulus” quantity Reference
Conductance Phase '
Transmission amplitude /45 \/

=

'L,b | ° Gate Voltage U
L/ (arb. units)

FIG. 1. Symmetric, periodic resonances. Conductan@es
transmission probability amplitudes, gtand phases are plotted
against the gap voltagé (all in arbitrary unit$. The source of the

dU’[f(U’)]/ (U'—U)= tln|C(U)|. plots in this and the following four figures are shown in Table II.
” suggestions to link these to the number of mo@es209 in

Transmission coefficient
Amplitude of Aharonov-Bohm oscillations
Interference term amplitude

w

>
o © o N

© &

(1/m)P J

) Ref. 21 or to the environment-induced coupling between
Here P denotes the principal value of the integral|d(U)|, =~ modes’? while complex-valued zeros of grand partition
and = f(U) are “Hilbert transforms.’?? We now turn to the  functions for finite systems herald phase transitions in the
conditions for the validity of Eqs(3) and (4). Yang-Lee theory of condensatiéhln a recent papers, trans-
Let us assume tha& can be analytically continued to be a mission zeros in a one-dimensiona! channel were shown to
function of the complex “gate voltage” regulate phase jump8.The zerogwhich lie on the real en-
ergy axig arise from phase interference between waves. Just
W=U+iV, (5) as in the present study, the analyticity properties of the

. o ) . LOGARITHM of the transmission are linked to the location of
in the sense that WV is inserted into the Schdinger equa- the zeros in Ref. 24.
tion, then the solutions reduce to the physical solutions when e further note that in Eq4) the phase has the freedom
V—0. We thus defin€C as a complex function of the com- of choice of an additive constant, and in E8) the conduc-
plex variableW, tance that of a multiplicative constant, since the Hilbert
transform of a constant is zero. This permits us to treat other
C=C(W), (6)  quantities related to the conductance on the same footing, as
. . long as they differ from it only through a multiplicative con-
and suppose tha@) InC(W) is analytic in the lower(or g5 “Moreover, when the physical quantities are some pow-
uppep half W plane, (b) InC(W) tends to zero on a large 4rg of each other, then the corresponding derived phases are
semicircle in that half plane, ar(d) C(W) can have zeros or  gjmply multiples of each other, so that if the unit of the phase
poles on the real lin¥’=0 (Refs. 12, 16, and 39The lower s not specified; then the relation in E@) can be used for
(or uppey signs are appropriate for functions analytic in the a|| of them. With this understanding, our results hold equally
lower (or uppey halves. for conductance, Aharonov-Bohm oscillation amplitudes,
Some extension of the formalism is possible. Thus, whenransmission probabilities, and other quantities. As already
the complex conductance behaves for lafgas some power stated, we refer to them generically as “conductance”
W™K, wherek may positive or negative, a standard procedureTable ).
in complex variable theory enables the use of relati8)s It is clear from Eqs(3) and(4) that[provided the stated
and(4) for a modifiedC(U). This is obtained by multiplying conditions(a)—(c) hold] the phase is uniquely given from the
the complex conductance by i) [or by (U+i)¥], com-  conductance, and vice versa. Any phys_ical model or theory
puting the integrands with the modified functions and com-needs to account of one type of quantity alone. In the fol-
pensating in the result by subtracting the algebraically evaluloWing figures we present graphically several types of phases
ated quantities, e.g., atdfi)=—karctan(10). (This and conductance amplitudé®tthe logarithmgas fu'nctlons
procedure was used in Ref. 19, and is analogous to that ifif the real gate voltag®), and relate them to published ex-
Ref. 12, Sec. 11.17Of course, when the functional form of perlmgntal and theoretical results_. The quantities _plotted by
C(W) is fully known, the procedure of Eq¢3) and (4) is us satisfy Eqs(3) and(4) and are H|_Ibert transf_orms in thé
unnecessary, but we are mainly concerned with those othdP" W) domain. The actual expressions on which the plots are
cases in whicC(U)| is available only numerically, as data ased are listed in Table Il. We can now state the foIIowmg.
values, or as a complicated function for raal[while its Any (o_bserve_d)_conductance that, a‘c’, fu_nct|on_of (real) U, is
analytical behavior is presumed to be agan-(c)]. numerically similar to any of theC(U)|’ s in the list and has
The location ofzEROSof C(W) is an important feature in the same analytical behavior for (complex) W, will also yield

this work, and we discuss it now. In previous wdfkd® in a corresponding phasg)) that is numerically similar. Any

which time was the independent variable, it was establishe on(_juc_:tance tha.t is numerically sir_nilar, but is anf_:llyt_ically
issimilar, can yield a phase that is completely dissimilar

that in several physically significant cases the analyticit . )

conditions are met. Thus a proof was given for the prope;I'hese properties are reflgctlons of the fact_ that the conduc-
analyticity of the ground states of an adiabatically evolving{@"C€ derives from equations that are defined for complex
system, including the location of the zeros of the wavevalues of the gate voltage.

function!® (The same form of analyticity is also present in
coherent and squeezed wave packet syaiRegarding the
underlying causes for the location of the zeros, discussions The curves in Fig. 1 have the shapes of the experimental
of the zeros of time-dependent wave functions have involvedalues of Ref. 4 shown in their Figs(t8 and 3c) (or Fig. 2

IIl. GRAPHICAL REPRESENTATIONS
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TABLE 1. Sources of the plots in Figs. 1-5. In each case
|C(U)| and argC(U) were plotted. IfC(U)|, and argC(U)(=f) are Conductance
Hilbert transforms.

1
Figure C(V) Phase /

(1+0.9%"V)/(1-0.4e"Y) / U i U U UU
1.01(1+0.9%'Y)/[1—0.4(1+0.75 sinU)eY] /
(1.7%Y)/(1-0.4e") FIG. 3. Conductance not having nodé@uantities and units as

[((U=-3)+iv2]™* in Fig. 1)
[U-6+0.35] '-[U—14+0.35]*

a b~ wN B

plying, as we have done before, that deviations from strict
periodicity are negligible We have taken as basis, the “con-
in Ref. 8 except that the experimental values are SomEWhaguctance” (more accurate|y: “the magnitude of the
skewed and not quite periodic. The latter propéityiot an  Aharonov-Bohm oscillations)'data values in Fig. 3b of Ref.
instrumental effegtcan have its origin in the differences 4 contained in the resonance peak just following the vertical
between levels of the quantum dots. Since the effects appegbtted line(since these seem to be the least affected by ex-
to be small, we ignore them in this work. perimental errorsand used these experimental points ad-
The strong antiresonances near integral multiple values qfsted to periodicity. They are shown in Figiabelow by
m, whereC(U)~0, and the sudden “phase lapse@Ref. 8§  dots. We have then replaced the infinite integral in 3.
between resonances are evident. The curves in Fig. 2 diffqiyith the positive sighby a sum over the experimental val-
from the previous set only by allowing skewness in the cones inside the elementary resonance peak and by a further
ductances, present in the observational curves of Ref. 4. Théiscrete sum over all equivalent, identical peaks. The values

phase does not significantly differ from that in Fig. 1. for the phases that are thus obtained from the integré)in
The conductance curves of Fig. 3 are still oscillatory, butare shown in Fig. @) by stars.
they do not get close to the horizontal axis, i.E€(U)] These are in reasonably close agreement with the experi-

>0. Yet, the phases oscillate, contrary to what might havenental values of the phase, also given by Schustet* in

been anticipatedNote, e.g., the caption to Fig. 2 in Ref..9 their Fig. 3c, and shown by us in Fig(t by dots (again
The downward slopes of the phase are now moderate and, imposing a periodic recurrence of the peakghe only ad-
fact, they scale wit{ C(7)]~" [with the zeros ofC(W)  justment that was made in the calculated phgsetted in
being simple, as in Table ]l units of ) is a constant vertical shiftWe recall our previ-

The elementary curves in Fig. 4 resemble some experious remark, in Sec. Il, about an arbitrariness of a constant
mental and theoretical curvds.g., Figs. 49 and 4c) in  shift in the phase.The range of the computed phase exceeds
Ref. 1, Fig. 2c) in Ref. 4 and Fig. 1 in Ref. B indicating  the observed one by about 15%: this excess is presumably
that mathematical consistency relations hold between the oltue to the inaccuracy involved in replacing the principal in-
servational quantities. The curves in Fig. 5 resemble the theegral by a sum over the data poirisomprising only 16
oretical curves of Ref. 8Fig. 3. The source function shown valueg. This is probably also the source of the discrepancy
in Table Il has poles in one half-plane only, and has no zerogear odd-integral values of). However, the calculated
in the finite portion of the complex plane. “phase lapses” are similar to the observed ones, and the
horizontal displacements in the maxima between the conduc-
tance and the phase ajef the fundamental period, as given
by experiment.

In this section we derive the phase directly from the raw Considering that the Hilbert transform method is based on
observational data of the magnitudé®onductance’) by  continuous functions, it is gratifying to note its applicability
the Hilbert transform methothat is, without using an inter- to discrete, raw, numerical data.
polating function. Specifically, we start witlbISCRETE data

IV. HILBERT TRANSFORM FOR RAW DATA VALUES

values shown by dots in Fig. 3b of Ref. 4, and employ Eq. V. DISCUSSION
(3) on these. A slight problem arises, though, in that the
range of integration in Eq(3) is infinite, while the data In this work relations have been formulated between ob-

points cover only a finite range of the gate voltage. A naturaberved phases and transmission amplitudes, so that the phase
(but perhaps oversimplifiedsolution of this problem is to
assume that the experimental data possess a periodiity

2
Conductance
5 Phase
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FIG. 4. Lorentzian conductanc&uantities and units as in Fig.
FIG. 2. Skewness effect§Quantities and units as in Fig.)1. 1.

Conductance
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FIG. 5. Stepwise phaseQuantities and units as in Fig.)1.

FIG. 6. Discrete application of Hilbert transforita) Observed
and the log of the “conductance” are Hilbert transforms asoscillation magnitudes. The values shown by dots are from Ref. 4,
function of the gap voltage. The relations are contingenf‘ere designated as “Conductance,” in arbitrary units. Broken lines
upon certain analyticity conditions, rather than absolute. Wé&onnect dots, which are the input in the computati. Phase
have found that, to a good accuracy, availakoev tempera- angle(in units of 7r). The stars show the values fifU) that are the
ture) experimental and several theoretical curves obey th@UIPut from expressiof8), after adding a uniform upward shift of
relationships. In particular, for the remarkable, sharp degpproxnmatelywlz. They are connected by broken lines. The dots
creases in the experimental phases between resonances, p%}c—’w observed values taken from Ref. 4.
ted out in Fig. 6b), we have found that the slope of the o o
decrease depends on the value of the conductance minimuifong half-plane. This illustrates the role of analyticity, as
positioned midway between the resonan¢€ampare Fig. 1 Set out in the italicized sentences of Sec] Llet it be re-
and 3 and Table I). marked, however, that a correction term is available for those

The relations do not replace physical models, but providéases that have extra zeros in the wrong half-pfdfeThe

a check on them. Regarding models in previous works, théontribution from this term is of a fixed sigiand if the zeros
transmission amplitude modulus, shown in Ref. 3 as(Eg. ~are simple and are either very far from, or very close to the
and based on simplified one-dimensional models of Refs. 1#eal U axis, their effect is limitey

and 15, is derivable from a complex conductance It is suggested that future experimental or theoretical
_ work on electron transmission in mesoscopic systems should
Clp)x[1-rirpexplie)] ™. (7)  check for the existence of Hilbert transform relationships be-

tween phase and transmission probability. Condit@nm-

oses extremely strict constraints on the possible forms of
he complex conductance, precluding as it does the existence
of branch cuts for II€(W) in a half-plane(These constraints
are clearly more stringent than that whose satisfaction is
guaranteed by Poincasetheorem, quoted in Ref. 260ur
analytical behavior irlJ. Similarly, the transmission ampli- present f|nd|ngs[wh|ch are consistent with cond|t|o_(a)],
tude of Ref. 9 appearing in their E¢l), is essentially the raises the questions of.wheth.er there IS any underlylng phys-
difference of two terms of the form in Eh?) in whichr ics in these mesoscopic devices that induces the validity of
take opposite signs: this again has the analyticity propertieg"s anaIypcny cqnd!tlon, and whgther future ones W'!l st
(@—(c) preserve it. In principle, the validity would be immediately

. L verifiable from numerical integration of the data according to
In spite of the agreements found in this paper for every s.(3) and (4). However, from a practical angle, since the

studied case, it may well happen that in some other instancéssq i ) -
(coming from either future experiments or some new theo_conductance is available only for a finite range of the gate

retical model there be discrepancies from the integral reIa-VOItage’ the infinite Integration may not be feasible, and, in-
tions (3) or (4). According to the theory in this work, these deed, the asymptotic behavior of the conductance, necessary

can be assigned to deviations from the analyticity conditionst0 carry out the prescription in Sec. Il may be hard to come

for whose validity we have na priori reason[As an ex-
ample, we might choose to exter@(U) beyond the two
Breit-Wigner terms in Table Il for Fig. 5, by adding to it
several further resonances. Then the new resonances will
look like those in Fig. &). But the dispersion relations) Our thanks to David Sprinzak for explaining the experi-
and (4) can only be applied if the proper analyticity is en- ments of the Heiblum group, and to Yuval Gefen for discuss-
sured, that is, if no new zeros have been introduced in theng the theory.

Herer, andr, are reflectivities, an@ is the sum of a mag-

netic flux term and the phase acquired by the partial wav
traveling along the ring’s arm in the absence of a magneti
field.® The latter part is an essentially linear function of the
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