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Molecular-dynamics simulation of thermal conductivity of silicon crystals
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We investigate the thermal conductivity of bulk silicon crystals based on molecular-dyn@vigssimu-
lations. If it is taken that the system size must be larger than the phonon mean free path, several hundreds of
millions of atoms must be computed for crystals with large thermal conductivity values such as Si. We
demonstrate in this work that the thermal conductivity of Si crystals can be simulated by MD techniques using
several thousands of atoms with periodic boundary conditions. We identify that the key issues generating size
artifacts in small molecular-dynamics systems are the frequency cutoff imposed by the simulation domain
length and the correlation artifacts caused by the periodic boundary conditions. Our method relies on the
spectral Green-Kubo formulation combined with a model-based extrapolation. The obtained thermal conduc-
tivity results are in good agreement with the reference data. Both the Green-Kubo formulation and the Bolt-
zmann transport equation lead to the prediction that the thermal conductivities of bulk crystals depend on the
frequency of the thermal disturbance. This result has important implications for high-frequency electronic
devices.

[. INTRODUCTION size artifacts due to the frequency cutoff and the artificial
autocorrelation introduced by periodic boundary conditions.
The molecular-dynamic@VD) simulation of the thermal The frequency-dependent Green-Kubo formulation is com-
conductivity in crystalline solids remains a difficult task due bined with a model-based extrapolation method to provide
to the perceived limitation of computational power. If it is the necessary corrections. The thermal conductivity of bulk
taken that the simulation domain must be of the order of onéilicon crystal is computed for different system sizes with a
mean free patiMFP), for instance, the computation of the Maximum atom number reaching 64000, and at different
thermal conductivity of bulk crystals requires tracing the tra-temperatures also. Our numerical results compared favorably
jectory of several hundreds of millions of atoms ovef 10 With experimental data on isotopically pure silicon crystdls.
time stepgup to 1 ns with a femtosecond time steprhich In the next section, we present the basic principles of the
is difficult even for supercomputers. Some past MD studiedVID technique and provide details concerning the Stillinger-
on the thermal conductivity are based on nonequilibriumyVeber potential used to compute the thermal properties of a
methods that impose a temperature gradiénor a heat silicon crystal. The following section is devoted to the ther-
flux.*~® Those nonequilibrium methods suffer from the fol- mal conductivity derivation according to the Green-Kubo
lowing three main drawback$) the temperature gradient formula. In the last section we provide correcti_ons and com-
needs to be sufficiently large to limit the statistical errors,Pare our results to standard and recent experimental data.
which makes it difficult to determine the reference tempera-
ture, (ii) t_he simulated system size is 'smaIIer than thg MFP II. THE MOLECULAR-DYNAMICS TECHNIQUE
and the final values are found to be size dependent(iand
the boundary conditions affect the phonon distribution, lead- The classical molecular-dynami@€lD) technique gives a
ing to false temperature gradients in the vicinity of the inter-deterministic nonquantum description of Bratom system,
faces. The equilibrium approach based on the Green-Kuboonsidering each atom as a material point of positipn
formulation has also been followéd'° So far, to the best of velocity v;, and of constant masl. For atomic systems,
our knowledge, previous works provided realistic thermalNewton’s second law describes the particle motion:
conductivity values only in amorphous structures and crys-
tals, which have low thermal conductivity values and thus 42 N
, r
short phonon MFP’s. Moo= > Fij (1)
We show that the MD technique can be applied to the dt® =1«
thermal conductivity simulation of single-crystal silicon,
which has a large thermal conductivity and relatively longwhereF;; is the force exerted by atojron atomi. The force
phonon mean free path. We choose an approach based on tieem is derived from the interatomic potential that must sat-
Green-Kubo formalism, which allows the application of pe-isfy both nanoscopic and macroscopic requirements. The po-
riodic boundary conditions that effectively overcome thetential commonly has a two-body-dependent expression in-
limitation of a small simulation domain compared to the pho-cluding a short-distance repulsive teraccording to the
non MFP. Albeit, we show that this method still involves Pauli exclusion principle and a long-distance attractive
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uz(m):A[B(%) ~1 @ 3NKgTyp= fVDD(V)n(v,T)hydy, )
0

+V-q(r,t)=0, (6)

form:12 the equipartition theorem and write the equatity.
which no interaction occurg), B, andq are parameters, and jn the systemp being the density of states.is the phonon
is introduced to stabilize the correct angular configuration: of the classical MD system may take the zero value. From

rier law must also be corrected, the thermal conductivjjy
where 6, is the angle between; andr;,. The parameters perature, the correction is not sensitive to the exact values of
data. The energy and the distance units are deduced from t§&0 and 4% in the correction coefficieaTyp/JT. In the
of Egs.(2) and (3) was proposed without any consideration @ significant influence on the resullts.
melting temperature and the thermal expansion fit the experi-
the Tersoff potential and those based on the modified-
coefficient of Si. Among them, the Stillinger-Weber para- bined with the definition of the total instantaneous heat flux
son why this potential was selected in the present study. q

aHV=g; 2 riE (7)

time, which will be used to compute the system temperature,
in the simulation domain since the Boltzmann distributiontential energies ¢;;), Ei=%(Mvi2+ ®ij), Eq.(7) becomes

term. In silicon, a well-established expression of the nondi-mal conductivity must be carried out. Here, we assume that
mensional interatomic potentiall, takes the following the system energy is twice the kinetic energy according to
F{(rij_rcut)l
exg| ———
g
where the constamt, is the potential cutoff distance above \yhere the right-hand side represents the total phonon energy
r is the nondimensio_nal _interatomic distance. Since the_Si"frequency anah defines the phonon occupation number. This
con crystal structure is diamondlike, a three-body potehtial term does not include the zero-point energy since the energy
1 1 Eq. (5), we deduce the real system temperafli@ppearing
hii = nex;{ y( Mij — rcut) + y( Fik — rcut) in the functionn. Since the temperature gradient in the Fou-
" g g
% (COSB: + 1)2 3) should be rescaled by thdp /JT factor obtained from Eq.
ik T3/ (5). When the system temperature is close the to Debye tem-
A, B, 7, y, andr are set by fitting the simulation results of this parameter. Takingp values of 645 and 722 K, for
the total energy and the lattice structure to the experimentdnstance, the discrepancies in the temperature valuase
observed atomic energy and lattice spacing ¥ in silicon: ~ framework of the quantum correction procedure used here,
€=3.4723<1071%J, ¢=0.20951 nm. The parametric form the change in the Debye temperature will therefore not have
of the thermal behavior of silicon crystals. However, later ~The heat-flux expression is derived from the energy-
tests based on those equations have proven that both tRalance equation:
mental data with a good accuraty.In addition to the 1 E(rY)
Stillinger-Weber potential, several other potentials, such as vV at
embedded-atom method, have been used in the past to simhereE(r,t) is the instantaneous local energy ay(d,t) the
late the thermal properties such as the thermal expansigfstantaneous local heat flux. The integration of @.com-
metric form gives better agreement with experimental result§) the statistical ensemble of constant energy leads to the
on the thermal expansion coefficient, which is the main reafollowing expressiort™
Given initial conditions, Eq(1) can be solved to provide
the position and the velocity of each particle as a function of
heat flux, and thermal conductivity. Temperature can bevhereE; is the particle energy andl the system volume.
readily calculated from the velocity of each individual atom When expressingg; in terms of the atomic kinetic and po-
function allows the straightforward derivation of the mean
kinetic energy(E,) in the following way:

N

2,

i=1

N

VE+: X rij'(Fij'Vi))

j=1, j#i

1
=5 ®

N
EV=1M 2_ 3NKkaT 4 . . L
(Be)=2 2’1 V1=2N¥slwo, @ The first term on the right-hand side is related to local par-

. i ticle shifts typically occurring in fluids, while the second
wherekg is the Boltzmann constant aidis the number of  term describes the thermal energy dissipated between groups
particles in the system. However, the validity of relatidh  of atoms, which is dominant in solids. As shown previously,
depends on three condition&) no temperature constraints the force potential of silicon includes a three-body contribu-
are applied; when a temperature gradient is applied, the Boltign that must be taken into account in the path from @&

zmann distribution is perturbed and Hg) becomes an ap- g Eq.(8). Thus, we finally obtain the heat-flux expression as
proximation;(2) the total particle momentum of the system fgjows:

vanishes since a nonvanishing total momentum means bulk

motion of the particle system, ari@) the heat capacity is not 1[N N

temperature dependent, which is valid for temperatures q(t)= _[ 2 (%rij'(Fij -V;)
greater than the Debye temperature. If one compares the VIEL =1

simulated MD temperatures in the range 200-500 K to the N

experimental Debye temperature valdg=645K of Si, a +i > (r_‘ﬂ,k),(,:_,k_v,)) 9
quantum correction to both the MD temperature and the ther- k=T ki e
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where  the three-body force  term is Fijk

=—€eV,[h(rij,ric, 0i) +h(rji Tk, Gijk) [ Section: 21.4 Ax 21.4 A
+h(ry . ryj, i) 1-

N
o

N
o
T

Ill. SPECTRAL THERMAL CONDUCTIVITY

-
(5,
T

Due to the atomic motion, both local and total quantities
go(r,t), Ep(r,t), go(t), and Ty(t) fluctuate around their
equilibrium mean values and follow the local energy balance

-
(=]
—>—

Thermal Conductivity (W/mK)

equation(6).}” We perform the thermal conductivity simula- \41\
tions based on the equilibrium fluctuations of the heat flux 5 ~_
0o(t).*81° In this perspective, a microscopic temperature

nonhomogeneityT(r,t) is created in the system and super- N R |
imposed to the equilibrium fluctuations of the local tempera- 400 450 500 550 600 650

ture To(r,t). This temperature perturbation creates a devia-

. Temperature (K
tion of the average energy of the system: P )

FIG. 1. Bulk thermal conductivity results computed from MD

ksTo Eo(r,t) simulations for different temperatures and for a system with a cross
OE(t)= v f T T 5T (r dV—E, section of 4.58 nrh The method is based on the static Green-Kubo
vka[To ()] formulation.
1
=TTV V5T(r,t)Eo(r,t)dV, (10) IV. RESULTS AND DISCUSSION

To perform MD computations of the bulk thermal con-
whereT is the equilibrium temperature arig)(r,t) the lo-  ductivity, we construct the simulation domain from unit
cal equilibrium energy. This energy disturbance causes apells. Each unit cell is face-centered cubic with two atoms as
instantaneous heat flux in the simulation domain. The resultthe basis. We compute systems with cross sections ranging
ant heat flux can be expressed in terms of the perturbation gfom 3x3 to 10< 10 cells and 12 cells in the longitudinal
the distribution function: direction. A maximum of 26 20x 20 cells was also probed

to examine the size artifacts. These simulations correspond
1 1 to atom numbers ranging from 864 to 64 000 since a dia-
Q(t)ZvJ %(f,t)P(t)dV=vf qo(r,t) op(t)dV+do(t) mondlike cell includes eight atoms. We assumed periodic
v v " : g -

(11) b_o_undary cqndmons in the three_ directions and imposed the

silicon density by setting the lattice constant a to 0.543 nm.

The periodic boundary conditions allow the energy to flow
through the boundaries while ensuring the conservation of
momentum and energy, i.e., the energy flowing out of one
mulation of Eq.(11), replacingdp(t) by its expression and surface will reenter f_rorr_l other surfaces. Therefore, we pos-
e tulate that such periodic boundary conditions provide the

o oty s e x01eSS 1 gortect representaton of the bulk cystalphonon scaterng
fluctuation-dissipation theoref? in a S|muIaF|on domam mgch smaller than t.he.mean free
' path. The time unit is defined from the derivation of the
nondimensional form of the motion equation: in silicdp,
=0.0766 ps. For the time step, we chake=0.01t,,, which
guarantees a negligible total-energy drift due to the numeri-
cal integration scheme. We probed the temperature depen-
where w and k are the frequency and wave vector of the dency of the silicon Crystal thermal CondUCtiVity. It was con-
external thermal perturbation exerted on the systemsidered reasonable to extend the time of the simulation to
ST(r,t)=8Te(wt=kn, several phonon mean relaxation timeg6 ps, which corre-
sponds to 100000 time steps. For a 2424.4x 64.2A°
1 crystal with 1536 atoms, the average computation time is 5 h
=_ using a HP9000-C180 workstation.
(k. 0aok. 1) = quo(r,O), Figure 1 shows the thermal conductivity values derived
_ from the direct integration of the heat-flux autocorrelation
ao(r,t)e ' "podV is the heat-flux autocorrelation function, function corresponding to the Green-Kubo formulatjdy.
andT, is the equilibrium temperature. This last equation is(12)], setting the frequencw and the wave vectok to O,
called the spectral Green-Kubo formula for thermali.e., the static Green-Kubo formula. The thermal conductivity
conductivity?° It reduces straightforwardly to the static ther- values are one order of magnitude smaller than the reported
mal conductivityh by settingk and w to zero. In the past, bulk datax =80 W/mK at 500 K. Figure 2 demonstrates that
thermal conductivity simulations were mostly based on thea further increase in the computation size will increase the
static formula. calculated thermal conductivity value. For a simulation do-

where dp(t) = — po( SE(t)/kgTy) is the first-order approxi-
mation of the Boltzmann distribution functiorp(t)
=exp{—[Ey+ SE(t) [/kgTy}- The last step consists of the refor-

\% ® :
)\(k,w)= WBTOJO <q0(k10)'q0(k1t)>elwtdt1 (12)
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100 flux autocorrelation function expression. The time evolution
T=500K of the autocorrelation function for the phonon occupation
numbern, is documented &%

¢ (n(0n,(H))=(n, ,(0)%)e ™, (14

where 7, is the relaxation time corresponding to the modes
10 | with a frequencyr. Using this time evolution, the time de-
[ pendence of the heat-flux autocorrelation function

(a(0)a(t))=(q(0)*e""" (15)

is derived when assuming no cross-correlation between
modes and according to the definition of the heat flux in
P : . terms of the phonon occupation numbers

1 3 5 LT 9 1
Transverse Dimension (nm)

Thermal Conductivity (W/mK)

at)=2 n, (Ofiny,, (16)

FIG. 2. Thermal conductivity plotted against lateral simulation '
box dimensions aff=500K. Results remain increasing as the wherev,, is the group velocity. In Eq(15), 7 is the average
simulation domain increases. phonon relaxation time assumed to be frequency indepen-

] 5 _dent. By combining Eqg12) and(15), the spectral thermal
main of 109< 109X 109A y the thermal COI’ldUCtIVIty IS Conductivity is f|na||y expressed as

about 70 W/mK, while the experimentally reported thermal

conductivity of natural S(\_/vit_h 57.10 % isotop_e)wt 500 K is . INo)] =V<q(0)2>/[3kBT2\/w2+ ). (17
about 80-90 W/mK. This justifies the belief that the size o )

effect is responsible for the small simulated thermal conducBY fitting the high-frequency values oh(w)| calculated
tivity values compared with experimental data. Since the pefrom spectral MD simulations, the heat-flux autocorrelation

riodic boundary condition should have at least partially com-'€laxation timer is determined and used to estimate the
pensated the MFP limit, we infer that other effects exist,Static thermal conductivitpn(0). The mean relaxation time

further limiting the calculated thermal conductivity values. @PProximation implies that slow and fast disturbances are
To examine the artifacts induced by the small simulationdoverned by the same average relaxation time, i.e., the long-
domainV and the periodic boundary conditions, we expres?d short-wavelength phonons behave similarly. However,

the spectral thermal conductivity(k,®), as a function of we argue that a rela}tively small simulation doma_in could
the heat-flux fluctuations occurring in the basic cell: represent the Brillouin zone reasonably well. To illustrate

this point, we compute the dispersion curves of longitudinal

Vimae [ 1 phonons using a classical metidthat provides the dynami-
Ak, w)= WI vj qo(r,t)-do(r,0)po cal structure factoS(k,v) for the wave vectok from the
B0 70 v time-dependent positions of each particlét) according to
xe 'k rdvik)e “dt, (13 the relation
whereV,,cis @ macroscopic volume including a large num- +oo o
ber of volumesv andJ(k) is a function including the con- S(k,V)ZJ ) thn: elrelkrn, (18

tributions of the image volumes to th@y(k,t)qq(k,0))
term. Equation(13) leads to the identification of two oppos- Choosing a set of wave vectors in the Brillouin zone, we
ing size artifacts. First, because the space projection for thplotted in Fig. 3 the dispersion curves of the longitudinal
space Fourier transform is limited to volumé, only  acoustic(LA) phonons in the transvergerossesand longi-
phonons with a wavelength shorter than the cell size ar¢éudinal (squaresdirections of the simulated rectangular do-
permitted to exist in the simulation domain. This wavelengthmain. This figure reveals that phonon modes of wavelengths
cutoff has the following two consequences. One is that thgreater than the system size are truncated as shown by the
contribution of low-wavelength phonons to the thermal con-three data points of lower wave vectors reporting LA
ductivity is excluded. The other, which is more important, isphonons in the transverse directi@rosses We verify that
that the static disturbance valudss0 and w=0, are not the corresponding cutoff frequency is smaller than the fre-
allowed at all in the simulation domain. Second, sincethe quency of the dominant phonon modes. On the other hand,
function limit whenk goes to zero is one instead of zero, anfour unit cells in the transverse direction correctly represent
artificial autocorrelation that does not exist in real systems ishree-fourth’s of the phonons in the first Brillouin zone. The
introduced. This size effect will be especially strong for extrapolation of Eq(17) seems therefore reasonable but will
long-wavelength phonons or low wave vectérs likely to be valid only in the high-temperature regimes where
We correct the above-identified artifacts caused by theshort-wavelength phonons dominate. The fact that the clas-
periodic boundary conditions from the spectral Green-Kubasical MD technique cannot correctly represent the scattering
formulation for thermal conductivity. Starting from the high- mechanisms at low temperature also limits the proposed
frequency thermal conductivity, we propose to derive thetechnique to the high-temperature regime. Incidently, we no-
static value according to an extrapolation methbdVe tice that the calculated frequency for the zone boundary is
build the extrapolation procedure by approximating the heat8% higher than the referenééwhile the dynamical matrix
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FIG. 3. Dispersion curves of longitudinal acoustic phonons in
the transversécrossep and longitudinal(square directions of a
4X 4% 12 rectangular simulation domain.

FIG. 4. Modulus of the spectral thermal conductivity of silicon
derived from MD simulationgdashed lingand extrapolation to the
dc thermal conductivity(solid line). The t., time approximately

- . . corresponds to the minimum frequency allowed in the simulation
of the Stillinger-Weber potential predicts a frequency valuedomairﬁ)_ a y

12.5% smaller than the same referefite.

Insofar as the Boltzmann transport equati®TE) fully Figure 4 shows the frequency dependence of the spectral
describes energy transfers when phonons can be treated atharmal conductivity obtained from the MD simulations
gas of particles, we will show next that the thermal conduc{squares and its corresponding extrapolation cur(golid
tivity expression[Eq. (17)] can also be deduced from the line). The simulation results diverge when approaching the
BTE. We start from the basic one-dimensional BTE writtenfrequencyw=0. We understand that this trend is related to

under the relaxation time approximation the overestimation of the autocorrelation function for low
frequencies due to correlation artifacts caused by the periodic
an, ang, n,—nNo, boundary conditions. The higher-_frequen.cy da_lta are favor-
WJer,, w0 (19 ably compared to the results of Fig. 1, reinforcing our argu-
14

ment that the static Green-Kubo formulation is not appropri-
where the 0 index indicates that the equilibrium quantity isate when the simulation domain is small. To fit the high-
considered. Sinca,, depends on the temperature only, thefrequency regime, the key point is to recognize where the
spatial gradient can be decomposed as the product of trtifacts caused by the periodic boundary conditions appear.
temperature derivative af, and the spatial temperature gra- The vertical line in the figure marks an estimation of the time
dient, which corresponds to the applied thermal disturbancder 'éguired for phonons propagate across the simulation do-
Choosing an ac perturbation of frequenay, T(x,t) main ballistically. In the wave picturé,, is also proportional
—To(x)e“, the phonon distribution functionwill have the to the reverse of the minimal frequency allowed in the sys-

B Lot tem. For frequencies higher than this mark, phonons will be
form n(x,t) =H(x,w)e'*". From Eq.(19), H(x,w) can be . iared and the effects of the artificial correlation will di-

obtained as minish. Figure 5 shows that the corrected thermal conductiv-
ity values are not size dependent anymore, which confirms
H(xX, )= Moy Vs 7u( 90, 19T) (9To /9X) (200  that the results shown in Fig. 1 are truncated because of the

ltiorT, ' low-frequency cutoff.
Figure 6 reports the extrapolation values in configurations
comparable to those of Fig. 1. The simulation results suggest
that the crystal thermal conductivity decreases with tempera-
q(x,w)zf H(X,w)AvD(v)vy,dv ture according to & " law with the power facton=1.5.
v Here, n differs from the factors deduced from the standard
2 theory (h=1) and the recent measurement on isotopically
_ 9o [ dno,ivD(v)] AT (21)  pure silicon (=1.6)."" At 300 K, the MD data value is
X )y aT ltiorT, about 70% higher than the thermal conductivity of natural Si
but corresponds very well to the experimental restlit§o
complete the discussion, we also plotted the curve extrapo-
lated from this data point and & ! law. The interval de-
fined by this extrapolation and the results on isotopically

which leads to the expression of the complex heat flux:

Assuming a frequency-independent relaxation timend
group velocity, the complex spectral thermal conductivity
expression of Eq(17) is retrieved:

o) CpV>2<T ) A(0) o pure silicon provides a satisfying framing of our MD values.
l+iwr 1l+ieor’ V. CONCLUSION
where\(0) is the static thermal conductivity ar@d,, is the This study provides a simple method to derive the thermal

heat capacity or the temperature derivative of energy. conductivity of bulk crystals with high thermal conductivi-
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FIG. 5. Corrected thermal conductivity plotted against lateral
simulation box dimensions dt=500 K. Results are independent of
the crystal size.

ties from the trajectories of a reduced number of atoms. We

found out that the mean-free-path limitation imposed by th

system size can be assumed as insignificant when using p

riodic boundary conditions while the low-frequency cutoff
and the artificial correlation involved by the periodic bound-

ary conditions severely affect the noncorrected estimations.
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4 MD Results R

N Section: 214 Ax 214 A
250 | \
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FIG. 6. Bulk thermal conductivity results computed from MD
simulations for different temperatures and for a system section of
4.58 nnf. The MD calculation(squares is based on the Green-
Kubo formulation and the extrapolation technique.

valid in taken account of the phonon scattering. The simula-

ei(_)n results on the thermal conductivity of Si crystals com-
pare favorably with experimental data on isotopically en-
riched Si.
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