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Molecular-dynamics simulation of thermal conductivity of silicon crystals
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We investigate the thermal conductivity of bulk silicon crystals based on molecular-dynamics~MD! simu-
lations. If it is taken that the system size must be larger than the phonon mean free path, several hundreds of
millions of atoms must be computed for crystals with large thermal conductivity values such as Si. We
demonstrate in this work that the thermal conductivity of Si crystals can be simulated by MD techniques using
several thousands of atoms with periodic boundary conditions. We identify that the key issues generating size
artifacts in small molecular-dynamics systems are the frequency cutoff imposed by the simulation domain
length and the correlation artifacts caused by the periodic boundary conditions. Our method relies on the
spectral Green-Kubo formulation combined with a model-based extrapolation. The obtained thermal conduc-
tivity results are in good agreement with the reference data. Both the Green-Kubo formulation and the Bolt-
zmann transport equation lead to the prediction that the thermal conductivities of bulk crystals depend on the
frequency of the thermal disturbance. This result has important implications for high-frequency electronic
devices.
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I. INTRODUCTION

The molecular-dynamics~MD! simulation of the therma
conductivity in crystalline solids remains a difficult task d
to the perceived limitation of computational power. If it
taken that the simulation domain must be of the order of
mean free path~MFP!, for instance, the computation of th
thermal conductivity of bulk crystals requires tracing the t
jectory of several hundreds of millions of atoms over 16

time steps~up to 1 ns with a femtosecond time step!, which
is difficult even for supercomputers. Some past MD stud
on the thermal conductivity are based on nonequilibri
methods that impose a temperature gradient1–3 or a heat
flux.4–6 Those nonequilibrium methods suffer from the fo
lowing three main drawbacks:~i! the temperature gradien
needs to be sufficiently large to limit the statistical erro
which makes it difficult to determine the reference tempe
ture, ~ii ! the simulated system size is smaller than the M
and the final values are found to be size dependent, and~iii !
the boundary conditions affect the phonon distribution, le
ing to false temperature gradients in the vicinity of the int
faces. The equilibrium approach based on the Green-K
formulation has also been followed.7–10 So far, to the best of
our knowledge, previous works provided realistic therm
conductivity values only in amorphous structures and cr
tals, which have low thermal conductivity values and th
short phonon MFP’s.

We show that the MD technique can be applied to
thermal conductivity simulation of single-crystal silico
which has a large thermal conductivity and relatively lo
phonon mean free path. We choose an approach based o
Green-Kubo formalism, which allows the application of p
riodic boundary conditions that effectively overcome t
limitation of a small simulation domain compared to the ph
non MFP. Albeit, we show that this method still involve
PRB 610163-1829/2000/61~4!/2651~6!/$15.00
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size artifacts due to the frequency cutoff and the artific
autocorrelation introduced by periodic boundary conditio
The frequency-dependent Green-Kubo formulation is co
bined with a model-based extrapolation method to prov
the necessary corrections. The thermal conductivity of b
silicon crystal is computed for different system sizes with
maximum atom number reaching 64 000, and at differ
temperatures also. Our numerical results compared favor
with experimental data on isotopically pure silicon crystals11

In the next section, we present the basic principles of
MD technique and provide details concerning the Stilling
Weber potential used to compute the thermal properties
silicon crystal. The following section is devoted to the the
mal conductivity derivation according to the Green-Ku
formula. In the last section we provide corrections and co
pare our results to standard and recent experimental dat

II. THE MOLECULAR-DYNAMICS TECHNIQUE

The classical molecular-dynamics~MD! technique gives a
deterministic nonquantum description of anN-atom system,
considering each atom as a material point of positionr i ,
velocity vi , and of constant massM. For atomic systems
Newton’s second law describes the particle motion:

M
d2r i

dt2
5 (

j 51, j Þ i

N

Fi j , ~1!

whereFi j is the force exerted by atomj on atomi. The force
term is derived from the interatomic potential that must s
isfy both nanoscopic and macroscopic requirements. The
tential commonly has a two-body-dependent expression
cluding a short-distance repulsive term~according to the
Pauli exclusion principle! and a long-distance attractiv
2651 ©2000 The American Physical Society
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2652 PRB 61SEBASTIAN G. VOLZ AND GANG CHEN
term. In silicon, a well-established expression of the non
mensional interatomic potentialu2 takes the following
form:12

u2~r i j !5AFBS r i j

s D21GexpF S r i j 2r cut

s D 21G , ~2!

where the constantr cut is the potential cutoff distance abov
which no interaction occurs,A, B, andq are parameters, an
r is the nondimensional interatomic distance. Since the
con crystal structure is diamondlike, a three-body potentiah
is introduced to stabilize the correct angular configuratio

hi jk5h expFgS r i j 2r cut

s D 21

1gS r ik2r cut

s D 21G
3~cosu j ik1 1

3 !2, ~3!

whereu i jk is the angle betweenr i j and r ik . The parameters
A, B, h, g, andr cut are set by fitting the simulation results o
the total energy and the lattice structure to the experime
data. The energy and the distance units are deduced from
observed atomic energy and lattice spacing at 0 K in silicon:
e53.4723310219J, s50.209 51 nm. The parametric form
of Eqs.~2! and ~3! was proposed without any consideratio
of the thermal behavior of silicon crystals. However, la
tests based on those equations have proven that both
melting temperature and the thermal expansion fit the exp
mental data with a good accuracy.13 In addition to the
Stillinger-Weber potential, several other potentials, such
the Tersoff potential and those based on the modifi
embedded-atom method, have been used in the past to s
late the thermal properties such as the thermal expan
coefficient of Si. Among them, the Stillinger-Weber par
metric form gives better agreement with experimental res
on the thermal expansion coefficient, which is the main r
son why this potential was selected in the present study

Given initial conditions, Eq.~1! can be solved to provide
the position and the velocity of each particle as a function
time, which will be used to compute the system temperat
heat flux, and thermal conductivity. Temperature can
readily calculated from the velocity of each individual ato
in the simulation domain since the Boltzmann distributi
function allows the straightforward derivation of the me
kinetic energŷ Ec& in the following way:

^Ec&5 1
2 M(

i 51

N

v1
25 3

2 NkBTMD , ~4!

wherekB is the Boltzmann constant andN is the number of
particles in the system. However, the validity of relation~4!
depends on three conditions:~1! no temperature constraint
are applied; when a temperature gradient is applied, the B
zmann distribution is perturbed and Eq.~4! becomes an ap
proximation;~2! the total particle momentum of the syste
vanishes since a nonvanishing total momentum means
motion of the particle system, and~3! the heat capacity is no
temperature dependent, which is valid for temperatu
greater than the Debye temperature. If one compares
simulated MD temperatures in the range 200–500 K to
experimental Debye temperature valueuD5645 K of Si, a
quantum correction to both the MD temperature and the th
i-
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mal conductivity must be carried out. Here, we assume
the system energy is twice the kinetic energy according
the equipartition theorem and write the equality.14

3NkBTMD5E
0

vD
D~n!n~n,T!\n dn, ~5!

where the right-hand side represents the total phonon en
in the system,D being the density of states.h is the phonon
frequency andn defines the phonon occupation number. Th
term does not include the zero-point energy since the ene
of the classical MD system may take the zero value. Fr
Eq. ~5!, we deduce the real system temperatureT appearing
in the functionn. Since the temperature gradient in the Fo
rier law must also be corrected, the thermal conductivitylMD
should be rescaled by the]TMD /]T factor obtained from Eq.
~5!. When the system temperature is close the to Debye t
perature, the correction is not sensitive to the exact value
this parameter. TakinguD values of 645 and 722 K, for
instance, the discrepancies in the temperature valuesT are
6% and 4% in the correction coefficient]TMD /]T. In the
framework of the quantum correction procedure used h
the change in the Debye temperature will therefore not h
a significant influence on the results.

The heat-flux expression is derived from the energ
balance equation:

1

V

]E~r ,t !

]t
1“•q~r ,t !50, ~6!

whereE(r ,t) is the instantaneous local energy andq(r ,t) the
instantaneous local heat flux. The integration of Eq.~6! com-
bined with the definition of the total instantaneous heat fl
in the statistical ensemble of constant energy leads to
following expression:15,16

q~ t !V5
d

dt (i
r iEi ~7!

where Ei is the particle energy andV the system volume.
When expressingEi in terms of the atomic kinetic and po
tential energies (f i j ), Ei5

1
2 (Mv i

21f i j ), Eq. ~7! becomes

q~ t !5
1

V F(
i 51

N S viEi1
1
2 (

j 51, j Þ i

N

r i j •~Fi j •vi !D G ~8!

The first term on the right-hand side is related to local p
ticle shifts typically occurring in fluids, while the secon
term describes the thermal energy dissipated between gr
of atoms, which is dominant in solids. As shown previous
the force potential of silicon includes a three-body contrib
tion that must be taken into account in the path from Eq.~7!
to Eq.~8!. Thus, we finally obtain the heat-flux expression
follows:

q~ t !5
1

V F(
i 51

N

(
j 51, j Þ i

N S 1
2 r i j •~Fi j •vi !

1 1
6 (

k51, kÞ i , j

N

~r i j 1r ik!•~Fi jk•V i !D G ~9!
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PRB 61 2653MOLECULAR-DYNAMICS SIMULATION OF THERMAL . . .
where the three-body force term is Fi jk
52e“ r i

@h(r i j ,r ik ,u j ik)1h(r j i ,r jk ,u i jk)

1h(r ki ,r k j ,u ik j )#.

III. SPECTRAL THERMAL CONDUCTIVITY

Due to the atomic motion, both local and total quantit
q0(r ,t), E0(r ,t), q0(t), and T0(t) fluctuate around their
equilibrium mean values and follow the local energy balan
equation~6!.17 We perform the thermal conductivity simula
tions based on the equilibrium fluctuations of the heat fl
q0(t).18,19 In this perspective, a microscopic temperatu
nonhomogeneitydT(r ,t) is created in the system and supe
imposed to the equilibrium fluctuations of the local tempe
ture T0(r ,t). This temperature perturbation creates a dev
tion of the average energy of the system:

dE~ t !5
kBT0

V E
V

E0~r ,t !

kB@T01dT~r ,t !#
dV2E0

52
1

T0V E
V
dT~r ,t !E0~r ,t !dV, ~10!

whereT0 is the equilibrium temperature andE0(r ,t) the lo-
cal equilibrium energy. This energy disturbance causes
instantaneous heat flux in the simulation domain. The res
ant heat flux can be expressed in terms of the perturbatio
the distribution function:

q~ t !5
1

V E
V
q0~r ,t !r~ t !dV5

1

V E
V
q0~r ,t !dr~ t !dV1q0~ t !

~11!

wheredr(t)52r0(dE(t)/kBT0) is the first-order approxi-
mation of the Boltzmann distribution functionr(t)
5exp$2@E01dE(t)#/kBT0%. The last step consists of the refo
mulation of Eq.~11!, replacingdr(t) by its expression and
combining Eqs.~10! and ~11!. The resulting expression o
the spectral thermal conductivity is a consequence of
fluctuation-dissipation theorem:8,9

l~k,v!5
V

3kBT0
2 E

0

`

^q0~k,0!•q0~k,t !&eivtdt, ~12!

where v and k are the frequency and wave vector of t
external thermal perturbation exerted on the syste
dT(r ,t)5dTei (vt2k•r ),

^q0~k,0!q0~k,t !&5
1

V E
V
q0~r ,0!,

q0(r ,t)e2 ik•rr0dV is the heat-flux autocorrelation function
andT0 is the equilibrium temperature. This last equation
called the spectral Green-Kubo formula for therm
conductivity.20 It reduces straightforwardly to the static the
mal conductivityl by settingk and v to zero. In the past
thermal conductivity simulations were mostly based on
static formula.
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IV. RESULTS AND DISCUSSION

To perform MD computations of the bulk thermal co
ductivity, we construct the simulation domain from un
cells. Each unit cell is face-centered cubic with two atoms
the basis. We compute systems with cross sections ran
from 333 to 10310 cells and 12 cells in the longitudina
direction. A maximum of 20320320 cells was also probed
to examine the size artifacts. These simulations corresp
to atom numbers ranging from 864 to 64 000 since a d
mondlike cell includes eight atoms. We assumed perio
boundary conditions in the three directions and imposed
silicon density by setting the lattice constant a to 0.543 n
The periodic boundary conditions allow the energy to flo
through the boundaries while ensuring the conservation
momentum and energy, i.e., the energy flowing out of o
surface will reenter from other surfaces. Therefore, we p
tulate that such periodic boundary conditions provide
correct representation of the bulk crystal phonon scatte
in a simulation domain much smaller than the mean f
path. The time unit is defined from the derivation of th
nondimensional form of the motion equation: in silicon,tu
50.0766 ps. For the time step, we chosedt50.01tu , which
guarantees a negligible total-energy drift due to the num
cal integration scheme. We probed the temperature de
dency of the silicon crystal thermal conductivity. It was co
sidered reasonable to extend the time of the simulation
several phonon mean relaxation times'76 ps, which corre-
sponds to 100 000 time steps. For a 21.4321.4364.2Å3

crystal with 1536 atoms, the average computation time is
using a HP9000-C180 workstation.

Figure 1 shows the thermal conductivity values deriv
from the direct integration of the heat-flux autocorrelati
function corresponding to the Green-Kubo formulation@Eq.
~12!#, setting the frequencyv and the wave vectork to 0,
i.e., the static Green-Kubo formula. The thermal conductiv
values are one order of magnitude smaller than the repo
bulk datal580 W/mK at 500 K. Figure 2 demonstrates th
a further increase in the computation size will increase
calculated thermal conductivity value. For a simulation d

FIG. 1. Bulk thermal conductivity results computed from M
simulations for different temperatures and for a system with a cr
section of 4.58 nm2. The method is based on the static Green-Ku
formulation.
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2654 PRB 61SEBASTIAN G. VOLZ AND GANG CHEN
main of 10931093109Å3, the thermal conductivity is
about 70 W/mK, while the experimentally reported therm
conductivity of natural Si~with 5–10 % isotopes! at 500 K is
about 80–90 W/mK. This justifies the belief that the si
effect is responsible for the small simulated thermal cond
tivity values compared with experimental data. Since the
riodic boundary condition should have at least partially co
pensated the MFP limit, we infer that other effects ex
further limiting the calculated thermal conductivity value
To examine the artifacts induced by the small simulat
domainV and the periodic boundary conditions, we expre
the spectral thermal conductivityl(k,v), as a function of
the heat-flux fluctuations occurring in the basic cell:

l~k,v!5
Vmac

3kBT0
2 E

0

` 1

V E
V
q0~r ,t !•q0~r ,0!r0

3e2 ik•rdVJ~k!eivtdt, ~13!

whereVmac is a macroscopic volume including a large num
ber of volumesV andJ(k) is a function including the con
tributions of the image volumes to thêq0(k,t)q0(k,0)&
term. Equation~13! leads to the identification of two oppos
ing size artifacts. First, because the space projection for
space Fourier transform is limited to volumeV, only
phonons with a wavelength shorter than the cell size
permitted to exist in the simulation domain. This waveleng
cutoff has the following two consequences. One is that
contribution of low-wavelength phonons to the thermal co
ductivity is excluded. The other, which is more important,
that the static disturbance values,k50 and v50, are not
allowed at all in the simulation domain. Second, since thJ
function limit whenk goes to zero is one instead of zero,
artificial autocorrelation that does not exist in real system
introduced. This size effect will be especially strong f
long-wavelength phonons or low wave vectorsk.

We correct the above-identified artifacts caused by
periodic boundary conditions from the spectral Green-Ku
formulation for thermal conductivity. Starting from the high
frequency thermal conductivity, we propose to derive
static value according to an extrapolation method.21 We
build the extrapolation procedure by approximating the he

FIG. 2. Thermal conductivity plotted against lateral simulati
box dimensions atT5500 K. Results remain increasing as th
simulation domain increases.
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flux autocorrelation function expression. The time evoluti
of the autocorrelation function for the phonon occupati
numbernn is documented as22

^nn~0!nn~ t !&5^nn ,~0!2&e21/tn, ~14!

wheretn is the relaxation time corresponding to the mod
with a frequencyn. Using this time evolution, the time de
pendence of the heat-flux autocorrelation function

^q~0!q~ t !&5^q~0!2&e2t/t ~15!

is derived when assuming no cross-correlation betw
modes and according to the definition of the heat flux
terms of the phonon occupation numbers

q~ t !5(
i

nn i
~ t !\n ivn i

, ~16!

wherevn is the group velocity. In Eq.~15!, t is the average
phonon relaxation time assumed to be frequency indep
dent. By combining Eqs.~12! and ~15!, the spectral therma
conductivity is finally expressed as

ul~v!u5V^q~0!2&/@3kBT2Av21t22#. ~17!

By fitting the high-frequency values oful~v!u calculated
from spectral MD simulations, the heat-flux autocorrelati
relaxation timet is determined and used to estimate t
static thermal conductivityl~0!. The mean relaxation time
approximation implies that slow and fast disturbances
governed by the same average relaxation time, i.e., the lo
and short-wavelength phonons behave similarly. Howev
we argue that a relatively small simulation domain cou
represent the Brillouin zone reasonably well. To illustra
this point, we compute the dispersion curves of longitudi
phonons using a classical method23 that provides the dynami
cal structure factorS(k,n) for the wave vectork from the
time-dependent positions of each particler i(t) according to
the relation

S~k,n!5E
2`

1`

dt(
n

einteik•r i, ~18!

Choosing a set of wave vectors in the Brillouin zone, w
plotted in Fig. 3 the dispersion curves of the longitudin
acoustic~LA ! phonons in the transverse~crosses! and longi-
tudinal ~squares! directions of the simulated rectangular d
main. This figure reveals that phonon modes of waveleng
greater than the system size are truncated as shown by
three data points of lower wave vectors reporting L
phonons in the transverse direction~crosses!. We verify that
the corresponding cutoff frequency is smaller than the f
quency of the dominant phonon modes. On the other ha
four unit cells in the transverse direction correctly repres
three-fourth’s of the phonons in the first Brillouin zone. Th
extrapolation of Eq.~17! seems therefore reasonable but w
likely to be valid only in the high-temperature regimes whe
short-wavelength phonons dominate. The fact that the c
sical MD technique cannot correctly represent the scatte
mechanisms at low temperature also limits the propo
technique to the high-temperature regime. Incidently, we
tice that the calculated frequency for the zone boundar
8% higher than the reference,24 while the dynamical matrix
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of the Stillinger-Weber potential predicts a frequency va
12.5% smaller than the same reference.25

Insofar as the Boltzmann transport equation~BTE! fully
describes energy transfers when phonons can be treated
gas of particles, we will show next that the thermal cond
tivity expression@Eq. ~17!# can also be deduced from th
BTE. We start from the basic one-dimensional BTE writt
under the relaxation time approximation

]nn

]t
1vxn

]n0n

]x
52

nn2n0n

tn
, ~19!

where the 0 index indicates that the equilibrium quantity
considered. Sincen0n depends on the temperature only, t
spatial gradient can be decomposed as the product of
temperature derivative ofn0 and the spatial temperature gr
dient, which corresponds to the applied thermal disturban
Choosing an ac perturbation of frequencyv, T(x,t)
5T0(x)eivt, the phonon distribution functionn will have the
form n(x,t)5H(x,v)eivt. From Eq.~19!, H(x,v) can be
obtained as

H~x,v!5
n0n1vxntn~]n0n /]T!~]T0 /]x!

11 ivtn
, ~20!

which leads to the expression of the complex heat flux:

q~x,v!5E
n
H~x,v!\nD~n!vxndn

5
]T0

]x E
n

]@n0n\nD~n!#

]T

tnvxn
2

11 ivtn
dn. ~21!

Assuming a frequency-independent relaxation timet and
group velocity, the complex spectral thermal conductiv
expression of Eq.~17! is retrieved:

l~v!5
Cpvx

2t

11 ivt
5

l~0!

11 ivt
, ~22!

wherel~0! is the static thermal conductivity andCp is the
heat capacity or the temperature derivative of energy.

FIG. 3. Dispersion curves of longitudinal acoustic phonons
the transverse~crosses! and longitudinal~squares! directions of a
434312 rectangular simulation domain.
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Figure 4 shows the frequency dependence of the spe
thermal conductivity obtained from the MD simulation
~squares! and its corresponding extrapolation curve~solid
line!. The simulation results diverge when approaching
frequencyv50. We understand that this trend is related
the overestimation of the autocorrelation function for lo
frequencies due to correlation artifacts caused by the peri
boundary conditions. The higher-frequency data are fav
ably compared to the results of Fig. 1, reinforcing our arg
ment that the static Green-Kubo formulation is not approp
ate when the simulation domain is small. To fit the hig
frequency regime, the key point is to recognize where
artifacts caused by the periodic boundary conditions app
The vertical line in the figure marks an estimation of the tim
tcr required for phonons propagate across the simulation
main ballistically. In the wave picture,tcr is also proportional
to the reverse of the minimal frequency allowed in the s
tem. For frequencies higher than this mark, phonons will
scattered and the effects of the artificial correlation will d
minish. Figure 5 shows that the corrected thermal conduc
ity values are not size dependent anymore, which confi
that the results shown in Fig. 1 are truncated because of
low-frequency cutoff.

Figure 6 reports the extrapolation values in configuratio
comparable to those of Fig. 1. The simulation results sugg
that the crystal thermal conductivity decreases with tempe
ture according to aT2n law with the power factorn51.5.
Here, n differs from the factors deduced from the standa
theory (n51) and the recent measurement on isotopica
pure silicon (n51.6).11 At 300 K, the MD data value is
about 70% higher than the thermal conductivity of natural
but corresponds very well to the experimental results.11 To
complete the discussion, we also plotted the curve extra
lated from this data point and aT21 law. The interval de-
fined by this extrapolation and the results on isotopica
pure silicon provides a satisfying framing of our MD value

V. CONCLUSION

This study provides a simple method to derive the therm
conductivity of bulk crystals with high thermal conductiv

FIG. 4. Modulus of the spectral thermal conductivity of silico
derived from MD simulations~dashed line! and extrapolation to the
dc thermal conductivity~solid line!. The tcr time approximately
corresponds to the minimum frequency allowed in the simulat
domain.
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2656 PRB 61SEBASTIAN G. VOLZ AND GANG CHEN
ties from the trajectories of a reduced number of atoms.
found out that the mean-free-path limitation imposed by
system size can be assumed as insignificant when using
riodic boundary conditions while the low-frequency cuto
and the artificial correlation involved by the periodic boun
ary conditions severely affect the noncorrected estimatio
Our method relies on the spectral thermal conductivity giv
by the Green-Kubo formula and an extrapolation techniq
The extrapolation procedure is relevant in the hig
temperature regime where dominant phonon modes are
cut off and the classical MD technique is approximate

FIG. 5. Corrected thermal conductivity plotted against late
simulation box dimensions atT5500 K. Results are independent o
the crystal size.
T

m

e
e
e-

-
s.
n
e.
-
ot

valid in taken account of the phonon scattering. The simu
tion results on the thermal conductivity of Si crystals co
pare favorably with experimental data on isotopically e
riched Si.
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l FIG. 6. Bulk thermal conductivity results computed from M
simulations for different temperatures and for a system section
4.58 nm2. The MD calculation~squares! is based on the Green
Kubo formulation and the extrapolation technique.
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