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Theoretical approach to effective electrostriction in inhomogeneous materials
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An analytical approach is developed for the effective electrostriction, a nonlinearly coupled electromechani-
cal effect, in inhomogeneous materials based on Green’s-function method. For an isotropic composite contain-
ing randomly oriented ferroelectric crystallites with cubic symmetry, we derive the first effective-medium-like
formulas for calculating its effective electrostrictive coefficients. The effects of microstructural featuos
as volume fraction, crystallite shape and orientation, and connectivity of phasélse effective electrostric-
tive coefficients are illustrated numerically and discussed. The calculations show that it is possible to develop
new electrostrictors combining large electrostriction with mechanical flexibility by choosing the best combi-
nation of ferroelectric ceramics and polymer.

[. INTRODUCTION been reported in the literature yet. On the other hand, from
recently increasing emphasis on the practical development of
Electrostriction is a nonlinearly coupled electrical- many new ferroelectric and/or ferromagnetic composites
mechanical effect existing in alldielectrio materials. Re- such as piezoelectric ceramic/polymer compoiteand
cently developed relaxor ferroelectric materials having comTerfenol-D/polymer(or meta) composites, one naturally
paratively large electrostriction and very small hysteresisthinks about electrostrictive composites such as relaxor
such as those from the PbMgNb,s05-PbTiO; (PMN-PT)  ferroelectric ceramic/polymer composites. The theoretical
family,"~* have resulted in a growth of interest in this non- approach developed in the present work will provide funda-
linear coupling effect. Their strong application potential in mental understanding of the effective electrostrictive behav-
electroactive sensor and actuator devices has attractedi@ of such composites, which answers if it is possible to
worldwide attention of research and development activity inexploit new electrostrictors based on such possibly new elec-
relaxor ferroelectric materials with large electrostriction ef-trostrictive composites, and which is also essential to any
fect. To the other extreme, design of a material with zeraechnical improvements of such composite electrostrictors.
electrostriction effects is also important for applications in  In this paper, we present a detailed theoretical study of the
areas such as in microelectronic devices where field-induceeffective electrostrictive behavior of inhomogeneous materi-
damage is a significant rigkAs a fundamental effect, vari- als, and investigate the sensitivity of the effective electros-
ous microscopic mechanisms have been proposed for underictive behavior on the material constants and microstruc-
standing the origins of the electrostriction efféet® Since  tural scales such as anisotropy, crystallite shape, and
most of the experimental research on relaxor ferroelectriorientation. The essence of the present problem is to calcu-
materials has been done and is being done on electrostrictivate the strong electroelastic coupling interaction in an inho-
ceramicqpolycrystals, it is highly desirable to link the elec- mogeneous medium. The low-signal, linearly coupled elec-
trostrictive behavior of the ceramics with the single-crystaltroelastic (i.e., piezoelectric response of inhomogeneous
properties and ceramic microstructdr€, which itself con- media was successfully treated previously by Nan and
stitutes an interesting fundamental question. co-workef! using generalized Green’s function technique
In recent yeardinearly coupledelectromechanical effect (multiple-scattering methdfl in the sense of Zeller-
(i.e., piezoelectric effegt"*? anduncoupled pure nonlinear  Dederichs and Gubernatis-Krumhaisl This technique is
electrical® or mechanicaf"!® effects in inhomogeneous ma- also valid for nonlinear problems with large fluctuations, al-
terials have been intensively studied, which results in a fewhough its exact realm of validity is very hard to
approaches to these effectilmeearly coupledor nonlinearly  ascertaint*?° More recently, the technique has been devel-
uncoupledproperties. However, no such approaches haveped to successfully treat the nonlinearly coupled magnetic-
been developed to treat tmonlinearly coupledelectrome- mechanical strain of magnetostrictive composfte<.in the
chanical effect in inhomogeneous materials. One principapresent work, we shall generalize this approach to address
motivation of the present work is to develop an approach fothe nonlinearly coupled electromechanical behavior of elec-
this nonlinearly couplectlectromechanical effect in inhomo- trostrictive inhomogeneous materials.
geneous materials. The rest of this article is organized as follows. Section |l
In experimental, electrostrictive inhomogeneous materialgontains the theoretical framework and the general solution
widely investigated so far have been polycrystalline ferro-to the effective electrostrictive coefficients of inhomoge-
electric ceramics, but no electrostrictive composites haveeous materials. In Sec. Ill, without loss of generality, we
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consider commonly isotropic composites containing The effective behavior of the inhomogeneous material is
randomly-oriented relaxor ferroelectric microcrystallites defined in terms of macroscopic averdgeplied fields (de-
with cubic symmetry, and give explicit expressions for thenoted by({ )), namely,

effective electrostrictive coefficients of such isotropic com-

posites with randomly-oriented spherical, needle-shaped, or (0)=C*(e)—B*(E)XE), (5
disklike crystallites. For illustrative and quantitative pur-
poses, some numerical results for the effective electrostric- (D)=«*(E)+2B™ (e )(E). (6)

tive coefficients of the composites of relaxor ferroelectric herefore. the problem of evaluating the effective response
ceramics and epoxy are presented for various microstructur:II ' P 9 P

features in Sec. IV. The conclusions are summarized in Se(?'c th.e mate.nal essgnt]al!y consists Of. the dgtgrmmaﬂon of
v he field variables within it under certain specified boundary

conditions, followed by the performance of the averages.
Because of spatial variations in the constitutive behavior
Il. FORMALISM in the material with position, the local constitutive coeffi-

Consider an electrostrictive inhomogeneous material con(-:Ients can be written as a variation about a mean value

sisting of microcrystallites having a center of symmetry with C(x)=CO+C’(X)
perfectly bonded interface. Its nonlinearly coupled electro- '
mechanical interaction can be described by the following
constitutive equatiorfs

k(X)= K+ k' (X),

B(x)=B°+B’(x), (7)

where the first termgdenoted by superscripts represent

o=Ce—BEE, (1 the constitutive constants of a homogeneous reference me-
dium and the second terms are the spatial fluctuation on the
D=«E+2B"¢E, (2)  first.

To proceed, let the material be now subjected on its ex-
whereo,e,D, andE, are the stress, strain, electric displace-ternal surfaces to homogeneous electric-mechanical bound-
ment, and electric field, respectivelg;is the elastic stiffness ary conditions, i.e.,

(in the constancy of the electric figldand « is the permit-

tivity (under the constant-strain conditiognsvhich can de- U(S)=eixj=u?, ¥(S)=—Ex=y° (8)

pend onE especially at high electric field=CM andM is

the electrostrictive coefficient tenséa fourth-order tensor

like C) relating the strain to the electric fielB. is the trans-

pose ofB. For simplicity, the direct notation of tensors have

been used. Ir) the Iiterqtu_re on relaxor ferroelectric ce.ram_ics, 7;;,;00=0, D;;(x)=0, 9

the electrostrictive strain is commonly related to polarization ‘ '

P, namely, Eq(1) can be written as where the commas in the subscripts denote partial differen-
tiation with respect tax;. These are nonlinearly coupling

e=So+ QPP, 3 equilibrium equations.

Further by solving the equilibrium equations under the
whereS s the elastic compliance tensor at constant polarizaboundary conditiong8) by means of the Green’s-function
tion andQ is the polarization-related electrostrictive coeffi- technique'! the local strain and electric field within the ma-
cient tensor. Since the electrostrictively induced strain in théerial can be obtained as
relaxor ferroelectric ceramics is found to be proportional to

whereu; and ¢ denote elastic displacement and electric po-
tential, respectively. Consider a state of static equilibrium in
the absence of body forces and free electric charges so that

the square of the polarization not the field due to the nonlin- e=¢°+G"C'e — G"BEE, (10
ear nature of thé>-E relationship, theQ coefficient is pref-
erable to and more commonly used than the field-related E=E°+G"x'E+2G'B'¢E, (11)

coefficientM to cast the electrostriction in the relaxor ferro-
electric ceramic$~* However, largeQ coefficient in a ma-
terial does not imply that it exhibits large electrostrictive
strains. The figure of merit used to compare electrostrictiv
strains generated in a material ¥ not Q.? Thus Eq.(1)
expressed by the field-relateil, not Eq. (3) by the
polarization-related), is used in the present work. The re-
lation between both is expressed by g = T6650_ TO6GURTS3ITIEOE0. (12)

wheree° andE° are the strain and electric field in the ho-
mogeneous reference medium at equilibrium, &icandG?

re the modified displacement and electric potential Green’s
unctions for the homogeneous medidimAfter ignoring
higher-order electrostriction term<2 Egs.(10) and(11) can
be rewritten as the following explicit solutions

MEE =QxxEE, 4 E=T33E0+ 2T33GVBTT66:OT3EC, (13)

wherey is the dielectric susceptibility. The field dependencewith

of x at high electric field results in the field dependence of

M. For the material with cubic symmetryl;; = Q;; x* at any T%=(1-G'C") %,
given electric field. The figure of merll of the inhomoge-

neous material is emphasized next. T3=(1-G%«") 1,
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wherel is the unit tensor. By averaging these equations an&* = (c},+2c7,)/3 and shear modulu&* = (c},—c7,)/2].
eliminatinge® andE° from them, we get the solutions to the For illustrative purposes, next we consider such electrostric-
effective properties of the material tive composites with different crystallite geometrigs)
spherical crystallites antb) ellipsoidal crystallites.
C*=(CT%o\(T%%) 1, (14)
A. Spherical ferroelectric crystallites

* 3 33 -1
i =(RTETH) 19 Let us first consider a commonly isotropic two-phase

_ composite consisting of randomly oriented, spherical relaxor

M* (T#)(T%) = C* "X[(C— C*)T*G"+ I]CMT 1), ferroelectric crystallites having cubic symmetry. In this case,
(16) Eq. (16) directly yields explicit effective-medium-like ap-

In the present treatment all higher-order electrostrictiorProximate results for the two independent effective electros-

terms are ignore?® Equations(14) and (15) are the com- trictive coefficients

monly used expressions for the effective stiffness and per- 2 3t |2

meability tensors. EquatiofiL6) is the first formula for the * _\p* * _ (i) (i) K

effective electrostrictive coefficient tensor. These results are Mi =M1+ 2M7,= 21 fi(Aif +2A1; ; +2K*) '

independent of the models assumed for the material and con- (18)

tain the effects of material constants and microstructural fea-

tures. As in the linearly uncoupl&*®or coupled response M},=2(M},— MY,

cases, this approach involves an exact calculation of the non- ) 0 A ()

linearly coupled fields induced in the homogeneous reference S f_4(A11_A12) +6A4

medium by a single spherical or ellipsoidal crystallite and an = 5

approximate treatment of the interaction between the effects .

of various crystallites. For simplicity, we consider only di- where A{) are the components of the tensdx=[I

polar interaction as did in common Bruggeman-Landauer-G'(C—C*)]~*(C*) !'CM of theith phase and

effective-medium(EM) approact®*8for the uncoupled lin- s
ear response cases. Accordingly, this approximate treatment 1+4G*/3K

2
, (19

3k*

Ki+2k*

I 1) _ I
will give a self-consistent EM-like approximation in which A(1£+2A(12)_M§‘) 1+4G* /3K, ' (20
each phase is exposed to the effective medium of yet un-
known moduli that are dependent in detail on the nature of ' ' . 14F*/G*
the interactions between phases. Next we derive the explicit AD—AD=M{)-m{) : (21)
EM-like approximation for the effective electrostrictive co- 1+F*/G;
efficients from the general equations. .
A(i)_MEQ 1+F*/G* 22
lll. ISOTROPIC COMPOSITES AND POLYCRYSTALS M2 14Ere)
CONTAINING CRYSTALLITES WITH CUBIC with
SYMMETRY

In an isotropic electrostrictive composite containing ran- E* :G*(9K* +8G*) 23)
domly oriented crystallites having cubic symmetsuch as 6(K* +2G*)
cubic PMN-PT having the point group3m) the cubic crys-
tallite has electrostrictive and elastic anisotropy but no di- Gi=(c{!—c)/2, (24)

electric anisotropy, which are characterized by three inde- . . N _ .
pendent electrostrictive coefficientd1¢,, M,, and M,,) he(rjeKh andG d’ ?nd" d tﬁre, ;fesﬁ.ecméel?/’ t{]_e effecttlvetbquI:h
and elastic constant{;, C1», andcy,), namely, and shear moduli, and the effective dielectric constant of the

composite, which are given by Eq4.4) and(15) and deter-
mined self-consistently by

Mll M12 M12 0 0 0
M12 Mll M12 0 0 0 é . Ki_K* _é . Z(Gi_G*)—i_g(CEa_G*) o
M = My, My, My O 0 0 17 = '3Ki+4(3* = ! G+F* CE{Z+F* '

0 0 0 0 My oO
0O 0 0 0 0 My

Ki— K*

fi — =0, (26)
1 K+ 2k*
The hydrostatic electrostrictive coefficient and bulk modulusyheref; , «;, Ci(ji)! andMi(ji) are the volume fraction, dielec-
are defined asl, =M, +2My, andK=(c11+2¢12)/3, 1€~ tric constant, elastic constants, and electrostrictive coeffi-
spectively. The isotropic composite has only two indepencients of theith phase, respectively. Equati¢26) is obvi-
dent electrostrictive coefficients, i.e., the effective hydro-ous|y the commonly used Bruggeman-Landauer EM
static electrostrictive coefficientMy =M7;+2M7, and  expression for the effective dielectric constant, and [@6)
shearlike electrostrictive coefficieM},=2(M7,—M71,), as is the self-consistent EM expressions for the effective elastic
for the effective elastic constarfthe effective bulk modulus constants in this case and reduces to the commonly used

MI\.)
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Hill-Budiansky self-consistent expression for the case of iso- 2 f.(24 %/ 1;)2 . _

tropic crystallites[i.e., c{)=G;=(c{]—c{J)/2]. Equations M=, —— —— | 4M{)—Mm{))

(18) and (19) are the flrst epr|C|t EM-like expressions for =1

the effective electrostrictive coefficients of such an isotropic
composites and contain the volume fraction and all related

material constants.

Further for a single-phase isotropic polycrystalline ce-
ramic of such cubic crystallitessuch as a PMN-PT ceramijc

these explicit EM-like formulas reduce to

2
52+, fiK*/Ki)
=1

Gil1+2(Gi+ G*)I3Ki]
G*(1+4G/3K;)

. C
MWD 1+ a4
44( 2G*
(30

where the effective bulk and shear moduli, and the effective
dielectric constant are determined by

M:I:th (27)
2
K;—K*)(3K* +4G;
St ( ) i) _o, 31)
" .k = (3K +4G;))
M7,=2(M7;— M7
3(L+F*/G) 2(M 1~ M) (G*/cau—1) if 4G, o) K26+ 26"
5(1+F*/ce) |+ 2G*/(cy-cp)-1 | = 3Ki+4G;
(28) 2G* +c)
+(c9 =G )———|=0, (32)
2Cy,
with
2
Zf(Kl—K )(2+ k*/k;)=0. (33

K* = (C11+ 2C12)/3,

2(cq1—Cqp) —4G*
(Cy1—Cqpp) +2F*

B 3(G* —Cy44)
Cast+F*

I
which relate the ceramic electrostrictive coefficients with theC44 Gi=

Equation (33) is the Bruggeman-Landauer EM expression
for the effective dielectric constant in this case; E8fl) is

the self-consistent EM expression for the effective bulk
modulus, which is the same for the case of isotropic
crystallites!* and Eq. (32) reduces to the known self-

cqnsistent expressibﬁor the case of isotropic crystallites as
(c{)—cly/2.

ceramic elastic constants and single crystal constants. It must FOr needle-shaped ferroelectric crystallites, we can also

be pointed out here that the electrostrictive coefﬂm@ﬁs
commonly used for relaxor ferroelectric ceramics have th

obtain a bit more complex explicit formulas of the two inde-
eoendent effective electrostrictive coefficients of the compos-

same form expressiorfs.e., just replacing\/li’j and Mj; in

Eqg. (27) and Eq.(28), respectively, With;)i*j andQj;] in this 2
case of the single-phase relaxor ferroelectric ceramic com-
posed of crystallites with a center of symmetry. It is also
evident from Eq(27) that such an isotropic ceramic exhibits
the same hydrostatic electrostrictive coefficient as the cubic
crystallites composed of this ceramic, thoudi,# M, and
M7,# Mi,. Furthermore, in the simplest case of the isotropic

2
[ ki +5k*
Mﬁzizl M| ———

K+ K*

Ki+5k*|

X1+(SG*+G-)/3K*
1+ (3G* +G;)/3K;

*

Ki+ K

(34)

crystallites, i.e.,C13—C15=2C44 and 2M 13— M 19) =M 4,
the ceramic just has the same electrostriction as the crystal- 2 2 M) aa )
lites. M — fi [ ki+56% |71 Gi(M1i = M32) (FuatFuo)
“ s Ki+ K G*
B. Ellipsoidal ferroelectric crystallites 0 & 2 ki+5k 2
We now consider randomly oriented disklike or needle- FMaa| 1+ S Fas ;1 f i+ i (35
shaped ferroelectric crystallites for simplicity of formulas.
For disklike ferroelectric crystallites, the two independentWith
effective electrostrictive coefficients can be obtained as
Eo_ 3K* +4G* 36
, "3K*+G+3G*
- f; M<')(2+K*/K,)2 1+4G;/3K* -
=1 2 el 2 1+4Gi/3K; @9 F 2G* (3K* +4G*) @7
2+ = ,
e 27 G*(3K* +G* )+ G,(3K* +7G*)
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E o G*(3K* +4G*) 39) 100 _Randomlorientatic;n
U Gr(3K* +G*)+cf)(3K* +7G*) _
where the effective bulk and shear moduli, and the effective 55 101
dielectric constant are determined by -
2 é 102
(Ki—K*)(3K* +3G* +G;) x
> =0, (39 .
i=1 3K;+3G* +G; 5103
é f. Z(G._G*)M(F +F )+ (c)—G*) 104
“~ i i 3K* +4G* 11 1 44 0.0
*
X W + F44 - O, (40)
Ca4
2 K;+5k* 8
> fi(k— k¥ )————=0. (41) z
i=1 K+ K* =
<

Similarly, Eq.(41) is the Bruggeman-Landauer EM expres-
sion for the effective dielectric constant in this case; Egs. s
(39) and (40) are self-consistent EM expressions for the ef- | Random orientation T,
fective elastic constants in this case and reduce to the known 0.01¢ - -

self-consistent expressidisor the case of isotropic crystal- 0.0 0.2 0.4
lites [i.e., c{)=G;=(c{)—c{))/2]. These explicit EM-like
formulas give thg effective electrostrictive _coeff|C|entS fromf'gure of meri} and(b) effective polarization-related electrostrictive
the vqumQ fraf:tlon anq all r.elated material cor]stants a_n oefficientsQi’j of an isotropic two-phase composite of an isotropic
also pqnstltute Interr.elatlon'shlps betV\{een Fhese five EffeCt_'Vgpoxy and the randomly-oriented spheroidal relaxor ferroelectric
coefficients for the isotropic composite with randomly ori- crystallites.

ented disklike or needle-shaped ferroelectric crystallites

whose aspect ratio approaches zero or infinite.

FIG. 1. (a) The effective electrostrictive coeﬂicienl\s!i*j (the

posites with randomly oriented spheroidal relaxor ferroelec-
tric crystallites. As expected, the effective electrostrictive co-
efficients Mi’j [Fig. 1(a@)] increase with the increase in the
Now for numerically illustrative purpose, let us consider avolume fractionf of the relaxor ferroelectric crystallites. For
possibly new flexible electrostrictive composite consisting ofillustration and comparison, corresponding numerical results
a volume fractiorf of relaxor ferroelectric crystallites and an for the polarization-related coefficien@; are also shown in
isotropic, flexible epoxy. The properties of the constituentFig. 1(b). Contrary toMi’j , theQi’j values decrease with the
phases used for the calculations are takercas:130,c,,  volume fraction, as th®;; values of the relaxor ferroelectric
=65, and c,,=25 GPa,x/k,=10% M;;=1.96x10 1, crystallites are more than 100 times lower than those of the
Mio=—7.84x10" "7, and M4=5.10<10 *m’/V? (Qi;  epoxy. AlthoughQ;}; at low-volume fractions is about two
=0.025,Q;,= —0.01, andQ,,=0.065 nt/C?)***for the re-  orders of magnitude higher tha@;; at high-volume frac-
laxor  ferroelectric phase;c;3;=6 and c;,=3 GPa, tions, the electrostrictively induced strains at high-volume
klko=10, M1;=1.587x10%°, and M,,=—1.27x10 ?°  fraction are expected to be larger than those at low-volume
m?/V? (Qq;=2.5 andQy,= —2 m/C?%)*? for the epoxy. fractions. As suchM;; is more preferably used to evaluate
Although there are no electrostrictive composites reported ifhe electrostrictive response of the inhomogeneous materials.
the literature and thus no experimental data of the effectivgience our following numerical results and discussions are

electrostrictive coefficients are available for comparison withigc1sed uporM?* , the figure of merit of the electrostriction.

the present theory, our theoretical trends of evaluating influ-  A¢ shown irlmj i:ig. 1. at low-volume fraction. where the

ences of microstructural features on the effective electrostricr-e|a)(Or crystallites are surrounded by the epoxy, this type of

tive coefficients of the composites based on the EM,'"k_ematrix-based particulate composite has rather |M’Vj-

bl | f the electrostricti bleof %When the volume fraction of the crystallite particles in-
problem (one analogue of the electrostriction proble creases and the particles can agglomerate to form large clus-

composites should be reasonable. These interesting ConSgzq o1 4 interpenetrating phase above a critical volume frac-

3252233 predicted theoretically remain to be expenmentallyion, i.e., percolation threshold, thMﬁ values of the
' particulate composites increase. Only above the percolation
thresholds, do such particulate composites exhibit larger ef-
fective electrostrictive coefficientd!; .
Figure 1 presents some numerical results for the effective The aspect ratip of the spheroidal relaxor crystallites has
electrostrictive coefficients of the isotropic two-phase com-a pronounced effect on the effective electrostrictive coeffi-

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Isotropic particulate composites
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FIG. 2. Effect of the aspect ratjp of the relaxor crystallites on FIG. 3. The normalized effective electrostrictive coefficient

the effective electrostrictive coefficients of the isotropic composited M1/M1:(f=1)], Young's modulug E*/E(f=1)], and dielectric
with 50 vol % relaxor crystallites. The dashed lines are correspondconstant] «*/«(f=1)] of the isotropic composite with spherical
ing to the predictions for the porous relaxor ferroelectric ceramicrelaxor crystallites.
(see text

rigidity threshold, the dielectric and elastic constants linearly
cientsMﬁ . The ellipsoidal crystallites lead to larger increasedecrease with decreasirigsee the inset in Fig.)3The ef-
in the numerical values of the effective electrostrictive coef-fective electrostrictive coefficientgnonlinearly decrease
ficients at the low-volume fractions than the spherical crysmore slowly than the elastic and dielectric constants above
tallites [Fig. 1@], since they exhibit lower percolation the rigidity threshold, and drop down sharply near an inter-
thresholds than the spherical crystallitéghe M} values at mediate threshold between the connectivity and rigidity
the high-volume fractions increase with the increase in thehresholds, which is due mainly to the mechanical-electrical
aspect rati of the relaxor crystallites, as shown in Fig. 2. interaction. From Fig. 3 it seems that the effective electros-
The randomly oriented disklike crystallites wih<0.2 lead  trictive coefficients also have the critical behavior near the
to lower M values of the composites than the sphericalintermediate threshold. It is unknown yet that the effective
crystallites. As the aspect ratio is less than about 0.2, thelectrostrictive coefficients really exhibit such critical behav-
numerical values OMﬁ of the composites rapidly decrease ior or it is just due to the inherent feature of the EM-like
with decreasing. As 10>p>1 the numerical values of the approach. But the predictions definitely demonstrate that the
effective electrostrictive coefficients, especidilyi,, gradu- effegtive eIecFrostrictive coefficient; wiII. present differenF
ally increase with increasing As p> 10, the numerical val- Scaling behavior from both the effective dielectric and elastic
ues ofMi’j slightly change withp and finally approach the const_an_ts if the _Cr_|t|cal beh_aV|or is real for_the effectlv_e elec-
values in the limit case of fibersp(-), predicted by Egs. trpstrlctwe poefﬂmegntg, asin the case of thieear qoupllng_
(34) and (35). piezoelectric effec’;n This remains to be an interesting

The effective electrostrictive properties are also influ-fundamental question.

enced by the elastic stiffness of the epoxy. For convenience
and comparison, Fig. 2 also shows predictions by taking B. Anisotropic composites
c1;=10"° and ¢;,=5%x10"® GPa and«/x,=1 and M;;
=0 for the isotropic epoxy phase, which corresponds to th
predictions for the porous relaxor ferroelectric ceramics. Th hows the orientation effect of the spherical and prolate crys-

gﬁecﬂve electrostrictive coefficients of the COMPOSItes can,jiag by considering a uniform orientation distribution be-
increase through the use of softer polymer phases, which is

directly attributed to the improved displacement transfer ca-
pability of the more flexible polymers. In this case of a big 100
difference between the material constants of two phases, it
has been well recognized that the dielectric and elastic con-
stants separately present different scaling behaviors in the
vicinity of the percolation thresholtf. Figure 3 shows the
critical behavior of this composite with randomly oriented
spherical crystallites. Like the general EM thedtfy® the
critical exponents for the elastic and dielectric constants are
about 1, that is less than their expected scaling values. The
difference between the connectivity threshofd= 1/3) for
dielectric constant and the rigidity thresholdl, € 1/2) for 103 6?(; > 9;0
elastic constant is attributed to inherent feature of the EM 6 (degree)
.y . cutoff
approach. The rigidity threshold is generally above the con-
nectivity percolation threshold because simple connectivity FIG. 4. Effect of a uniform orientation distribution of spherical
does not insure the rigidity of the structure since many singler prolate relaxor crystallites on the effective electrostrictive coef-
bonds can “buckle” without costing any energy. Above the ficients of 50 vol % relaxor crystallites/epoxy composites.

The effective electrostriction of the composite is also de-
endent upon the relaxor crystallite orientation. Figure 4

10+

i
Y
o

o

M, (X10-16 me/ve)
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— = 1, values even at the low volume fractions. The explicit
100 e : expressions of these two electrostrictive coefficients can eas-
R ily be obtained as
S 10 W, 4 5
e 100 _ M= 2, filskMilcl)+2mblet)
9 'M12
>< . o L .
c1os _ +2hfimilcd+ Mic+ciD] (42
"""" p=1 for the 1-3—type composite; and
=2 —1/p=0 (1-3 type)
104= 1 1 1 h 5
0.0 0.2 04 . 06 0.8 1.0 . x /xq (i) ) (i) )
Mllzzl fi{si(Mijcii+2Miscss)
100 — N o
e +hPIMYc+ MOl +cihT 43
-1 S £ .
g 10 \ for the 2-2—type composite, where
E 102 : My 3
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FIG. 5. The effective electro_strictive coefficient_s(a} 1-3 type _ andsi’} are the effective compliance constants of the compos-
and(b) 2-2 type relaxor crystallites/epoxy composites. The predic-iios They depend on the elastic constants and electrostrictive
tic_)ns for. the 0-3 type composite containing spheric_;al CryStalIIitescoefficients of the two phases and the effective elastic con-
\évt:TV\/t:efgr<(?gn]i (eriigtrl]ons parallel to the samplé; axis are also  ganis The predictions demonstrate that such 1-3— and 2-2—
P ' type composites can be good for electrostrictors, as in the
tween #=0 and 17 Of their local crystallographic axis Pi€zoceramic/polymer composites already widely investi-
X4 with respect to the sample ax¥g but random orientation gatgd. The flexible relaxor cgramlc/polymer composites may
in the X, X, plane, i.e., the composite being transversely isoe important smart composites for electrostrictive devices
tropic and exhibitinge=mm symmetry. For the spherical that can be mechanically flexible with desired electrostric-
crystallites, the effective electrostrictive coefficients of thetlON-
composite only slightly vary with the orientation, and the
anisotropy is very small. However, the effective electrostric- V. CONCLUSIONS

tive coefficients of the composite containing prolate crystal- . . .
P gp y An effective-medium-like approach has been developed

lites are very sensitive to the crystallite orientation. As X TR '
e P : . for the effective electrostriction in inhomogeneous materials
Ocutot=0°, i.e., X; directions(symmetric axig of all pro- o ; : . : .
late crystallites are identically aligned parallel to the sampleby ut|I|z.|ng Green s_—funcuon techn_|que. For the_ Isotropic
X, axis, the composite exhibits maximum anisotropy an omposites containing randomly orlent_ed spheroidal relaxor
3 i L ) . erroelectric crystallites, and 1-3—type fibrous composite and
largerM 3, value, which is or?ly a I|tt!e t?'t Iower. than thid ,, 2-2—type laminated composite, explicit approximate expres-
value of the relaxor crystallites. With increasifighiorr, e gjons for the effective electrostrictive coefficients have been
M3, value decreases and the values of the other componenig,en. Numerical calculations for the effective electrostric-
of M increase to the values for the random orientation cas@ve coefficients in a flexible relaxor ferroelectric crystallites/
at fcytorr=90°. epoxy composite have demonstrated that the effective elec-
As shown in Fig. 4, the composite exhibits largdr;;  trostrictive coefficients of the composite can be strongly
when all crystallites are aligned parallel to the sam¥le influenced by the material constants, the volume fraction,
axis. For further illustration for this case éf,.,:+=0°, we  phase connectivity, particle shape, and orientation of the re-
consider special but technologically important compositesaxor crystallites. These numerical results have shown the
having the so-called 1-3 or 2-2 connectivity of phaGaghe interesting behavior of the composites; they can provide a
terminology introduced by Newnham, Skinner, and Cf®ss general guideline for the evaluation of more composite sys-
in which cylindrical relaxor rods embedded in the matrix aretems and thereby be used to develop criteria for choosing the
aligned parallel to the sample axis or the relaxor/epoxy best combination of different constituent materials for the
phases are laminated with the sample asisperpendicular electrostrictors. Although such electrostrictive composites
to the layers. Figures(8) and §b) show, respectively, the have not yet been reported in the literature, our theoretical
effective electrostrictive coefficients for the 1-3— and 2-2—results indicate that by choosing the best combination of dif-
type composites. It can be seen that the 1-3—type composiferent constituent materials and microstructural features it is
has largeM3; values and the 2-2—type composite has largepossible to develop electrostrictors combining large electros-
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triction with mechanical flexibility, which may open up ACKNOWLEDGMENTS

promising territory in the quest for practical electrostrictive
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