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Critical behavior in systems with a long-range correlated frozen-in random field

Demetris Nicolaides
Natural Sciences and Mathematics, Bloomfield College, 467 Franklin Street, Bloomfield, New Jersey 07003

~Received 3 March 1999; revised manuscript received 23 August 1999!

The critical behavior of inhomogeneous systems with a frozen-in random field having a nonlocal correlation
function decaying according to the power lawux2x8u2b is considered. The problem is studied within the
context of a model which partially considers interactions of fluctuations and belongs in the same universality
class as the spherical model. Depending on the relationship between the powerb and the space dimensionality
d, a new critical behavior arises.
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Critical phenomena at phase transitions are character
by a variety of different universality classes. Some of t
factors that determine the universality class of a system
the dimensiond of space, the numberm of the components
of the order parameter, the symmetry of the Hamiltoni
and the range of interactions among the microscopic deg
of freedom.1–4 It is well known, for example, how the critica
behavior of a system, such as a ferromagnet, is altered
stantially when one considers the effect of the long-ran
interaction due to pairs of magnetic dipoles in addition to
short-range spin-spin interactions.5–7 In general, the behavio
of ferromagnets with this type of long-range interaction d
fers from that of ferromagnets with only the short-range
teractions, according to the number of the components of
order parameter. For example, the critical behavior o
uniaxial Ising ferromagnet ind dimensions with dipole-
dipole interactions belongs in the same universality class
(d11)-dimensional Ising ferromagnet with only short-ran
interactions.5

Another situation where long-range interactions seem
alter the critical behavior is found in random-exchange m
els. Initial experimental data suggested that the clean
phase transitions observed in pure materials were some
broadened and theoretical considerations2,8 showed that this
need not be the case if the random exchange terms tha
scribe the interaction among impurities are not long ran
The fact that the equilibrium behavior of random-exchan
systems is qualitatively the same as that of pure systems
been experimentally verified9 and the earlier smearing out o
the transition may indeed be due to macroscopic inhomo
neities in the system.

In another case, random-fieldd-dimensional systems de
scribed by anm-component order parameter (mÞ1) behave
as (d22)-dimensional pure systems as long as the rand
field is short-ranged correlated.10–14 For the random-field
Ising model, the dimensional reduction does not hold10,15–17

and its critical behavior depends on the kind of distributi
of the random field.18 Specifically, in four19 and three20 di-
mensions a clearly different critical behavior was fou
when the random field has a Gaussian or a bimodal distr
tion. In fact, even form-component magnets withm>2 it
has been argued that dimensional reduction is likely
valid, at least in 41« dimensions, due to weak, short-ran
random fields and random higher-rank anisotropies.21
PRB 610163-1829/2000/61~1!/246~7!/$15.00
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In this study, it will be shown that in models belonging
the spherical universality class, unlike the case of a sys
with a random field having short-range correlation, a rand
field with long-range correlation will significantly alter it
critical behavior. Part of the behavior will be the breakdow
of dimensional reduction due to the long-range nature of
random field. Long-range random systems are an interes
problem to study theoretically since in experimental syste
it is never clear what type of correlations the random fie
has. An experimental example is a random-field magne
the type of a dilute Ising antiferromagnet such
FexZn12xF2.22 In such a case the distribution and correlati
of the random field is not well defined and in general bo
short- and long-range random fields might influence the c
cal behavior.23 Therefore, if a theoretical consideration of
long-range random system derives a distinct behavior fro
short-range random system, this perhaps could be use
determine the nature of the random correlations in an exp
mental system.

The study of such systems will be done by considerin
model with reduced interactions of fluctuations, allowing f
the exact calculation of the partition function. The model is
considerable improvement over mean-field theory, and
been previously successfully applied to a number of differ
systems.14,24–29 The results obtained by the model are
qualitative agreement with those obtained by renormaliza
group ~RG! theory, whenever there are results from bo
approaches for comparison. Furthermore, through the mo
unlike in RG theory, fluctuation interactions can be co
trolled. Specifically, they can be easily suppressed, thus
lowing one to see the crossover to mean-field behavior. A
will be seen below, after a main approximation is appli
which will make the model exactly solvable, the model w
belong in the spherical universality class.

The system of interest has the Ginzburg-Landau-Wils
functional with a scalar order parameterS(x)

F@S~x!#5 1
2 E ddx@tS2~x!1c„¹S~x!…21uS4~x!

2h~x!S~x!2hS~x!#, ~1!

wheret5(T2Tc)/Tc , Tc is a trial critical temperature for
the order parameter,h is a constant external conjugate fiel
andh(x) is a random quenched field. To find the free ener
of the quenched system, one must average over all the
246 ©2000 The American Physical Society
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energies corresponding to all possible random configurat
of the random field$h(x)%. Therefore,

2F5E @Dh~x!#P$h~x!% ln Z$h~x!%,

where the probability distribution functionalP$h(x)% for a
given configuration of random fields is free of choice and
mathematical characteristics will be defined at a later po

To proceed with the averaging over all random-field co
figurations, the replica method30,31 is used by defining an
n-component order parameterw(x). Then,

2F5
]

]n F E @Dnw~x!#exp~2Fe f f@w~x!# !G
n50

with Fe f f@w(x)# an effective free-energy functional resultin
from the replication of the partition function being given b

Fe f f@w~x!#5
1

2E2`

`

ddxF tuw~x!u21c~¹w~x!!2

1(
i 51

n

~uw i
4~x!2hw i~x!!G2G@w~x!# ~2!

with

G@w~x!#5 ln E @Dh~x!#P$h~x!%

3expS 1

2E ddx(
i 51

n

h~x!w i~x!D .

It is assumed that a field-field correlation function obe

^h~x!h~x8!&5 f ~x2x8!, ~3!

where the averaging is with respect to the distribut
P$h(x)% and for now f (x2x8) is still a general function
whose choice will be such that the randomness of the sys
will have characteristics of both short- and long-range co
lations. Only for short-range random correlations c
P$h(x)% in Eq. ~3! be decomposed into a product of ind
pendent probabilities at the various locations in the syst
The effect of only short-range correlations has been stud
previously by both RG theory10–13 and using the exac
model.14 Both approaches produce the same qualitative
ture of critical behavior, that is, the dimensional reduction
2. In this work, the randomness has both short-range
long-range correlations. Therefore the probability functi
P$h(x)% in Eq. ~3! cannot be broken down into a product
uncorrelated probabilities in the different points in space
side the system. Then

f ~x2x8!5Bd~x2x8!1
B1

ux2x8ub
,

where thed function defines the short-range correlations
the random field. The second term~which is true forxÞx8)
is a nonlocal function stating that there are isotropic lon
range correlations in the quenched impurities. These corr
tions are chosen to have a power law behavior, withb set as
an arbitrary power. The constantsB andB1 are a measure o
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the strengths of the short- and long-range nature of the
dom field, respectively. It will be shown below that the val
of the exponentb, in relation to the space dimensionalityd,
will play a crucial role in the critical behavior of the
quenched system.

The Fourier transform of the impurity term for smallq is

E
2`

`

ddxddx8 f ~x2x8!5E
q
ddqB1E

qÞ0
ddqB1q(b2d),

~4!

where constants resulting from integrations ofd-dimensional
Fourier transforms have been absorbed in the strengths o
short- ~B! and long-range (B1) correlations. Equation~4!
will be used to express the partition function of the system
momentum space. Note in Eq.~4! that if b.d, then in the
long-wavelength limit, (q!1), the long-range term
*qÞ0ddqB1q(b2d) vanishes and therefore the random fie
has only short-range correlations. This means that, in
case ofb.d, long-range random correlations are irreleva
Specifically, a system with long-range disorder that falls
with distance faster thanux2x8u2d has the same critical be
havior as a system with only short-range random corre
tions. On the other hand, an entirely different behavior
exhibited for the case whereb,d as it will be discussed
below.

The exact model used here is one which allows for
reduction of all quartic terms in functional~2! as follows:

E ddxw i
4~x!→1

V
ai

2@w i~x!#, ai@w i~x!#[E ddxw i
2~x!,

~5!

whereV is the volume of the system. Such a reduction, p
posed by Schneideret al.,32 causes the model to take in t
account only the interaction of fluctuations with equal a
antiparallel momenta. This can be seen if one rewrites
~2! in the momentum representation. Then reduction~5! be-
comes equivalent to splitting thed function, which provides
momentum conservation, into the product of tw
d-functions:

d~q11q21q31q4!→d~q11q2!d~q31q4!.

As a result of approximation~5! the exact model now falls in
the same universality class as the spherical model.33

Using a transformation analogous to that of Hubba
Stratonovich, the Boltzmann factor in the partition functio
becomes bilinear with respect tow i(x). The consequence o
this relative simplification is the introduction of 2n new vari-
ables, which we callxi andyi , with the subscripti ranging
from 1 to n. Explicitly, this is done when the Fourier trans
formation

expF2
V

2
KS ai@w i #

V D G5
1

~2p! iE DxiDyiexpS 2
V

2
KS xi

V D
1 i(

i 51

n

~xiyi2yiai !D
is applied to an arbitrary functionK(ai /V). For functional
~2!, K(ai /V) is
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KS ai

V D5(
i 51

n F tai

V
1

uai
2

V2 G .

The equation representing the effective free-energy fu
tional ~2! then becomes

Fe f f@w~x!#5
V

2
KS ai

V D1
1

2E2`

`

ddxFc~¹w~x!!2

2(
i 51

n

hw i~x!2
1

4E2`

`

ddx8

3(
i 51

n

(
j 51

n

f ~x2x8!w i~x!w j~x8!G
and after the use of Eq.~4!, the partition function in momen
tum space takes the form

Z5E Dw iqDxiDyiexpF2
V

2
K~xi , . . . ,xn!

1
V

2 (
i 51

n

xiyi2
1

2 (
i 51,q

n

yiw iq
2 2

c

2 (
i 51,q

n

q2w iq
2

1
hAV

2 (
i 51

n

w i01
B

2 (
qÞ0

S (
i 51

n

w iqD S (
j 51

n

w j 2qD
1

B1

2 (
qÞ0

q(b2d)S (
i 51

n

w iqD S (
j 51

n

w j 2qD G , ~6!

where the following substitutions,xi /V→xi , 2iy i→yi , and
w iq /AV→w iq have been made.

In order to calculate functional integrals in Eq.~6! the
expression in the exponent must be diagonalized with res
to the n components of the order parameter. Note that
nondiagonal terms in the free energy are due to the impu
terms. After diagonalization, it becomes required thatyi
5yj[y, since only this choice reproduces the purew4

model upon suppression of the random field. This is so
cause in the limit ofB→0, B1→0, the degeneracy of th
eigenvalues of every other choice does not reduce ton fold
as expected from considerations of the purew4 model treated
within the context of the replica method. In the random-fie
case, there exist twon3n matrices of interest. One consis
of Fourier components withqÞ0. The other one consists o
Fourier components withq50. Altogether, there are only
four distinct eigenvalues. Two of these correspond to thn
3n matrix with Fourier components havingqÞ0:

l152 1
2 ~y1cq2!

l252 1
2 ~y1cq22nB2nB1q(b2d)!.

The other two correspond to then3n matrix with Fourier
components havingq50:

l1052
y

2
,

c-

ct
e
ty

e-

l2052 1
2 ~y2nB!,

wherel1 andl10 are (n21)-fold degenerate. These eige
values can be used to diagonalize the twon3n matrices with
respect tow iqÞ0 andw iq50 . Consequently, all functional in
tegrals in Eq.~6! may be calculated to give

Z5E DxidyexpS 2
V

2
K~xi , . . . ,xn!

1
V

2
y(

i 51

n

xi1
~12n!

2 (
q50

ln~y1cq2!

2
1

2 (
qÞ0

ln~y1cq22nB2nB1q(b2d)!

2
1

2
ln~y2nB!1

nVh2

8~y2nB!D .

Calculating the summations over momentum, it can
shown that

(
q50

ln~y1cq2!5V„gd~y!1yQd~L!…

for which

gd~y!5
Sd

~2p!d 5
pyd/2

dcd/2sin~pd/2!
[k1~c!yd/2 dÞeven

2
1

d S y

cD d/2

ln y[m1~c!yd/2ln y d5even,

Qd~L!5
Sd

~2p!dH L (d22)

c~d22!
dÞ2

ln~cL2!

2c
d52,

whereSd is the surface area of ad-dimensional unit-radius
sphere andL is a momentum cutoff.

In order to calculate the summation involving the rando
field strengthsB and B1, first, the logarithm must be ex
panded with respect to smallB andB1. For B the resulting
sum is

B(
q50

1

y1cq2
5VB„gBd~y!1yQBd~L!…

for which
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gBd~y!5
Sd

~2p!d 5
~21!(d21)/2

cd/2

p

2
y(d22)/2[k2~c!y(d22)/2 dÞ even

~21!d/2

2cd/2
y(d22)/2ln y[m2~c!y(d22)/2ln y d5even,

QBd~L!5
Sd

~2p!d 5
2L (d24)

c~d24!
dÞeven and d>5

5
0

2
ln~cL2!

2c2

2
L (d24)

~d24!c2

d52

d54

d56,8, . . . .

For B1, the resulting sum is

B1(
q50

q(b2d)

y1cq2
5VB1„gB1b~y!1yQB1b~L!…, ~7!

for which

gB1b~y!5
Sd

~2p!d 5
~21!(b21)/2

cb/2

p

2
y(b22)/2[k3~c!y(b22)/2 bÞeven

~21!b/2

2cb/2
y(b22)/2ln y[m3~c!y(b22)/2ln y b5even,

QB1b~L!5
Sd

~2p!d 5
2L (b24)

c~b24!
bÞeven and b>5

5
0

2
ln~cL2!

2c2

2
Lb24

~b24!c2

b52

b54

b56,8, . . . .
r o

tu
zin

f
be
ated

,

be-
Notice how the summation~7! behaves as a sum inb dimen-
sions. This is the reason for an interesting critical behavio
the system with long-range correlated randomness.

FunctionsQd(L), QBd(L), andQB1b(L) diverge when

L→` and d>2, d>4, b>4, respectively. However, criti-
cal asymptotics do not depend on a particular momen
cutoff and such divergencies are absorbed by renormali
xi and t. This is done by definingQ[Qd(L)2BQBd(L)
2B1QB1b(L), which will be used for the renormalization o

both xi→xi1Q and txi12uQxi[txi . The partition func-
tion may now be written

Z5E Dxidy expS 2
V

2
F~xi ,y,h! D

with
f

m
g

F~xi ,y,h!5(
i 51

n

~ txi1uxi
22yxi !1ngd~y!2nBgBd~y!

2nB1gB1b~y!2
nh2

y2nB
, ~8!

whereh/2→h. In the thermodynamic limitV→`, the cal-
culation of the partition function becomes exact and can
performed using the steepest descent method. The replic
equilibrium free energy can be calculated by solving forxi
and y in the saddle point equations]F/]xi50 and ]F/]y
50. It is easy to see that]F/]xi50 implies allxi are equal
to one another and thereforexi[x. Taking advantage of this
Eq. ~8! for F(xi ,y,h) is simplified and becomesF(x,y,h).
From ]F/]y50, it can be shown that, up to ordern, the
resulting equation fory(h) is independent ofn. Hence, the
disorder-averaged value of the equilibrium free energy
comes
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F~h!5 lim
n→0

F„y~h!,h…

n
5tx1ux22yx1gd~y!

2BgBd~y!2B1gB1b~y!2
h2

y
~9!

and the expression for the equilibrium, averaged order
rameterw is given by

w5 lim
n→0

1

n F2]F~y,h!

]h G
y5y(h)

5
h

y~h!
. ~10!

Using ]F(h)/]x50, one can eliminatex from Eq. ~9!.
Using ]F(h)/]y50 and the expression forw @Eq. ~10!# an
equation for the order parameter is derived. This param
depends, among other things, on the constant conjugate
h, the dimensionalityd of space, the power of the long-rang
correlations of the random fieldb, and the scale of micro
scopic interactions of fluctuationsc. One can write these ex
pressions forw for all possible values ofd andb, including
nonintegers, as shown below.

d

2
k1~c!S h

w D (d22)/2

2Bk2~c!
~d22!

2 S h

w D (d24)/2

2B1k3~c!
~b22!

2 S h

w D (b24)/2

1w21
t

2u
2

1

2u

h

w

50 H d5noneven

b5noneven,
~11!

m1~c!S d

2 S h

w D (d22)/2

lnS h

w D1S h

w D (d22)/2D
2Bm2~c!S ~d22!

2 S h

w D (d24)/2

lnS h

w D1S h

w D (d24)/2D
2B1m3~c!S ~b22!

2 S h

w D (b24)/2

lnS h

w D1S h

w D (b24)/2D
1w21

t

2u
2

1

2u

h

w
50 H d5even

b5even,
~12!

d

2
k1~c!S h

w D (d22)/2

2Bk2~c!
~d22!

2 S h

w D (d24)/2

2B1m3~c!S ~b22!

2 S h

w D (b24)/2

lnS h

w D1S h

w D (b24)/2D
1w21

t

2u
2

1

2u

h

w
50 H d5noneven

b5even,
~13!
a-

er
ld

m1~c!S d

2 S h

w D (d22)/2

lnS h

w D1S h

w D (d22)/2D
2Bm2~c!S ~d22!

2 S h

w D (d24)/2

lnS h

w D1S h

w D (d24)/2D
2B1k3~c!

~b22!

2 S h

w D (b24)/2

1w21
t

2u
2

1

2u

h

w

50 H d5even

b5noneven.
~14!

As h→0, whetherw has a solution and whether the behav
of the system will be critical or mean field, depends on t
values of the space dimensionalityd and the powerb, as well
as the scale of microscopic interactionsc. As c→`, it is
easy to see that all results reduce to those of mean-
theory. In the above four equations, it is seen that in the li
B→0, B1→0, as expected, the resulting equations reduce
those of the purew4 model.

The case of only short-range correlated impurities, tha
B150 andBÞ0 is now reviewed. First, it is noted that Eq
~13! and~14! are identical to Eqs.~11! and~12! for noneven
and evend respectively. SinceB150, the critical behavior
of the system will basically depend on the space dimens
ality d and the scale of microscopic interactionsc. Applying
the exact model to this case,14 one finds the dimensiona
reduction by 2, a result which is in agreement with R
theory analysis.10–13 From Eqs.~11! and ~12! it can be de-
duced that, ash→0, there is no solution forw whend<4.
For 4,d,6, the dominating terms for smallh are thew2,
the t/2u and theB terms. Therefore Eq.~11! gives the same
critical asymptotics as a pure model with the lower dime
sion 2,d8,4, whered8[d22. Under such conditions, th
critical exponentsb and d take the valuesb51/2 andd
5(d812)/(d822). When d.6 and h→0 the last three
terms in Eqs.~11! and~12! dominate, and the critical asymp
totics are those obtained by the mean-field theory. Fina
for d56, Eq. ~12! provides logarithmic corrections in th
behavior of the order parameter,w}(h ln h)1/3. So, the model
explicitly demonstrates the dimensional crossover in
presence of short-range, quenched random fields. It m
seem contradictory that the model with the one-compon
order parameter has a lower critical dimensiondc54. In-
deed, the functional~1! corresponds to the random-field Isin
model which hasdc52. However, after the reduction~5! the
model belongs to the spherical model universality class a
therefore, has the symmetryO(N5`).33

The picture is substantially altered when long-range c
related random impurities are taken into considerat
through theB1 term. First, it is derived from Eqs.~11!, ~12!,
~13!, and~14! that regardless of whatd is ~even ford.4, for
which a phase transition occurs when only short-range c
relations are assumed!, when the value of the powerb, that
describes the long-range correlated impurities, obeysb<4,
then the Eqs.~11!, ~12!, ~13!, and ~14! have no solution in
the limit h→0. This is seen from the divergence of theB1
term. It seems that the long-range nature of impurities ‘‘ov
powers’’ the short range for these values ofb, and the system
prefers to follow the random distribution of the random fie
leading to a disordered phase. On the other hand, the lo
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range nature of the impurities has no effect on the system
long asb.d. This means that in spite of the presence
long-range interactions, the system will have the critical
havior dictated by the short-range correlations of the rand
field. This is derived when, in Eqs.~11!, ~12!, ~13!, and~14!,
the limit of h→0 is taken, as well as by realizing that theB
term dominates theB1 term. This result was anticipated ea
lier when the long-wavelength limit in Eq.~4! was consid-
ered and it was seen how the long-range termB1 vanishes
for b.d. Forb5d, the behavior is qualitatively the same
in the case without the long-range term, with both the sh
and long-range terms contributing equally. Basically, th
two different nature terms are indistinguishable forb5d.

Things are different forb.4 and as long asb,d. In this
case, the various combinations between the values thatb and
d can take, are examined separately in the following sit
tions: ~1! when 4,d,6 ~for which the system exhibits th
critical behavior of dimensional reduction asB1→0, as dis-
cussed above!, along with the possibilities forb obeying 4
,b,6. ~2! Whend56 ~for which the system exhibits loga
rithmic behavior asB1→0, as discussed above!, along with
4,b,6. And finally, ~3! whend.6 ~for which the system
exhibits mean-field behavior asB1→0, as discussed above!,
along with 4,b,6, b56, or b.6.

As stated above, case~1! is one with 4,d,6, 4,b
,6, andb,d. Then, in the limith→0, from Eq.~11! it is
derived that theB1 term dominates theB term. The surviving
terms in Eq.~11! are

t

2u
2B1k3~c!

~b22!

2 S h

w D (b24/2)

1w250.

It appears as if the system behaves like ab-dimensional one,
regardless of the fact that the actual dimension is 4,d,6.
This was anticipated when it was realized that the sum~7!
behaves as one of effective space dimensionalityb. The criti-
cal exponentd will therefore have the same value as in t
-

P

as
f
-
m

t-
e

-

case without long-range correlations, but withd replaced by
b. The ‘‘dimensional reduction’’ will really occur with re-
spect tob, that is d85b22 and d5(d812)/(d822). It
means that ad dimensional (4,d,6) long-range randomly
correlated system with 4,b,6 andb,d, behaves as one o
effective dimensionalityb and has the same critical behavi
as a pured8-dimensional system whered85b22.

Case~2! deals with 4,b,6 and d56. In the case of
these values ofb and d, the short-range correlations ar
proven irrelevant in the system. In the limith→0, it is
shown via Eq.~14! that theB1 term is greater than theB
term, and the system has the interesting long-range crit
behavior described above. The same result is derived f
Eqs. ~11! and ~14! even ford.6, as in case~3!. Further-
more, in case~3!, for which d.6, if b56, the system has a
logarithmic behavior, a result strictly due to the long-ran
correlations, despite the fact that for dimensionality grea
than 6, a system with only short-range interactions, had
usual mean-field behavior. The mean-field behavior is
stored only if bothb andd are greater than 6.

In conclusion, it has been shown that systems belong
in the same universality class as the spherical model,
scribed by long-range correlated random quenched imp
ties, decaying according to the power lawux2x8u2b, gener-
ate an interesting critical behavior at phase transitions, wib
playing the role of an effective dimensionality, as long asb
,d. Specifically, the long-range random field is the reas
for the breakdown of dimensional reduction. As in the ca
with only short-range correlated impurities, upon suppr
sion of fluctuations with the limitc→`, all results reduce to
those of mean-field theory, regardless of dimensionality
the presence of impurities.
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