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Critical behavior in systems with a long-range correlated frozen-in random field
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The critical behavior of inhomogeneous systems with a frozen-in random field having a nonlocal correlation
function decaying according to the power lgw—x'| ™ is considered. The problem is studied within the
context of a model which partially considers interactions of fluctuations and belongs in the same universality
class as the spherical model. Depending on the relationship between thelpaméthe space dimensionality
d, a new critical behavior arises.

Critical phenomena at phase transitions are characterized In this study, it will be shown that in models belonging in
by a variety of different universality classes. Some of thethe spherical universality class, unlike the case of a system
factors that determine the universality class of a system areith a random field having short-range correlation, a random
the dimensiord of space, the numban of the components field with long-range correlation will significantly alter its
of the order parameter, the symmetry of the Hamiltonian critical behavior. Part of the behavior will be the breakdown
and the range of interactions among the microscopic degreé¥ dimensional reduction due to the long-range nature of the
of freedom~* It is well known, for example, how the critical "andom field. Long-range random systems are an interesting
behavior of a system, such as a ferromagnet, is altered suBroblem to study theoretically since in experimental systems

stantially when one considers the effect of the long-rangdt IS never clear what type of correlations the random field
interaction due to pairs of magnetic dipoles in addition to thehas' An experlment_al exam_ple IS a random-field magnet of
short-range spin-spin interactioms.In general, the behavior the type 2£ a dilute lIsing antiferromagnet such as
of ferromagnets with this type of long-range interaction dif- F&Zn _F,.™ In such a case the distribution and correlation

fers from that of ferromaanets with onlv the short-range in_of the random field is not well defined and in general both
. ) g y 9 short- and long-range random fields might influence the criti-
teractions, according to the number of the components of th

. . &al behavior® Therefore, if a theoretical consideration of a
order_ para_meter. For exam_ple, _the CF'“C""' b_ehav_lor of %ng—range random system derives a distinct behavior from a
uniaxial Ising ferromagnet ird dimensions with dipole-  gnqt range random system, this perhaps could be used to
dipole interactions belongs in the same universality class as gtermine the nature of the random correlations in an experi-
(d+1)-dimensional Ising ferromagnet with only short-range mental system.
interactions’ The study of such systems will be done by considering a
Another situation where long-range interactions seem t@nodel with reduced interactions of fluctuations, allowing for
alter the critical behavior is found in random-exchange modthe exact calculation of the partition function. The model is a
els. Initial experimental data suggested that the clean-cufonsiderable improvement over mean-field theory, and has
phase transitions observed in pure materials were someholeen previously successfully applied to a number of different
broadened and theoretical consideratféhshowed that this systems#2?4-2° The results obtained by the model are in
need not be the case if the random exchange terms that dgualitative agreement with those obtained by renormalization
scribe the interaction among impurities are not long rangegroup (RG) theory, whenever there are results from both
The fact that the equilibrium behavior of random-exchangeapproaches for comparison. Furthermore, through the model,
systems is qualitatively the same as that of pure systems haglike in RG theory, fluctuation interactions can be con-
been experimentally verifi@dnd the earlier smearing out of trolled. Specifically, they can be easily suppressed, thus al-
the transition may indeed be due to macroscopic inhomogdowing one to see the crossover to mean-field behavior. As it
neities in the system. will be seen below, after a main approximation is applied
In another case, random-fietldimensional systems de- which will make the model exactly solvable, the model will
scribed by arm-component order parameten¢ 1) behave belong in the spherical universality class.
as (d—2)-dimensional pure systems as long as the random The system of interest has the Ginzburg-Landau-Wilson
field is short-ranged correlatéf:** For the random-field functional with a scalar order paramet(x)
Ising model, the dimensional reduction does not Hbtd*’
and its critical behavior depends on the kind of distribution 1 d 2 2
of the random field® Specifically, in fout® and thre&® di- FISX)] Zf XS0 +6(VS00)*+ uS(x)
mensions a clearly different critical behavior was found _ _
when the random field has a Gaussian or a bimodal distribu- h(x)S(x)~hS(x)], @D
tion. In fact, even form-component magnets witm=2 it  wherer=(T—T.)/T., T, is a trial critical temperature for
has been argued that dimensional reduction is likely nothe order parameteh is a constant external conjugate field,
valid, at least in 4 ¢ dimensions, due to weak, short-range andh(x) is a random quenched field. To find the free energy
random fields and random higher-rank anisotroptes. of the quenched system, one must average over all the free
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energies corresponding to all possible random configurationthe strengths of the short- and long-range nature of the ran-

of the random fieldh(x)}. Therefore, dom field, respectively. It will be shown below that the value
of the exponenb, in relation to the space dimensionality
e will play a crucial role in the critical behavior of the
F f [DhCOIP{RCO}NZ{h(a}, guenched system.

where the probability distribution function&{h(x)} for a The Fourier transform of the impurity term for smalis

given configuration of random fields is free of choice and its -
mathematical characteristics will be defined at a later point. f

d9xdix’ f(x—x")= j dqu+f dgB,q®~ 9,
To proceed with the averaging over all random-field con- q q+#0

—0o0

figurations, the replica methd¥! is used by defining an (4)
n-component order paramete(x). Then, where constants resulting from integrationsdedimensional
Fourier transforms have been absorbed in the strengths of the
~F=— f [D"o(X)]exp( — Ferd @(X)]) short- (B) and long-range B;) correlations. Equatior{4)
an n=0 will be used to express the partition function of the system in

momentum space. Note in E@) that if b>d, then in the
long-wavelength limit, ¢<<1), the long-range term
Jq200%aB;q®~ 9 vanishes and therefore the random field
has only short-range correlations. This means that, in the
7 e(X) |2+ c(Ve(x))? case ofb>d, long-range random correlations are irrelevant.
Specifically, a system with long-range disorder that falls off
n with distance faster thajx—x’| "% has the same critical be-
+2 (U<Pi4(X)—h<Pi(X)) ~G[e(x)] (2) havior as a system with only short-range random correla-
i=1 tions. On the other hand, an entirely different behavior is
with exhibited for the case where<d as it will be discussed
below.
The exact model used here is one which allows for the
Gle(x)]=In f [Dh(x)]P{h(x)} reduction of all quartic terms in functioné®) as follows:

with Fo¢{ ¢(X) ] an effective free-energy functional resulting
from the replication of the partition function being given by

1 (=~
Felel=5 d%

1
. f e () —yaleix)], ai[cpi(X)]EfddXso?(X),
(5

whereV is the volume of the system. Such a reduction, pro-
(h(OOh(X' )y =F(x=X"), (3y  Posed by Schneidest aI.,3_2 causes the model to take in to
account only the interaction of fluctuations with equal and
where the averaging is with respect to the distributionantiparallel momenta. This can be seen if one rewrites Eq.
P{h(x)} and for nowf(x—x") is still a general function (2) in the momentum representation. Then reduct®nbe-
whose choice will be such that the randomness of the syste@bmes equivalent to splitting th& function, which provides
will have characteristics of both short- and long-range corremomentum conservation, into the product of two
lations. Only for short-range random correlations cangs-functions:
P{h(x)} in Eq. (3) be decomposed into a product of inde-
pendent probabilities at the various locations in the system. 8(g1+ 0o+ 093+ 0as)— 8(q1+9,) 5(qz+9a).
The effect of only short-range correlations has been studie
previously by both RG theoty™® and using the exact
model* Both approaches produce the same qualitative pic
ture of critical behavior, that is, the dimensional reduction by
2. In this work, the randomness has both short-range an
long-range correlations. Therefore the probability function™™ X TP . ) .
P{h(x)} in Eq. (3) cannot be broken down into a product of this relative simplification is the introduction ohzhew vari-

uncorrelated probabilities in the different points in space in-2bles, which we _C‘_"‘“(i an_d Yi with the subscript ranging
side the system. Then from 1 ton. Explicitly, this is done when the Fourier trans-

1 n
><exp( EJ o|dxi§1 h(X) @;(X)

It is assumed that a field-field correlation function obeys

g\s a result of approximatio(b) the exact model now falls in
the same universality class as the spherical métlel.
Using a transformation analogous to that of Hubbard-
tratonovich, the Boltzmann factor in the partition function
ecomes bilinear with respect t9(x). The consequence of

formation
f(x—x')=Bd(x—x')+ By V (alel] 1 v
x—X")=Bd&(x—x , ai[ ¢; Xi
_v'|b o [ ! — . X _ il
[x—x'| ex;{ 2 K v ” 2 DxIDy,ex;{ > K(V)

where theé function defines the short-range correlations of

the random field. The second tervhich is true forx#x") . i

is a nonlocal function stating that there are isotropic long- +'§1 (Xiyi_yiai))

range correlations in the quenched impurities. These correla-

tions are chosen to have a power law behavior, Wwilet as is applied to an arbitrary functiok(a;/V). For functional
an arbitrary power. The constarBsandB; are a measure of (2), K(a;/V) is
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ma ua’? Nzo=—3(y—nB),
Vo2
The equation representing the effective free-energy fun
tional (2) then becomes

K

aI
v

where\; and\ g are (0h—1)-fold degenerate. These eigen-
Galues can be used to diagonalize the twon matrices with
respect top;q.0 and ¢;q=o. Consequently, all functional in-
tegrals in Eq{6) may be calculated to give

a;

Vv

1 %)
+§f_wddx c(Ve(x))?

n 1 -
-2 h<pi<x>——f dx’
=1 4) -

V
Ferl @(X)]= EK

Y,
sz Dxidyexp( — §K(xi v Xp)

+ %yz Xi+ @ > In(y+cqd)
i=1

n n
’ ’ =0
X2, le f(x=x")@i(X) ¢;(X') ’
1
and after the use of E@4), the partition function in momen- -5 > In(y+cq?—nB—nB,q®~ )
tum space takes the form q#0
Y ! I B)+ nvie
—=In(y—n .
Z=f D<piquiDyiexr{— KXy Xn) 2 Ity ) 8(y—nB)
V o 12 c - Calculating the summations over momentum, it can be
2 2 2 '
+§ ;1 XiYi— 5 i;yq Yi®ig— > ig‘q 4" ¢iq shown that
h\/v n B n n
t 2 et g 2| 2 el 2 e 3, n(y-+ee) = V(gly) +YO(A)
B n n
+_12 q(bd)(E Piq > (Pj_q”, (6)  for which
2 470 =1 i=1
where the following substitutions; /V—X;, 2iy;—Yy;, and an
@iq/ V= @;q have been made. my _ di2
In order to calculate functional integrals in E@) the Sy dc%?sin( wd/2) Ka(C)y d#even
expression in the exponent must be diagonalized with respedd(Y) = 2md| 1y
to the n components of the order parameter. Note that the o _(X) Iny=p,(c)y*@ny d=even
. . . . d\c 1 ’
nondiagonal terms in the free energy are due to the impurity

terms. After diagonalization, it becomes required tlyat
=y;=Yy, since only this choice reproduces the pupé

model upon suppression of the random field. This is so be- Al872) d=2
cause in the limit oB8—0, B;—0, the degeneracy of the Sy c(d—2)
eigenvalues of every other choice does not reduce ftmd O4(A)= a4 In(cA?)

as expected from considerations of the pafemodel treated (2m)% | IN(CAT) d=2,
within the context of the replica method. In the random-field 2¢c

case, there exist twoX n matrices of interest. One consists
of Fourier components with#0. The other one consists of \yheres, is the surface area of ddimensional unit-radius
Fourier components witly=0. Altogether, there are only sphere and\ is a momentum cutoff.

four distinct eigenvalues. Two of these correspond torthe

Het e ! - In order to calculate the summation involving the random-
X n matrix with Fourier components havirgg#0:

field strengthsB and B4, first, the logarithm must be ex-
panded with respect to smdl andB,. For B the resulting

N=—2(y+cg?) um is

Ao=—3(y+cq?—nB—nB;q® ).
The other two correspond to thexn matrix with Fourier

1
ina=0: B =VB +yOgq(A
components having=0: qu yroq? (984(Y) +yOg4(A))

Ng=—

N <

for which
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(_1)(d—l)/2 . - -
< Tﬁy(d D= ie,(c)y@= 22 d# even
d
Ied(Y)=
@m| (—n* .
oo Y P Any= a0y Py d=even,
CED
RE) d#evenand d=5
Sy 0 d=2
Opa(A)=——4{ | _InCAD
(2) 202 d=4
Ald=9)
Ll (@-ac? d=6.8,
For B4, the resulting sum is
q(b—d)
qugo e =VB1(9g,p(y) +YOp5(A)), (7)

for which

( _ 1)(b— 1)/2 T

v 5V P =ka(c)y®™D? beven
Sq c
Osp(Y)= ——
(2m| (~1p2 )
ochl2 y22ny=ps(c)y®=ny b=even,
[ — A%
m b+#evenand b=5
0 —
Sy ) b=2
Opp(A)=——{ | _In(cA?
(2) a2 b
Ab74
| _(b—4)02 b=6,8,

Notice how the summatio(v) behaves as a sum imdimen- n
sions. This is the reason for an interesting critical behavior of F(x;,y,h)= Z (tx;+ uxiz—yxi) +ngy(y) —nNBgey(Y)
the system with long-range correlated randomness. =1
Functions® 4(A), Ogq4(A), and@Blb(A) diverge when nh2
A—o andd=2,d=4, b=4, respectively. However, criti- —NB1ge,p(Y)— y—nB’ (8)
cal asymptotics do not depend on a particular momentum
cutoff and such divergencies are absorbed by renormalizingnereh/2—h. In the thermodynamic limiV—, the cal-
xi and 7. This is done by definin®=04(A)~BOgy(A)  culation of the partition function becomes exact and can be
—B10g,5(A), which will be used for the renormalization of performed using the steepest descent method. The replicated
both x;—x;+® and rx;+2u®x;=tx; . The partition func- equilibrium free energy can be calculated by solving xpr
tion may now be written andy in the saddle point equation®/ox;=0 and dF/dy
=0. It is easy to see that~/Jx;=0 implies allx; are equal
to one another and therefaxe=x. Taking advantage of this,
Vv Eq. (8) for F(x;,y,h) is simplified and becomeB(x,y,h).
Z:f Dxidyex;{ —5F ,y,h)) From dF/ay=0, it can be shown that, up to order the
resulting equation foy(h) is independent of. Hence, the
disorder-averaged value of the equilibrium free energy be-
with comes
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F(h)= lim

n—0

F(y(h),h
%=tx+ ux?—yx+gq(y)

2

—B0ga(Y) = B19s,n(Y) — v €)

and the expression for the equilibrium, averaged order pa-

rametere is given by

g

Using dF(h)/9x=0, one can eliminate from Eq. (9).
Using dF (h)/dy=0 and the expression fas [Eq. (10)] an

—dF(y,h)
dh

li h
=lim =—.
o y(h)

} (10)
y=y(h)
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d/h (d—2)/2 h h (d—-2)/2
ol5|— Inf —|]+|—
wl )(2(<P) ARY
((d_z)(h)(d4)/2 h (h (d4)/2)
—Buy(c — In| —|+|—
H2(C) 7 o . .
(b—2)

h) e/ t 1h
—Ble(C)T(;) +¢2+Z_ZZ

.

As h—0, whetherp has a solution and whether the behavior
of the system will be critical or mean field, depends on the
values of the space dimensionalityand the poweb, as well

as the scale of microscopic interactioasAs c— o, it is
easy to see that all results reduce to those of mean-field
theory. In the above four equations, it is seen that in the limit

d=even

b=noneven. (14

equation for the order parameter is derived. This parametes— 0, B1—0, as expected, the resulting equations reduce to

depends, among other things, on the constant conjugate fiel

h, the dimensionality of space, the power of the long-range
correlations of the random field, and the scale of micro-
scopic interactions of fluctuatiorts One can write these ex-
pressions forp for all possible values off andb, including
nonintegers, as shown below.

d h\(d-2)/2 (d=2)(h (d—4)/2
o) e
PPN i) ) P S
1k3(C) 2 () te o 20 ¢
d=noneven
=0 ‘bznoneven, a9
d/h\@-22 [p h\(d-2)2
molalg] gl (G
(d—2) [h @42 [p h\ (=42
S M
(b—2)(h (b-4)2 | h\ (b=4)2
RaClie N R
, t 1h d=even
Te Z_ZZ_O [b=even, 12
d h\(d=2)2 (d—2) [ h\@-472
zaoly e[
(b—2)(h (b-4)12 | h\ (b-4)2
Sl R
, t 1h d=noneven
e T 20 0 [bzeven, 13

hose of the purep* model.

The case of only short-range correlated impurities, that is,
B,=0 andB#0 is now reviewed. First, it is noted that Egs.
(13) and(14) are identical to Eq9.11) and(12) for noneven
and evend respectively. Sinc®,=0, the critical behavior
of the system will basically depend on the space dimension-
ality d and the scale of microscopic interactiansApplying
the exact model to this caséone finds the dimensional
reduction by 2, a result which is in agreement with RG
theory analysi$®~*® From Egs.(11) and (12) it can be de-
duced that, ab—0, there is no solution fop whend=<4.

For 4<d<6, the dominating terms for smail are thee?,
thet/2u and theB terms. Therefore Eq11) gives the same
critical asymptotics as a pure model with the lower dimen-
sion 2<d’ <4, whered’=d—2. Under such conditions, the
critical exponentsg and 6 take the valuesg3=1/2 and é
=(d'+2)/(d"—2). Whend>6 and h—0 the last three
terms in Egs(11) and(12) dominate, and the critical asymp-
totics are those obtained by the mean-field theory. Finally,
for d=6, Eq. (12 provides logarithmic corrections in the
behavior of the order parametery (h In h)*3. So, the model
explicity demonstrates the dimensional crossover in the
presence of short-range, quenched random fields. It may
seem contradictory that the model with the one-component
order parameter has a lower critical dimensiy+=4. In-
deed, the functiondll) corresponds to the random-field Ising
model which hasl,=2. However, after the reductidb) the
model belongs to the spherical model universality class and,
therefore, has the symmet@(N=x).33

The picture is substantially altered when long-range cor-
related random impurities are taken into consideration
through theB; term. First, it is derived from Eq$11), (12),

(13), and(14) that regardless of whatis (even ford>4, for
which a phase transition occurs when only short-range cor-
relations are assumgdvhen the value of the powds, that
describes the long-range correlated impurities, oliesygl,

then the Eqgs(11), (12), (13), and(14) have no solution in

the limit h—0. This is seen from the divergence of tBe
term. It seems that the long-range nature of impurities “over-
powers” the short range for these valuespind the system
prefers to follow the random distribution of the random field,
leading to a disordered phase. On the other hand, the long-
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range nature of the impurities has no effect on the system asase without long-range correlations, but witheplaced by
long asb>d. This means that in spite of the presence ofb. The “dimensional reduction” will really occur with re-

long-range interactions, the system will have the critical bespect tob, that isd’=b—2 and 6=(d’+2)/(d’—2). It
havior dictated by the short-range correlations of the randormeans that a dimensional (& d<6) long-range randomly

field. This is derived when, in Eqéll), (12), (13), and(14),

the limit of h—0 is taken, as well as by realizing that tBe
term dominates th8, term. This result was anticipated ear-
lier when the long-wavelength limit in Eq4) was consid-
ered and it was seen how the long-range t&mvanishes
for b>d. Forb=d, the behavior is qualitatively the same as
in the case without the long-range term, with both the short
and long-range terms contributing equally. Basically, thes
two different nature terms are indistinguishable lier d.

Things are different fob>4 and as long ab<<d. In this
case, the various combinations between the valuedtaat
d can take, are examined separately in the following situa
tions: (1) when 4<d<6 (for which the system exhibits the
critical behavior of dimensional reduction B—0, as dis-
cussed above along with the possibilities fob obeying 4
<b<6. (2) Whend=6 (for which the system exhibits loga-
rithmic behavior a8;—0, as discussed abovelong with
4<bh<6. And finally, (3) whend>6 (for which the system
exhibits mean-field behavior &, — 0, as discussed above
along with 4<b<6, b=6, orb>6.

As stated above, casd) is one with 4&<d<6, 4<b
<6, andb<d. Then, in the limith—0, from Eq.(11) it is
derived that thé; term dominates thB term. The surviving
terms in Eq.(11) are

(b—2) ( h
2u 2 ©

It appears as if the system behaves like-dimensional one,
regardless of the fact that the actual dimension<sd4 6.
This was anticipated when it was realized that the idn
behaves as one of effective space dimensionhlifjhe criti-
cal exponents will therefore have the same value as in the

(b—4/2)
+ (p2

—B;«k3(c) 0.

correlated system with4b<6 andb<d, behaves as one of
effective dimensionalityp and has the same critical behavior
as a pured’-dimensional system whed =b—2.

Case(2) deals with &<b<6 andd=6. In the case of
these values ob and d, the short-range correlations are
proven irrelevant in the system. In the limit—0, it is

shown via Eq.(14) that theB, term is greater than thB

Et‘erm, and the system has the interesting long-range critical

behavior described above. The same result is derived from
Egs. (11) and (14) even ford>6, as in casd3). Further-
more, in casé3), for whichd>6, if b=6, the system has a
logarithmic behavior, a result strictly due to the long-range
correlations, despite the fact that for dimensionality greater
than 6, a system with only short-range interactions, had the
usual mean-field behavior. The mean-field behavior is re-
stored only if bothb andd are greater than 6.

In conclusion, it has been shown that systems belonging
in the same universality class as the spherical model, de-
scribed by long-range correlated random quenched impuri-
ties, decaying according to the power l&v-x'| ~°, gener-
ate an interesting critical behavior at phase transitions, lvith
playing the role of an effective dimensionality, as longbas
<d. Specifically, the long-range random field is the reason
for the breakdown of dimensional reduction. As in the case
with only short-range correlated impurities, upon suppres-
sion of fluctuations with the limit— o, all results reduce to
those of mean-field theory, regardless of dimensionality or
the presence of impurities.
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