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Bain transformation in Cu xPd12x „x;0.5… alloys: An embedded-atom study
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~Received 30 April 1999; revised manuscript received 17 August 1999!

We investigate the B2 to random-fcc structural transformation in CuxPd12x alloys as a function of concen-
tration aroundx50.5. The system is modeled by the embedded atom method~EAM!, and its free energy is
computed by Monte Carlo simulation in the isothermal-isobaric ensemble. Our results show that the tempera-
ture stability range for the B2 phase is estimated correctly by the EAM model, while thex dependence of the
transformation temperature around the stoichiometric composition (x50.5) is not well reproduced.
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INTRODUCTION

The interplay of electronic and thermal effects in so
metallic alloys gives rise to a surprising variety of differe
phases, whose stability boundaries are often difficult to
cate accurately both by experiments and by theoretical m
ods.

In our study we test the ability of a simple model@the
embedded atom model~EAM!1# to identify the concentration
and temperature stability range for the ordered B2 phas
the CuxPd12x alloy. On cooling from the liquid state
CuxPd12x crystallizes in a continuous solid solution, bas
on the fcc lattice. At low temperature, the phase diagr
displays several intermetallic phases, of which the orde
L12 ~at x;0.75) and B2~at x;0.5) structures are the mos
prominent ones.2 We focus on the transformation that give
rise to this second phase~i.e., the B2!, which involves the
simultaneous order/disorder and structural transitions.

We find that the EAM predicts a temperature range for
stability of the B2 structure in fair agreement with the e
perimental data. However, this model is unable to acco
for the large asymmetry of the B2 stability region with r
spect to the stoichiometric (x50.5) composition, that is ob
served in the experimental phase diagram. The compar
with previousab-initio computations3 allows us to under-
stand both the reasons for the agreement and the disa
ment between the computational results and the experime
data.

THE COMPUTATIONAL METHOD

The embedded atom method provides the simplest m
to describe the metallic bonding of transition and po
transition metals. We adopt the original approach, introdu
in Ref. 1, together with the explicit parametrization of Ref
for the Cu-Pd potential. Here we simply remind that the p
tential energyE as a function of the atomic coordinates$RI ;
(I 51,N)% is written as

E@RI#5
1

2 (
IÞJ

f IJ~ uRI2RJu!1(
I

FI@r~RI !#, ~1!

wheref IJ is a repulsive pair potential, andFI@r(RI)# is the
energy gain in embedding the atomI into the valence charge
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densityr(RI). In turn,r(R) is given by the superposition o
all the valence electron distributions associated to each a
in the system. The indexesI andJ onf IJ andFI indicate that
these functions depend on the type~Cu or Pd! of the atoms
involved.

The repulsive potentialf and the embedding functionF
are devised in order to reproduce the ground-state struc
and to fit the elastic properties and vacancy formation en
gies of the pure elements. One additional parameter in
embedding part determines the mixing enthalpy of the allo
In the case of the Cu-Pd system, the mixing is exotherm
i.e., the cohesive energy is increased by hetero-coordina
of Cu and Pd in the alloy.

To sample the phase space of the system, we use
Monte Carlo algorithm in the isothermal-isobaric ensemb5

All simulations are performed at zero pressure. The unc
strained variation of all the parameters defining the simu
tion cell sometimes makes it difficult to identify the resultin
structures, especially at high temperatures, for which sh
fluctuations can be large. To circumvent this problem,
explore the phase diagram by a series of simulations
which the system volume is allowed to change at fixed sh
of the simulation cell.6 This constraint extends the~meta-!
stability of each structure up to the melting point, and allo
us to compute the free energy of each solid phase ov
wide temperature range. This computation is complemen
by a series of unconstrained isothermal-isobaric runs,7 in or-
der to check the ability of the system to transform from o
metastable phase to the stable one, and to rule out the p
ence of unexpected structures.

Since the order-disorder transition is a crucial compon
of the phase transformation, and inter-diffusion does not
cur in the solid phase during runs of practical length,
sample the atomic exchange processes by attempting to s
the position of a pair of atoms chosen at random and belo
ing to the two different atomic species.

Simulations are performed for samples of 1024 atom
within a cubic cell in the case of the B2 phase, and a tetr
onal cell withc/a5A2 for the disordered fcc solution. Thi
value for thec/a ratio has been chosen in such a way that
two simulation cells are related by the well-known Ba
transformation between the bcc and the fcc structures.8 Most
runs extend over 107 single atom moves,9 with volume
24 ©2000 The American Physical Society
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changes and atom pairs interchanges attempted, on ave
every 200 single atom steps. Thermal averages are accu
lated over the last 4 106 steps of the runs. In most cases, t
statistical uncertainty on the internal energy per atom is
the order of 5 K. For the B2 phase the estimated error ba
twice as large in the interval 600 K<T<900 K, tempera-
tures at which the atomic exchanges are already impor
but still difficult to sample.

RESULTS

As a first step, we compute theT50 K phase diagram o
CuxPd(12x) as a function of composition in a wide interv
aroundx50.5. For several 0.30<x<0.70, we compare the
potential energy of the ordered B2 and random fcc alloy.
the B2 case, forxÞ0.5 we start our computation by assum
ing that the majority element fully occupies one of the tw
cubic sublattices, while the excess concentration appea
anti-site defects on the other sublattice.

All systems are equilibrated at lowT (T5100 K) by the
Monte Carlo ~MC! procedure described above~including
atom pair exchanges! before their energy is minimized. Th
results for the excess energy of mixing atT50, defined by

Emix~x!5E~x!2xE~Cu!2~12x!E~Pd!,

@whereE(x), E(Cu), andE(Pd) are the cohesive energie
per atom of the alloy and of the pure metals, respectively# are
reported in Fig. 1.

It is apparent~and was already well known! that the po-
tential energy gain in mixing Cu and Pd is the driving for
for the stability of the B2 phase, which, being based on
bcc lattice, provides atx50.5 the optimal hetero-
coordination of each atom. By contrast, the same energy
cannot be obtained by the fcc lattice, because, in this cas
x50.5 it is impossible to surround each atom by a nea
neighbors’ shell of hetero-atoms.

We observe that, despite the high degree of disorder in
fcc solid solution, non-negligible correlations do exist in t
atomic distribution of the optimized structures, since ax
50.5 the fcc alloy with completely random distribution o

FIG. 1. Excess energy of mixing~see text! at T50 K for the
ordered B2~full line! and disordered fcc~dash line! phases as a
function of concentration. The shading identifies the stability ran
for the B2 phase.
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Cu and Pd~i.e., produced in the same way as describ
above, but with random atom exchanges! has an energy 0.02
eV/atom higher than that of the annealed fcc sample.

As apparent from Fig. 1, the EAM predicts the stability
the B2 phase atT50 K for concentrations 0.31<x<0.63.
This results is in qualitative agreement, but apparent qua
tative disagreement with the experimental phase diagr
according to the data reported in Ref. 2, the B2 phase
stable forx between 0.42 and 0.72.10 The reasons for this
disagreement are discussed below.

As a second stage, we perform a series of simulations
the system at 0<T<1500 K, with the CsCl and disordere
fcc structures. The internal energy as a function of tempe
ture U(T) is reported in Fig. 2. In the case of the bcc stru
ture,U(T) has a clear deviation from linearity starting fro
;700 K, corresponding to the onset of the order-disor
transition. The specific heatCp(T) of the B2 phase, com-
puted by differentiation of a Pade´ fit for U(T),11 displays a
peak centered atT;940 K ~See the inset of Fig. 2!, that we
identify with the order-disorder transition temperature for t
bcc lattice ~according to the data reported below, the b
lattice is only metastable at this temperature!. The fcc phase
does not have such a sharp transition, and the correspon
U(T) is almost linear over the entire temperature range.

The determination of the relative stability of the B2 an
fcc phases requires the computation of their free-energy
ference as a function of temperature. In particular, we n
to evaluate the difference of their entropies, that we comp
via the relation

Sbcc~T!2Sf cc~T!5Sbcc~T0!2Sf cc~T0!

1E
T0

T Cp
bcc~T8!2Cp

f cc~T8!

T8
dT8. ~2!

e

FIG. 2. Average potential energy~per atom! as a function of
temperature at compositionx50.5. Full line: B2 phase; dash line
disordered fcc phase. The zero of the energy is set equal to thT
50 K energy of the B2 structure. Inset: constant pressure-spe
heat of the B2 phase.
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Since the specific heats of both phases tend to the same
monic limit at lowT, Eq. ~2! is well behaved at any tempera
ture, and provides a well-defined entropy difference forT
→0 K, even in the classical mechanics formulation und
lying our simulation results. For the same reason, the entr
difference atT50 K can be attributed to the mixing contr
bution only. The consistent choice of this integration co
stant requires some care, because at low temperature the
tribution of Pd and Cu on the fcc lattice is neither order
nor fully disordered. However, we can assume that the m
ing is fully random atT51500 K, and, therefore, we can s
Smix

f cc(1500 K)52KB@x logx1(12x)log(12x)#. Then, the
mixing entropy at any temperature lower thanT51500 K is
obtained by computing the average potential ene
U f cc2rand(T) for an artificial fcc phase with random ex
changes of the atoms, and using a relation analogous to
~2!:

Smix
f cc~T!2Smix

f cc2rand~T!

5Smix
f cc~1500 K!2Smix

f cc2rand~1500 K!

2E
T

1500 KCp
f cc~T8!2Cp

f cc2rand~T8!

T8
dT8

where, for any T, Smix
f cc2rand52KB@x logx1(12x)log(1

2x)#, and, as explained above, alsoSmix
f cc(1500 K) is as-

sumed to be equal toSmix
f cc2rand . These considerations allow

us to computeSbcc(0 K)2Sf cc(0 K), and to use eq.~2!
with T050 K.

The results for the Gibbs’ free-energy differen
@DG(T)# of the B2 and random-fcc phases are reported
Fig. 3: the conspicuous potential energy advantage of the
phase atT50 is progressively compensated by the mixi
entropy of the fcc alloy, which is the major reason for t
linear behavior ofDG(T) at low T. The compositional dis-
ordering of the bcc-based alloy, starting atT;700 K, slows
down the free-energy gain of the random fcc phase, bu
comes too late to prevent the crossing of the B2-random
free energy that occurs atTB5750 K. Considering the sim

FIG. 3. Difference in the Gibbs free energy~per atom! of the B2
and disordered fcc phases as a function of temperature at com
tion x50.5.
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plicity of the EAM model, this result is in surprisingly goo
agreement with the experimental transition temperature
770 K atx50.5

The computation shows that the transition is weakly fi
order, with a minor volume change (2@VB22Vf cc#/@VB2

1Vf cc#50.1%), and a significant discontinuity in the co
stant pressure-specific heat (2@Cp

B22Cp
f cc#/@Cp

B21Cp
f cc#

50.25).
To check the validity of this description of the transfo

mation, we performed extensive MC simulations forT>TB
upon removing the constraint of fixed shape for the simu
tion box, starting from both the bcc and the fcc lattices. O
simulation runs of considerable length (20 106 single-atom
MC steps!, we do not observe the spontaneous transform
tion of one structure into the other, suggesting that the t
phases are separated by a sizable free-energy barrier
evaluate this barrier, we reintroduced the constraint of fix
shape for the simulation cell, and we performed a new se
of simulations for tetragonal boxes with three values of
c/a ratio (c/a51.1, 1.2, and 1.3! intermediate between th
bcc (c/a51) and the fcc (c/a5A2) cases. The free-energ
difference of these artificial phases with respect to the
and random-fcc structures is evaluated in complete ana
with the procedure described above. This computation c
firms the presence of a free-energy barrier separating the
from the random-fcc phase, that atTB is equal to 80 K per
atom, and never becomes smaller than 50 K over the inte
TB<T<1500 K.

As a final stage of our computational study, we inves
gate the dependence of the transition temperature on com
sition x. On the one hand, it is apparent already from Fig
that the potential energy advantage of the B2 phase decre
rapidly in moving away from thex50.5 composition. On the
other hand, also the mixing entropy that stabilizes the r
dom fcc structure has a maximum at the stoichiometricx
50.5) composition, and it is not obvious which contributio
will prevail at TÞ0 and xÞ0.5. Explicit simulations~fol-
lowing the same procedure of thex50.5 case! show that the
energy dependence onx is, by far, the dominant factor. More
precisely, the decomposition of thermal effects into a mixi
contribution and a remainder~due to the phonons!, shows
that the phonon contribution to the entropy and to the av
age potential energy is rather similar in all the phases
volved, and, to first approximation, the transition tempe
ture is determined by the equality:TB(x)Smix

f cc(x,T50 K)
5U f cc(x,T50 K)2UB2(x,T50 K). Moreover, since the
dependence of mixing entropy on concentration is very w
aroundx50.5, the transition temperature follows closely t
behavior of the potential energy differenceDU(x)
5U f cc(x,T50 K)2UB2(x,T50 K). For instance, atx
50.58, which corresponds to the highest transition tempe
ture measured by experiments, the computedTB is already
reduced to 300 K, in apparent disagreement with the exp
mental data.

DISCUSSION

The analysis of the computational results shows, at fi
that the EAM is remarkably successful in reproducing t
qualitative features observed in the experimental phase
gram: the B2 phase is stable at low temperature arounx

si-
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50.5, and transforms with increasing temperature to
disordered fcc structure. Moreover, as described in
appendix, the stability of the L12 phase atx50.75 is also
reproduced by EAM, with a critical temperature for th
order/disorder transition in qualitative agreement with
experimental result. In both cases, the driving force stab
ing the ordered structures is the positive heat of mixing of
and Pd, favoring the optimal alternation of these two e
ments in the alloy.

However, if we look more in detail into the comparison
the computational with the experimental data, we see
EAM is unable to reproduce the maximum in the transf
mation temperature atx;0.58, and, moreover, the temper
ture range of stability for the B2 phase is somewhat und
estimated. More precisely, we find that the bell-shap
region of the (x2T) plane in which the B2 phase is pre
dicted to be stable by EAM is centered aroundx50.5, and
covers a smaller area than the corresponding region repo
in the experimental phase diagram.

In focusing on these points of disagreement, it is imp
tant to identify the problems that are intrinsic to the EA
formulation, and those that, instead, could be eased b
better parametrization of the potential. For instance, the
rametrization of Ref. 4, covering a wide set of different
loys, underestimates the mixing enthalpy of Cu and Pd
nearly 25%~See Table III in Ref. 4!. A better parametriza-
tion for the CuxPd12x system~easily achieved by changin
the single parameter determining the alloy mixing properti!
could bring the maximum transition temperature in bet
agreement with the experimental result for both thex50.5
andx50.75 case.

More important is the problem related to the asymme
of the stability region aroundx50.5, that is not quantita
tively reproduced by the EAM formulation, and does n
seem to be affected by any of the parameters defining
potential of Ref. 4. Previousab-initio computations3 reveal
that the electronic structure of CuxPd12x alloys is fairly com-
plicated, and the electronic energy is affected by a variety
factors, including Fermi surface effects, which are stron
v.
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dependent on the band filling~i.e., onx), relativistic effects
~mainly spin-orbit interactions!, etc. These features are no
and cannot be, fully included in a simple model like EAM
that implicitly assumes a spherical Fermi surface and a sc
matic description of the electronic density of states.

However, the inclusion of these effects into slightly mo
sophisticated models~like the modified EAM,12 the corrected
EAM,13 or the EAM including low-order moments of th
electron density of states14! is possible, at least to some de
gree of approximation. Then, the bainitic transformation
CuxPd12x , described fairly well by the zero-order mode
but displaying also sizable differences with the experimen
data, could provide an ideal testing ground for the extens
of these methods to alloys.
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APPENDIX

To complete the overview of the phase diagram of Cu-
we investigated the transition from the L12 phase to the dis-
ordered fcc alloy forx50.75. The simulation has been pe
formed following exactly the same method described abo
assuming a cubic simulation box with 864 atoms, and a v
able volume to enforce theP50 condition. The resulting
potential energyU displays, as a function ofT, a clear linear
behavior both at low and at high temperatures, with a cro
over starting atT;400 K and culminating atT;500 K.
The specific heat, obtained by differentiating a Pade´ fit for
U(T), has a broad but apparent peak centered aT
5470 K, that we identify with the order-disorder transitio
temperature. This result has to be compared with the exp
mental phase diagram, displaying a transition temperatur
730 K at x50.75, and a stability region for the L12 phase
centered atx;0.82, with a maximum transition temperatu
of 770 K.
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