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Conditions for static friction between flat crystalline surfaces
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The conditions for the presence of static friction between two atomically smooth crystalline surfaces are
investigated. Commensurate and incommensurate walls are studied. While two commensurate walls always pin
at zero lateral force and positive pressures, incommensurate walls only pin if mobile atoms are present in the
interface between the surfaces or if the solids are particularly soft. Surprisingly, static friction can be observed
between rigid surfaces, either commensurate or incommensurate, that are separated by a freely diffusing fluid
layer.
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I. INTRODUCTION

Recent studies have revealed interesting transitions in
shear response of many fluids when they are confined
tween crystalline surfaces that are only a few nanome
apart.1–10 Even though thick films are simple fluids at th
imposed pressure and temperature, a yield stress or s
friction is observed when the film thickness is decreased
few molecular diameters. This is generally assumed to refl
a transition to a solid-like state of the film due to the boun
ing walls. In some experiments there is a continuous div
gence of the viscosity and relaxation time that is typical o
bulk glass transition.9 Other experiments show a sharp ons
of the yield stress that is more akin to a first-order liquid
crystal phase transition.10 Simulations have found both type
of transition depending on factors such as the relative siz
wall and fluid atoms and the molecular structure of t
fluid.4,5 They also reveal that solid films transform back in
a fluid state when the yield stress is exceeded, explaining
stick-slip motion observed in some experiments.2,11

There is, however, an important difference between m
simulations1–6 and experiments.7–10 Surfaces used in com
puter simulations are typically commensurate, i.e., sh
common periodicities. In fact, most simulations use iden
cal, aligned crystals for the two walls. Many also set t
number of atoms between the surfaces to an integer mul
of the number of atoms in one surface layer, facilitating
formation of ideal crystals. This cannot reflect typic
experiments—even those between nominally identical s
faces. The reason is that the crystallographic orientation
the surfaces is rarely controlled, and any small orientatio
misfit between otherwise identical surfaces makes th
incommensurate.12,13 There is no well-defined crystallin
state of the film that can simultaneously lock into regis
with two incommensurate surfaces. Some of the interacti
between the wall and fluid atoms must be frustrated, and
dynamics and statistical properties of the system may be
tered qualitatively due to this frustration.

The contrast between commensurate and incommens
cases can be illustrated by considering a submonolayer
of molecules between two identical crystalline surfaces in
PRB 610163-1829/2000/61~3!/2335~8!/$15.00
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limit of high confining pressures where the hard-sphere
teractions between wall and film atoms dominate. If the s
faces are aligned and translated so that all surface atom
directly above each other, they create a periodic array
large openings that can accommodate film molecules. A
relative displacement of the commensurate walls greatly
duces the volume of these openings and is resisted by
hard-sphere repulsion between wall and film atoms. This
be expected to prevent translation of one wall relative to
other until a yield stress is exceeded. Note that individ
film molecules should still diffuse freely because there is
finite activation energy for motion between openings. T
diffusion does not affect the equilibrium positions of th
walls because all openings are equivalent.

The situation is very different when the walls are ma
incommensurate by a relative rotation. Because the w
share no common periodicity, all possible relative positio
of atoms on the two surfaces are sampled with equal pr
ability. Each opening is slightly different and all displac
ments of the walls produce the same distribution of op
ings. It is well known that this symmetry under translatio
can lead to a vanishing yield stress and free diffusion of
walls in the absence of a thin intervening film.12,13However,
recent computer simulations14 indicate that a film can pin
incommensurate surfaces together, providing a natural ex
nation for the observation of static friction in experiments

The simple picture for submonolayer films is that mo
ecules search out the best set of openings for the given
positions. They then resist translation of the walls beca
these openings will be constricted by any translation.
though there is an equivalent set of openings after tran
tion, these may be far away and only reached via a comp
coordinated reshuffling of the molecules with a large acti
tion free energy.

This type of pinning is much more subtle than that b
tween commensurate walls, and one may wonder wheth
persists in the thermodynamic limit. For example, diffusi
of individual molecules necessarily takes them to inequi
lent openings where they produce a different force on
walls. This will lead to a small displacement of the walls
any finite system, and accumulated motion of individual fi
2335 ©2000 The American Physical Society
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molecules might cause gradual diffusion of the walls t
remains relevant in the thermodynamic limit.

In this paper we will investigate the conditions that det
mine whether two surfaces are pinned together in the t
modynamic limit. The most sensitive technique is to consi
the case where no force is applied in the direction tangen
to the walls, and to measure the relative displacement of
walls as a function of time. Finite systems will always sho
diffusion at sufficiently long times due to thermal activatio
just as the magnetic moment of finite systems will alwa
change sign. Hence it is crucial to consider the scaling of
mobility of the walls with system size in order to determi
the behavior in the thermodynamic limit.

We present results for commensurate and incomme
rate walls as a function of temperature and normal press
In each case we compare results for bare walls to results
walls separated by a submonolayer film. We find that b
commensurate and incommensurate walls remain pin
even when the film molecules diffuse freely. One may exp
that incommensurate walls undergo a transition from pin
to unpinned with increasing temperature or decreasing p
sure, but it is difficult to identify the transition with availabl
system sizes. A general argument is presented that comm
surate walls are always pinned even as the film becom
nearly ideal gas, although the pinning force may beco
exponentially small. Thus observation of static friction b
tween two commensurate crystals need not imply that
intervening film is solid as is often assumed.

In the next section we describe the model used in
simulations and the averaging techniques. Section III p
sents results for commensurate and incommensurate w
with and without monolayer films. Our conclusions are su
marized in Section IV.

II. METHOD

In this study, we have used the same model as in Ref.
The walls are@111# surfaces of an fcc crystal, and therefo
have a triangular lattice structure. Atoms in the walls a
coupled to their equilibrium lattice sites by springs of sti
nessk. In the limiting case of rigid walls, the coupling i
considered infinitely strong,k5`, and the atoms are con
strained to their equilibrium positions. Periodic bounda
conditions are applied in the plane of the walls. The coor
nate system is chosen so thatx̂ and ŷ are in the plane of the
walls andẑ is normal to them.

The molecules between the walls are short chains, e
containing six monomers. All monomers interact with ea
other and with wall atoms via a truncated Lennard-Jo
potential,

V~r !54e@~s/r !122~s/r !6#1Vc , ~2.1!

where r is the separation, ande and s are characteristic
energy and length scales, respectively. Wall atoms from
posing surfaces interact via the same Lennard-Jones po
tial. The potential is cut off atr c and shifted byVc so that
V(r c)50. Adjacent monomers on a chain interact via
additional FENE potential15

VCH~r !52~1/2!kR0
2 ln@12~r /R0!2#, ~2.2!
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whereR051.5s andk530e/s2. All quantities are expresse
in units of s, e, and the massm of one monomer. The
characteristic time istLJ[Ams2/e. Unless stated otherwise
r c521/6s.

The lattice sites of the bottom wall are fixed, while the t
wall is allowed to move under the combined influence of t
force from the coupling springs and an external force on e
lattice sitefW . A constant external forcef z is applied normal
to the top wall, and the tangential components of the exte
force fW i are set to zero to allow free diffusion in the plane
the walls. We choose a mass of the top wallMw that is only
half the combined mass of one layer of atoms. This cho
allows the top wall to respond more rapidly than if w
choose a more physical mass of several layers. Trans
state theory and corrections to it show that the rate at wh
energy barriers are crossed scales asA1/Mw to leading
order.16 By using a lighter mass we speed the calculatio
without changing the qualitative behavior.

Both the diffusion of the top wall and the diffusion o
individual monomers are monitored. The mean-squared
placements alongx̂ and ŷ are calculated separately, and th
averaged to get̂ dx2(t)&, the mean-squared displaceme
along a single coordinate after a timet. The results are also
averaged over at least eight independent intervals of lengt.

The equations of motion are integrated using a fifth-or
predictor-corrector method with time stepDt50.005tLJ . The
temperatureT is controlled by coupling the monomers, an
wall atoms if mobile, to a Langevin thermostat.17 The fric-
tional force in the Langevin equation is2gmv wherev is
the instantaneous velocity andg is the damping rate. We us
g52tLJ

21 so that the motion of the particles is well into th
underdamped regime. A small additional damping with r
0.05g was added to the center of mass of the top wall. Th
dampings fix the free diffusion of the top wall in the absen
of any interactions with the bottom wall atD0
5kBT/2.05gMw , wherekB is Boltzmann’s constant. Note
that the denominator gives the ratio of damping force
velocity for uniform motion of the top wall.

III. RESULTS

We will present results for the simplest choices of co
mensurate and incommensurate walls. In all cases the
and bottom walls have the same structure and near
neighbor spacing,d51.209s. The size of the surfaces wil
be expressed in terms of the numberN of atoms per layer of
wall atoms. The areaA is given byA5NA3d2/2. Thus to
convert between the force on each atom and a pressur
shear stress, values offW should be divided by 1.266s2.

In the commensurate case the walls are perfectly align
as if a single crystal had been cut in two at the interface. T
incommensurate case corresponds to rotating the top wa
90° relative to the bottom wall. However, the walls must a
be distorted slightly in order to conform to the same perio
boundary conditions. This means that the walls are not tr
incommensurate, but the residual commensurability does
appear to influence the results. As discussed below,
amount of the distortion and the difference from ideal inco
mensurate surfaces decrease with increasing system siz

For each choice of walls we will first consider the limitin
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case of rigid walls with no molecules in between. Then
constraint of rigidity is relaxed, and finally molecules a
introduced between the surfaces. The presence of a
monolayer film is enough to move the walls far enough ap
that there are no direct interactions between them. Any p
ning must be mediated through interactions with the film

The key question is to determine whether there is a
tential that pins the lateral position of the top wall relative
the bottom wall. We define the following time-depende
measureD̃(t) for the mobility of the top wall at timet:

D̃~ t !5
^dx2~ t !&

2tD0
, ~3.1!

whereD0 is the free diffusion constant of the top wall and
included to remove the trivial decrease in diffusion due
increasing wall mass asN increases. The top wall is pinned

D̃5 lim
t→`

lim
N→`

D̃~ t ! ~3.2!

tends to zero. IfD̃ remains finite, the wall is unpinned an
the productD̃D0 can be interpreted as the long time diff
sion constant of the top wall.

A. Commensurate walls

1. Bare surfaces

If the surfaces are infinitely rigid, the only degrees
freedom are associated with the location of the center
mass of the top wall. Each atom on the surface of the
wall ‘‘feels’’ exactly the same potential and force from a
oms in the bottom wall. The total force on the center of m
coordinate is a periodic function of the lateral displacem
that grows linearly withN. In the thermodynamic limit, an
infinite activation energy is needed to displace the wall a
there can be no diffusion.

Relaxing the constraint of infinite rigidity does not chan
the linear scaling of activation energy withN, although it
may lower the prefactor. In our system, decreasingk allows
atoms to translate relative to the center of mass coordina
order to lower their energy. There is no change in the gro
state energy, but the energy of transition states is decrea
At finite temperature, thermal displacements further decre
the activation free energies. Due to the strictly harmonic
ture of the springs, the motions of the independent atoms
incoherently to yield a single effective Langevin noise a
damping term on the center of mass. Thus the problem m
into diffusion of a single, damped particle in a periodic p
tential U, where U depends on the temperature, pressu
andk.

Diffusion in a periodic potential has been studied in gr
detail by a number of authors.18,19 The general trends ar
illustrated by the results for the simple case of diffusion o
particle in a one-dimensional sinusoidal potential with ac
vation energy DF. In this case the diffusion constan
satisfies18

D5D0@ I 0~DF/2kBT!#22 ~3.3!

whereI 0 is the modified Bessel function. WhenDF/2kBT is
small, the particle diffuses almost freely:
e
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D'D0@12~DF/kBT!2/8#. ~3.4!

In the opposite limitDF/2kBT@1, the diffusion is activated:

D'D0~DF/2kBT!exp~2DF/kBT!. ~3.5!

Since DF increases linearly with the area of the wall, th
motion will always be activated for large enough syste
sizes, and will vanish exponentially in the thermodynam
limit. However, one may need very large system sizes
reach this limit for reasonable parameters.

Figure 1 shows the mean-squared displacement of the
wall ^dx2(t)& as a function of time forf z51.2e/s, kBT
50.8e, and the indicated wall sizes. The mean-squared
placements are multiplied byN to remove the trivial depen
dence on wall mass. This collapses the data at early tim
where the walls move ballisticallŷdx2(t)&}t2. At longer
times the smallest system shows a simple crossover to d
sive motion,̂ dx2(t)&52Dt. The value of the diffusion con-
stant is nearly equal to the value for free diffusion,D0. As N
increases, a plateau develops between the ballistic and d
sive regions, and the diffusion constant decreases. ByN
5144 the wall is completely pinned over the length of t
simulation, although any finite system will eventually di
fuse. These results are just what would be expected from
~3.3! with DF}N. For small systems,DF/2kBT may be so
much less than unity that free diffusion is observed. Ho
ever asN increases, the motion becomes activated, andD
drops precipitously.

Figure 2 illustrates this behavior for a number of norm
forces. The diffusion constant is plotted as a function of
number of atoms in a wall layerN for k5100es22 and
kBT50.8e. The free diffusion constantD0 is indicated by a
solid line. In each case,D was evaluated from the timet1 to
diffuse a distances along one of the coordinates parallel
the walls using the relationD5s2/2t1.

At the lowestf z andN, D decreases roughly as 1/N and is
nearly equal to the value for free diffusion. AsN increases,
there is a rapid drop inD, indicating a crossover to activate
behavior. The success of Eq.~3.3! in describing this cross-
over is illustrated by fits to the results forf z50.1 and 0.3e/s
~broken lines!. Increasingf z moves the crossover to act
vated behavior to lowerN, indicating thatDF rises withf z as
well asN. This is entirely consistent with the linear relatio

FIG. 1. Mean-squared displacement of top wall along a sin
coordinate,̂ dx2(t)&, as a function of timet for commensurate walls
of the indicated sizes. Displacements are multiplied byN to remove
the trivial dependence on wall mass. Heref z51.2e/s and kBT
50.8e.
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2338 PRB 61MARTIN H. MÜ SER AND MARK O. ROBBINS
between static friction and pressure that is found for co
mensurate surfaces20 and for incommensurate surfaces sep
rated by adsorbed layers.14

The main lesson to be learned from Fig. 2 is that while
is easy to determine that a system is pinned, there is
simple way to prove that a system is unpinned in the th
modynamic limit. Relatively large systems can appear to
fuse freely, even under conditions where systems bec
pinned in the thermodynamic limit. The reason is that
activation energy forf z50.1e/s is small, which is due to the
large average distance between the walls^Dz&51.214. This
value exceeds the value for the interaction cutoff radius
r c521/6. Thus the probability of an atom in the top wa
having a nonzero interaction with the bottom wall at a
given instant is very small.

2. Submonolayer lubrication

The two commensurate walls considered here con
32332 atoms in each surface. The film in between cons
of 42 chain molecules each containing six monomers. T
corresponds to 1 monomer for every 4 atoms on each w
and is roughly 1/4 of an equilibrium monolayer. The botto
wall is fixed and the normal force on each atom in the
wall f z510e/s. This corresponds to a normal pressurepz

57.96e/s3. The tangential forcefW i50W , andkBT50.8e. For
comparison, we note that the triple point of monomers w
long-range interactions (r c→`) is at kBT50.7e.

In Fig. 3, the motion of the top wall is compared to th
motion of individual monomers in the chain molecules. T
interpretation of the dynamics of the monomers in Fig. 3
as follows. For timest,531022tLJ the monomers are in th
ballistic regime^dx2(t)&}t2. For times 0.5,t/tLJ,103, the
monomers exhibit subdiffusive behavior that indicates th
are initially trapped near a single energy minimum in t
periodic potential provided by wall atoms.21 At t5103tLJ , a
monomer has typically moved 1s, which approximately cor-
responds to the distance between two equivalent minim
the periodic potential. At longer times the motion of th
monomers approaches diffusive behavior, where the me
squared displacement grows linearly with time. Thus
monomers act like particles in a lattice gas, hopping betw
minima in the wall potential.

During the entire length of this simulation the top wa
remained stuck in one minimum and no diffusive behav

FIG. 2. Diffusion constant calculated from the time to move
s as a function of the number of atoms per wallN at the indicated
values off zs/e andkBT50.8e. A solid line shows the free diffu-
sion constantD0. Dashed and dot-dashed lines show fits to Eq.~3.3!
for f z50.1 and 0.3e/s, respectively.
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could be observed. Oscillations around the equilibrium po
tion led to a mean-squared displacement that saturate
5.031025s2. This and the temperature can be used to e
mate the effective spring constant for the local free ene
minimum of keff515.6e/s2 per wall atom. An estimate o
the static frictionFs in thex direction can then be obtained
one makes the simplest assumption for the form of the p
odic variation of free energy withx, leavingy unconstrained.
The period is given by the distance alongx to the nearest
equivalent minimum. For a triangular surface this is half
the nearest-neighbor spacingd. Using a single Fourier com
ponent to represent the free energy we haveF̃(x)
52F̃1 cos(4px/d). The static friction is given by the maxi
mum force, i.e., the maximum of the first derivative ofF̃.
The maximum of the second derivative giveskeff . Using this
and the value ofkeff from above, we obtainFs5keffd/4p
51.5e/s. This agrees quite well with the actual frictio
force ofFs'1.4e/s that we obtained in an independent ru
However, we note that our arguments are too rough to exp
this level of agreement, because geometrical factors
higher harmonics in the free energy have been left out.

The walls never approached close enough to interactdi-
rectly. Hence, the pinning of top and bottom wall was me
ated by the film in between, which was freely diffusing in
lattice-gas-like state. This result may seem rather counte
tuitive. The observation of a yield stress in surface for
apparatus experiments7–10 is often assumed to imply that th
thin film confined between the surfaces has entered a s
state. This clearly need not be the caseif the two surfaces are
aligned into a commensurate configuration. More genera
the ability of crystals to resist shear does not depend o
lack of diffusion, but rather the presence of long-range or
that produces Bragg peaks. In certain crystals, e.g., io
conductors, the diffusion of some species can be quite ra
As long as the density modulation measured by the Br
peaks remains, the system can resist shear.

A simple argument shows that two commensurate w
should be pinned in the thermodynamic limit at allT and f z .
The reason is that the periodic potential of a single w
induces a commensurate density modulation parallel to
wall in an adjacent film.22 The magnitude of the densit
modulation will decrease exponentially with distance fro
the wall, but remains finite. If there is a commensurate w
at some distanceh, the energy will necessarily depend on th

FIG. 3. Mean-squared displacement along a single coordin
^dx2(t)&, of individual monomers and of top wall as a function
time t at f z510e/s and kBT50.8e. The walls are commensurat
andN532332.
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PRB 61 2339CONDITIONS FOR STATIC FRICTION BETWEEN FLAT . . .
registry between the density modulation and the wall latti
Thus there will always be a periodic force that pins the w
and that grows linearly with system size. However, the f
energy barrierDF will decrease exponentially withh, and
the size of the system must increase proportionately in o
to reach the thermodynamic limit. Our conclusions are c
sistent with simulations by Curryet al.,6 who considered
films that were several layers thick and found a perio
pinning force even when there was rapid diffusion within t
film.

Figures 4 and 5 show that simulations with afixedsystem
size exhibit anapparenttransition from pinned to depinne
as f z decreases orT increases. The mean-squared displa
ment after 2000tLJ is plotted as a function off z or T. At low
f z or high T the mean-squared displacement is consis
with the value for free diffusion,̂ dx2&'10s2. Thus for
these parameters and at this system sizeDF is much less
thankBT @Eq. ~3.3!#. However, as noted for dry commens
rate walls, this is not enough to establish that the sys
remains unpinned in the thermodynamic limit. IfDF di-
verges in the limitN→`, the system will be pinned in the
thermodynamic limit. Our results are consistent withDF
}N at all f z and T. Simulations with largerN show a con-
sistent shift of the apparent transition to free diffusion
lower f z and higherT.

B. Incommensurate walls

1. Bare surfaces

Models of the friction between two surfaces with differe
length scales are generically referred to as Fren

FIG. 4. Mean-squared displacement of top wall along a sin
coordinate,̂ dx2(t)&, after time t52000tLJ as a function off z at
kBT50.8e. The walls are commensurate andN532332.

FIG. 5. Mean-squared displacement of top wall along a sin
coordinate,̂ dx2(t)&, after timet52000LJ as a function ofT at f z

50.75e/s. The walls are commensurate andN532332.
.
ll
e

er
-

c

-

nt

m

l-

Kontorova ~FK! models and many examples have be
studied.12,13In the limit of infinite, perfectly rigid walls it can
be shown that the free energy barrier for sliding motion
exactly zero if the walls are incommensurate.12,13 Thus the
top wall will diffuse freely in the thermodynamic limit. Fi-
nite systems with periodic boundary conditions, like tho
considered here, can never be perfectly incommensurate.
order of commensurability can be measured by the sma
integerq that allows the ratio of lattice constants to be e
pressed asp/q, where p is also an integer. Theoretica
calculations13,23 suggest thatDF vanishes exponentially fas
with increasingq. If the highest possible value ofq is chosen
for each system size, then the total value ofDF should
vanish in the thermodynamic limit at least as fast
c1N exp(2Ac2N), where theci are constants. Thus ou
simulations should show the same behavior as truly inco
mensurate systems in the thermodynamic limit.

As the constraint of perfect rigidity is relaxed, it becom
possible for two incommensurate walls to lock into a co
mon periodicity.12,13There is a transition at a critical value o
the ratio of the strength of the intersurface potential to
internal stiffness of the walls. This would correspond to t
ratio DF/Ns2k in our simulations. The critical value de
pends on the shape of the potential and the ratio of lat
constants, and has mostly been determined for o
dimensional systems.

To illustrate this behavior we consider two incommens
rate walls of size 31336 atoms and vary the wall stiffnessk.
One wall is rotated by 90° with respect to the other wa
Then small strains are applied to make the resulting surfa
square so that they share the same periodic boundary co
tions. Unlike the other simulations presented here, we us
long cutoff radius,r c52.2s, for the Lennard-Jones potentia
between atoms on different walls. One consequence of th
that there is an effective normal force on each atom due
the adhesion of the surfaces that is of ordere/s. We used a
small external forcef z50.1e/s and a low temperaturekBT
50.1e so that thermal fluctuations are small.

In Fig. 6, the mean-squared displacement of the top w
is plotted against time. Fork<10e/s2 the top wall is pinned
and the mean-squared displacement saturates at a very
fraction of a lattice constant. Direct observations of atom
positions show that atoms have undergone large rearra
ments from their initial lattice sites in order to lock togeth

e

e

FIG. 6. Mean-squared displacement of top wall along a sin
coordinate,̂ dx2(t)&, as a function of timet for different couplings
k of wall atoms to their equilibrium positions. HerekBT50.1e,
f z50.1e/s, and r c52.2s. The walls are incommensurate andN
531336.



io

on
rs

e
ha
th
it
te

ite

t
rd
b

e
es
se

a
no
w

th
or
d
th

a
r

as
i

e
e
W
ar

of
m

e
ch
rate
pro-
ar-

ate
rge

and
e is
ers

the
ess
lso
ive

es
ve
-
u-
or

by a
e.

tran-

lace-

at
of

gle

-

gle

2340 PRB 61MARTIN H. MÜ SER AND MARK O. ROBBINS
in a free energy minimum. For allk>25e/s2, the walls
follow nearly identical curves, and the asymptotic behav
is consistent with the free diffusion constantD0. Note that
there is a smooth crossover from ballistic to diffusive moti
with no subdiffusive regime like that found for monome
between commensurate walls~Fig. 3!. This indicates that
there is no potential well that temporarily locks the surfac
together.21 Our results for commensurate systems show t
the above findings are not enough for us to conclude that
top wall would remain depinned in the thermodynamic lim
at k>25e/s2. However, in contrast to the commensura
systems, increasing the system size does not change
value ofk where the transition occurs. If there was a fin
DF that scaled withN this shift would be evident.

We can use the Lindemann criterion to estimate whak
should be in order to model a Lennard-Jones crystal. In o
to have an rms displacement of 10% of the nearest-neigh
spacing at the triple point (kBT50.7e), we must havek
'140e/s2. This is well into the range of values where w
find free diffusion. In order to see pinning for realistic valu
of k, the interaction between the walls must be increa
relative to that within the walls~i.e.,k). This can be done by
increasing the normal force.

Note that our use of springs connected to lattice sites is
Einstein approximation to an elastic crystal and does
treat long-wavelength elastic deformations accurately. Ho
ever, the displacements required to lock two lattices toge
have relatively short wavelengths, and simulations with m
accurate elastic models yield the same transition from
pinned to pinned with an increasing ratio between
strength of inter- and intrawall interactions.12,13

2. Submonolayer lubrication

As above, two identical walls were made incommensur
by a rotation of 90°, and then strained slightly to fit squa
periodic boundary conditions. As for the commensurate c
the film contained about 1 monomer for every 4 atoms
each wall layer or about 1/4 of a monolayer. Unless oth
wise noted, the walls contained 31336 atoms each, and ther
were 46 film molecules containing six monomers each.
chose to consider the most difficult case for pinning b
surfaces, completely rigid walls (k5`).

We first compare the diffusion of the top wall to that
individual monomers. Figure 7 shows results for the sa

FIG. 7. Mean-squared displacement along a single coordin
^dx2(t)&, of individual monomers and of top wall as a function
time t at kBT50.8e and f z510e/s for incommensurate walls with
N531336.
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parameters (f z510e/s, kBT50.8e) as the commensurat
system of Fig. 3. Note that individual monomers are mu
less mobile at long times when between the incommensu
walls. Presumably this is because commensurate walls
duce long channels of relatively wide openings between p
allel lines of atoms on opposing walls. Incommensur
walls produce a more random environment with fewer la
openings between atoms on opposing walls.

The incommensurate walls themselves move further
more rapidly than commensurate walls. As a result ther
no clear time separation between the motion of monom
and walls in the incommensurate case at thisN. Over the
time interval shown the top wall appears pinned, because
motion is subdiffusive, and the total distance moved is l
than 10% of a lattice constant. The monomers have a
moved less than a lattice constant and exhibit subdiffus
motion.

Figure 8 shows how the diffusion of the top wall chang
with decreasing normal force. As in Fig. 7 the walls mo
ballistically up to a timet'1. The distance traversed in
creases asf z decreases. At longer times, motion is subdiff
sive and the curves are roughly parallel on a log-log plot. F
f z54, the mean-squared displacement can be described
power law ^dx2(t)&}ta, for at least three decades of tim
An exponent ofa50.19460.004 is obtained.

As in the commensurate case, there appears to be a
sition from pinned to depinned asf z decreases orT in-
creases. Figures 9 and 10 show the mean-squared disp

e, FIG. 8. Mean-squared displacement of top wall along a sin
coordinate,̂ dx2(t)&, as a function of timet for two different nor-
mal forces andkBT50.8e. Bottom and top wall are incommensu
rate andN531336. The straight line is a fit to a power lawta with
a50.19460.004.

FIG. 9. Mean-squared displacement of top wall along a sin
coordinate,̂ dx2(t)&, after timet52000tLJ as a function off z at
kBT50.8e. The walls are incommensurate andN531336.
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ment after 2000tLJ as a function off z and T, respectively.
Note that the displacement changes over a somewhat bro
range than in the corresponding figures for the commen
rate walls~Figs. 4 and 5!. The transition is also at a lowerT
and higherf z , indicating that it is more difficult to pin the
incommensurate walls. This is consistent with our studies
the static friction,14 which is roughly proportional toDF. We
found that submonolayer films between commensurate w
gave three to five times larger friction forces than incomm
surate walls under similar conditions.14

To test whether the transition from pinned to depinned
real, we performed simulations with larger walls at the sa
film density. Figure 11 compares results for walls contain
31336 atoms and 62372 atoms at f z52e/s and kBT
50.8e. Note that the monomer diffusion is nearly identic
at the two system sizes, and shows a clear diffusive reg
~slope of one! at the longest times. This implies that th
energy landscape that monomers move through is not in
enced by system size. In contrast, there is a striking
dependence in the dynamics of the top wall. The trivial s
dependence of the free diffusion constant,D0}N, has been
removed by multiplying the mean-squared displacemen
the larger wall by four. This collapses results for differe
sizes in the ballistic regime (t,10tLJ). At larger times the

FIG. 10. Mean-squared displacement of top wall along a sin
coordinate,̂ dx2(t)&, after time t55000 tLJ as a function of tem-
perature for two different system sizes atf z52e/s. The results for
the larger wall were multiplied by a factor of four to remove t
trivial dependence on wall mass.

FIG. 11. Mean-squared displacement along a single coordin
^dx2(t)&, for the top wall~squares! and monomers~circles! at two
different system sizes withf z52e/s and kBT50.8e. The mean-
square displacement of the larger top wall has been multiplied
factor of four to be compatible with the small system in the ballis
regime, and the larger system contained four times as many
molecules~184!.
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smaller wall shows a simple crossover from ballistic to d
fusive motion, while the larger wall shows subdiffusive b
havior and seems to stop moving at long times.~The step in
the data at a few hundredtLJ is a result of a rare, relatively
large displacement of the wall.! This is the same type o
behavior that was seen for increasing system size in c
mensurate systems. It indicates that there is a finiteDF that
grows with N causing motion to stop asNDF rises above
kBT. One can conclude that the incommensurate walls
pinned in the thermodynamic limit for these parameters.

The apparent transition between pinned and depin
states continues to shift to higherT ~Fig. 10! and lower f z
with increasingN for the largest systems we have been a
to study. However, we have no analog of the argument
commensurate walls that suggests that incommensurate w
should be pinned at allT and f z . The density modulation
produced by one wall will be incommensurate with the o
posite wall and produce no net energy shift. Locking b
tween the two surfaces must enter as a higher-order sus
tibility that is difficult to calculate. Forf z!kBT/s the walls
move far apart and the molecules form an increasingly id
gas. It seems reasonable that the depinning force would
ish in the thermodynamic limit under these conditions, b
this remains an open question.

IV. CONCLUSIONS

We have performed a systematic study of the conditio
for pinning of commensurate and incommensurate wa
The case of bare walls is relatively straightforward and h
been considered previously. However, examination of
scaling of the diffusion with system sizeN, temperatureT,
and normal forcef z provides a useful benchmark for ou
studies of submonolayer films. Bare commensurate walls
always pinned by a periodic potential that grows with syst
size. However, relatively large systems can appear unpin
if the potential is small enough. Incommensurate walls
completely unpinned until they become so deformable t
they can rearrange by distances of orders to accommodate
the opposing wall.

Commensurate walls remain pinned when a submo
layer film is introduced between them. A general argum
was given that this pinning should always exist, and o
results show that even when the film becomes a gas the w
do not diffuse in the thermodynamic limit. However, th
pinning is very weak and one has to go to large system s
to detect it. Curry and coworkers have also seen pinning
commensurate walls by diffusing films.6

Introducing a submonolayer film can pin incommensur
walls, even when they are completely rigid. In the Introdu
tion we noted that diffusion of a monomer to an inequivale
site should cause a displacement of the top wall in any fin
system, and wondered whether such displacements migh
cumulate into diffusion of the top wall. However, the mon
mer will in general diffuse to a site that minimizes its ener
for the given position of the top wall, and thus add to t
potential energy barrier that pins it. Our results are consis
with a pinning potential that is linear inN, just as in the
commensurate case. Independent studies of the static fric
as a function of system size confirm this linear relation.14

The behavior of incommensurate walls in the thermod
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namic limit is very important to the study of static friction
since contacting surfaces are almost never commensu
Our studies confirm previous work12,13 in showing that bare
incommensurate walls are very unlikely to exhibit static fr
tion in the thermodynamic limit. Surfaces are also very u
likely to be bare, especially if exposed to air. Our resu
clearly show that even a small fraction of a monolayer
tween the surfaces is enough to produce static friction in
thermodynamic limit. A particularly surprising result is th
the monolayer itself need not be in a crystalline or gla
state. As shown in Fig. 11, molecules may undergo ne
unhindered diffusion and still produce static friction ov
an
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large enough areas. It remains to be seen whether there
transition to a depinned state as the layer is made thicke
lowering pressure, increasing temperature, or introduc
more molecules between the surfaces.
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