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Semiclassical theory of surface plasmons in spheroidal clusters
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A microscopic theory of linear response based on the Vlasov equation is extended to systems having
spheroidal equilibrium shape. The solution of the linearized Vlasov equation, which gives a semiclassical
version of the random-phase approximation, is studied for electrons moving in a deformed equilibrium mean
field. The deformed field has been approximated by a cavity of spheroidal shape, both prolate and oblate.
Contrary to spherical systems, there is now a coupling among excitations of different multipolarity induced by
the interaction among constituents. Explicit calculations are performed for the dipole response of deformed
clusters of different size. In all cases studied here, the photoabsorption strength for prolate clusters always
displays a typical double-peaked structure. For oblate clusters we find that the high-frequency component of
the plasmon doublet can become fragmented in the medium size region (N;250). This fragmentation is
related to the presence of two kinds of three-dimensional electron orbits in oblate cavities. The possible scaling
of our semiclassical equations with the valence electron number and density is investigated.
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I. INTRODUCTION

Complex many-fermion systems such as atomic clus
and nuclei exhibit both spherical and deformed equilibriu
shapes. Deformation of the ground state gives rise to obs
able effects in the excitation spectrum of these systems,
the splitting of the giant dipole resonance in deformed nu
most likely being the best well-known feature.1 Based on the
close analogy that exists between the nuclear giant dip
resonance and the cluster surface plasmon, a similar spli
is expected and has indeed been observed in atomic clu
~see Refs. 2 and 3 for reviews of experimental and theor
cal work!. A spheroidal deformation~prolate and oblate! is
often sufficient to explain data in both nuclei and atom
clusters although recent jellium model calculations4 also sug-
gest more complicated shapes for the latter.

Clemenger5 has used a deformed oscillator model, whi
is inspired by the Nilsson model of nuclear physics,6 to de-
scribe deformed clusters. However, Strutinsky, Magn
Ofengenden, and Do”ssing7 pointed out that the oscillator po
tential is somewhat special and argued that a spheroidal
ity would give a more realistic description of the equilibriu
mean field~in nuclei, but the same is true for large atom
clusters!. Actually, the spheroidal cavity is still a rather sp
cial choice since its sharp surface is an undesirable featur
mean field with a diffuse surface would be more realis
Studies by Arvieu, Brut, Carbonell, and Touchard8 of the
classical motion of a particle in a deformed Saxon-Woo
like potential indicate that part of the classical phase sp
becomes chaotic. In a spheroidal cavity instead the sin
particle motion is integrable, and this fact makes calculati
practicable.

In this paper we study surface plasmons in deformed c
PRB 610163-1829/2000/61~3!/2316~13!/$15.00
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ters by assuming a spheroidal cavity model for the equi
rium mean field. Thus we limit our analysis to the simple
deviation from spherical shape and consider only sphero
geometry. However, our model is not limited to small defo
mations, and in principle, we can study systems ranging fr
spherical to almost cigar or disklike shapes. Our aim is
extend the semiclassical theory of linear response base
the Vlasov equation of Refs. 9 and 10 to deformed syste
This theory can be viewed as a semiclassical version of
random-phase approximaton~RPA!. Although a fully quan-
tum treatment of the problem is certainly more rigorous,
Vlasov equation has the advantage that the numerical e
required is greatly reduced. Indeed, a fully quantum R
calculation for finite systems must rely heavily on numeric
computation. This fact has limited explicit calculation
mostly to either infinite homogeneous or spherical syste
where the symmetries of the mean-field Hamiltonian all
for simplifications of the numerical problem. Pioneerin
work on the quantum response of spheroidal clusters
been made by Ekardt and Penzar11 ~for prolate clusters only!.
Another early calculation of deformation effects on the op
cal response of small sodium clusters has been made in
12. References 13, 14, and 15 discuss more recent wor
the subject.

The present work is organized as follows. In Sec. II w
extend the formalism of Refs. 9 and 10 to spheroidal s
tems. In order to present clearly the main points of the the
we have relegated the discussion of many detailed exp
sions to the Appendix. In Sec. III the model is applied
study the evolution of the peak profile of surface plasmo
with deformation. Both the ‘‘single-particle’’ and collectiv
responses are studied for prolate and oblate geometries
nally, Sec. IV contains a brief summary and the conclusio
2316 ©2000 The American Physical Society
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II. FORMALISM

In spite of its well-known difficulties in reproducing th
observed width of collective resonances, the RPA is still
basic microscopic theory of small-amplitude vibrations
many fermions systems. The RPA theory can be derive
the Green-function formalism.16 The RPA Green functionG
obeys an integral equation that can be written formally a

G~v!5G0~v!1G0~v!VG~v!, ~2.1!

where the unperturbed particle-hole Green functionG0 de-
scribes the single-particle motion of the constituents in
equilibrium mean field, andV is the effective two-body re-
sidual interaction. The response of the many-body system
a weak periodic external field of frequencyv is proportional
to the imaginary part ofG(v). In practice, the calculation o
G from Eq. ~2.1! means facing two main problems: first
evaluateG0 for the system under study and then solving t
corresponding integral equation to determineG. The latter
becomes quite a challenge when the system is nonsphe
sinceG will be determined by a system of coupled integ
equations, as we shall discuss later on.

The problem of calculatingG0 for a given mean field is
simpler in the semiclassical theory of linear response de
oped in Refs. 9 and 10. This theory has been applied to
study of giant resonances in spherical nuclei17 and of surface
plasmon excitations in spherical microclusters.18 The excita-
tion spectra given by this semiclassical theory are very si
lar to those yielded by the fully quantum RPA theory ev
when the many-body system under investigation is not p
ticularly large. Moreover, for large deformations it is e
pected~Ref. 6, p. 591! that shell effects should be smalle
than for spherical systems, thus favoring a semiclassical
proach.

The semiclassical theory of linear response based on
Vlasov equation of Refs. 9 and 10 leads to an expression
the propagator with the same structure as the quantum R
given by Eq.~2.1!. However, the RPA equation is actual
more complicated when exchange~Fock! terms are properly
taken into account.16 Nevertheless, these terms are oft
treated in a local approximation leading to the same Hart
like structure as the Vlasov equation. In the classical limitG
andG0 will be denoted byD andD0, respectively, in order
to distinguish them from the corresponding quantum qua
ties.

Although the theory of Refs. 9 and 10 is generally va
for all integrable mean-field Hamiltonians, practical applic
tions have been limited to spherical systems. In order to
tend its range of application to deformed systems, we c
sider the classical limit of Eq.~2.1! in momentum space,

D~q8,q,v!5D0~q8,q,v!

1
1

~2p!3E dkD0~q8,k,v!V~k!D~k,q,v!.

~2.2!

Following Refs. 9 and 10 and using units\5c51, the
propagatorD0 can be written in terms of action-angle var
ables$I ,F% as
e
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D0~q8,q,v!5~2p!3(
n
E dI F8@h0~ I !#

3
n•v~ I !

n•v~ I !2~v1 i«!
Qn* ~q8,I !Qn~q,I !,

~2.3!

with «→0, and the Fourier coefficients

Qn~q,I !5
1

~2p!3E dF e2 in•F eiq•r, ~2.4!

taking the place of the quantum matrix elements~see also
Ref. 19!. In Eq. ~2.3!, n is a three-dimensional vector wit
integer components, and the sum extends to all possible
ues ofn. The components of the vectorv are the fundamen-
tal frequencies of the multiply-periodic particle motion in th
equilibrium mean field,

v~ I !5“ Ih0~ I !, ~2.5!

with h05E the equilibrium Hamiltonian. The function
F8(E) in Eq. ~2.3! is the derivative of

F~E!5
2

~2p\!3 u~EF2E!, ~2.6!

which describes the equilibrium distribution of electrons
zero temperature (EF is the Fermi energy!. Thus

F8~E!52
2

~2p\!3
d~EF2E! ~2.7!

reduces by one the number of integrals in Eq.~2.3!. We also
note that the propagator in Eq.~2.3! is perfectly well be-
haved whenn•v→0 due to the presence of then•v factor
in the numerator. ThenD0 is not affected by the problem o
small divisors~Ref. 20, p. 523!.

For a realistic mean field the frequenciesv do depend
upon the value of the action variablesI . This dependence
reflects the nonlinearity of the mean field. A cavity is a
example where this nonlinearity effect is present. Instead,
the oscillator potential model, where the equilibrium Ham
tonian is given by

~h0!osc5v•I , ~2.8!

the frequenciesv do not depend onI . This difference is a
basic distinction between the oscillator and more realis
models, and it becomes the main reason for our choice
study the cavity model.

The most general partial-wave expansion of the propa
tor D0(q8,q,v) is

D0~q8,q,v!5(
LM

(
L8M8

DLM ,L8M8
0

~q8,q,v!

3YL8M8~ q̂8!YLM* ~ q̂!. ~2.9!

The symmetry properties of the system allow for a simpl
cation of this expression. Indeed, the axial symmetry
spheroidal~and also spherical! systems implies
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DLM ,L8M8
0

5d
M ,M8

DL8LM
0

~q8,q,v!, ~2.10!

and, therefore,

D0~q8,q,v!5 (
L50

`

(
M52L

L

(
L85uM u

`

DL8LM
0

~q8,q,v!

3YL8M~ q̂8!YLM* ~ q̂!. ~2.11!

A similar expansion for the propagatorD(q8,q,v) is ob-
tained from Eq.~2.2!. Thus for spheroidal systems, the thre
dimensional integral equation@Eq. ~2.2!# reduces to the fol-
lowing system of coupled one-dimensional integ
equations for the coefficientsDL8LM(q8,q,v),

DL8LM~q8,q,v!5DL8LM
0

~q8,q,v!1
1

~2p!3 (
l 5uM u

` E
0

`

3dk k2DL8 lM
0

~q8,k,v!V~k!DlLM ~k,q,v!.

~2.12!

This equation can be further simplified for spherical symm
try. In this case,

DL8LM
0

~q8,q,v!5dL,L8DL
0~q8,q,v! ~any M !,

~2.13!

and Eq. ~2.12! reduces to a single uncoupled on
dimensional integral equation for each partial-wave com
nent,

DL~q8,q,v!5DL
0~q8,q,v!1

1

~2p!3E
0

`

3dk k2DL
0~q8,k,v!V~k!DL~k,q,v!.

~2.14!

The solution of this equation for surface plasmons in sph
cal clusters has been studied in Ref. 18, where the co
cients DL

0(q8,q,v) have been explicitly derived~see also
Ref. 10!.

In order to solve the system of coupled integral equati
expressed by Eq.~2.12!, we must derive an explicit expres
sion for the coefficientsDL8LM

0 (q8,q,v). This can be done
in a way similar to that followed in Ref. 9. We refer here
the Appendix for details on how to extend that approach
both prolate and oblate geometries. From Eqs.~2.3! and
~2.11! we obtain

DL8LM
0

~q8,q,v!52
2

~2p\!3 (
nu ,nv

~2p!3

3E dlzE deU]~ I v ,I u!

]~E,e!
U

3
nuvu1nvvv1Mvw

nuvu1nvvv1Mvw2~v1 i«!

3Qnu ,nv ,M
(L8M )* ~E,e,lz ;q8!

3Qnu ,nv ,M
LM ~E,e,lz ;q!, ~2.15!

where we have used the constants of motion$E,e,lz% in-
stead of the action variablesI to evaluate the correspondin
-

l

-

-

i-
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o

integrals. All vector quantities in Eqs.~2.3! and ~2.15! are
expressed through their (u,v,w) components as discussed
the Appendix. Furthermore, the integrand is evaluated at
Fermi energyEF as a consequence of Eq.~2.7!. All other
integrals are extended to the classically available ph
space; the integration limits are specified in the Appendi

The Fourier coefficientsQnu ,nv ,M
LM (E,e,lz ;q) are related

to those of Eq.~2.4! by

Qn~q,I !5(
LM

Qn
LMYLM* ~ q̂!, ~2.16!

and

Qnu ,nv ,nw

LM 5
1

p
dM ,nw

R du R dvU]~Fu ,Fv!

]~u,v !
U

3e2 i (nuFu1nvFv1nwF̃w)i L

3YLM@u~u,v !,0# j L@qr~u,v !#. ~2.17!

The symbolr means integration over a whole period of cla
sical motion in the respective variable, the angle variableFw

takes the formFw5F̃w(u,v)1w, and j L is the spherical
Bessel function of orderL.

The comparison of Eqs.~2.12! and~2.14! explicitly shows
that, contrary to the spherical case, there is a coupling
tween excitations of different multipolarity in deformed sy
tems. It can be shown~see the Appendix! that DL8LM

0
50

unless (2)L85(2)L, so that only multipoles with the sam
parity are mixed in Eq.~2.12!. Since this is a consequence
the reflection symmetry of the spheroid (z→2z), it holds
for both prolate and oblate shapes. Such a simplificat
would not necessarily occur for ‘‘pear-shaped’’ systems.

The physical observables we consider in this work
related to the ‘‘forward’’ propagatorD(q,q,v) regardless of
the need for the full off-diagonal propagatorD(q8,q,v) to
solve Eq.~2.2!. Moreover, for randomly oriented clusters, w
must average over the solid angle.1 Thus we define the angle
averaged propagator

^D~q,v!&[
1

4pE dq̂D~q,q,v!. ~2.18!

The expansion ofD(q8,q,v) analogous to Eq.~2.11! implies

^D~q,v!&5
1

4p (
LM

DLLM~q,q,v!. ~2.19!

A quantity often used in cluster physics is the dynam
polarizabilitya(v). It is related to the long-wavelength limi
of theL51 component of̂ D(q,v)&. For deformed clusters
the polarizability is a tensor since the induced dipole mom
depends on the orientation of the cluster relative to the
ternal field. We introduce theM-component polarizability as

aM~v!52 1
3 e2 lim

q→0
H 1

4p

D11M~q,q,v!

@ j 1~q!#2 J . ~2.20!

In the spherical limitaM is M independent. For spheroida
systemsa2M5aM ~this is a property of the coefficient
DL8LM).
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We introduce also the ‘‘partial’’ photoabsorption cro
sections

sM~v!5
4p

c
v Im@aM~v!#, ~2.21!

and the total photoabsorption cross section is11

s~v!5 1
3 (

M521

1

sM~v!5 1
3 @s0~v!12s1~v!#.

~2.22!

III. RESULTS

In this section we apply the formalism developed in S
II and in the Appendix to the study of prolate and obla
clusters with varying degree of deformation. Also, we e
plore the possibility of scaling with the number of valen
electrons and cluster density. The emphasis is on underst
ing how the collective response is altered when the clus
under investigation do not have a spherical shape. We s
not attempt to compare our results with experimental dat
this level of development. For this reason we do not cons
such refinements as the electron ‘‘spill out,’’ which is we
known to give a redshift of the plasmon peak in spheri
clusters. We expect to find a similar effect in the deform
case. No particular effort is made to reproduce the obser
width of the plasmon resonances, which is considera
larger than that obtained in the present model.

The picture we have in mind here corresponds to takin
spherical cluster and then deforming it to either a prolate
oblate shape while keeping its volume and density const
We consider initially a relatively large sodium cluster
spherical shape, withN5254 valence electrons, describe
approximately by a square-well mean-field potential of
diusR5r sN

1/3 andr s is the Wigner-Seitz parameter in uni
of the Bohr radius. We will taker s54.0. In this case the
surface-plasmon resonance consists of a single peak situ
near the Mie frequency,

vMie5
vp

A3
, ~3.1!

with vp the bulk plasmon frequency. Then this sodium clu
ter is deformed to a spheroidal~prolate or oblate! shape char-
acterized by a deformation parameterh,

h5
R.

R,
, ~3.2!

where R. (R,) are the larger~smaller! diameters of the
spheroids. We study the changes that are expected in
distribution of the dipole strength and report results for
<h<2. The spherical limit is obtained by takingh
51.001.

To describe the spheroidal systems, we introduce sphe
dal coordinates$u,v,w% as described in the Appendix for th
prolate and oblate geometries. Assuming that electrons m
in a static cavity of spheroidal shape, the equilibrium Ham
tonianh0 will be chosen to be
.
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h0~u,v,w,pu ,pv ,pw!5K~u,v,w,pu ,pv ,pw!1V~v !,
~3.3!

where $pu ,pv ,pw% are the corresponding conjugate m
menta,K is the kinetic energy, andV is the potential energy
for particles in a cavity. All the calculations have been p
formed within this framework. The central objective h
been to calculate the collectiveD11M function from Eq.
~2.12!. The number of coupled integral equations required
three for the cases of larger deformation (h52) considered
in this work @that is l 51,3,5 in Eq.~2.12!#.

One technical point deserving special attention is the h
dling of the singularities present in theD0 propagator in Eq.
~2.15!. We have taken a finite value«50.002vMie when per-
forming the actual calculations. Our choice modifies sligh
(;5%) the width of either the single-particle or the colle
tive plasmon peak. Furthermore, we have summed up
allowed frequency modes for22<$nu ,nv%<2 when calcu-
lating D0. The dynamic polarizability and the total photoa
sorption cross section of prolate clusters are mainly do
nated by thenu51, nv50,61 modes forM50 andnu50,
nv50,61 for M51. However, the oblate cavity presen
some peculiar features requiring a finer analysis.

From a theoretical point of view, it is interesting to stud
also the single-particle response~proportional to the imagi-
nary part of the zero-order propagatorD0) since its features
are more directly related to the shape of the equilibriu
mean field. This can be of help in understanding how t
shape affects the collective response.

The effective two-body residual interactionV(k) in Eq.
~2.2! determines primarily the position of the collective pla
mon peak and, to a lesser extent, its shape. The present s
classical approach is essentially a Hartree approximation
does not include exchange contributions. However, excha
and correlation terms can be taken into account in a lo
approximation by introducing a~static! local-field correction
G(k).21 Thus the momentum-space interaction we use is

V~k!54p
e2

k2 @12G~k!#, ~3.4!

with

G~k!5A@12e2B(k/pF)2
#, ~3.5!

where A50.9959 andB50.2612 for sodium~Ref. 21, p.
446!, andpF is the Fermi momentum. In our calculations w
have verified that it is possible to take an upper integrat
limit kmax54pF when solving Eq.~2.12! without a notice-
able change in the relevant results.

A. Prolate cavity

The natural frequencies$vu ,vv ,vw% of the unperturbed
trajectories of particles in the prolate cavity determine
gross behavior of the semiclassical propagatorD0 @Eq.
~2.15!# as a function ofv. Since these frequencies depend
the integration variablese andlz , it is interesting to evalu-
ate the possible values that they take and their occurrenc
a function of the cluster deformationh. In Fig. 1 we show
histograms for the probability density of the natural freque
cies expressed in terms of the Mie frequencyvMie and for
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deformationsh51.0, 1.5, and 2. This probability densit
refers to the occurrence of the frequencies as functions o
~discretized! integration parameterse andlz in our numeri-
cal calculations. It was evaluated with bins of wid
0.002vMie . The frequenciesvu and vw fall in a narrow
range of the order of 0.05vMie , with the former moving to
the left and the latter to the right of the spherical limit
deformation increases. Forvw we have not plotted the sym
metric negative components in Fig. 1. The frequencyvv
shows a different behavior, and it spans, in principle, th
@;0.5 vMie ,`# range. Overall, Fig. 1 gives a clear idea
the dominant frequency poles contributing to theD0 propa-
gator.

The M50,1 components of the photoabsorption cro
section@Eq. ~2.21!# per valence electron are shown in Fig.

FIG. 1. Probability density for the natural frequenci
$vu ,vv ,vw% at different deformationsh in the prolate sodium
cluster described in text.

FIG. 2. M50,1 components of the photoabsorption cross s
tion per valence electron for a prolate cluster at different deform
tions and both in the ‘‘single-particle’’~shaded black! and ‘‘RPA-
type’’ ~shaded gray! approximations.
he

s

for prolate clusters with deformation ranging fromh51.0 to
2.0, step 0.25. We display the results in a three-dimensio
plot to better assess their relative behavior. The areas sh
black show the cross section obtained from the zero-or
propagatorD0. As a reference, we can observe on the le
hand side of Fig. 2 the same peak corresponding to sphe
geometry (h51.0) in both M50 and 1 components an
centered aroundv.0.16vMie . Then theM50 component
shows a photoabsorption peak shifted to lower frequencie
deformation increases. This is a consequence ofvu ~see Fig.
1! determining the dominant pole. The correspondi
strength of the peak increases forh51 to ;1.5 and then
slowly starts to decrease. TheM51 peak is shifted to highe
frequencies due to the dominance ofvw in this mode, and its
strength decreases with increasing deformation.

The right-hand side of Fig. 2 shows the partial collecti
cross sections~shaded gray! evaluated from the full propa
gator D in Eq. ~2.20!. By including the fluctuation of the
mean field, we obtain two main effects: a huge shift in t
position of theM component of the photoabsorption peak
frequencies around the Mie frequency and a noticea
change both in the width and the strength of the peak, ma
for M51. We have numerically checked that the energ
weighted sum rule~area under the curves! is unchanged
within 2%. The low-energy collective plasmon (M50 com-
ponent! has an intrinsic structure that is slightly more com
plex than the corresponding high-energy plasmon (M51
component! and showing some degree of fragmentation n
ticeable ath;1.5. The dominant collective peaks in Fig.
are slightly blueshifted with respect to the positions p
dicted by the Mie theory both for theM50 and 1 compo-
nents. This completely classical theory predicts that theM
50 andM51 peaks should be at the frequenciesv i corre-
sponding to oscillations along thei axis (z for M50, x and
y for M51). These frequencies are given by

v i5Anivp , ~3.6!

with ni the appropriate depolarizing factor. For spheric
symmetrynx5ny5nz5

1
3 , giving Eq.~3.1!, while for a pro-

late spheroid22

nx5ny5 1
2 ~12nz!, ~3.7!

nz5
12e2

2e3 F lnS 11e

12eD22eG . ~3.8!

The eccentricitye is related to our deformation parameterh
by

e5A12
1

h2
. ~3.9!

A simple calculation gives vx,y51.073vMie , vz
50.836vMie for h51.5, and vx,y51.113vMie , vz
50.722vMie for h52. From Fig. 2 we observe that our co
lective plasmon peaks are blueshifted by approximately
with respect to the position expected from the classical v
ues.

-
-
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B. Oblate cavity

We turn now to present our results for oblate sodium cl
ters. One of the most interesting aspects of the present ca
model is the existence of two kinds of three-dimensio
orbits, W andB orbits, for oblate geometry~see Appendix!.
This feature should be shared, at least qualitatively, by m
realistic deformed mean fields. In order to estimate the r
tive importance of the two kinds of orbits, we have plotted
Fig. 3 the fraction of valence electrons following each of t
orbits as a function of the cluster deformationh. In the
spherical limit h→1 the cavity only allowsW-type three-
dimensional orbits since theB orbits become oscillations
along a diameter. As deformation increases the fraction
electrons inB orbits raises quickly reaching 50% forh
.1.7. The presence ofW and B orbits in the oblate cavity
suggests that we may expect a richer behavior of the clu
response.

The W andB orbits are characterized by their respecti
fundamental frequencies@Eq. ~2.5!#, which in turn determine
the D0 propagator. We shall refer to them as the$vW% and
$vB% frequencies. In order to have an estimate of the p
sible values they take and of their occurrence for differ
deformations of the oblate cluster, we present histograms
the probability density of the natural frequenci
$vu

W ,vv
W ,vw

W% in Fig. 4 and of$vu
B ,vv

B ,vw
B% in Fig. 5. The

$vW% frequencies in Fig. 4 may be compared to the natu
frequencies obtained for the prolate cavity shown in Fig.
Clearly the results forh51 in both cases are identical. A
great similarity is also observed forvv as the clusters ge
deformed. However, the increasing occurrence ofvv in Fig.
1 at the lower limit of the frequency range is not present
vv

W ~Fig. 4!. The allowed values forvu
W change slightly with

deformation and are not sharply defined. The behavior ofvu
in Fig. 1 is rather different, with the frequency defined in
narrower range and its allowed values decreasing with
creasing deformation of the prolate cavity. Thevw

W fre-
quency in Fig. 4 shows a similar structure to its counterp
in the prolate case, but its magnitude decreases with de
mation rather than increasing~Fig. 1!.

FIG. 3. Fraction of particles onB ~full curve! and W ~dotted
curve! orbits as a function of deformationh for an oblate sodium
cluster.
-
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The $vB% frequencies are characterized by a differe
probability density, as shown in Fig. 5. In the spherical lim
(h51) the B orbits have perfectly defined frequencies a
vu

B56vw
B5 1

2 vv
B . As deformation increases,vu

B becomes
much less defined and, on average, takes smaller values
in the spherical case. The frequencyvw

B instead is still fairly
well defined and is also decreasing with increasing deform
tion. Furthermore,vw

B shows great similarity withvw
W in Fig.

4. The frequencyvv
B shows a definitely different behavio

thanvv
W . It spans a finite range of values depending stron

on the cluster deformation. From the results shown in Fig
and 5, we may expect a more complex behavior of theD0

propagator than that observed in the prolate cavity.
The M50,1 components of the photoabsorption cro

section@Eq. ~2.21!# per valence electron are shown in Fig.
for oblate clusters with deformation ranging fromh
51.0(0.25)2. As in Fig. 2, we have plotted the cross s
tions sM

(0) ~shaded black! obtained from the propagatorD0

calculated in the static mean field andsM ~shaded gray!

FIG. 4. Probability density for the natural frequenci
$vu

W ,vv
W ,vw

W% characteristic ofW orbits at different deformations
h in the oblate sodium cluster described in text.

FIG. 5. As in Fig. 4 for natural frequencies characteristic ofB
orbits.
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calculated from the correlated propagatorD. For M50 we
observes0

(0) presenting a novel structure. Indeed, the unp
turbed dipole peak is split into several peaks as deforma
of the oblate cluster increases. This can be understood w
D0 is written in terms of the propagators forW andB orbits
@Eq. ~A46!#. These propagators give a dipole response do
nated by the resonance frequenciesv r

W,B determined from

v r
W,B5nuvu

W,B1nvvv
W,B1Mvw

W,B . ~3.10!

For L odd andM50, Eq. ~A27! implies nu5odd. Then,
based on the probability densities forvW ~Fig. 4!, we expect
a dominant contribution from theW orbits in the mode$nu
51,nv50% ~at around 0.15–0.20vMie , depending on defor-
mation!. Furthermore, the probability densities forvB sug-
gest a dominant contribution both in the modes$nu51,nv
50% ~around 0.15–0.20vMie) and$nu561,nv51% ~around
0.8–0.9vMie and 0.4–0.5vMie) from theB orbits. The rela-
tive strength of these peaks are determined by the Fou
coefficients defined in Eq.~2.17!. Once fluctuations of the
mean field are taken into account, we obtain a rather c
plex structure fors0 ~upper gray peaks!. As deformation of
the cluster sets in, theM50 component of the collective
dipole peak corresponding to the spherical cluster (h51.0)
gets fragmented as a consequence of the more com
structure ofD0. The amount of fragmentation depends
the deformation parameter. The high-frequency peak is m
fragmented for 1,h,1.5, reaching a rather simple structu
with only one dominant peak forh52. TheM51 compo-
nent of the photoabsorption cross section shown in the lo
panels in Fig. 6 does not present major new features. Sinc
this case the resonance frequencies are determined from
even-nu modes, thens1

(0) shows a dominant peak for eac
deformation withW andB orbits contributing in proportion
to the number of valence electrons moving in each of th
~Fig. 3! and both in the$nu50,nv50% mode. The other
modes corresponding to theB orbits are also present, bu
their contributions are considerably weaker. The collect

FIG. 6. As in Fig. 2 for an oblate cluster.
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effects shift thes1 dipole peak to frequencies below the on
corresponding to the spherical cavity as deformation
creases.

The position of the dominant peaks can be compared w
the predictions of the classical theory. In the oblate case,
v i frequencies are still given by Eqs.~3.6!–~3.7! and22

nz5
11e2

e3 @e2arctane#, ~3.11!

with the eccentricitye related to our oblate deformation pa
rameter by

e5Ah221. ~3.12!

A simple calculation gives vx,y50.912vMie , vz
51.157vMie for h51.5 and vx,y50.842vMie , vz
51.258vMie for h52. The M51 collective plasmons
(vx ,vy) are again blueshifted and in roughly the sam
amount we observed in the prolate case (;7%). However,
for M50 the collective peaks are now blueshifted by a
proximately 10–15 % with respect to the position expec
from the classical values.

C. Comparison between prolate and oblate clusters

In this section we compare the most prominent featu
concerning the dipole response of spheroidal clusters to
external field. We have chosen to show the photoabsorp
cross section per valence electron (N5254) calculated for a
sodium cluster that has been deformed to both prolate
oblate shapes. We display calculations corresponding to
formationsh51.0(0.25)2 in both geometries. In Fig. 7 w
plot the corresponding cross sections calculated both in
static mean field ~single-particle approximation, shade
black! and including collective effects~shaded gray!. Arrows

FIG. 7. Photoabsorption cross section per valence electron
prolate and oblate sodium clusters at several deformations. The
hand side of the figure shows the results obtained in a sin
particle approximation (s (0)). Arrows indicate position of plasmon
peak in the spherical case.
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are plotted as reference. They place the position of the p
mon peak for a spherical cluster in the present model.
prolate geometry the photoabsorption strength always
plays the characteristic splitting into two pronounced pea
corresponding to oscillations along two perpendicular sy
metry axes (M50 andM51). The relative strength of the
two collective peaks varies with an increasing dominance
the M51 component for larger deformations. For obla
spheroidal geometry instead, an interesting phenomenon
curs: one peak dominates the cross section in theh51 –2
range. The high-energy collective plasmon (M50 compo-
nent! gets fragmented and distributed over an interval of f
quencies of the order of approximately 0.3vMie . This frag-
mentation tends to disappear at the largest deforma
studied here (h52). However, as shown in Fig. 6, som
residual fragmentation remains at frequencies similar to
characteristic frequency of the low-energy plasmon (M51
component!. The effect has been traced back to the appe
ance of extra peaks in the ‘‘single-particle’’M50 strength,
that is related to the existence of two kinds of thre
dimensional orbits (W-type andB-type! in an oblate cavity.
It is reasonable to expect that a similar effect should a
occur for more realistic mean fields.

Overall, our results give a clear indication on the gro
features to be expected for either prolate or oblate med
size sodium clusters. The photoabsorption cross sectio
split into two peaks for the prolate geometry but is main
dominated by a single peak in the oblate case for the rang
deformations studied here, the smaller peak being fur
split or fragmented.

D. Scaling properties

In this section we investigate the dependence of our
sults from the valence electron numberN and from the den-
sity parameterr s . By using the explicit expressions of th
free propagatorD0 given in Sec. II and in the Appendix, it i
possible to define for each geometry~prolate, oblate, spheri
cal!, at given cluster deformationh, a corresponding univer
sal propagatord0(x8,x,s) such that

D0~q8,q,v!5Nrs
2d0S Rq8,Rq,

v

vF
D , ~3.13!

wherevF[ppF /mRandR is the cluster radius for spherica
geometry. In Eq.~3.13! all the dependence from the numb
of valence electrons and from the electron density has b
extracted from the free propagatorD0 by relating it to a
universal functiond0 of the dimensionless parametersx
5Rq and s5v/vF . The question we address now
whether a similar factorization occurs also for the collect
propagatorD. In general, this factorization is not possible f
an arbitrary interactionV. Indeed, by defining a function
d(x8,x,s) from the collective propagatorD through Eq.
~3.13!, then the integral equation~2.2! leads to the following
integral equation ford,

d~x8,x,s!5d0~x8,x,s!

1
1

~2p!3r s
E dy d0~x8,y,s!VS y

RDd~y,x,s!,

~3.14!
s-
or
s-
s,
-

f
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which explicitly contains the density parameterr s . An addi-
tional N andr s dependence is implicit through theR param-
eter in the forceV. Consequently, it is not possible to dete
mine an obvious scaling law allowing for the calculation o
universal collective functiond(x8,x,s).

In our caseV corresponds to a modified Coulomb-typ
residual interaction@Eq. ~3.4!#. Then it is reasonable to
search for additional properties of Eq.~3.14! in the presence
of a pure Coulomb force. We obtain

d~x8,x,s!5d0~x8,x,s!1
1

~2p!3
r sN

2/3E dyd0~x8,y,s!

3
4pe2

y2
d~y,x,s!. ~3.15!

In this limiting case, the solution to Eq.~3.15! depends on
the productr sN

2/3 only. Deviations from this result are du
to more realistic effective interactions, and they may be
pected to be important in the smaller clusters.

In the limit of largeN our microscopic calculations ten
to reproduce the results of the macroscopic theory, with
plasmon frequency depending only on the electron dens
but not on the total electron numberN. TheN dependence of
Eq. ~3.15! is not in conflict with this expectation since th
dimensionless parameters is related to the frequency by a
N-dependent relations}N1/3r s

2v.
Our discussion indicates that no exact scaling is to

expected for the photoabsorption cross sections in
present model. The actual amount of scaling violation inD
does depend on the size, composition, and geometry of
particular cluster considered. In order to illustrate theN de-
pendence of our results, we have calculated the collec
response of sodium clusters with 25 atoms, thus changinN
by an order of magnitude with respect to the results repo
earlier. In Fig. 8 we display the collective response ofN
525 sodium clusters~shaded black! together with that for
N5254 ~shaded gray!. For spherical and prolate geomet
the N525 plasmons are blueshifted by approximately 10
with respect to theN5254 results, with the overall pea

FIG. 8. Photoabsorption cross section per valence electron
prolate and oblate sodium clusters at several deformations and
N525 ~shaded black! andN5254 ~shaded gray!.
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profile showing a qualitatively similar behavior in the tw
cases. The light cluster plasmons are sharper due to a sm
Landau damping. For oblate geometry we notice that
fragmentation of the high-frequency plasmon found forN
5254 does not appear forN525. The fragmentation phe
nomenon isN dependent, and it disappears for different clu
ter mass. These results agree with our general statem
about the lack of scaling withN of the collective propagato
D.

The study of clusters with a larger number of valen
electrons (N.254) will not provide much new information
since the theory starts approaching the classical limits.
have confirmed this by doing calculations for sodium clu
ters withN52500. We observe a redshift with respect to t
N5254 case of the order of 3% and no fragmentation of
M50 peak.

We have investigated also the electron-density dep
dence of our results. Calculations of the photoabsortion c
section for prolate and oblate sodium and potassium clus
(r s55) at N5254 show very similar peak profiles~includ-
ing fragmentation! when the frequency axis is rescaled wi
the appropriate value ofvMie . Although the density of va-
lence electrons was decreased by about a factor of 2, t
small variations can be understood on the basis of Eq.~3.15!
where the relevant parameter (r sN

2/3) was changed by 25%

IV. SUMMARY AND CONCLUSIONS

In this paper a semiclassical theory of linear respo
based on the Vlasov equation9,10 has been extended to sph
roidal systems and then applied to study the peak profile
surface-plasmon resonances in medium size defor
atomic clusters. Assuming a spheroidal cavity model to
scribe both prolate and oblate clusters, we have been ab
calculate the gross features of the cluster response to an
ternal field of frequencyv as a function of the cluster defor
mation.

Two main general results emerge from our calculatio
One of them refers to the splitting of the collective dipo
peak with increasing deformation and to the position of th
peaks. On this we have commented at length in Sec. III.
other main result is related to the width of the dipole pea
In the present model the single-particle dipole resona
does display a width that is due to the nonlinearity of t
assumed equilibrium mean field. This single-particle wid
generates a width in the collective plasmon resonan
through a mechanism that is analogous to the Landau da
ing in homogeneous systems. Our calculated width is
sufficient to reproduce the observed plasmon width. Ho
ever, our width is underestimated since we have inclu
only the first few frequency modes when evaluatingD0 in
Eq. ~2.3!. The neglected terms would increase the imagin
part of D0 in the region ofv.vMie and thus increase th
Landau damping. Estimates based on numerical calculat
including more modes set this effect at about 20%, which
far from sufficient to explain the observed values. Thus m
sophisticated effects, like the possible coupling to surf
vibrations,23 should perhaps be taken into account.

The fragmentation of the high-energy plasmon peak
medium size oblate clusters is a definite prediction of
present theory and reflects the existence of nontrivial dyn
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ics. The relative importance of this effect depends on sev
elements, such as the shape and size of the cluster an
strength of the effective interaction. Other sources of g
metrical fragmentation of the optical response in sodi
clusters have been discussed in the literature,24 but they do
not seem to be related to the present mechanism.

The normalized cluster dipole response shows no sim
scaling properties withN at given density (r s54). The po-
sition of the plasmon peaks is weakly dependent onN,
changing by approximately 10% in the 25,N,2500 mass
region while fragmentation of the high-energy compone
disappears for light (N;25) and heavy (N;2500) oblate
clusters. On the other hand, no major changes in the ph
absorption profile are observed when density decreases
factor of approximately 2 (r s55) for a given numberN of
valence electrons.

Extensions to this work are clearly welcome. In particul
a close comparison to experiment is required to asses
detail some of the physics missing in the present mod
Nevertheless, we have established a solid framework to c
sically understand the gross features of complicated, int
sically quantum systems.

ACKNOWLEDGMENTS

A.D. is grateful to Professor D. M. Brink for useful sug
gestions. F.A.B. thanks support from FONDECYT Gra
No. 1960690, Fundacio´n Andes, INFN and Ministero della
Pubblica Istruzione, Italy.

APPENDIX

In this appendix we specify the details for the expressio
given in Sec. II. The propagatorD0 is determined entirely by
the single-particle motion in the equilibrium mean field. T
classical motion of a point particle in a spheroidal cav
with perfectly reflecting walls has been studied in Ref. 7
prolate cavities and in Ref. 8 for both prolate and obla
cavities ~see also Refs. 25 and 26!. The authors of Ref. 8
have pointed out that the three-dimensional motion in a p
late cavity is simpler than that in an oblate cavity. We gi
first a detailed description for prolate geometry. The
through a simple transformation, the corresponding res
for the oblate shape can be recovered. Furthermore, we
mark on the nontrivial differences related to particle moti
in the two geometries. Our notation follows closely that
Ref. 7.

1. Prolate cavity

To describe the prolate shape, let us introduce the pro
spheroidal coordinates$u,v,w% through their relation to the
Cartesian coordinates,

x5jP cosu sinhv cosw, 2
p

2
<u<

p

2
,

y5jP cosu sinhv sinw, 0<v<`, ~A1!

z5jP sinu coshv, 0<w<2p,

with
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jP5Ac22a2. ~A2!

In the last equation,c anda are the larger and smaller sem
axes, respectively. The two focal points are atz56jP .

The equilibrium Hamiltonianh0 can be expressed i
terms of the spheroidal coordinates$u,v,w% and their conju-
gate momenta$pu ,pv ,pw%.7,8 Assuming that particles mov
in a static cavity of spheroidal shape, represented by a
tential energyV(v), thenh0 is given by

h0
(P)~u,v,w,pu ,pv ,pw!5

pu
21pv

2

2mjP
2 ~cosh2v2sin2u!

1
pw

2

2mjP
2 sinh2v cos2u

1V~v !

~A3!

for the prolate configuration. The potential energy for sh
walls is

V~v !50 v,v2
P ,

5` v>v2
P , ~A4!

and thev2
P parameter is determined by the shape of the c

ity,

sinhv2
P5

a

jP
. ~A5!

The Hamiltonian@Eq. ~A3!# is integrable, and the particl
motion could, in principle, be described in terms of the an
variables$Fu ,Fv ,Fw% and of the three conjugate action in
tegrals

I u5
1

2p R pudu, I v5
1

2p R pvdv, I w5
1

2p R pwdw.

~A6!

However, in the spirit of Ref. 9, the following three oth
constants of the motion$E,e,lz% can be conveniently use
instead of the action integrals. These constants are the
ticle energyE, the separation variablee, and thez compo-
nent of the particle angular momentumlz ~which coincides
with the action variableI w and with the generalized momen
tum pw). The constant of motione plays a role analogous t
the magnitude of the particle angular momentum in
spherical case.

With the help of the Vlasov equation, the angle variab
can be explicitly expressed in terms of these three const
of the motion $E,e,lz% and of the spheroidal coordinate
$u,v,w%. The derivation, based on separation of variables
the linearized Vlasov equation, is lengthy but straightf
ward; hence we do not report all the details here.27

The generalized momentapu,v are

pu5jPA2mEAs1
P2UP~u,s2

P!,

pv5jPA2mEAVP~v,s2
P!2s1

P. ~A7!

The two dimensionless constants of the motions1
P and s2

P

are defined as in Ref. 7,
o-

p

-

e

ar-

e

s
ts

n
-

s1
P5

e

E
, s2

P5
lz

2

2mEjP
2

, ~A8!

and the effective potentials in Eq.~A7! for the u andv co-
ordinates are given by

UP~u,s2
P!5sin2u1

s2
P

cos2u
,

VP~v,s2
P!5cosh2v2

s2
P

sinh2v
. ~A9!

Particles on three-dimensional orbits move between
confocal ellipsoids withv1

P<v<v2
P and u1

P<u<u2
P , with

v1,2
P and u1,2

P the turning points obtained as solutions topv
50 andpu50, respectively~see Ref. 7 for details!. Intro-
ducing the quantities

t6
P 5AS 12s1

P

2
D 6AS 12s1

P

2
D 2

1s2
P, ~A10!

these turning points are obtained from

cosh~v1
P!5A12~ t2

P !2,

cos~u2
P!5t1

P , u1
P52u2

P , ~A11!

andv2
P from Eq. ~A5!.

It is our purpose here to specify the integration limits
Eq. ~2.15! and to derive explicit expressions for the eige
frequenciesvu,v,w as well as for the Fourier coefficient
Qnu ,nv ,nw

LM appearing in the expression forD0.

To obtain the integration range for the constant of mot
e, we realize that the turning pointu2

P exists only if cosu2
P

<1 in Eq. ~A11!. Also the presence of an infinite potenti
barrier at the surface of the cavity impliespv(v2

P)50. These
two conditions impose constraints ons1

P ,

~s1
P!min5s2

P ,

~s1
P!max5cosh2v2

P2
s2

P

sinh2 v2
P

. ~A12!

These constraints determine the integration range fore.
Thus,

E de→E
e2

e1

de, ~A13!

with

e25
lz

2

2mjP
2

, e15EF cosh2 v2
P2

e2

sinh2 v2
P

. ~A14!

The integration range for the constant of motionlz is
determined from the possible values of the particle angu
momentum along the symmetry axis. Thus,
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E dlz→E
l2

l1

dlz , ~A15!

where

l656~pFa!, ~A16!

with pF the Fermi momentum associated with the Fermi
ergy EF .

The evaluation of the Fourier coefficients in Eq.~2.17!
can be simplified by noticing that

nuFu1nvFv1nwF̃w5sn~u!1sn8~v !. ~A17!

The phasessn(u) andsn8(v) are given by

sn~u!5n•vtu~u!1n•Vau~u!2nwgu~u!,

sn8~v !5n•vtv~v !1n•Vav~v !2nwgv~v !, ~A18!

with v the frequency vector defined in Eq.~2.5!, V an aux-
iliary frequency vector, and the auxiliary function
$au,v ,tu,v ,gu,v% given by

au~u!5mjP
2E

umin

u du8

pu~u8!
, av~v !52mjP

2E
vmin

v dv8

pv~v8!
,

tu~u!52mjP
2E

umin

u sin2 u8

pu~u8!
du8,

tv~v !5mjP
2E

vmin

v cosh2 v8

pv~v8!
dv8, ~A19!

gu~u!5lzE
umin

u du8

cos2u8pu~u8!
,

gv~v !5lzE
vmin

v dv8

sinh2 v8pv~v8!
.

In these equations the upper integration limit is a varia
while the lower one is the corresponding inner turning po
for the geometry under study. For the prolate caseumin

5u1
P andvmin5v1

P . All the integrals appearing in Eq.~A19!
can be easily expressed in terms of elliptic integrals a
evaluated numerically.

The natural frequencies of the unperturbed trajectories
the three components of the frequency vectorv @Eq. ~2.5!#.
They can be expressed in terms of these integrals as

vu~E,e,lz!5p
2av~v2

P!

@au~u2
P!tv~v2

P!2av~v2
P!tu~u2

P!#
,

vv~E,e,lz!5p
au~u2

P!

@au~u2
P!tv~v2

P!2av~v2
P!tu~u2

P!#
,

~A20!

vw~E,e,lz!5
1

p
@vvgv~v2

P!1vugu~u2
P!#.
-

e
t

d

re

Correspondingly, the auxiliary frequency vectorV has com-
ponents

Vu~E,e,lz!52vu

tv~v2
P!

av~v2
P!

,

Vv~E,e,lz!52vv

tu~u2
P!

au~u2
P!

, ~A21!

Vw~E,e,lz!5
1

p
@Vvgv~v2

P!1Vugu~u2
P!#.

Note that from the expressions given above we can ea
obtain the explicit form of the angle variables in terms of t
spheroidal coordinates. For example, the explicit form
Fu(u,v) can be derived from Eq.~A17! by settingnu51,
nv50, nw50. The angle variableFw takes the formFw

5F̃w(u,v)1w.
The evaluation of the Fourier coefficients in Eq.~2.17! is

made explicit by using the identity

R du R dvU]~Fu ,Fv!

]~u,v !
Ue2 i (nuFu1nvFv1nwF̃w)

54E
u1

P

u2
P

duE
v1

P

v2
P

dvU]~Fu ,Fv!

]~u,v !
Ucos@sn~u!#cos@sn8~v !#

~A22!

and evaluating the Jacobian

U]~Fu ,Fv!

]~u,v !
U5~mj

P

2!2
vuvv

pupv
F tu~u2

P!

au~u2
P!

2
tv~v2

P!

av~v2
P!

G
3~cosh2 v2sin2 u!. ~A23!

Then

Qnu ,nv ,nw

LM 5dM ,nw
E

u1
P

u2
Pdu

pu
E

v1
P

v2
Pdv
pv

F~u,v !

3cos@sn~u!#cos@sn8~v !#, ~A24!

with

F~u,v !5 i L
4

p
~mjP

2 !2vuvvF tu~u2
P!

au~u2
P!

2
tv~v2

P!

av~v2
P!

G
3@cosh2 v2sin2 u#YLM@u~u,v !,0# j L@qr~u,v !#.

~A25!

The radial coordinater and the polar angleu can be easily
expressed in terms of the (u,v) variables by using the rela
tions ~A1!.

The present calculation is simpler if parity selection ru
are taken into account. These selection rules originate f
the fact that the effective potentialUP(u,s2

P) is an even
function of u and as a direct consequence of the sphero
geometry invariance under the reflectionz→2z. Because of
this symmetry some of the Fourier coefficients@Eq. ~2.17!#
vanish. This can be proved by using the following relatio
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sn~2u!5nup2sn~u!,

cos@sn~2u!#5~2 !nucos@sn~u!#,
~A26!

cos@u~2u,v !#52cos@u~u,v !#5cos@p2u~u,v !#,

YLM@u~2u,v !,0#5~2 !L2MYLM@u~u,v !,0#.

All the remaining factors in Eq.~A24! are even functions o
u. Then

Qnu ,nv ,nw

LM 5dM ,nw
@11~2 !nu1L2M#

3E
u0

u2
Pdu

pu
E

v1
P

v2
Pdv
pv

F~u,v !cos@sn~u!#cos@sn8~v !#,

~A27!

with u050. Equation~A27! implies that, for example, for
L51 andM51, we need to sum only overevenvalues of
nu , while for M50 we must take onlyodd values ofnu . It
means also thatDL8LM

0
50 unless (2)L85(2)L.

2. Oblate cavity

The transformation analogous to Eq.~A1! for oblate ge-
ometry can be obtained from those equations by exploi
the identities

sinhS v6 i
p

2 D56 i cosh~v !, coshS v6 i
p

2 D56 i sinh~v !.

~A28!

Then the following formal replacements should be made
Eq. ~A1! to obtain now the relation between the oblate sp
roidal coordinates$u,v,w% and the Cartesian coordinates,

j
P
→ i jO , v→v2 i

p

2
, ~A29!

where

j
O
5Aa22c2 ~A30!

is the radius of the focal circle anda is now the largest
semiaxis. Applying the same transformation to the kine
energy part in Eq.~A3!, we obtain the corresponding equ
librium Hamiltonian for an oblate cavity. The potential e
ergy is still given by Eq.~A4!, with v2

P being replaced by
v2

O ,

coshv2
O5

a

jO
. ~A31!

Note that this relation can be obtained by applying the tra
formation ~A29! to Eq. ~A5!.

The generalized momentapu,v are obtained by applying
the transformation~A29! to the expressions in Eq.~A7! and
by making the replacements

s1
O512s1

P , s2
O5

lz
2

2mEjO
2

52s2
P . ~A32!
g

n
-

-

s-

The generalized momenta for the oblate cavity are then
pressed as

pu5jOA2mEAs1
O2UO~u,s2

O!,

pv5jOA2mEAVO~v,s2
O!2s1

O, ~A33!

with the oblate effective potentials

UO~u,s2
O!5cos2u1

s2
O

cos2u
,

VO~v,s2
O!5cosh2v1

s2
O

cosh2 v
. ~A34!

Of course, we still havepw5lz .
In Ref. 8 it has been pointed out that the effective pote

tials UO(u,s2
O) andVO(v,s2

O) for oblate geometry may ex
hibit a nonmonotonic behavior for some range of values
the parameters2

O . As a consequence, the phase space o
oblate spheroidal cavity is divided into two parts, and the
are two kinds of three-dimensional orbits~plus a separatrix
that, however, has zero weight in our calculations!. For their
description we introduce the equivalent to the quantitiest6

P

in Eq. ~A10! for the oblate case,

t6
O5AS s1

O

2
D 6AS s1

O

2
D 2

2s2
O, ~A35!

which are convenient for expressing the turning points.
course, these parameters can be obtained by making th
placement~A32! in Eq. ~A10!.

We must now distinguish between the two kinds of thre
dimensional orbits occurring in the oblate cavity.

~i! B orbits. For

s2
O,1 and 2As2

O<s1
O<11s2

O , ~A36!

the orbits always cross the focal circle. These are the or
with a hyperboloidal caustic of Ref. 8, and they are ana
gous to the so-called bouncing ball modes. In this case,
equationpu50 has four solutions. The accessible region
phase space isu1

B<u<u3
B and u4

B<u<u2
B and with 0<v

<v2
O . For the lower integration limit in thev variable, we

have to takev1
B50 since the equationpv50 has no real

solution in the interval@0,v2
O#. The explicit turning points

for the u variable are obtained from

cosu2
B5t2

O , u1
B52u2

B ,

cosu4
B5t1

O , u3
B52u4

B . ~A37!

The constraints expressed in Eq.~A36! imply the following
integration range forlz ande,

E dlz→E
l2

B

l1
B

dlz , E de→E
e2

B

e1
B

de, ~A38!

with

l6
B 56~pFjO!,
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e2
B 52EFAs2

O, e1
B 5EF~11s2

O!. ~A39!

~ii ! W orbits. For

s2
O>0 and s1

O>11s2
O , ~A40!

the orbits have an ellipsoidal caustic, and they are analog
to the so-called whispering gallery modes. For these or
pu

2>0 for u1
W<u<u2

W andpv
2>0 for v1

W<v<v2
O , with the

corresponding turning points given by

cosu2
W5t2

O , u1
W52u2

W,

coshv1
W5t1

O . ~A41!

The integration limits for the constant of motion integra
@cf. Eq. ~A38!# are

l6
W56~pFa!,

e2
W5EF~11s2

O!, e1
W5EFF coshv2

O1
s2

O

coshv2
OG .

~A42!

The integration limite1
W is determined by the cavity surface

The number of particles moving on each kind of orbit c
be easily evaluated with an integration over phase space.
total number of valence electrons is

N5E dF dI F~E!, ~A43!

with F(E) given by Eq.~2.6!. Clearly, setting\51,

N52E dIu@EF2h0~ I !#,

52E
0

EF
dEE dlzE deU]~ I v ,I u!

]~E,e!
U. ~A44!
t.,

T

. A

t.
us
ts

he

We can defineN5NB1NW with NB (NW) the number of
valence electrons inB(W) orbits, respectively, and

NB52E
0

EF
dEE

l2
B (E)

l1
B (E)

dlzE
e2

B (E)

e1
B (E)

deU]~ I v ,I u!

]~E,e!
U,

NW52E
0

EF
dEE

l2
W(E)

l1
W(E)

dlzE
e2

W(E)

e1
W(E)

deU]~ I v ,I u!

]~E,e!
U.

~A45!

The limits for thel and e integrals in these formulas ar
given by Eqs.~A39! and ~A42!, whereEF is replaced byE.
Since the propagator~2.3! has the same structure of an int
gral over the classical phase space asN, it is convenient to
make a similar distinction between the contribution of t
two kinds of orbits. Thus for oblate geometry we write

DL8LM
0

~q8,q,v!5BL8LM~q8,q,v!1WL8LM~q8,q,v!,
~A46!

with BL8LM andWL8LM still given by Eq.~2.15! but with the
corresponding integration limits for each kind of orbit.

The building blocks of the present calculation are the
liptic integrals given by Eq.~A19! for the prolate case. They
determine the frequencies~A20!, ~A21!, as well as the
phases~A18!, required in the evaluation of the Fourier coe
ficients. The analogous expressions for oblate geometry
obtained by applying the transformation~A29! to the prolate
formulas. All formulas given for prolate geometry can b
translated in the same way for the oblate case. A little ex
care should be taken for theu integrals in the case ofB orbits
since the double-well structure of the effective potent
UO(u,s2

O) makes pu become imaginary in the interva
@u3 ,u4#. This integration range must be excluded by t
very definition of classical phase space. Then, the lower
tegration limit for u in Eq. ~A27! becomesu05u4

B for B
orbits.
,
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