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A microscopic theory of linear response based on the Vlasov equation is extended to systems having
spheroidal equilibrium shape. The solution of the linearized Vlasov equation, which gives a semiclassical
version of the random-phase approximation, is studied for electrons moving in a deformed equilibrium mean
field. The deformed field has been approximated by a cavity of spheroidal shape, both prolate and oblate.
Contrary to spherical systems, there is now a coupling among excitations of different multipolarity induced by
the interaction among constituents. Explicit calculations are performed for the dipole response of deformed
clusters of different size. In all cases studied here, the photoabsorption strength for prolate clusters always
displays a typical double-peaked structure. For oblate clusters we find that the high-frequency component of
the plasmon doublet can become fragmented in the medium size rel§ier250). This fragmentation is
related to the presence of two kinds of three-dimensional electron orbits in oblate cavities. The possible scaling
of our semiclassical equations with the valence electron number and density is investigated.

[. INTRODUCTION ters by assuming a spheroidal cavity model for the equilib-
rium mean field. Thus we limit our analysis to the simplest
Complex many-fermion systems such as atomic clusterdeviation from spherical shape and consider only spheroidal
and nuclei exhibit both spherical and deformed equilibriumgeometry. However, our model is not limited to small defor-
shapes. Deformation of the ground state gives rise to observnations, and in principle, we can study systems ranging from
able effects in the excitation spectrum of these systems, witBpherical to almost cigar or disklike shapes. Our aim is to
the splitting of the giant dipole resonance in deformed nucleextend the semiclassical theory of linear response based on
most likely being the best well-known featur8ased on the the Vlasov equation of Refs. 9 and 10 to deformed systems.
close analogy that exists between the nuclear giant dipol&his theory can be viewed as a semiclassical version of the
resonance and the cluster surface plasmon, a similar splittinggndom-phase approximatgRPA). Although a fully quan-
is expected and has indeed been observed in atomic clustdrsn treatment of the problem is certainly more rigorous, the
(see Refs. 2 and 3 for reviews of experimental and theoretivVlasov equation has the advantage that the numerical effort
cal work. A spheroidal deformatioffprolate and oblajeis  required is greatly reduced. Indeed, a fully quantum RPA
often sufficient to explain data in both nuclei and atomiccalculation for finite systems must rely heavily on numerical
clusters although recent jellium model calculatibalso sug- computation. This fact has limited explicit calculations
gest more complicated shapes for the latter. mostly to either infinite homogeneous or spherical systems,
Clemenget has used a deformed oscillator model, whichwhere the symmetries of the mean-field Hamiltonian allow
is inspired by the Nilsson model of nuclear phydids, de-  for simplifications of the numerical problem. Pioneering
scribe deformed clusters. However, Strutinsky, Magnerwork on the quantum response of spheroidal clusters has
Ofengenden, and Bsing pointed out that the oscillator po- been made by Ekardt and PeriZdfor prolate clusters only
tential is somewhat special and argued that a spheroidal canother early calculation of deformation effects on the opti-
ity would give a more realistic description of the equilibrium cal response of small sodium clusters has been made in Ref.
mean field(in nuclei, but the same is true for large atomic 12. References 13, 14, and 15 discuss more recent work on
clusters. Actually, the spheroidal cavity is still a rather spe- the subject.
cial choice since its sharp surface is an undesirable feature. A The present work is organized as follows. In Sec. Il we
mean field with a diffuse surface would be more realistic.extend the formalism of Refs. 9 and 10 to spheroidal sys-
Studies by Arvieu, Brut, Carbonell, and Touchaaf the tems. In order to present clearly the main points of the theory
classical motion of a particle in a deformed Saxon-Woodswe have relegated the discussion of many detailed expres-
like potential indicate that part of the classical phase spacsions to the Appendix. In Sec. Ill the model is applied to
becomes chaotic. In a spheroidal cavity instead the singlestudy the evolution of the peak profile of surface plasmons
particle motion is integrable, and this fact makes calculationsvith deformation. Both the “single-particle” and collective
practicable. responses are studied for prolate and oblate geometries. Fi-
In this paper we study surface plasmons in deformed clusnally, Sec. IV contains a brief summary and the conclusions.
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Il. FORMALISM
D(q",0,0) = (27)°S, fdl F'ho(1)]

In spite of its well-known difficulties in reproducing the
observed width of collective resonances, the RPA is still the

basic microscopic theory of small-amplitude vibrations for > n-o(l) __Q*(q",)Qu(q,])
many fermions systems. The RPA theory can be derived in n-o(l)—(w+ig) N7 T I=mRY
the Green-function formalisi?. The RPA Green functiof® 2.3
obeys an integral equation that can be written formally as '
with e —0, and the Fourier coefficients
G(w)=G%w)+G%w)VG(w), (2.2
1 : :
_ —in-® .
where the unperturbed particle-hole Green func@hde- Qn(a,h)= (Zw)sf dpe " ®edr, 2.9

scribes the single-particle motion of the constituents in the
equilibrium mean field, and/ is the effective two-body re- taking the place of the quantum matrix elemefdgse also
sidual interaction. The response of the many-body system tRef. 19. In Eq. (2.3), n is a three-dimensional vector with
a weak periodic external field of frequeneyis proportional  integer components, and the sum extends to all possible val-
to the imaginary part o6(w). In practice, the calculation of ues ofn. The components of the vectar are the fundamen-
G from Eg.(2.1) means facing two main problems: first to tal frequencies of the multiply-periodic particle motion in the
evaluateG? for the system under study and then solving theequilibrium mean field,
corresponding integral equation to determi@e The latter
becomes quite a challenge when the system is nonspherical o(l)=V,ho(l), (2.9
sinceG will be determined by a system of coupled integral
equations, as we shall discuss later on.

The problem of calculatings® for a given mean field is
simpler in the semiclassical theory of linear response devel- 2
oped in Refs. 9 and 10. This theory has been applied to the F(E)= z—hga(EF—E), (2.6
study of giant resonances in spherical nudland of surface (2h)

plasmon excitations in spherical microclustétThe excita-  which describes the equilibrium distribution of electrons at

tion spectra given by this semiclassical theory are very simizero temperatureH; is the Fermi energy Thus
lar to those yielded by the fully quantum RPA theory even

when the many-body system under investigation is not par-

ticularly large. Moreover, for large deformations it is ex- F'(E)=———=6
pected(Ref. 6, p. 591 that shell effects should be smaller (2mh)®
than for spherical systems, thus favoring a semiclassical a

proach. te that th tor in E€.3) is perfectly well be-
The semiclassical theory of linear response based on t ngveed v%heme- E;Zp(;i%%grtcl)nthe%re)s:—:‘sn(F:)sro?imé :;V?actoer
Vlasov equation of Refs. 9 and 10 leads to an expression fogTI

with hg=E the equilibrium Hamiltonian. The function
F’(E) in Eq. (2.3 is the derivative of

(Er—E) (2.7)

Reduces by one the number of integrals in E3). We also

PO
the propagator with the same structure as the quantum RP the numerator. TheD™is not affected by the problem of

. A all divisors(Ref. 20, p. 52
given by Eq.(2.1). However, the RPA equation is actually For a reali(stic meanpfieldathe frequenciesdo depend

gck)ga Ci?];r(;pI;iitggﬁhﬁgviﬁfﬁggg?cmég;mtse?r:]es p;?geg?t/enupon the value of the action variablés This dependence
' ! reflects the nonlinearity of the mean field. A cavity is an

treated in a local approximation leading to the same Hartree- . . X .
X i - .o example where this nonlinearity effect is present. Instead, for
like structure as the Vlasov equation. In the classical lifit,

and G° will be denoted byD andD®, respectively, in order the oscillator potential model, where the equilibrium Hamil-

to distinguish them from the corresponding quantum quanti:[Onlan Is given by

ties. _ _ (ho) = -1, (2.9
Although the theory of Refs. 9 and 10 is generally valid

for all integrable mean-field Hamiltonians, practical applica-the frequencieso do not depend om. This difference is a

tions have been limited to spherical systems. In order to exbasic distinction between the oscillator and more realistic

tend its range of application to deformed systems, we conmodels, and it becomes the main reason for our choice to

sider the classical limit of E¢2.1) in momentum space, study the cavity model.
The most general partial-wave expansion of the propaga-
D(q',9,0)=D%q’,q,®) tor D°(q’,q,w) is
1
+ J dkDO(q’ ,k,)V(K)D(K,q, o). D(a’.q.0)=2> X Diyw(d'.0.0)
(2r) LM rmr
22 XYL (@) Yiu(a). 2.9

Following Refs. 9 and 10 and using unifis=c=1, the The symmetry properties of the system allow for a simplifi-
propagatoD® can be written in terms of action-angle vari- cation of this expression. Indeed, the axial symmetry of
ables{l,®} as spheroidaliand also sphericabystems implies
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D° =5 DO (q',9, ) (2.10 integrals. All vector quantities in Eq$2.3 and (2.195 are
MLm= Oy wPLmld» 0, o), : : ) .
' expressed through theiu(v,¢) components as discussed in
and, therefore, the Appendix. Furthermore, the integrand is evaluated at the
o L % Fermi energyEr as a consequence of E@.7). All other
D°(q’,q,w)=2 2 2 DE’LM(q"q’w) integrals are extendec_j t_o the class;l_cally available phase
L=0 M==L /"Dy space; the integration limits are specified in the Appendix.

The Fourier coefﬁcientQhL""nv’M(E,e,)\z;q) are related

s o
XYum(@)Yiu (). 21D 45 those of Eq(2.4) by
A similar expansion for the propagatbr(q’,q, ) is ob-
tained from Eq(2.2). Thus for spheroidal systems, the three- _ LMy* (A
dimensional integral equatidiq. (2.2)] reduces to the fol- Qn(a,1) % Q™ Yim(a), (2.19

lowing system of coupled one-dimensional integral
equations for the coefficienBB,, u(q',q,®),

]

1 e LM _ 1 8((Duaq)v)
Dim(@',0,0) =D}, (4,0, 0) + (2m)3 I:%/I\ fo e 0y 7 M 35 au % av a(u,v)

—i(ny®y+n, D)
X dK DY, (0" K, @)V(K) Dy (K, 0, 0). X e Pty Pt

(2.12 XYomlO(u,v),0]j [ar(u,v)].  (2.17)
This equation can be further simplified for spherical symme-The symbolf means integration over a whole period of clas-
try. In this case, sical motion in the respective variable, the angle varidble

takes the forn@¢=ﬁ>¢(u,v)+<p, and j, is the spherical
2.13 Bessel function of ordek.
] ' The comparison of Eq$2.12) and(2.14) explicitly shows
and Eq. (2.1 reduces to a single uncoupled one-that, contrary to the spherical case, there is a coupling be-
dimensional integral equation for each partial-wave compoyyeen excitations of different multipolarity in deformed sys-

nent, tems. It can be showfsee the Appendixthat D_, ,,=0

unless )" =(—)", so that only multipoles with the same
parity are mixed in Eq(2.12. Since this is a consequence of
the reflection symmetry of the spheroid-¢ —z), it holds
xdk KKDP(q" k,@)V(k)D (k,q, o). for both prolate and oblate shapes. Such a simplification
(2.14 would not necessarily occur for “pear-shaped” systems.
) ) ) ] _ The physical observables we consider in this work are
The solution of this equation for_ surface plasmons in Sphe”_‘related to the “forward” propagatdd(q,q,w) regardless of
cgl clustéars has been studied in Ref. 18, vyhere the coeffine need for the full off-diagonal propagatbi(q’,q,w) to
cients D (q’,q,w) have been explicitly derivedsee also golve Eq.(2.2). Moreover, for randomly oriented clusters, we

Ref. 10. . _ must average over the solid angl€hus we define the angle-
In order to solve the system of coupled integral equationgyeraged propagator

expressed by Eq2.12), we must derive an explicit expres-
sion for the coefficient:ﬁ)f,LM(q’,q,w). This can be done 1 -
in a way similar to that followed in Ref. 9. We refer here to (D(q.@) =Ef dab(a.q,). (218

the Appendix for details on how to extend that approach ta . , .
both prolate and oblate geometries. From E(s3 and '€ expansion db(q’,q,») analogous to Eq2.11) implies

(2.11) we obtain

DE’LM(qIIq!w):5L,L’D8(q,'q’w) (any M)’

’ N0/~ 1 *
DL(q !qiw)_DL(q !Qlw)+(27)f_’,fo

1
(D(a,0))= 7~ > Dum(@q0). (219

2
_ iy nEn (2m)3

DE/Lm(q,aQyw):
A quantity often used in cluster physics is the dynamic
a(l, 1) polarizability (). It is related to the long-wavelength limit
X f d)\zf de HE.0 of theL=1 component ofD(q,w)). For deformed clusters
' the polarizability is a tensor since the induced dipole moment
nyw,+n,0,+ Mo, depends on the orientation of the cluster relative to the ex-
ternal field. We introduce thBl-component polarizability as

X -
nyo,+nyo,+Mo,~(w+ie)

X (L"M)* E,e\,: ’ 122y iDllM(q!q!w)
Qn. .ny m(E.€A7:0") ap(o) 3e;|2~.0 e RCIANE (2.20
X Q. m(E.€1;:0), (2.19

In the spherical limitey, is M independent. For spheroidal
where we have used the constants of motjéhe,\,} in- systemsa_y=ay, (this is a property of the coefficients
stead of the action variablésto evaluate the corresponding D/ u)-
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We introduce also the “partial” photoabsorption cross ho(U,V,@,Py, Py Pe) =K(U,V,@,py,Py,Py) + V(V),
sections (3.3

4o where {p.u Py ,p(e} are the corresponding conjugate mo-
op(w)= <@ IMlay(w)], (2.21 menta,K is the kinetic energy, antf is the potential energy
for particles in a cavity. All the calculations have been per-
and the total photoabsorption cross sectidh is formed within this framework. The centra_ll objective has
been to calculate the collectiv®,4y function from Eq.
1 (2.12. The number of coupled integral equations required is
a(w)=% > oy(w)=Lioy(w)+20(w)]. fthreg for the cases of Iarger. deformation={2) considered
M=-1 in this work[that is|=1,3,5 in Eq.(2.12)].
(2.22 One technical point deserving special attention is the han-
dling of the singularities present in tiz° propagator in Eq.
ll. RESULTS (2.15. We have taken a finite value=0.002w);. When per-
. . ) ) forming the actual calculations. Our choice modifies slightly

In this section we apply the formalism developed in Sec~59) the width of either the single-particle or the collec-

Il 'and in the Appendix to the study of prolate and oblatetiye plasmon peak. Furthermore, we have summed up all
clusters with varying degree of deformation. Also, we ex-jlowed frequency modes for 2<{n,,n,}=<2 when calcu-
plore the possibility of scaling with the number of valence 3ting D°. The dynamic polarizability and the total photoab-
electrons and cluster density. The emphasis is on understangyrption cross section of prolate clusters are mainly domi-
ing how the collective response is altered when the clustergated by then,=1, n,=0,+1 modes forM =0 andn,=0,
under investigation do not have a spherical shape. We shql,lvzoyi 1 for M=1. However, the oblate cavity presents
not attempt to compare our results with experimental data a{ome peculiar features requiring a finer analysis.

this Ieve! of development. For this reason we do ljot (_:on3|der From a theoretical point of view, it is interesting to study
such refmer_nents as th_e electron “spill out, WhICh is W_eII also the single-particle respon§eroportional to the imagi-
known to give a redshift of the plasmon peak in sphericalyary part of the zero-order propaga®f) since its features
clusters. We expect to flnd a similar effect in the deformed,;e” more directly related to the shape of the equilibrium
case. No particular effort is made to reproduce the observeghean field. This can be of help in understanding how this
width of the plasmon resonances, which is con5|derabl3éhape affects the collective response.

larger than that obtained in the present model. _ The effective two-body residual interactidaf(k) in Eq.

The picture we have in mind here corresponds to taking 2 ) determines primarily the position of the collective plas-
spherical cluster.and the_n d(_aformmg it to either a prolate ofnon peak and, to a lesser extent, its shape. The present semi-
oblate shape while keeping its volume and density constanassical approach is essentially a Hartree approximation that
We cpn5|der |n|t|aII_y a relatively large sodium cluste_r of goes not include exchange contributions. However, exchange
spherical shape, wittN=254 valence electrons, described 5nq correlation terms can be taken into account in a local
approximately by a square-well mean-field potential of ra-55hroximation by introducing éstatio local-field correction

diusR=r ,N¥® andr is the Wigner-Seitz parameter in units G(K).2 Thus the momentum-space interaction we use is
of the Bohr radius. We will take =4.0. In this case the

surface-plasmon resonance consists of a single peak situated g2
near the Mie frequency, V(k)=4m7[1-GK)], (3.4

wp with
wMie:ﬁa (3.1

with w, the bulk plasmon frequency. Then this sodium clus-
ter is deformed to a spheroidgrolate or oblateshape char-
acterized by a deformation parametgr

G(k)=A[1— e Bkpp?], (3.5

where A=0.9959 andB=0.2612 for sodium(Ref. 21, p.
446), andpg is the Fermi momentum. In our calculations we
have verified that it is possible to take an upper integration
limit kya=4pe when solving Eq(2.12 without a notice-
7= R_> (3.2 able change in the relevant results.
R
where R. (R.) are the larger(smalley diameters of the A. Prolate cavity
spheroids. We study the changes that are expected in the The natural frequenciefw, ,w, ,w,} of the unperturbed
distribution of the dipole strength and report results for 1trajectories of particles in the prolate cavity determine the
<7=<2. The spherical limit is obtained by takingg  gross behavior of the semiclassical propagabdt [Eq.
=1.001. (2.19] as a function ofv. Since these frequencies depend on
To describe the spheroidal systems, we introduce spheroihe integration variables and\,, it is interesting to evalu-
dal coordinategu,v, ¢} as described in the Appendix for the ate the possible values that they take and their occurrence as
prolate and oblate geometries. Assuming that electrons mowe function of the cluster deformation. In Fig. 1 we show
in a static cavity of spheroidal shape, the equilibrium Hamil-histograms for the probability density of the natural frequen-
tonianhg will be chosen to be cies expressed in terms of the Mie frequengy;, and for
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2 oo ] oo 16 et for prolate clusters with deformation ranging from= 1.0 to

2 n=10] pgn=10 12 n=10 2.0, step 0.25. We display the results in a three-dimensional

16 3 plot to better assess their relative behavior. The areas shaded
— s 04 . black show the cross section obtained from the zero-order
& N o0 WW . propagatoD®. As a reference, we can observe on the left-
o n=151{  ln=15 n=15 hand side of Fig. 2 the same peak corresponding to spherical
z 038 12 geometry ¢7=1.0) in bothM=0 and 1 components and
g 16 8 centered around=0.16 wy;. Then theM =0 component
£ SJ 04 4 shows a photoabsorption peak shifted to lower frequencies as
£ 0.0 0 deformation increases. This is a consequence ofsee Fig.
'§ " n=20 n=20 . n=29 1) determining the dominant pole. The corresponding
= p 08 . strength of the peak increases fgr=1 to ~1.5 and then

o4 slowly starts to decrease. Thé=1 peak is shifted to higher
8 4 L frequencies due to the dominancedf in this mode, and its

01070307 0s 0070 06 08 10 CTOTo ST 0TS strength decreases with increasing deformation.

The right-hand side of Fig. 2 shows the partial collective
cross sectiongshaded grayevaluated from the full propa-

FIG. 1. Probability density for the natural frequencies 9ator D in Eq. (2.20. By including the fluctuation of the
{0y, 0, ,0,} at different deformations; in the prolate sodium Mean field, we obtain two main effects: a huge shift in the
cluster described in text. position of theM component of the photoabsorption peak to

frequencies around the Mie frequency and a noticeable

deformations»=1.0, 1.5, and 2. This probability density change both in the width and the strength of the peak, mainly
refers to the occurrence of the frequencies as functions of th®r M=1. We have numerically checked that the energy-
(discretizedl integration parameters and ), in our numeri- ~ Weighted sum rule(area under the curvess unchanged
cal calculations. It was evaluated with bins of width within 2%. The low-energy collective plasmoM(E=0 com-
0.002wyie. The frequenciesv, and w,, fall in a narrow ponenj has an intrinsic structure that is slightly more com-
range of the order of 0.0By., with the former moving to  plex than the corresponding high-energy plasmah=(1
the left and the latter to the right of the spherical limit ascomponentand showing some degree of fragmentation no-
deformation increases. Far, we have not plotted the sym- ticeable at7~1.5. The dominant collective peaks in Fig. 2
metric negative components in Fig. 1. The frequengy are slightly blueshifted with respect to the positions pre-
shows a different behavior, and it spans, in principle, the dicted by the Mie theory both for th®1=0 and 1 compo-
[~0.5 wyie,] range. Overall, Fig. 1 gives a clear idea of nents. This completely classical theory predicts thatNhe
the dominant frequency poles contributing to @& propa- =0 andM=1 peaks should be at the frequencigscorre-
gator. sponding to oscillations along theaxis (z for M=0, x and

The M=0,1 components of the photoabsorption crossy for M=1). These frequencies are given by
section[Eqg. (2.21)] per valence electron are shown in Fig. 2

0)u / wMie wv / (DMie mnp / (J)Mie

W= \/n—iwp, (3.6

= & Prolate Cavity with n; the appropriate depolarizing factor. For spherical
~ symmetryn,=n,=n,= %, giving Eq.(3.1), while for a pro-
S 4 2.0 late spheroitf
L 1.5 n

0 1.0 .
Zz g ny=ny=3(1-n,), (3.7
bO
— 4 2
e _1—e | l+e ) 3.8
0 n,= 263 n E el. ( .8
Z, 8
- The eccentricitye is related to our deformation parameter
s b
€ y
5 ° L
& 4 e=1\/1-—. (3.9

: 7
=03 06 09 12 15

B A simple calculation gives w,,=1.073vye, ©,
=0.836wyie for =15, and w,,=11130ye, o,

FIG. 2. M=0,1 components of the photoabsorption cross sec= 0.722vy;e for 7=2. From Fig. 2 we observe that our col-
tion per valence electron for a prolate cluster at different deformalective plasmon peaks are blueshifted by approximately 7%
tions and both in the “single-particletshaded blackand “RPA-  with respect to the position expected from the classical val-
type” (shaded grayapproximations. ues.
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100 0 T T T T T T T T T T T 32 1.2 16

Oblate Oblate Oblate
. — B - orbits 1 2 n=10] (gln=10 12 n=10
80 " ereeee W - orbits : 6 o4 ’
& . ;Q 8 4
D . — 9 0.0 0
g 60f 7 - n=15 n=15 n=15
= . | ‘2 24 08 12
o] 2 16 8
g 40 e . T :; ¢ 0.4 .
- e | < ‘ 0.0 W 0——L
® 20/ T e . 2 1=20 =20 1=20
A 0.8 12
16 8
2 1 " 1 n 1 n 1 2 1 L 8 04 4
1.0 1.5 2.0 2.5 3.0 3.5 4.0
I —
n (oblate) T 02030405 "0 70270406 08 10 0 0102030405
. . (Duw ! Oyge O’VW ! Ongie %w ! Oygie
FIG. 3. Fraction of particles oB (full curve) and W (dotted
curve orbits as a function of deformation for an oblate sodium FIG. 4. Probability density for the natural frequencies
cluster. {0} o) 0y} characteristic oW orbits at different deformations

7 in the oblate sodium cluster described in text.
B. Oblate cavity B ) ) )
_ The {0®} frequencies are characterized by a different
We turn now to present our results for oblate sodium clusyropapility density, as shown in Fig. 5. In the spherical limit

model IS the existence Of two k|ndS Of three'd|mens|0nalw52iwgz%ws_ AS deformation increase&h? becomes

orbits, W and B orbits, for oblate geometrisee Appendix  mych less defined and, on average, takes smaller values than
This feature should be shared, at least qualitatively, by morg, the spherical case. The frequem& instead is still fairly
realistic deformed mean fields. In order to estimate the relage|| defined and is also decreasing with increasing deforma-
tive importance of the two kinds of orbits, we have plotted injon, Furthermorew® shows great similarity wittw" in Fig.

Fig. 3 the fraction of valence electrons following each of they The frequencyw® shows a definitely different behavior

orbits as a function of the cluster deformation In the  {han,W |t spans a finite range of values depending strongly
spherical limit »—1 the cavity only allows\W-type three- o the cluster deformation. From the results shown in Figs. 4
dimensional orbits since thB orbits become oscillations gng 5 we may expect a more complex behavior of Ife
along a diameter. As deformation increases the fraction ojropagator than that observed in the prolate cavity.
electrons inB orbits raises quickly reaching 50% foy The M=0,1 components of the photoabsorption cross
=1.7. The presence dV and B orbits in the oblate cavity section[Eq. (2.21)] per valence electron are shown in Fig. 6
suggests that we may expect a richer behavior of the clustéor oblate clusters with deformation ranging fromy
response. =1.0(0.25)2. As in Fig. 2, we have plotted the cross sec-
The W and B orbits are characterized by their respectivetions gﬁjl)) (shaded blackobtained from the propagat@®
fundamental frequenci¢&q. (2.5], which in turn determine calculated in the static mean field amd, (shaded gray
the D propagator. We shall refer to them as the"V} and
{»®} frequencies. In order to have an estimate of the pos-

sible values they take and of their occurrence for different '® 1? pee | 100 1? bt %0 1? o
deformations of the oblate cluster, we present histograms fol

the probability density of the natural frequencies — * 50 »
{0y o) 0} in Fig. 4 and of 0} 0] ,wl} in Fig. 5. The ¥ . . .

{o™} frequencies in Fig. 4 may be compared to the natural _ n=15 n=15 n=15
frequencies obtained for the prolate cavity shown in Fig. 1.3 ° 12 12

Clearly the results fop=1 in both cases are identical. A § 4 8 8

great similarity is also observed fes, as the clusters get 2 2 . 4 J 4

deformed. However, the increasing occurrenceygfin Fig. £ 0 o—

1 at the lower limit of the frequency range is not present in g . n=20] =20 " n=20
" (Fig. 4. The allowed values fow"' change slightly with = X . .

deformation and are not sharply defined. The behavias pf

in Fig. 1 is rather different, with the frequency defined in a * N

narrower range and its allowed values decreasing with in- =577 020370205 ° 0204060810 ° 0102030405
creasing deformation of the prolate cavity. Th%" fre-
guency in Fig. 4 shows a similar structure to its counterpart
in the prolate case, but its magnitude decreases with defor- FIG. 5. As in Fig. 4 for natural frequencies characteristidBof
mation rather than increasir(§ig. 1). orbits.

B B B
(ou / Q)Mie 0, / 0)Mie (D(p / (oMie
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FIG. 6. As in Fig. 2 for an oblate cluster. FIG. 7. Photoabsorption cross section per valence electron for
prolate and oblate sodium clusters at several deformations. The left-
calculated from the correlated propagalbrFor M=0 we  hand side of the figure shows the results obtained in a single-
observes?) presenting a novel structure. Indeed, the unperparticle approximation¢”)). Arrows indicate position of plasmon
turbed dipole peak is split into several peaks as deformatiopeak in the spherical case.
of the oblate cluster increases. This can be understood when
DY is written in terms of the propagators f& andB orbits  effects shift theo; dipole peak to frequencies below the one
[Eq. (A46)]. These propagators give a dipole response domicorresponding to the spherical cavity as deformation in-
nated by the resonance frequeno&é@'B determined from creases.

The position of the dominant peaks can be compared with
the predictions of the classical theory. In the oblate case, the

o P=ngoy P+ nyoy T Mo (810 ), frequencies are still given by Eqf3.6)—~(3.7) and?
For L odd andM=0, Eq. (A27) implies n,=odd. Then, C1+é?
based on the probability densities fel (Fig. 4), we expect n,=—g3—[e—arctare], (311

a dominant contribution from th&/ orbits in the modegn, _ o _
=1,n,=0} (at around 0.15-0.2@,., depending on defor- With the eccentricitye related to our oblate deformation pa-
mation. Furthermore, the probability densities foP sug- rameter by

gest a dominant contribution both in the modes =1,

=0} (around 0.15-0.2@e) and{n,=+1,n,=1} (around e=\n"—1. (3.12
0.8—0.9wyie and 0.4-0.50y,;,.) from theB orbits. The rela- : : : _ .
tive strength of these peaks are determined by the Fourie'i1 fg;fle ?:rlculat;o? 5 gg’fg (:)X'V Z%%%éi’\"'?’ ZZ
coefficients defined in E¢2.17). Once fluctuations of the :1-25&)1\@9 for :772 .The M=1 X'cyolle.ctive M&z;\smo;s
mean field are taken into account, we obtain a rather com(—w ' ) “g‘;e a a7i7n bl-ueshifted and in rouahly the same
plex structure foforg (Upper gray pealisAs deformation of amxo,urilt we obs%rved in the prolate case?@/o? I-)|/owever
the cluster sets in, tht1=0 component of the collective P ) '

. . . for M=0 the collective peaks are now blueshifted by ap-
dipole peak corresponding to the spherical cluster-(..0) roximately 10—-15% WitFP)1 respect to the position expected
gets fragmented as a consequence of the more compleX ;

0 . fom the classical values.
structure ofD”. The amount of fragmentation depends on
the deformation parameter. The high-frequency peak is more _
fragmented for & < 1.5, reaching a rather simple structure C. Comparison between prolate and oblate clusters
with only one dominant peak fop=2. TheM=1 compo- In this section we compare the most prominent features
nent of the photoabsorption cross section shown in the lowegoncerning the dipole response of spheroidal clusters to an
panels in Fig. 6 does not present major new features. Since ixternal field. We have chosen to show the photoabsorption
this case the resonance frequencies are determined from tbgoss section per valence electravi= 254) calculated for a
evenn, modes, therr{”) shows a dominant peak for each sodium cluster that has been deformed to both prolate and
deformation withW and B orbits contributing in proportion oblate shapes. We display calculations corresponding to de-
to the number of valence electrons moving in each of thenformations»=1.0(0.25)2 in both geometries. In Fig. 7 we
(Fig. 3 and both in the{n,=0,n,=0} mode. The other plot the corresponding cross sections calculated both in the
modes corresponding to tH& orbits are also present, but static mean field(single-particle approximation, shaded
their contributions are considerably weaker. The collectiveblack and including collective effectshaded gray Arrows
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are plotted as reference. They place the position of the plas _ 16
mon peak for a spherical cluster in the present model. For< 12
prolate geometry the photoabsorption strength always dis-—
plays the characteristic splitting into two pronounced peaks,
corresponding to oscillations along two perpendicular sym- ©
metry axes /=0 andM =1). The relative strength of the
two collective peaks varies with an increasing dominance of W N=25
the M=1 component for larger deformations. For oblate Z 8| | _ s B N=o254
spheroidal geometry instead, an interesting phenomenon oc © 4
curs: one peak dominates the cross section inshel —2 0
range. The high-energy collective plasmav €0 compo- 2
neny gets fragmented and distributed over an interval of fre-
qguencies of the order of approximately 8,3.. This frag-
mentation tends to disappear at the largest deformatior
studied here ﬁ=2). However, as shown in Fig. 6, some 02 04 06 08 1.0 1.2 14 02 04 06 08 1.0 12 1.4
residual fragmentation remains at frequencies similar to the 0/ Oy o/ Oy
characteristic frequency of the low-energy plasmih={1
component The effect has been traced back to the appear- FIG. 8. Photoabsorption cross section per valence electron for
ance of extra peaks in the “single-particlé¥ =0 strength, prolate and oblate sodium clusters at several deformations and for
that is related to the existence of two kinds of three-N=25 (shaded blackandN=254 (shaded gray
dimensional orbits\(V-type andB-type) in an oblate cavity.
It is reasonable to expect that a similar effect should alsavhich explicitly contains the density parametgr An addi-
occur for more realistic mean fields. tional N andr ¢ dependence is implicit through thieparam-
Overall, our results give a clear indication on the grosseter in the forcev. Consequently, it is not possible to deter-
features to be expected for either prolate or oblate mediurfnine an obvious scaling law allowing for the calculation of a
size sodium clusters. The photoabsorption cross section ihiversal collective functiom(x’,x,s).
split into two peaks for the prolate geometry but is mainly In our caseV corresponds to a modified Coulomb-type
dominated by a single peak in the oblate case for the range é¢sidual interaction Eq. (3.4)]. Then it is reasonable to

deformations studied here, the smaller peak being furthegearch for additional properties of E®.14) in the presence
split or fragmented. of a pure Coulomb force. We obtain

Prolate Cavity Oblate Cavity

n=1.0
4

12

n=15

o/N
o & =

D. Scaling properties

d(x’,x,5)=d%x’,x,s)+ ! rSN2/3J dyd®(x’,y,s)
In this section we investigate the dependence of our re- (2m)?
sults from the valence electron numbé¢iand from the den-
sity parameterg. By using the explicit expressions of the «
free propagatob? given in Sec. Il and in the Appendix, it is y?
possible to define for each geometprolate, oblate, spheri-

cal), at given cluster deformation, a corresponding univer- [N this limiting case, the solution to E¢3.15 depends on
sal propagatod®(x’,x,s) such that the productr JN-* only. Deviations from this result are due

to more realistic effective interactions, and they may be ex-
0 20 ) ® pected to be important in the smaller clusters.
D™(q",q,0)=Nrgd”| Rq 7Rq'w_F , (3.13 In the limit of largeN our microscopic calculations tend
] ) ) to reproduce the results of the macroscopic theory, with the
geometry. In Eq(3.13 all the dependence from the number ¢ not on the total electron numbir TheN dependence of
of valence electrons and from the electron de_nsity has beegy. (3.15 is not in conflict with this expectation since the
extracted from the free propagat®’ by relating it to @  gimensionless parameteris related to the frequency by an
universal functiond® of the dimensionless parametexs N-dependent relatios N3 2.

=Rq and s=w/wg. The question we address now is  oyr discussion indicates that no exact scaling is to be
whether a similar factorization occurs also for the CO”eCt'VeeXpeCted for the photoabsorption cross sections in the

propagatoD. In general, this factorization is not possible for present model. The actual amount of scaling violatioin
an arbitrary interactiorV. Ipdeed, by defining a function §ges depend on the size, composition, and geometry of the
d(x’,x,s) from the collective propagatob through Ed.  particular cluster considered. In order to illustrate Mele-
(3.13, then the integral equatidi2.2) leads to the following  hendence of our results, we have calculated the collective
integral equation fod, response of sodium clusters with 25 atoms, thus changing
d(x’,x,8)=d%x" ,x,s) by an order pf magnitut_je with respect to_the results reported
earlier. In Fig. 8 we display the collective responseNof
y =25 sodium clustergshaded blacktogether with that for
f dydo(x’,y,s)V(§>d(y,x,s), N=254 (shaded gray For spherical and prolate geometry
s the N=25 plasmons are blueshifted by approximately 10%
(3.149  with respect to theN=254 results, with the overall peak

e2

d(y,x,s). (3.15

. 1
(2m)°%r
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profile showing a qualitatively similar behavior in the two ics. The relative importance of this effect depends on several
cases. The light cluster plasmons are sharper due to a smallelements, such as the shape and size of the cluster and the
Landau damping. For oblate geometry we notice that thetrength of the effective interaction. Other sources of geo-
fragmentation of the high-frequency plasmon found for metrical fragmentation of the optical response in sodium
=254 does not appear fdd=25. The fragmentation phe- clusters have been discussed in the literatfitayt they do
nomenon iN dependent, and it disappears for different clus-not seem to be related to the present mechanism.

ter mass. These results agree with our general statement The normalized cluster dipole response shows no simple
about the lack of scaling withl of the collective propagator scaling properties witiN at given density (;=4). The po-

D. sition of the plasmon peaks is weakly dependent Mn
The study of clusters with a larger number of valencechanging by approximately 10% in the 8<2500 mass
electrons N>254) will not provide much new information region while fragmentation of the high-energy component

since the theory starts approaching the classical limits. Weisappears for light N~25) and heavy l~2500) oblate
have confirmed this by doing calculations for sodium clus-clusters. On the other hand, no major changes in the photo-
ters withN=2500. We observe a redshift with respect to theabsorption profile are observed when density decreases by a
N =254 case of the order of 3% and no fragmentation of thdactor of approximately 2r=5) for a given numbeN of

M =0 peak. valence electrons.

We have investigated also the electron-density depen- Extensions to this work are clearly welcome. In particular,
dence of our results. Calculations of the photoabsortion crosa close comparison to experiment is required to assess in
section for prolate and oblate sodium and potassium clustedetail some of the physics missing in the present model.
(r¢=5) at N=254 show very similar peak profilginclud-  Nevertheless, we have established a solid framework to clas-
ing fragmentationwhen the frequency axis is rescaled with sically understand the gross features of complicated, intrin-
the appropriate value aby;.. Although the density of va- sically quantum systems.
lence electrons was decreased by about a factor of 2, these
small variations can be understood on the basis o 845 ACKNOWLEDGMENTS

where the relevant parametar,{I?®) was changed by 25%. ) .
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In this paper a semiclassical theory of linear responngbbl'ca Istruzione, ltaly.

based on the Vlasov equatibi has been extended to sphe-
roidal systems and then applied to study the peak profile of APPENDIX

surface-plasmon resonances in medium size deformed |, yhis appendix we specify the details for the expressions
atqrmc clusters. Assuming a spheroidal cavity model to de- iven in Sec. II. The propagat@® is determined entirely by

scribe both prolate and oblate clusters, we have been able Re single-particle motion in the equilibrium mean field. The
calculate the gross features of the cluster response to an ez

. . assical motion of a point particle in a spheroidal cavity
tn(:;r;;aolnfleld of frequency> as a function of the cluster defor- iy, herfectly reflecting walls has been studied in Ref. 7 for

. | | ‘ lculati prolate cavities and in Ref. 8 for both prolate and oblate
Two main general results emerge from our calculationse,ities (see also Refs. 25 and R6The authors of Ref. 8

One of them refers to the splitting of the collective dipole 56 pointed out that the three-dimensional motion in a pro-
peak with increasing deformation and to the position of these, cavity is simpler than that in an oblate cavity. We give

peaks. On this we have commented at length in Sec. lll. Th@,ot 5 detailed description for prolate geometry. Then,

other main result is related to the width of the dipole peakSy, ., ,gh a simple transformation, the corresponding results
In the present model the single-particle dipole resonancg, the ghiate shape can be recovered. Furthermore, we re-

does display a width that is due to the nonlinearity of the,,o.\ o1 the nontrivial differences related to particle motion
assumed equilibrium mean field. This single-particle widthi, e o geometries. Our notation follows closely that of
generates a width in the collective plasmon resonanceg.¢ 7.

through a mechanism that is analogous to the Landau damp-
ing in homogeneous systems. Our calculated width is not
sufficient to reproduce the observed plasmon width. How-
ever, our width is underestimated since we have included To describe the prolate shape, let us introduce the prolate
only the first few frequency modes when evaluatB in spheroidal coordinatefu,v, ¢} through their relation to the
Eqg. (2.39). The neglected terms would increase the imaginanCartesian coordinates,

part of D? in the region ofw=wy;. and thus increase the

1. Prolate cavity

Landau damping. Estimates based on numerical calculations . ™ ™
including more modes set this effect at about 20%, which is x=£p cosusinhv cosp,  — 25uUs7%
far from sufficient to explain the observed values. Thus more
sophisticated effects, like the possible coupling to surface y=¢&pcosusinhv sing, 0<sv<=oo, (A1)
vibrations?® should perhaps be taken into account.

The fragmentation of the high-energy plasmon peak for z=¢psinucoshy, 0<g<2m,

medium size oblate clusters is a definite prediction of the
present theory and reflects the existence of nontrivial dynamwith
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Ep=1c?—a’. (A2)

In the last equation; anda are the larger and smaller semi-
axes, respectively. The two focal points areat* &p .

The equilibrium Hamiltonianhy, can be expressed in
terms of the spheroidal coordinatgs v, ¢} and their conju-
gate momentdp, ,p, ,p¢}.7'8 Assuming that particles move

in a static cavity of spheroidal shape, represented by a po-

tential energy/(v), thenhg is given by

Pa+ Py
2mé3(coslfv —sirfu)

h(u,v,@,pu.py.Py) =

2

Py
+ +W(v
2mé2 sintfv cogu v)

(A3)
for the prolate configuration. The potential energy for shar
walls is

V(v)=0 v<v§ ,

=00 v>v2P, (A4)

and th(—:ﬂvg> parameter is determined by the shape of the cav

ity,

a
sinhvh=—

&p’
The Hamiltonian Eq. (A3)] is integrable, and the particle

(A5)

motion could, in principle, be described in terms of the angle

variables{®,,®,,® } and of the three conjugate action in-
tegrals

1 1 1
quﬁ jg p.du, |v=5 § p.dv, Icpzﬂ % p<pd<P-
(AB)

However, in the spirit of Ref. 9, the following three other
constants of the motiofiE,e,\,} can be conveniently used

instead of the action integrals. These constants are the par-

ticle energyE, the separation variable, and thez compo-
nent of the particle angular momentum (which coincides
with the action variable , and with the generalized momen-
tump,). The constant of motioe plays a role analogous to

the magnitude of the particle angular momentum in the

spherical case.

SEMICLASSICAL THEORY OF SURFACE PLASMONS IN . ..
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A7

P__ 2
2mE&2’

p €
TI=E 02 (A8)

and the effective potentials in E¢A7) for theu andv co-
ordinates are given by

P

Up(u,05)=sirfu+ ,
cou

=]

Vp(v,0%5)=cosiv— (A9)

sintfv

Particles on three-dimensional orbits move between two
confocal ellipsoids withvi<v=v5 and uf<u=u}, with
vi, anduf, the turning points obtained as solutionsyip
=0 andp,=0, respectively(see Ref. 7 for detai)s Intro-

pducing the quantities

1- crf 1- O'E 2
th = + +05,  (A10)
- 2 2
these turning points are obtained from
coshivl)=1—(t")?,
coguf)=t?, uf=-uf, (A11)

andv} from Eq. (A5).
It is our purpose here to specify the integration limits in
Eqg. (2.15 and to derive explicit expressions for the eigen-
frequenciesw, , , as well as for the Fourier coefficients
hon . @ppearing in the expression for’.
To ot;Ptain the integration range for the constant of motion
€, we realize that the turning poiml’; exists only if cosuzP
<1 in Eq.(All). Also the presence of an infinite potential
barrier at the surface of the cavity implips(vzp)zo. These

two conditions impose constraints of ,
Py _ P
(01)min=07,

P
g
(07 max=cOstfvg — —2 (A12)

sint? v

These constraints determine the integration range efor

With the help of the Vlasov equation, the angle variablesthys,
can be explicitly expressed in terms of these three constants

of the motion{E,e,\,} and of the spheroidal coordinates

{u,v,¢}. The derivation, based on separation of variables in
the linearized Vlasov equation, is lengthy but straightfor-

ward; hence we do not report all the details h&re.
The generalized momentg, , are

pu=&pV2mEyof —Up(u,ab),

Py=Ep2ME\Vp(v,05) —of. (A7)

The two dimensionless constants of the motigh and o
are defined as in Ref. 7,

J' d6—>f +de, (A13)
with
€_

A2
€_= ,
2mép

e, =Egcosifvh— (A14)

sink? v

The integration range for the constant of motinp is
determined from the possible values of the particle angular
momentum along the symmetry axis. Thus,
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Ay Correspondingly, the auxiliary frequency vecf@rhas com-
f dx —>f dA,, (A15)  ponents

where 7, (v5)
QU(EIE!)\Z):_(’UU . T:) ’

A.=*(pfa), (A16) ay(Vy)

with pg the Fermi momentum associated with the Fermi en- Tu(Ug)

ergy EF . Qv(E: Ev)\z) == (A21)

The evaluation of the Fourier coefficients in EQ.17) ay(Uz)

can be simplified by noticing that

1
~ QL (E,e M) = =[Qyy,(v)) + Quy,(uf
D+ 0Dy 0D, =s,(U)Fsi(v). (A7) o(Breha) = L0 (V2) + un(Uz)]

The phases,(u) ands;(v) are given by Note that from the expressions given above we can easily
obtain the explicit form of the angle variables in terms of the
Sp(U)=n- w7, (U)+n- Qay,(U) =N, y,(U), spheroidal coordinates. For example, the explicit form of

®,(u,v) can be derived from EqA17) by settingn,=1,
sp(V)=n-o7,(v)+n-Qa, (V) =N,y (v), (Al8) n,=0, n,=0. The angle variableb, takes the formd,

with w the frequency vector defined in E@.5), Q an aux- =0 (uv)to. . . ) )
iliary frequency vector, and the auxiliary functions The evaluation of the Fourier coefficients in Eg.17) is

[y v Ty Yuu) given by made explicit by using the identity
uvs»‘uyv: /uv

5 (Y du’ dv’ jg du 3£ Py, Py) *I(nu<bu+nvll>v+n¢<’f>¢)
ay(u)=mé — aw=-m& | o)
uminpu(u ) mepv(V ) )
_ uz V2
[ Sir2u’ , 4[ du J’ dv &(u ) cogsy(u)Jcog s (v)]
TU(U):_mgpf ; du’,
uminpu(u ) (AZZ)
Ry’ and evaluating the Jacobian
(v)—mgzjv STV v (A19)
T - )
' i Vmin Py(V") Dy, D) =(m§2)2wuwv 7'u(uzp) TV(VZ)
a(u,v) P" Puby au(uz) av(Vz)
(U)=x f C v —sir?
u)= _— o
Yu z umnCO2U’ Pu(U’) X (coshtv—sirru). (A23)
Then
W)=\ jv dv’
V)= _—
I “Juminsint? v’ py(v') o nyn, = f J —F(u,v)
In these equations the upper integration limit is a variable ,
while the lower one is the corresponding inner turning point X cog sp(u)Jeog sp(v)], (A24)
for the geometry under study. For the prolate casg, \yith
=ul andv,=v!. All the integrals appearing in E¢A19)
can be easily expressed in terms of elliptic integrals and 4 Tu(Uzp) Tv(Vzp)
evaluated numerically. F(u,v)=i'-—(mg,%)zcuuwV N 5
The natural frequencies of the unperturbed trajectories are ™ ay(Uz)  ay(vy)
the three components of the frequency veatofEq. (2.5)]. o .
They can be expressed in terms of these integrals as X [cosif v —sin* u]Y [ 6(u,v),00j[ar(u,v)].
(A25)
P
wy(E e \,) =1 —ay(va) The radial coordinate and the polar angl@ can be easily
ST T (U (VD) — ay (VE) mu(ud) ]’ expressed in terms of thei{v) variables by using the rela-
tions (Al).
ay(ub) The present calculation is simpler if parity selection rules
wy(E,e,\,)=1 5 P” 2 5 5 are taken into account. These selection rules originate from
[au(uz) 7y (Vy) —ay(vy) 7y(U3)] the fact that the effective potenti&)p(u,ob) is an even

(A20)  function ofu and as a direct consequence of the spheroidal
geometry invariance under the reflection: —z. Because of
this symmetry some of the Fourier coefficiefEy. (2.17)]

1
_ - P P
OB eh)= w[w"y"(vsz“y“(uz)]' vanish. This can be proved by using the following relations,
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Sp(—u)=nym—s,(u), The generalized momenta for the oblate cavity are then ex-
pressed as
cog sy(—u)]=(—)"cogsy(u)l,
(A26) Pu=£0V2MEyo? - Uo(u,0%),
cog #(—u,v)]=—cog 6(u,v)]=co§ 7w 6(u,v)], pvzgo\/sz\/vo(V,Ug)_g?, (A33)
Y ml0(—u,v),0]1=(—)""MY_ [ 6(u,v),0]. with the oblate effective potentials

All the remaining factors in EqA24) are even functions of o0
u. Then Uo(u,09)=cosu+ ,
cogu

ey i, = O [1 (=) M) .

Vo(v,o3)=coshv + (A34)

cost v

Pdu (Pdv
X fuzp—fv,fp— F(u,v)cogs,(u)Jcogs,(v)],
u v v
° ' Of course, we still havg,=\,.
(A27) In Ref. 8 it has been pointed out that the effective poten-

with u,=0. Equation(A27) implies that, for example, for tials Uo(u,03) andVo(v,o )' for oblate geometry may ex-
L=1 andM =1, we need to sum only ovavenvalues of hibit @ nonmonotonic behavior for some range of values of

n,, while for M =0 we must take onlpddvalues ofn,. It ~ the parametqu. As a consequence, the phase space of an
means also ., =0 unless, () =()" oplate spherada cayiy s dhided nl o pars, and ere
- slus a separatrix
that, however, has zero weight in our calculatjofr their
description we introduce the equivalent to the quantitEes
The transformation analogous to Eé\1) for oblate ge- in Eq. (A10) for the oblate case,
ometry can be obtained from those equations by exploiting

the identities UclJ 0'(13 2
9= — |+ —| =09, (A35)
T 2 2

sinh(vti —) = +i coshv), cosl‘(vii 3) = +i sinh(v).
2 2 which are convenient for expressing the turning points. Of
(A28) course, these parameters can be obtained by making the re-
Then the following formal replacements should be made iPlacementA32) in Eg. (A10).
Eq. (A1) to obtain now the relation between the oblate sphe- We must now distinguish between the two kinds of three-

roidal coordinategu,v,¢} and the Cartesian coordinates, din(uinsional orbits occurring in the oblate cavity.
i) B orbits. For

2. Oblate cavity

. .7T
(,—iko, vov—ig, (A29) 09<1 and 2/oY<ol<1+0Y, (A36)

the orbits always cross the focal circle. These are the orbits

with a hyperboloidal caustic of Ref. 8, and they are analo-
(A30) gous to the so-called bouncing ball modes. In this case, the

equationp,=0 has four solutions. The accessible region of
is the radius of the focal circle and is now the largest phase space isf<u=u§ and uz=<u=uj and with O<v
semiaxis. Applying the same transformation to the kinetic-<v$ . For the lower integration limit in the variable, we
energy part in Eq(A3), we obtain the corresponding equi- have to takevl—O since the equatiop,=0 has no real
librium Hamiltonian for an oblate cavny The potential en- solution in the interval 0 Vz] The explicit turning points
ergy is still given by Eq(A4), with v5 being replaced by for the u variable are obtained from
V3,

where

a2_02

cosub=t2%, uP=-u5,
Oo_
coshv; fo (A31) cosuf=t?, ui=-u§. (A37)
Note that this relation can be obtained by applying the transThe constraints expressed in EA36) imply the following
formation (A29) to Eq. (A5). integration range fok, ande,
The generalized momenta, , are obtained by applying 5 .
the transformatiorfA29) to the expressions in EgA7) and J d)\z—>J')\+d)\Z1 J des J”de, (A38)
by making the replacements zB B
A2 with
(T?=1—0'f, a9= z =—0'§. (A32)

2mEES A== (peéo),
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€ =2E; /o9, € =Er(1+09). (A39) We can defind\lzNB+ Nw vv_ith Ng (NV\_,) the number of
valence electrons iB(W) orbits, respectively, and
(ii) W orbits For

ey, (20 |20l
09=0 and ¢9=1+09, (A40) Ne= Zf dEj (E) .LB(E)dE‘ J(E,e€)

the orbits have an ellipsoidal caustic, and they are analogous

to the so-called whispering gallery modes. For these orbits +(E) G I
p2=0 for uy'<u=<uy andp2=0 for v{'sv=v?, with the Nw= ZJ dEL W LW(E) de I(E,e)
corresponding turning points given by - (A45)
cosuy=t°, u¥=-uy, The limits for theX and e integrals in these formulas are
given by Eqgs.(A39) and(A42), whereEg is replaced byE.
coshvy'=t2. (A41)  Since the propagatd®.3) has the same structure of an inte-

gral over the classical phase spaceNast is convenient to
make a similar distinction between the contribution of the
two kinds of orbits. Thus for oblate geometry we write

The integration limits for the constant of motion integrals
[cf. Eq. (A38)] are

AW=+(pga),
- DEILM(q,!qaw):BL'LM(q,!qaw)+WL'LM(q,iq!w)!
o l (A46)

g2
coshvg ' with B/ m gndWL,LM §ti|l given by Eq.(2.15) but With' the
(A42) corresponding integration limits for each kind of orbit.
The building blocks of the present calculation are the el-
The |ntegrat|0n ||m|t€+ is determined by the CaVIty surface. liptic integrals given by Eq(Alg) for the prolate case. They
The number of particles moving on each kind of orbit candetermine the frequenciegA20), (A21), as well as the
be easily evaluated with an integration over phase space. ThghasegA18), required in the evaluation of the Fourier coef-

eV=Er(1+09), €V=Eg| coshvS+

total number of valence electrons is ficients. The analogous expressions for oblate geometry are
obtained by applying the transformatiéh29) to the prolate
:j dd dl F(E), (A43)  formulas. All formulas given for prolate geometry can be
translated in the same way for the oblate case. A little extra
with F(E) given by Eq.(2.6). Clearly, settingi=1, care should be taken for theintegrals in the case @& orbits

since the double-well structure of the effective potential

Uo(u,azo) makes p, become imaginary in the interval
—2[ dI6[EE—ho(1)], [uz,us]. This integration range must be excluded by the

very definition of classical phase space. Then, the lower in-

a1y 1) ion limit for u Sy
_ J' dEJ' dn fde viu (A44) tegratlon limit foru in Eq. (A27) becomesuy,=u, for B
J(E,e) | orbits.
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