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Conductance fluctuations as a tool for investigating the quantum modes
in atomic-size metallic contacts
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Recently it has been observed that the conductance fluctuations of atomic-size gold contacts are suppressed
when the conductance is equal to an integer multiple of the conductance quantum. The fact that these contacts
tend to consist exclusively of fully open or closed modes has been argued to be the origin for this suppression.
Here the experiments have been extended to a wide range of metallic elements with different chemical
valences, and they provide information about the relation between the mode composition and statistically
preferred conductance values observed in conductance histograms.

INTRODUCTION on the other hand, with three conduction electrons in the 3
and 3 shells, also has a total conductance clos&gobut
Manipulation and characterization of atoms and atomic-allows three partially transmitting channels.

size metallic constrictions has recently become available Recently a technique, making use of conductance fluc-
through the development of the scanning tunnelingtuations, has been presented which does not require
microscop€. An alternative tool, for creating stable and superconductivity*°to obtain information about the conduc-
clean atomic size metallic contacts, is the mechanically contance modes contributing to the conductance. First results on
trollable break junctiofMCB).?3 For a characterization of gold contacts with a conductance up t8&have shown that,
these systems, measurements of the electrical conductanfe this s metal, once a channélith numbern) is partially
are widely employed. This is a result of the ease with whichopen it tends to fully open before a nexi+ 1)th channel
they usually can be obtained. The framework within whichstarts to contribute significantly. This interpretation was con-
one should describe the conductance of such small contactismed by an independent technique which consists of mea-
which in the case of metals have dimensions on the order cfuring the shot noise in the point-contact currénin this
the Fermi wavelength, is the Landauerter formalism?*  paper we present a more complete argumentation of the
In this formalism the conductance in the contact is describetheory, together with measurements of the conductance fluc-
by N channels, determined by the narrowest cross section afiations on copper, silver, sodium, aluminum, niobium, and
the constriction and the Fermi wavelength. Each channel hagon, and discuss what information on the channel transmis-
a transmission probability,, with a value between 0 and 1. sions can be extracted from our results. We will also com-
The total conductance is given I®=(2e2/h)E§:1Tn. For  pare our conductance fluctuation results to recently published
an adiabatic constriction in a free-electron gas, the conduaneasurements on the thermopower of atomic size contacts,
tance increases stepwise with quantum units of the condu@nd show that both measurements can be related without any
tance Go=2e%h) as the channels open one by one whilefree parameters.
increasing the constriction diamefeHowever, when one Fluctuations in the conductance with bias voltage have
pulls apart a metallic atomic-size contact, neither the diampreviously been observed in larger ballistic contdétand
eter nor the conductance of the constriction decreasdsave an origin analogous to the universal conductance fluc-
smoothly. Instead, a series of stefos order Go) and pla- tuations measured in diffusive wiré$The interesting aspect
teaus are observed in the conductance on elongation of th# such fluctuations in quantum point contacts is that their
contact. The sequence of steps and plateaus is different eaoihs amplitude depends on the transmission probability of the
time the contact is pulled apart. The steps correspond tohannels contributing to the conductance. The underlying
atomic reconfigurations, and the plateaus to elastic deformaprinciple of this effect can be understood by considering a
tion of the contact. It is tempting, but in principle incorrect, contact with a single conducting mode having a finite trans-
to assume offhand that these conductance measurements mission probabilityT, described by transmission and reflec-
atomic necks simply probe a series of discrete diameters of tion coefficientst, t’, r, andr’ (coming in from left and
free-electron gas. It may work for some met#ige will  right, respectively, with [t’'|?=]|t|2=T and |r'|2=]|r|?=
show that for sodium this is nearly the caskut a correct 1—T. As illustrated in Fig. 1, electron waves transmitted by
general description of the conductance of metallic point conthe contact with amplitudg and scattered back toward the
tacts consisting ofeven in the simplest casa single atom contact through diffusive paths in the bank with probability
has to consider the chemical valence of this afdnCom-  amplitudea, have a probability amplitudeto bereflectedat
pare, for instance, a single-atom contact of the monovalent the contact. This wave interferes with the directly transmitted
metal gold with the trivalensp metal aluminum. In the partial wave and modifies the total conductance, depending
former case the conductance is carried by a single channeh whether the resulting interference is constructive or de-
with conductance close tG,. A single atom of aluminum, structive. A similar contribution comes from the trajectories
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Diffusive - Diffusive scale of the scattering lengths involved, centered around the
Bank Ei:'rﬁt'c Bank narrowest part of the conductor, which we describe as ballis-
Contact i tic. On either side of this ballistic region we consider a dif-
fusive region, characterized by a mean free pathin order
r >t to make the geometry of the contact more realistic, we as-
tat' i{’gg{' sume a conical shape for these diffusive regions, with open-

ing angley (see Fig. 1L The probability amplitudes for scat-
tering from any incoming mode on the left to any outgoing
mode on the right side of this ballistic sectidhenceforth

referred to as the “bare contadtis described in terms of the

FIG. 1. Schematic diagram of the configuration used in the the- i ft issioh and t’ d reflecti dr’
oretical analysis. The dark lines with arrows show the paths, whicﬁ“ﬁl rces o rafmsmlshsml fan d ’ _a?] refiec '.Onrl .an r
interfere with each other and contribute to the conductance fluctua/ €N coming from the left and right respectively:

tions in lowest order. (Or) i ) (tTl Py -1 ) )

on the other side of the contact. The interference terms will ie o -t tr vt o)’ W
be'sensitive to .cha.nges in the phase accumulated along )& creM is the transfer matrix anil, o, , i,, ando, are the
trajectories, which is determln_ed by the electron energy angectors of the incoming and outgoing waves for the right-
the path length. The fluctuations in the conductance as gnq |eft-hand sides, respectively. The matrix of transmission
function of bias voltage are .thus the (esult of the change Oé)[obabilities is given by T=tt!, which can be
these phase factors by the increase in the kinetic energy fiagonalized'?2 For a narrow constriction, most of the di-
the electrons by an amouat/. What is immediately appar- 546na| elements will be zero. The number of conducting

ent from the principle illustrated in Fig. 1 is that when the modes,N, and their transmission probabilities are given by
coefficientT is either O or 1, the interference and thus they,n  \onzero diagonal  elementsT,=[t2[=[t'2[ n
amplitude of the fluctuations vanishes. This suppression of 2 N. The reflection probability nof mz)da ig given
conductance fluctuations at quantized values has been not%dll’? 2 (12 —q . i i

Yy R,=|ri|=|r19|=1-T,. In the simple free-electron-gas

in numerical simulations of guantum point contacts contain- . : .
ing disorder by Maslowet al* model, the numbeN is determined by the width of the nar-

owest part of the contatiand by the Fermi wavelength.

Each time the contact is opened and closed again to Suf\]ote however, that in principle it is not restricted to an
ficiently large conductance values, random atomic reconfigu-_ "> ' P P , . y
articular model. The values of tfig’s are somewhat influ-

rations take place, leading to a different set of scatterin nced by our arbitrary choice of the boundaries between the
centers. The statistical results of many different contacts caji_,.” . y arbitrary cn O
llistic and diffusive regions. For this influence to be small,

hence be interpreted as the ensemble average over def ;
configurations. With this technique we have studied the av; © distancel between the center of the contact and the

erage properties of the conductance modes for different mapoundanes should be large on the scale of the contact diam-

terials, and their relation to the statistically preferred conduc-eter' On the other hand, in order to be able to neglect fluc-

tance values observed previously by various auffiofs tuations of T, on the scale of the applied voltage, we
through the measurement of so-called conductance hist(ggqU|reL<th/eV. For metallic contacts we can typically
grams takeL=1 nm.

Typically when studying conductance fluctuations, one The left and right banks are also described in terms of

measures the differential conductance over a wide range ansfer matrl_ceg/l,i, T'mg‘f"r in form todtr:f one lésed forhthe
bias voltage or magnetic field. Here, on the other hand, w@2r€ contactin Eql). In this case we defing anda, as the

measure the first and second derivatives of the current wit ansmission matrix and return a”_‘p“t“de matrix for the right
respect to voltage of atomic-size contacts. The first deriva?2nk: and; anda the corresponding ones for the left bank.
tive gives us the conductance, and the second derivative is 2'€ €lements of the return amplitude matriegs anda,
parametric derivative of the conductance. The latter canvhich scatter a wave from mode to moden on the left- or
roughly be seen as a measure for the amplitude of the flugight-hand side diffusive sections, are expected to be small
tuations with voltage. We measure these quantities for gompared to 1. It is, hence, a reasonable approximation to
large number of different contacts, thus effectively determinCalculate the total transmission probability to first order in
ing an average over an ensemble of scattering configurationte return amplitude matrix elements only. The return ampli-
This measurement method is preferable, as it is much fastévdes are energy dependent, but this will not be made explicit
than measuring the conductance as a function of bias voltagéntil this dependence becomes relevant in &g The total
directly, and hence allows the experimental determination ofransmission matrix for the two banks and ballistic constric-
the average properties of many contacts within a reasonabfon combined can be written as

time scale. _
te=[ (MMM )5,] ~*

p

THEORY =t/(t'""! —atla—t""tra—art’ ).

In this section we will give a more detailed description of 2
the phenomenological theory presented in Ref. 9. In oufSince the return amplitudes will usually be small we can set
model for a metallic constriction we divide the conductort,=t,=I, the identity matrix. With this assumption and the
into three separate regions: First is a region, small on théact that we are only calculating to lowest orderainmnwe
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are neglecting corrections to the total conductance antfhe fluctuations in the conductance are describeds6y
higher-order contributions to the conductance fluctuations=G—(G), with G=41/9V. Combining this with Eqs(3)
These corrections will be discussed at the end of this sectionyng (4), and using(G)=(2e%h)=N_, T, to first order in

In order to calculate the conductance fluctuations, we willy leads to
make an expansion of the total transmission probability to "™’
lowest order ina, , . Usingtit/ =[(t, 9)'(t; )]~ and as-
suming the matrices, t’, r, andr’ are already in diagonal N9 [ev2e?
form, the trace oft,t| to lowest order ina; ; can be ap- 5G(V):zl 9eVJ, TTHZ Reraa, (eV-E)
proximated by the sum of the inverse of the diagonal com-
ponents of { 1)T(t; 1): +a, (—E)rjJdE

N 1
Tt~ >,
=2y T,'=T,'2Rea, ry+raa ) N 2e? ,
— _gl 5 Th2 Rerna, (eV)—rpa (—eV)l.
N
~n§l T[1+2Rea, ro+rpa )] A3

The return amplitudes contain random phase factors of the
We assume that the Boltzmann constant times the temperéerm exd —i(Er+eV)7#], wherer is the traversal time for a
ture, kg#, is much smaller than the energy scale of the apJparticular trajectory. Averaging over the ensemble of defect
plied voltageeV (in accordance with the situation in our configurations will give a zero resul{¢G)=0. For the cor-
experimen), so that we can take the zero temperature aprelation function of the conductance as a function of voltage,
proximation. The current is then determined by E§) however, we obtain a finite contribution. In the product, only
througtf terms of the forrra,',nn(El)ar"rnn(Ez) have a chance to sur-
0e? rev vive the averaging. In addition, diffusion in the left and right
IZTef Tr[tttf]dE. ) banks is uncorrelated, so that products af (E;) and
0 arnn(EZ) average to zero:

N /0g2 2
(5G(eV1)5G(eV2))=nZ1 (TeTn) Ro(2Rda; (eViar (eVy)+a (—eVial (—eVy)]). (5)

At this point we assume that the average properties of théhe diffusive region has the shape of a cone with opening
scattering on both sides of the contact, for all theangley (Fig. 1), and that only a small number of channels
mode indexes, are the same. Further, we proposare transmitting, so that most electrons entering the ballistic
that (a, (Eyaf, (E;)) can be expressed as region are reflected. The probability per unit time to find the
foocpcl(T)eﬂ?ErEZ)}/}laT, where 7 is the time required for Particle back in a disk of radius and thizcknessdx at the

the completion of a classical diffusive trajectory, apg(r)  entrance of the ballistic region jg(7,L) mo“dx. The average

is the classical probability distribution to return to the contactiMe_ the particle spends in this volume igx/(v,)

at this time. The classical return probabiliB(7) can be = V3dx/ve . The probability that the particle moves toward
obtained by considering an electron being injected from thdhe contact instead of away from it is 1/2, and we assume
ballistic central section of the contact into the diffusive re-that it has an equal probability to enter into any of g
gion at the left or right. When we take the interface betweerinodes available at the entrance of the ballistic section, where
the ballistic and diffusive regions to be at a small distance Nb= (kro/2)%. Thus the probability per unit time to return to
from the contact center, then after a given timewith D7  the contact after a time, into a given mode, is

>1.2, the probability distribution to find the electron at a

distancer >L is given by the classical result

VE

P.(7)= .
2 o1~ LDy T 2BrkE(D7)*%(1-cosy)
(1—cosy)(4mwD7)32 ’

(6)

p(7,r)dr=

whereD =v¢l /3 is the diffusion constant, with, the mean This distribution should further be multiplied with a factor
free path for elastic scattering. Here we have assumed thaf’7¢ in order to take into account the probability that within
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a typical time 7, the electron undergoes scattering which  These higher-order terms, however, are not negligible
destroys phase memory. Combining these expressions wehen we consider the total conductance of the contact. The

obtain importance of these higher-order corrections becomes appar-
ent when we compare our theory to the experiments, and
(6G(V1)6G(V,)) notice that these effects result in a significant correction to
N s 2 the total conductancé. The necessity to include these con-
_ 2 4 ziT ) (1-T )JWP () ductance corrections in our analysis is a direct consequence
=0 h " n cl of the fact that in the experiment we cannot measure the bare

contact conductance alone, as we always measure it in series

%o e(Vl—Vz)Te, 1787 @ with the banks. This feature in the conductance of quantum
S h ' point contacts is usually referred to as the series
_ resistance>16:24
In our measurements we really meas({eG/JV)?) with a The lowest-order correction to the average total transmis-
fixed modulation voltage rather tha(rﬁG(gV.l)éG(eVZ». sion probability is given by (Ttt)=3SN_T[1
This can easily be corrected by differentiating Eg). with _2m=le(<|almnlz>+<|armn|2>)]' The last term describes

respect toV,; andV,, and then setting/=V;=V,. In the
limit of V—0, and using the above approximation for the
average return probability we obtain

the path of an electron that is transmitted through the contact,
scattered back toward the contact in the diffusive bank, and
then transmitted through the contact a second time in the
986G\ 2 opposite direction. These processes will lead to a smaller
2 <( ) > conductance than expected for the bare contact conductance
alone, since part of the transmitted electrons is scattered
back, reducing the net forward current flow.

oGv= oV

N 2
=G32> TX1-T,) Aeve 11 At higher conductance values, we expect a significant
n=0 V37h?kZ 1—cosy p3?2 contribution of even higher-order terms in the return prob-
. ability a to the conductance correction, and that hence
xf Jre~7Ted 7. the lowest-order correction used above will not suffice.
0

Keeping track of higher-order terms becomes very compli-
cated for many channels. However, using random-matrix

Evaluating the integral and taking the square root results ir%heory an expression for the correction to the conductance of

/6 34 N a quantum point contact connected to diffusive leads was
_ 6eGo ) S T2(1-T already derived by Beenakker and Mel€én:
oGy n( n)-
fikevey1—cosy\ Te n=0
(G) 9 1/ (g+1r \°
The typical time scale on which a first collision takes place is Gy 1+(g+Dr 3\ TH(grDr 9

the elastic-scattering time,=1./vg .
We have conducted our experiment by measuring the firsereg=3)_, T, is the reduced conductance of the bare con-
and second derivatives of the current with respect to voltageact, where in the theory all channels were assumed to be
The amplitude of the applied modulation voltage was reperfectly transmitting. The diffusive scattering in the banks
sponsible for the energy cutoff rather than the dephasings represented by=G,/G,, with G4 the diffusive conduc-
time, as we have assumed aboed/,4>7/74). Using the  tance of the banks. When one makes the assumption that the
derivation in the Appendix, which incorporates this finite conductance of the banks is large compared to the conduc-
modulation voltage into the theory gives us the final rédult tance of the contact, E49) can be simplified and rewritten
in a form where the correction to the conductance effectively

34 N 5 becomes a somewhat contact-dependent series resistance:
2, TH(1-To).
0=

1\/ 1
8 ~ | =
(8 (SR(g))~| 1+ g :d). (10)

271G, ( Bl
i
Y fikeveV1—cosy | €Viod

For the fluctuations in the conductance we have describe_(lj_ | d Eas(9 d(10 . ith th
above, terms higher in order tha!n,rmn, were not very im- o lowest order, Eqs(9) and (10) are consistent with the

- correction to the average total transmission probability de-
portant. However, when all thBl channels contributing to J P Y

i 2 "~ rived from the backscattering above.
the conductance are fully open, the first-order contribution g

we have calculated above will be zero. Under this condition
the second-order terms may have a noticeable contribution. EXPERIMENTAL METHOD

In this case we can take=1 andr=0 in Eg. (2), which We have used a MCB to make stable atomic-size metallic
greatly S|mpllf|es the derivation. It is then qqlte easy to showsontacts. The techniq® uses a notched metal wire glued
that at quantized value§=NG,, the contribution of the oo an electrically insulated phosphor bronze bending
second-order term ira, is ogy*N(lai_|a; [9).  peam. In the case of sodium a slightly different sample fixa-
These terms are too small to explain the reduction of theéion method was required due to its high oxidation ratee
depths of the minima in the experiment discussed below, anranset al1®). The sample is placed in a three-point bending
will be further ignored. configuration, which consists of two counter supports and a
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drive at the center of the bending beam powered by a piezo  0.94 1.70
; . L ) : | al b C|
electric element in combination with a mechanical screw. By 1.09
first turning the screw and later expanding the piezo by ap-  992f 1168
plying a voltage over it, we can bend the substrate in a con-2 I - 1.07 1
trolled way, elongating the wire until it finally breaks. The e %%0F 7168
wire is broken at low temperatur@.2 K) in an evacuated 3 105
can to ensure that two clean freshly broken surfaces are me:2 %[ Lo 7164
. . . . 'O - .
gured. The voltage ap_plled over the piezoelectric element €0 o asl PN 116
linear with the elongation of the contador further details, < | L o1 ]
see Ref. 2B o )
0.84 11.60
The conductance measurements are performed by apply I L 0.99 ]
ing a 48-kHz, 20-mV amplitude, sinusoidal voltage overthe ool o . v o o LUV 0 e
contact, which is in series with a 1d0-resistor. The first 50 0 50 50 0 50 50 0 50
and second harmonics of the voltage over the resistor art Bias voltage (mV)

measured, from which we obtain the firse € dl/0V) and ) ) ) )
second GG/(9V=(92I/(?V2) derivatives of the current with FIG. 2. Plotteq in the t_hree panels is the dlfferer_mal conducta_nce
respect to the voltage of the contact. The conductance {&/?Y as a function of bias voltage, measured with a modulation
determined with an accuracy better than 1% for values larged Plitude<0.35 mV, for three different gold contacts with ()

. ~0.88G, (b) ~1.02G,, and(c) ~1.65G,. For all three curves the
than 0.%5,. We use a HP3325b function generator to Pro-\ crtical scale spans 0.G2
duce the modulation voltage, while two Stanford Research Y
SR830 lock-in amplifiers dtand 2f, with a time constant of ence gives rise to the fluctuations shown in Fig. 2. In our
10 ms, are used to obtain the first and second derivativesxperiments described below the voltage dependence of the
16-bit analog-to-digital and digital-to-analog converters areconductance is determined with a modulation amplitude of
used to control and measure the piezo voltage. A PC-basezb mV, i.e., the average slope of curves such as those pre-
controller sweeps the piezo voltage up, and while the contagiented in Fig. 2 is determined over a bias voltage range of
breaks, the readings @ and dG/dV are taken through an +20 mV. Note the small amplitude of the fluctuations in
IEEE connection every 100 ms. A full curve of the contactFig. 2(b). We will argue later that this is an example of the
from a conductance of over &) to the transition to vacuum reduction ofo g, for the conductance of gold contacts with
tunneling is recorded in about 30 s. value near G, due to the\T2(1—T,) factor in Eq.(8).

A large number of such curves have been taken for gold, anp example of the typical conductance an6/JV be-
silver, copper, sodium, aluminum, niobium, and iron. In or-payior when breaking a gold contact for a constant modula-
der to avoid anomalously largeG/dV values due to un- tijon amplitude of 20 mV and zero bias is presented in Fig. 3.
stable contacts near a conductance step, and to avoid mephe steps and plateaus in the conductance correspond with
suring the average properties of two different plateaus as gtomic rearrangements and elastic deformation respectively,
result of the f|n|te integration t|me Of the |OCk'in amp|ifiers as the contact is pu”ed apart and f|na||y bre%m_each Step
(which averages anddG/dV over 10 ms, only points on a jn the conductance we find a corresponding stepGidV.
plateau are included through exclusion of data points, withzyen tiny steps in the conductance, such as betw&yand
suitable selection criteria, for which the deviation®fand 8G,, can produce dramatic jumps #G/JV. Changes in
dG/dV with respect to previous and consecutively recordets|ectron path lengths of the order of the Fermi wavelength
data points is too large. After applying this exclusion proce-(which is the atomic scale for metalsccur at these steps in
dure to each of these materials, we have analyzed the resulige conductance as a result of atomic rearrangements, and
by combining all the data and sorting them according torandomly change the resulting electron interference. The
conductance. Then a fixed number of consecutive data pointgntinuous change afG/dV during elastic deformation of
were taken from whichrgy=((dG/3V)*)—((dG/3V)?),  the contact along a plateau results from the gradual elonga-
and the average conductance value were determined. Witfbn of the electron path lengths, and hence in a gradual
this method we obtainedgy as a function of conductance, change of the resulting interference. In Fig. 3 the open
in a way which is independent of the number of sampledsquares represent the points at steps in the conductance and
points at a particular conductance value. 4G/ 4V which have been excluded from the statistical analy-
sis by the selection procedure discussed above. As can be
seen in the figure, the excluded data consist exclusively of
the last and first points on a plateau, together with points

The three panels in Fig. 2 show the measurement of thevhich lie between two plateaus as a result of the finite inte-
differential  conductance, obtained with a small gration time of the lock-in amplifiers.

(<0.35 mV) modulation voltage, against bias voltage for Figure 4 shows the distribution of values measured for
three gold atomic-size contacts. In each case two curves aws/dV in a particular range of conductance collected from
plotted, one for increasing bias voltage and one for decreag8500 individual curves similar to the one presented in Fig. 3.
ing bias voltage, showing the reproducibility of the behavior.The distribution at G is clearly much narrower than the
The bias voltage over the contact determines the energy afther two at noninteger values. This is statistical evidence for
the electrons injected into the banks, and hence modifies thehat was already observable in measurements of the bias
electron interference resulting from electrons scattered baciependence of the conductance for a single contact in Fig.
toward the contact in the banks. This change in the interfer2(b). We will argue that the narrow distribution can be ex-

NOBLE METALS COPPER, SILVER, AND GOLD
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FIG. 5. oy (top) and conductance histograthotton) against
L G for (a) copper 3000 curvegh) silver 2400 curves, antt) gold
3500 curves. The averages have been obtained from 300 data points
for each of the open circles and 2000, 2000, and 2500 data points
Vp (V) for each of the solid squares for copper, silver, and gold, respec-
tively. The solid curve in each case show the behavior of a single

FIG. 3. Typical example of the simultaneous measurement othannel opening at a time. The vertical gray lines represent the
voltage dependence of the conductanG#JV and the conductance corrected integer conductance values.

G, as a function of piezovoltagé, for gold measured with a con-
stant modulation amplitude of 20 mV. The graph includes verticalmych sharper around theG/9V=0 value than a Gaussian
gray lines which show that the steps in both quantities coincidegistribution. The tails of these curves also deviate from
Two plateaus have been enlarged and offset to show the tiny steRs,ssian behavior. These deviating features are analogous to
in the conductance. The open squares represent the points exclu peaks calculated and measured in the distribution of para-
from the ensemble average by the selection procedure. The elonggjc gerivativede.g., thermopowgrof quantum dots with
tion of the contact is linear withp , and 10 V corresponds to about single-mode ballistic point contadtéThe origin of this cusp
1 nm. . . S .

at zero amplitude is the limitation of the range over which
the differentiated parameter can vary in value. At both of its
maximal values the parametric derivative is zero, leading to
an enhancement of the statistics at zero amplitude.

In the upper panels of Fig. 5, we present the measured
oy for the noble metals copper, silver, and gold. The data
points for~ 3000 individual curves such as the one in Fig. 3
were sorted as a function of conductance. From this total
collection of data points the root-mean-squaréd@f oV was

T T T T T T J
145 150 155 160 165

plained by a suppression of the conductance fluctuafiggs
(8)], as a result off; being approximately equal to 1 and all
otherT,,~0. In the presentation of the data below we con-
centrate on the width of these types of distributioos,,,
determined for a fixed number of data points.

The shape of the distribution curve shown in Figa)ds

[ G-09+ 005G 0| G=10+005G, b G-164005G © calculated for groups of 300, 2000, or 2500 successive data
1000 |- 3000 4300 points, depending on the density of points available. This
- total collection of data points was also used to calculate the
800 corresponding conductance histograms plotted in the lower
" 2000 200 panels of the ﬁg_ure. _
€ 600 The electronic properties of these three noble metals are
g very similar, which is reflected in the similar behavior we
*® 4001 obtain forogy as a function of conductance. Minimadyy
1000 10 near 1G,, 2G,, and 35, can be observed in all three cases.
200 | The minima, however, are most pronounced for gold which
- even has a small dip neaf54. Another important similarity,
0 ey (') ; - 6 > 0 as is apparent from the peaks in the conductance histogram,

is the preferred values for the conductance just bel@y,1
2G,, and 33 for all three material$®>1°
FIG. 4. The distribution 0f/G/dV values in a particular con- When comparing the experimental results with our model

ductance range collected from 3500 individual curves for gold sucit IS important to note that a given value f@&r= G, n=1Tn _

as the one presented in Fig. 3. The conductance range of the thré&n be constructed in many ways from a choice of transmis-
curves roughly corresponds to the conductance ofthéV curves ~ Sion values{T.}. The experimental values forg are,

in Fig. 2. (8 G=0.9:0.056,. (b) G=1.0:0.056,. (c) 1.6 therefore, an average over impurity configuratiansl trans-
+0.05G,. The dotted curve irfa) represents a Gaussian fit of the mission values. Assuming the averages are independent, we
data. can compare the data with various choices for the distribu-

dG/dV (GyV)
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tion of the transmissions. In each upper panel of Fig. 5 thehe conductance minima wit{r1a|,rmn|2>=0.014. We can re-

solid curve depicts the behavior of E@) for a single chan-  |ate this value for the conductance correction to a rough es-
hel Opening ata time, i.e.., in.the inter\GVGoe{O,l} there timate for the mean free path by equatidgl‘rmn|2> to the

is a single channel contributing to the conductance V8th ;0441 of Eq.(6) over all path lengths. As a lower integra-
=GoTy, in the interval{1,2} there are two c_hannel_s with one tion limit we have taken the typical shortest path time for

fully openG=Go(1+T5), etc. The curves in the figure have the upper limit infinity, and for the opening angle we have

been scaled so they best fit the data. From this scaling assumed the typical range 35°—50°. The value Ifome
estimate for the mean free path can be obtained when_ a regptain using this method is#1, 7=1, and 6=1 nm for
sonable value rangefor t.he opening angl@/=35°.—50° IS opper, silver, and gold, respectively. This is quite close to
assumed. For copper, silver and gold, we obtain a value %he mean free path derived above from the amplitude of
l.e:3t1 nm, le=4*1 nm, andlc.=4*1 nm, respec- ogv, and is therefore in accordance with our model. The
tively. . . ... values for the mean free path we obtain are much shorter
. For gold the desquptlon of the expenment.a! data with %han what is normally found for bulk samples, and can prob-
smg'le—channel opening at a time works surprisingly well. Ir‘ably be attributed to surface scattering near the contact. As-
partlcula_r, for the minimum nearqo, and for the fact that suming surface scattering is indeed responsible, an important
the maximal values between the integer conductance valu operty of the mean free path which we neglect here is that
are all nearly equal. The main discrepancy is that the minim will not be a constant as a function of the conductance, but
become less pronounced for higher conductances. The well¢ ) : S
rather increase as the contact diameter becomes larger. This

developed structure observed irgy, with a dependence .

which (I:DIoser follows the/=T (10—‘131\'/) behavior ol? Eq(8) siz€ dgpgr_ldenc_e of the mean freg path is not expected to be
demonstrates a property of tple conrt1acts which we refer’ to as Y significant in the range of validity of our model, where
the saturation of the channel transmisSidhere is a strong weTz?]ssun?et.a ﬁontﬁctﬂd|ametb§tL§I?. ible for th
tendency for the channels contributing to the conductance of € relalively shorl, we obtain IS responsibie for the
atomic-size contacts of gold to be fully transmitting, with the correction to the quantized conductances, but it is too long to

exception of one, which then carries the remaining fractionaf10ld backscattering responsible for the measurement of the
conductance. significant frequency with which nonquantized values are
For copper and silver the amplitude of the data increasedeasured. Also, if scattering is held primarily responsible for
together with the degradation of the minima. These two metteducing the conductance from for instance a perfect conduc-
als also exhibit the saturation of the channel transmissiotance of 25, to 1.5G, then it is not unreasonable to assume
effect, but clearly not as rigorous as for gold. This reflectsthat contacts with a perfect conductance @lare reduced
itself in the estimates we can make for the contribution of arto 0.55, with a probability of the same order of magnitude.
additional channel at the first three minima. Neglecting theThis is not observed experimentally at low temperatures, as
small contribution of the higher-order termsap, , these contacts with a conductance of G§ occur more than 500
are 2%, 12%, and 15% for copper, 1%, 11%, and 18%, fotimes less frequently for silver and copper than contacts with
silver, and 0.5%, 6%, and 10% for gold. The concept of thea conductance of 1, (the formation of atomic chaif3
saturation of transmission channels is consistent with theeduces this ratio to about 20 times in the case of gold, since
model of Cuevagt al.” and other recent experimental work, the conductance of the chains is quite sensitive to distortions
which shows that, for gold, the conductanceGat 1G, of a  making contacts with a conductance of ®Boccur with an
single atom is carried by a single mot¥. enhanced frequengylf, on the other hand, one assumes that
The minima inogy lie at values forG below the integer  contribution from tunneling, due to for instance geometrical
conductance values. This shift is due to the scattering oonsiderations, are more important, the appearance of non-
transmitted electrons back to the contact, which apart from Auantized values aboveGl, finds a natural explanation. The
fluctuating first-order contribution ia, ; - _which determines  formation of geometries with a conductance smaller than
dG/aV, also gives rise to a shift ifG) when contributions  1Gg is highly unlikely since the smallest contact geometry is
to second order iraLrmn are taken into account. Ideally we that of a single atom with conductanc&d, and, when the
would like to plotogy as a function oEN_, T,,, with T, the ~ contact breaks, the banks relax back preventing high trans-
transmission probability of mode of the bare contact, but Mission probability tunnel|ng contributions from con_tnbut—
the bare contact is always measured in series with the diffnd- The I3atter process is usually referred to as the jump to
sive banks. In order to correct for the backscattering to low{unneling: _
est order, the theoretical curves have been plotted as a func- AN important feature for all three noble metals is that the
tion of G:GOEr’:‘—lTn[l_Em=1Tm(<|al 12+ (a, |2)], minima inogy near 45, do not C.OI.I’]CId(-}' with the respective
where(|a,, |?) have been adjusted f(;nrno timaln; reementpeaks in the histograms. The mlnlma_lle at thg expected con-
. Lrnl /7 o J .p 9 . - "ductances based on the backscattering amplitude we require
with the experimental minima. The vertical gray lines in g consistently fit all the minima, the so-called corrected in-
each figure represent the corrected integer conductance vakger conductance values. The second peak in the histograms
ues using this lowest-order procedure. For gold and silveg|early are located at lower conductance values. We propose
this value is comparablé|a, , |*)=0.005 versus 0.004, re- that this discrepancy is caused by favorable atomic configu-
spectively, and hence is consistent with the similar amplitudeations which have a bare conductance smaller th@g, 2
of ogy Observed for both materials. Copper has a somewhadnd thus give rise to a peak in the histogram below the cor-
larger amplitude forrgy, in accordance with a larger shiftin rected conductance value foG3.
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FIG. 6. oy multiplied by the modulation amplitude to the FIG. 7. Comparison of the standard deviation of the ther-
power 3/4 against conductanGefor gold measured gsquares10 ~ Mopower os and the standard deviation of the voltage
mV, (circles 20 mV, (up triangle$ 40 mV, and(down triangley80 ~ dependence of the conductanceg, by plotting (O)
mv. 2.71€%0 5/ ckg(kg ) YA€ Vmod ¥ and (O) oy /G as a function of
conductance.
TEST OF THE MODEL where the numerical constaot5.94. The only parameters
Apart from the set of transmission valugE,} the equa- in the above relation ar®, the temperature at which the
tion contains two free parametdgsand y over which we do  thermopower measurements were perform&fl,q, the
not have any experimental control. The dependence on th@odulation amplitude for the conductance fluctuation mea-
modulation voltage/,,,4, however, is a parameter which we surements; and the total conductar@gzﬁlen. All un-
can verify, assuming that all other relevant parameters arknown parameters in Ed8), the set of transmission prob-
independent of the applied voltage. This is a reasonable asbilities {T,}, |, and y cancel out, and the scaling relation
sumption for the modulation amplitudes at which we mea-provides an independent test of the experimental data.
sure, as parameters lik&,} vary on the scale dEg, andl, By comparingogy to measurements of the thermopower
and y are not expected to change on the scale of 100 mVon atomic size contactSusing Eq.(11), we can effectively
Assuming further thateVy,,q>#/7, then the product extend the energy range over which we test our model to an
oV should be constant for alf, . order of magnitude smaller, and test the experimental proce-
In Fig. 6, gva'ﬁ{gd has been plotted againg, for V,,,q  dure against a completely independent method. In Fig. 7 we
=10, 20, 40, and 80 mV. Within the experimental accuracyhave plotted 2.76’0s/ckg(kg6) (€ Vinod** and oy /G
no modulation voltage dependence is observed, as all fo#s a function of conductance. We have get12 K and
data sets coincide very well. This would not be the casé&/mod=20 MV in accordance with the experimental condi-
unless the power of the modulation amplitude dependence #ons. Excellent agreement is obtained between both experi-
close to 3/4. Using a procedure that calculates the minimanental methodsvithout any free parametersVe interpret
difference between the six combinations of experimentathis as a successful test for the validity of the principle on
curves, which have been multiplied by their respectivewhich our theoretical analysis is based. The dependence on
modulation amplitudes to a power which is the free paramthe opening angley, however, we regretfully cannot verify
eter, we find this power to be 0.710.06, in good agreement €xperimentally, as we have no control over the contact ge-
with the 3/4 predicted by the theory. ometry.
The mechanism used to describe the fluctuations in the
conductance above also produces fluctuations in other trans-
port properties, notably the thermopower. Measuring the
thermopower of atomic-size metallic contacts requires a Sodium also is a monovalent metal, but its histogram de-
completely different experimental method, and is performedermined from 1800 curvedower panel, Fig. 8 is com-
on an energy scale much smaller than that necessary for deletely different from that observed for copper, silver, or
termining ogy. The experimental resulf§, however, have gold. The statistically preferred conductance values are ob-
been successfully described by a theory based on the sarfigrved as peaks in the histogramear 1G,, 3G, 5Go, and
principles as those presented above. The predicted theorefiGo rather than near Gg, 2Go, and 35,. This series of
cal relationship between the standard deviation of the therPeaks in the histogram atGl, 3Gy, 5G,, and 65, have
mopoweros and gy is given by been interpreted as resulting from the quantization of the
conductance in a cylindrically shaped nanowire. The histo-
gram peaks are very sharp, and in the 1800 curves measured
almost no data is obtained betweeGPand 1G, and be-
tween 1G, and X5,. For this reason no points fargy,
(11)  determined from the same 1800 curves, are presented in
these rangesupper panel Fig. B Even with these points

ALKALI METAL SODIUM

N
2.71926021 T,

Ogy— 0

S 1
CkB(k59)1/4(eVmod)3/4
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Sodium we have used Ed9) with r=0.015. This value corresponds

to a series resistance of 200for g—o and 40@) for g

=1 as is evident from Eq.10). Equation(9) is used, rather
than the first-order correction applied to the noble metals,
because the conductance extends to larger values where
higher-order terms in the backscattering amplitude become
relevant.

We want to compare these results with the simplest pos-
sible model, which neglects the atomic character of the con-
tact and only takes the cylindrical symmetry and finite length
0.0 of the contact into account. For this purpose we have made
use of the calculations by Torres al>> The model consists
gl of a free-electron gas confined by hard-wall boundaries,
e which have the form of a hyperboloid. The differential equa-
X tions for this system can be solved numerically, from which
g the transmission probabiliti€l, for each mode as a function
E
H

of the contact diameter can be obtained. This makes a direct
evaluation of Eq(8) possible, where the only remaining ad-
justable parameter is the mean free path. The opening angle

o which describes the shape of the hyperboloid, and thus the
Bl &2 9 4 &8 & 7 B dependence of the mode transmissions on the contact diam-
G (26°/h) eter, is the same as the one which enters into (Bg.We

have added twwrg curves calculated for such a system to

FIG. 8. oy (top) and conductance histografbottom against  the graph. For curves in the opening angle range from 60°,
G for 1800 sodium curves with each solid square representing thgith mean free path,=4.4 nm, to 45°, with,=5 nm, we
statistics on 1000 data points. The vertical black and gray lineging reasonable agreement between various ranges in the data
indicate the corrected |_nteger conductance values for Whl_ch th_e _hlsand the theoretical curve.
togram peaks, respectively, do and do not correspond with minima e gjifferences between the calculated curve and the
inogy. Thg curves depict the behawqr of.a hyperbolic ConSt,“Ct'O“measured data can be attributed to the averaging over many
in athree-dlmensmnal electron gas with circular aperture, @ith contact geometries and thus over a range ofalues. Also,
opening angley=60° and mean free path.=4.4 nm, (--)y A
—45° andl =5 . the smearing in the cc_mduc?an(:@) due to the ensemble

¢ average of defect configurations is not included. This prop-
absent, therg, measured for sodium is distinctly different erty will make the minima less deep and sharp but will
from that observed for the noble metals.dg, we observe hardly influence the maxima.
definite minima near @, and 65, and although there has ~ Another feature of the calculated curve, which can also be
been no data measured in the ranges@<1G, and 1  recognized in the measured data, is that the minimum in the
<G<2G,, the value ofogy at 1G, is small making it a experimental and calculategl;,, below 6G, does not coin-
very probable location of a minimum. Since there are no dat&ide exactly with the corrected quantized value for the con-
below 2G,, we cannot exclude that there is a small minimumductance, even after application of the same series resistance
at 2G,,. we have used to compensate for the shift in the histogram

The histogram peaks coincide with the minimadg,, Peaks. In other words, when we ignore the series resistance
with the exception of the peak neaG. The absence of a Correction, the model p_ret_jlcts the minima to be shlft_ed_a!bove
minimum at 53, is at first surprising. When one considers the integer valyes: This is a dlrect_ result of the significant
that in a conductance histogram for a model of a threefunneling contributions for the opening angles we have used
dimensional cylindrical contact based purely on a freet0 model the contact when just opening a mode in combina-
electron gas, the peak at this value is found to be nearlfion with the asymmetry of the dependenceafy on the
absent due to smearing by tunneling contributiong, is mode transmission. This systematic shift becomes more pro-
striking that a histogram peak is there at all. Also, unlike theounced with larger opening angles, larger conductance val-
other peaks, the one belovi and also the small one above U€S; and the presence qf degenera}te modes. The value .of the
2G, do not coincide with the corrected integer conductancé€Pening angle we obtain for sodium from the theoretical
values. We propose that these two peaks result from favoiGurves, y=45°—60° is comparable to but somewhat larger
able atomic configurations, which are sampled more oftedh@n the typical estimates made for the opening angles of
than other conductance values while making a histogram, bi@tomic size gold contacté.
do not result from stable quantized conductance values de-
termined by an integer number of nearly open channels.

As in the case of the noble metals there is a systematic
shift of the position of the minima iy to lower conduc- The statistically preferred conductance values for alumi-
tance values. The corrected integer conductance multiplesum are shown in the lower panel of Fig. 9. The clear peaks,
are shown in Fig. 8 as vertical gray and black lines dependevident in the histogram belowG, and 25, and a weak
ing on whether they coincide with the minimaadtg, or not.  bump above &, are in accordance with previous
For the correction to the integer conductance values in Fig. 81easurement. The peaks are less pronounced, but at first

TRIVALENT METAL ALUMINUM
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Aluminum contribution toog,=0. This effect, however, and hence the
dip, becomes less pronounced with an increasing number of
channels. For the lowest conductances0(5G,) one can
observe that the behavior most closely follows that of a
single channel. This is expected, as for small conductances in
the tunneling regime a single channel is expected to domi-
nate the conductance and, hence, the behaviaergp. As

the conductance increases the behavior becomes more like a
random distribution over an increasing number of channels.
The random distribution of channels which we have intro-
duced serves only to illustrate that the small dip &,1
appears for a limited number of channels even without the
saturation of channel transmission effect, and that the
gradual increase irgy is a direct result of more channels
contributing for larger conductances. The actual behavior of
the transmission channels is probably not completely random
as can be judged from the thedrwhich shows that there is
usually one dominant channel and two smaller ones for a
single aluminum atom. Nonetheless the curves reproduce the
evolution of ogy as a function of conductance with reason-
able accuracy.

G (2%/h)

FIG. 9. oy (top) and conductance histograthottom) against TRANSITION METALS NIOBIUM AND IRON

G for 2800 aluminum curves with each solid square representing The measuredre, (upper paneland histogram(lower
the statistics on 2000 data points. The curves in the graph have been cv (upper p 9

labeled with a number and represent the contributiordq of (1) pane} for 2400 nlob!um curves, recorded at a temperature of
a single channel opening, a random distribution o@rtwo, (3) 10 K in order to avoid effects of the superconductivity on the_
three, (4) four, (5) five, and(6) six channelssee text vqltage dependence of the conductance, have been plotted in
Fig. 10@). For iron the measurements at;\, (upper panel
glance similar to those observed for gold, silver, and copperand the histograniower panel recorded for 700 curves are
The most important discrepancy between the monovalengresented in Fig. 10).
metals and aluminum is that in the latter case the first peak is Both sd metals, niobium and iron, show completely dif-
broader and clearly displaced belowsd. ferent features when compared to the other materials we
The measured gy for aluminum, presented in the upper have discussed so far. When compared with each other, the
panel of Fig. 9, is completely different from the behavior measurements for niobium and iron are so similar that they
observed for the noble metals copper, silver, and gold. Theearly are indistinguishable. For both metats,, increases
clear minima at G,, 2G,, and 35, have been replaced by strongly from GG, to 1G, and above this conductance value,
a slight dip at I5,. In order to understand these measuredincreases only slightly. The dip observeddsg,, for alumi-
features it is important to realize that a single aluminumnum is absent and the increasedg, with conductance is
atom has a conductance closedg but admits three conduc- much smaller than was the case with aluminum. From the
tance channef° It is thus not surprising that the behavior single peak in the histogram we can deduce that both mate-
associated with the saturation of a single partially open chandals have a statistically preferred conductance value just
nel is not observed for aluminum. The histogram peaks obabove Z5,. This peak is expected to be the result of the
served for this trivalent material can thus be attributed tareproducibility in the conductance of the last plateau consist-
another mechanism. A likely candidate is favorable atomidng of a single niobium or iron atom. In the case of niobium
configurations, which are probed more frequently than oththis value is in excellent agreement with the measured and
ers. calculated conductance value for a single atom of niobium
In Fig. 9 a series of curves are included which show the[(2-3)G,].”® For iron these calculations and measurements
behavior for a single channel, and a random distribution ohave not yet been performed.
two, three, four, five, and six channels. The curves have The completely random distribution used to describe the
been generated by calculating the square root obehavior of aluminum clearly cannot reproduce the measured
had o ToP(T1,To, oo, TWEN_ TA(1-T)dTy---dTy oy for niobium and iron. If one considers distributions for
whereP is the probability distribution giving an equal prob- the transmission probabilities that are closer to the five cal-
ability to every transmission value for eadh, under the culated transmission probabilities contributing to a single-
constraint thatEw:lTn:G/Go. These curves have been la- atom contacf, the experimental behavior up toG3 can in
beled 1, 2, 3, 4, 5, and 6, respectively, and have all beeprinciple be simulated. The number of free parameters in
scaled with the same amplitude. The dips in the calculateduch an analysis, however, makes suctadrocprocedure
curves with a random distribution of two or more channelsquite meaningless. More theoretical work must be performed
results from the property that, in a random distribution, atto provide an approximation for the range of transmission
multiples of the conductance quantum, there is a finite probehannel distributions that should be considered in order for
ability to encounter som&,=(0 or 1), for which their the measurements to be reliably related to a general trend.
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Niobium Iron

-

Gy (G/V)

FIG. 10. (a) ogy (top) and conductance his-
togram (bottom) against G for 2400 niobium
curves measured at 10 K with each solid square
representing the statistics on 1000 data poitis.
ogy (top) and conductance histograthottom)
againstG for 700 iron curves with each solid
square representing the statistics on 500 data
points.
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The fact that the measuregls, above 15, is almost not based on the atomic-orbital modét1°The conductance his-
dependent on the total conductance suggests that the numtegrams of these three materials seem to be dominated by the
of partially open channels contributing to the conductancestatistical distribution of atomic configurations.
does not depend on the contact size. The concept of saturation of channel transmission was
The histogram we have recorded for iron is different frombeen introduced in Ref. 9, to make a marked distinction be-
the histogram constructed from 80 iron contacts recordetiveen the properties of the conductance modes we observe
under ambient conditions in the magnetically saturatechere, and the statistically preferred conductance values which
state®® Possibly the different temperature at which the ex-in the literature are generally referred to as conductance
periments are performed or the magnetization state are rguantization. Indeed, both are based on the quantum-
sponsible for the discrepancy. The influence of these experimechanical Landauer-Biker formalism, but the latter as-
mental conditions should be studied in more detail in thesumes there is a statistical preference for contacts with quan-
future. tized values as a result of this formalism. Since it is not clear
to what extent favorable atomic configurations are respon-
sible for the histogram peaks, we feel a sharp distinction
should be made between results thah be influenced by
With the technique of ensemble-averaged conductanctavorable atomic positionpossiblymimicking the features
fluctuations, we are able to measure the average properties of conductance quantization, and results which truly probe
the conductance mode evolution of atomic-size contacts. Wthe electronic properties of the contact. With the saturation
have successfully tested the modulation voltage dependeneoé the channel transmission we wish only to describe the
of the theory, and can relates\, to the standard deviation in evolution of these modes, but we do not rule out that con-
the thermopower without any free parameters. An importantiuctance quantization may prove to be an important factor
property of the measurement of the conductance fluctuationghich influences the contact formatidhHowever, in view
is that it is not dependent on preferential contact configuraef the results presented in Figs. 9 and 10 together with the
tions. arguments presented above for the other materials, we should
Sodium, the most free-electron-like material studied, exbe aware that peaks in a histogram by themselves give no
hibits electronic behavior which can be reproduced reasordnambiguous information about the actual composition of
ably well with a hyperbolic constriction in a three- the conductance modes.
dimensional electron gas with a circular orifice. The For the correction to the bare contact conductance due to
conductance histogram of this material, however, containscattering near the contact, we find that this correction is
contributions from such a circular constriction in a three-correlated to the amplitude of the conductance fluctuations
dimensional electron gas as well as other peaks possibly rend hence the elastic mean free path. This provides strong
sulting from favorable atomic configurations. The conduc-experimental evidence that these types of scattering effects
tance properties of the other monovalent materials such awe indeed responsible for the so-called series resistance.
gold, silver, and copper seem to be best described by the
tendency of _the conductance channels to open one by one, a ACKNOWLEDGMENTS
property which has been called the saturation of channel
transmissior. The conductance histogram of these materials This work is part of the research program of the “Stich-
contains features which seem to coincide with the evolutiorting FOM,” which is financially supported by NWO. The
of the conductance modes, but particularly the second pealdevelopment of the theory and interpretation of the gold data
in the histograms are also determined by other statisticalvas done in collaboration with C. Urbina, D. Esteve and M.
(probably atomig properties of the contact. For aluminum, Devoret. We acknowledge the stimulating support of L.J. de
niobium, and iron we find the behavior ferg, we expect Jongh.

CONCLUSIONS
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APPENDIX In general, the Taylor expansion of the current for small

Incorporating a finite modulation voltage into the expres—rnOdUIatIcm amplitude is

sion for ogy is somewhat more technical. In analogy with

Eq. (5), we can write, for the energy-dependent part of the al )
current, I[Vo+VmoasSin(wt) [=1(Vo) + 2y sin(et)
O

5= 22 ["'S 1.2 Rdra (~E)+rja, (eV-E)]dE L) :

h 0 n=1 i n 4 EVE Vo0 2wo7") + - - -

(A1)
: . (A5)

We must include the modulation voltageV=V,
+VmoaSiN(wp7') in the argument for the backscattering Combining Egqs(Al), (A4), and(A5) we obtain
amplitude, which we write as an integral over contri-
butions of path traversal timesr. Hence a,,rnn(E) , N
=fa,, (7)exd—iE#]dr, where we assume the dominant [ 91} [~ 4 Z2e

nn . I . 2 Z(evmodT/ﬁ)
energy dependence is the phase factor. We will first consider \ gv=/ ovZ 4 h
the contribution to the current of a single path with tirme
Sl(7). At a later stage we will perform the integration over X[—irpa (r)e®oi+irla, (r)e eVt
different paths. Evaluating the integral ovErin Eq. (A1) "o "
gives +irgal (e Vot

. _Ir/* * (T) +|eVOT/h]dT

N
81 (7)=const+ —22 —
= We now can continue as before and calculate the correlation
function. We assume only terms with the form
a) (7)af (7) ora, (7)af (7) contribute to this function,
+ir'a, (T)efievor/hefieVmodrsin(wor’)/ﬁ]_ (A2) as al! other cqmbinations qf reflegtion coefficients and com-
nm binations of different path times will average to zero, and we
We are measuring the ac component of the current at twicetroduce the brackets which represent averaging over differ-
the modulation frequency, this is equivalent to measuring thent impurity configurations:
second derivative of the current with respect to voltage.
Therefore we expand the exponential term E&R) in har-

. H H i !
X Rd: —ir ﬂa|nn( T)eleVOT/ﬁ,e+leVmodT sin(wg7" )/

monics of the modulation frequency, > ﬁ ?
GV 07V2
eieVmOdTSin(wOT')/fi \
16 (2e)\? ) =(h\?
S = | ) 42 Th- mf —| J3(eVinourl i)
= > e J (eVmoarlh) Vinod 0

n=—c

X <a|nn( T)afnn( n+a ( T)a:‘nn( 7))d7.

=Jo(€Vimoar/ i) + 2i si(wo7") 1 (€ Vinoar/fi) Both sides of the contact have the same average properties,
+2 co% 2w )Io(€Vinoqr! ) + - - -, (A3) and we can write for(a (7)af (7))=(a; (7)a; (7))

. . =P, (7). Filling in the expression for the classical return
where J,(z) is the nth Bessel function. In the last step we A - .
usedJ,:Ez;Z(— 1)"3,(z). We are particularly interestepd in probability [Eq. (6)] and substituting=eVinoqr/% gives us

the last term in Eq(A3), which we will use to obtain the part

of the current which is proportional to twice the modulation 16 2 N
frequencyf cos(2vo7')], 0'(23\,:4—(—) 16>, T3(1-T,)
mod n=1
N
2e h 2 5/2
Bl20y()= =42 Ty~ 082007 )I5(€Vinogr/h) « h*ve (evmod f Bdx
n=1 2\/37kiD¥(1—cosy) | fi N

XRg —ir,a (r)eVo” +ir'a, (r)e 'eVorlt], N _ . .
d . 'nn( ) " rnn( ) ] Numerical integration of the integral yields the value

(A4)  0.03385, and filling irD =v2 /3 finally results in Eq(8).
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