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Magnetic-field and quantum confinement asymmetry effects on excitons

P. Pereyra*
Department of Physics and Astronomy and Condensed Matter and Surface Sciences Program, Ohio University,

Athens, Ohio 45701–2979
and Departamento de Ciencias Ba´sicas, Universidad Auto´noma Metropolitana-Azcapotzalco, Av. S. Pablo180, C.P. 02200, Me´xico D.F.,

Mexico

S. E. Ulloa
Department of Physics and Astronomy and Condensed Matter and Surface Sciences Program, Ohio University,

Athens, Ohio 45701–2979
~Received 5 October 1998; revised manuscript received 29 June 1999!

A theoretical analysis and calculation of the excitonic states in asymmetric quantum dots is carried out in the
presence of magnetic fields. The lack of rotational symmetry, introduced by strains and structural factors,
produces splittings of the excitonic states with corresponding consequences on the optical oscillator strengths
and polarization dependence. For example, we find that the asymmetry produces Zeeman splittings that are
smaller than those for symmetric dots at small fields, which could be used as an additional diagnostic of the
geometry of the structure. We focus our calculations on naturally occurring quantum dots due to layer fluc-
tuations in narrow quantum wells. Moreover, we observe that increasing magnetic fields produce an interesting
crossover to pure angular momentum states for all the excitonic eigenstates, regardless of the degree of
asymmetry of the dots and their size. Explicit calculations of photoluminescence excitation yields are presented
and related to the different degrees of freedom of the system.
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I. INTRODUCTION

To study one of the most significant and defining featu
of quantum dots, the discrete character of its energy sp
trum, a number of photo- and magneto-luminescence~as
well as capacitance! experiments have been performed on
variety of systems of quantum dots. The recent developm
of high spatial and spectral resolution photoluminesce
methods have contributed greatly to unveil single-quantu
dot spectral features. As a result, the typical inhomogene
and broad photoluminescence~PL! structures seen in larg
assemblies of dots1–6 split into series of sharp peaks whe
imaged with increasing resolution, providing important i
sights of the single-quantum-dot excitonic spectra. Amo
these beautiful studies of PL and PL excitation~PLE! spectra
under external magnetic fields, and for different polarizat
geometries, we mention those of Refs. 7–13. Even tho
previous theoretical work provides important information
the exciton properties in a single quantum dot, some qu
tions still remain. The purpose of the present work is
deepen the understanding of the exciton characteristic
symmetric and asymmetric quantum dots in a magnetic fi
and to account for recent experimental results, where
structure splittings consistent with characteristic asymme
interface fluctuations are suggested.11

The ground-state properties of confined excitons in qu
tum dots have been studied by variational and configurat
interaction methods,14–16 numerical matrix diagonalization
schemes,16–18 or other numerical methods which direct
solve the relevant differential equations.19–21 Some features
related to excitons in quantum dots, such as the various
citon states, their degeneracies and level spacings, as w
the diamagnetic shifts, Zeeman splittings, and photolumin
PRB 610163-1829/2000/61~3!/2128~10!/$15.00
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cence spectra, have been shown to depend strongly on
interplay of the quantum-dot size and the Coulomb and
magnetic interactions. These and other physical proper
are to be addressed in this paper in a unified approach
symmetric and asymmetric quantum dots. Although our
merical results are obtained using typical parameters
quantum dots formed by thickness fluctuations in narr
Al xGa12xAs/GaAs quantum-well structures, similar qualit
tive features are expected in all quantum-dot structures, a
proper scaling of the physical quantities is made, as d
cussed further below.

Varying the effective geometrical confinement featur
~related to the quantum-dot size and asymmetry! and the
magnetic field, we explore the degree of influence of
various characteristic length scales in the problem. The m
netic lengthl B5A\c/eB; the characteristic lateral extensio
of the dot,L, and the effective Bohr radius for the excito
aB* 5\2«/me2, compete with one another. Here« is the di-
electric constant of the medium, andm is the reduced mas
of the exciton. For fixed quantum well widthsLz ~or dot
heights, see Fig. 1! and a given quantum-dot lateral asym
metry h5Ly /Lx , different physical regimes correspond
different ratios between the characteristic length scales
low magnetic fields and small quantum-dot sizesL
5ALxLy, i.e., in the regime wherel B@L'aB* , optical prop-
erties associated with excitons localized in these structu
reflect clearly the effects of geometric asymmetry~especially
for PLE!. As an example, it will be shown that by losin
rotational symmetry the angular momentum is no long
conserved and then, with no good quantum number
more, the corresponding well-defined values for the grou
state collapse. We analyze this effect and show that for
creasing magnetic field, the exciton and single-carrier sta
tend to recover a well-defined angular momentum. The m
2128 ©2000 The American Physical Society
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ing of well-defined angular momentum states induced
non-symmetric boundaries are weakened by strong magn
confinement, as one would intuitively expect. As the late
confining potential gets stronger~due to narrow and/or
deeper lateral confining or stronger magnetic fields! the Cou-
lomb interaction is relatively less important, in agreeme
with recent experiments.4 It is clear, however, that for certai
regions of parameter space, the electron-hole~e-h! interac-
tion becomes significant and even dominant. This is the c
certainly, for quantum dots larger than the meane-h size
(L@aB* , where the geometrical confinement and asymm
tries play no significant role!. This work analyzes the inter
play of all these factors in terms of exciton binding energ
and the general characteristics of low-lying excited state
excitons, theire-h separation, angular momentum, and co
tribution to the optical susceptibility for symmetric an
asymmetric quantum dots in the presence of an exte
magnetic field. Figures 2 and 3~as well as Fig. 10!, shown
below, represent typical examples of our most important
sults in a most succinct form, which is further directly com
parable with experiments. This paper will then be devoted
explore the origin as well as the magnetic field and param
ric behavior of the different spectral features seen in poss
PL and PLE experiments.

In the following two sections, we will describe the mod
and the procedures used to obtain important excitonic c
acteristics, including the optical response. We discuss th
the physical implications and limitations of the model.
Sec. IV we present sample results and study the excito
behavior for various structural parameters and magn
fields. Section V summarizes our conclusions.

II. EXCITONS IN PARABOLIC CONFINEMENT
AND MAGNETIC FIELD

The carrier confining potential in a quantum dot depen
substantially on the particular method used to create this

FIG. 1. An asymmetric and flat quantum dot, with heightLz

!L5ALxLy, produced as a quantum-well width fluctuation is su
jected to an external magnetic fieldB along thez axis. Ane-h pair
in the quantum dot is assumed to be confined by a lateral para
potential V(x,y), with harmonic oscillator frequencieswx}1/Lx

2

andwy}1/Ly
2 . The conduction and valence band-edge potential

ergiesVez andVhz are shown, respectively, for electrons and ho
in the quantum well of widthLz .
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tem. For quantum dots created by layer fluctuations in n
row quantum wells, it is safe to assume that the lateral c
fining potential is much weaker than the confineme
produced by the quantum well potential. Therefore, one
reliably neglect the heavy- and light-hole mixing22 and con-
sider also the approximation where the lateral motion is
coupled from thez-axis degree of freedom. At low excitatio
power experiments, less than onee-hpair per quantum dot is
excited, on the average. It is thus appropriate to study
physics of one exciton in a quantum dot when additio
confinement is produced by applying tunable external m
netic fields. This system is described by the Schro¨dinger
equation with a Hamiltonian given by

H5He1Hh1He-h . ~1!

Here,

Hi5
~pi6eA i /c!2

2mi
1

1

2
mi~wx

2xi
21wy

2yi
2!1Viz , i 5e,h

~2!

whereViz is the quantum-well confinement potential and

He-h52
e2

«urh2reu
. ~3!

The in-plane anisotropic harmonic confinement (wxÞwy , in
general! is understood to be the result of actual structur
geometrical constraints in addition to strain fields presen
the system. The latter are especially important in the cas
self-assembled dots1–3 and in strain-defined structures.4 No-
tice that this Hamiltonian cannot completely be decoupl
neither in the lateral andz-axis motion nor in the center o
mass and relative coordinates. The strategy will be as
lows. We shall first make an approximate decoupling b
tween thez and x-y coordinates. To deal with the Hamil
tonian in thex-y plane, we will transform to the set of cente
of mass and relative coordinates. Corrections to these
proximations can be implemented systematically, as we
discuss below.

In the effective mass approximation for quantum wel
the hole subbands are treated independently, and each
band is characterized by a pair of effective massesm' and
mi , perpendicular and parallel to the quantum well, i.
along and across the growth directionz. It is known that
these masses, in terms of the Luttinger parameters, aremhi
5g122g2 and mh'5g11g2.23 For numerical calculations
one can take specific effective masses, such as those
Al0.3Ga0.7As/GaAs, with corresponding dielectric consta
(«513.1 in GaAs!, as we have in mind the quantum-we
system reported in Ref. 11. However, other material syste
can be equally treated. Much of the physical discussion
be immediately applied after proper scaling has been m
by the effective Bohr radius of the problem,aB* .

To decouple thez-axis motion from thex-y plane motion
we rewrite the Coulomb interaction as

He-h52
e2

«r xy
1

e2

« S 1

r xy
2

1

ure2rhu D52
e2

«r xy
1DHe-h

~4!
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and treatDHe-h as a small perturbation, as discussed in de
elsewhere.24 Notice that the effective expansion paramete
proportional to the ratio of the expectation value of the re
tive z coordinate to the in-plane extension (' Bohr radius!,
^uzh2zeu&/^r xy&&Lz /L, and sinceLz /L.0.1 in the typical
systems under study, this is indeed a small perturbation
this paper we neglect this perturbative contribution.

Since the first excited state in thez direction,E1
z , is sev-

eral tens of meV above the ground stateE0
z ~for both elec-

trons and holes!, we include only the latter in our calcula
tions and reduce the problem to the calculation of the
plane motion eigenstates with energiesEn

xy . To describe the
lateral motion, we write the HamiltonianHxy in the center of
mass and relative coordinate system, defined as usua
r xy5(xh ,yh)2(xe ,ye), and (mh1me)Rxy5mh(xh ,yh)
1me(xe ,ye). Here and below, all the hole masses refer
mhi , for motion parallel to the quantum well, but we dro
the label for ease of notation. Similarly, the position vect
refer to thex-y plane, and we omit the subindicesxy. As in
Ref. 19, we find convenient to use the symmetric gauge

Ae5
1

2
B3(re2rh… and Ah5

1

2
B3~rh2re…. ~5!

In this gauge, the HamiltonianHxy takes the form

Hxy5HCOM1Hrel1Hc , ~6!

where

HCOM5
P2

2M
1

M

2
~wx

2X21wy
2Y2!, ~7!

Hrel5
p2

2m
1

1

2
m~w̃x

2x21w̃y
2y2!1

1

2
gwcml z2

e2

«r
, ~8!

and

Hc52
ie\

Mc
BS x

]

]Y
2y

]

]XD . ~9!

Although the decoupling is not complete, as evidenced
the presence ofHc , we can say that the center of mass m
tion is ~nearly! in a harmonic potential with thesamefre-
quencies as the constituent particles, andindependentof the
external magnetic field, as described byHCOM . ~This B in-
dependence is the expected result of having an uncha
center of mass for excitons, unlike the case for like-cha
complexes.! Hrel describes the relative excitonic motio
which does depend strongly on the magnetic field. As will
shown below, the termHc which couples the center of mas
and the relative-motion degrees of freedom, is a weak p
turbation for the parameters of interest. In the previous eq
tions, we have used the customary notationsM5me1mh ,
m5memh /M , and definedg5(mh2me)/M , and

w̃x(y)
2 5wx(y)

2 1wcm
2 /4, ~10!

with wcm5eB/mc.
The magnetic-field effects are of two types: those prod

ing the so-calleddiamagneticshift, associated with the mag
netic dependence on the effective parabolic confinemen
Eq. ~8!, as given byw̃x and w̃y ; and the orbitalZeeman
il
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splitting induced by the Hamiltonian term, which depends
the angular momentuml z . ~The spin Zeeman splitting is
small and will be neglected here.! As mentioned before, we
can deal with the rotational symmetry breaking in terms
the asymmetry ratioh5Ly /Lx or, equivalently, in terms of
the potential curvatureswx5\/mLx

2 and wy5\/mLy
2 ~as-

sumed here the same for electrons and holes!.
We will find that the contribution of the linear-B term to

the energy in Eq.~8!, at least for the low-lying energy levels
is rather small over a wide range of magnetic fields. On
other hand, the splittings introduced by this term and
corresponding selection rules would have important con
quences in PLE experiments.

III. EXCITON CHARACTERISTICS

To calculate the exciton eigenstates, we use the t
dimensional~2D! harmonic oscillator basisunxny& for the
scaled frequenciesw̃x andw̃y and follow a numerical matrix
diagonalization scheme. TakingHc as a perturbation, we
concentrate first on the diagonalization of the separ
relative-motion Hamiltonian whose elements are

^nx8ny8uHrelunxny&

5\w̃xS nx1
1

2D1\w̃yS ny1
1

2D2^nx8ny8u
e2

«r
unxny&

1 i
1

4
g\wcm^nx8ny8u~ax

†ay
†2axay!S h̃2

1

h̃
D unxny&

1 i
1

4
g\wcm^nx8ny8u~axay

†2ax
†ay!S h̃1

1

h̃
D unxny&, ~11!

with w̃x(y) as defined above in Eq.~10!, the effective asym-

metry factor in a magnetic field ish̃5Aw̃x /w̃y @which
clearly reduces toh̃(B50)5h, andh̃(B@1)→1, recover-
ing circular symmetry effectively#, and theax(y)

† operator

creates a quantum of excitation at energy\w̃x(y) .
We diagonalize this matrix and obtain the low-lying e

ergy values as functions of the magnetic field, the quantu
dot size, and its asymmetry. ForB50, this reduces in the
symmetric case to the model discussed in Ref. 17, and m
in general to that discussed in Ref. 18. The last two term
Eq. ~11! are responsible for Zeeman splitting and depend
B both throughwcm and h̃, while the latter also depends o
the asymmetry of the structure. Notice that for equal parti
masses, these terms vanish (g50).

As discussed above, an interesting property to analyz
the competition between the Coulomb interaction and
size quantization. This can be done in terms of the exci
binding energyEcb defined as the difference between t
ground-state energies of the problem calculated with
without the Coulomb-interaction term,

Ecb5^f0uH0uf0&2^F rel
0 uHreluF rel

0 &. ~12!

In this equationH05Hrel1e2/«r , and uf0& and uF rel
0 & are

the ground eigenstates ofH0 andHrel , respectively.
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In the strong size-quantization regime,L!aB* , the bind-
ing energy at zero and small fields,Ecb(B'0), depends
strongly on the quantum-dot sizes and is larger for sma
dots. Notice, however, that the Coulomb interaction is
small perturbation to the confinement energy term in t
limit. On the other hand, in the Coulomb regime, foraB*
!L ~corresponding to dot sizes larger than.20 nm in
GaAs, for example!, the zero-field binding energyEcb(B
'0) becomes independent of the quantum-dot size.
boundary effect in the quantum dot is now a weak pertur
tion in this case, and the exciton behaves nearly as if it wo
not feel the boundary. These two extreme regimes prov
the framework to understand the behavior of excitons for
intermediate sizes, where both the Coulomb interactions
the confinement energy are comparable in magnitude.

Since the magnetic field enhances thee-h pair confine-
ment through the effectivew̃ frequencies, it is clear that th
Coulomb and magnetic effects in the Hamiltonian wou
compete with each other as the field and/or size changes.
quantum-dot sizes at whichEcb becomes size independe
are smaller forBÞ0 than forB50. In the limit of strong
magnetic fields, the binding energy varies linearly withB, as
the system passes to the magnetic regime whenl B!L, and
the magnetic confinement is dominant over the structura
geometrical potential. IncreasingB effectively reduces the
dot size. It is interesting to notice that as the quantum-
size increases, the center of mass~COM! energy and its as
sociated quantum of energy\w become smaller, and a num
ber of low-lying exciton states corresponding to excitatio
of the COM motion appear between the ground state and
first relative-motion excited state. This effect is clearly se
in the susceptibility calculations and can also possibly
plain equidistant peaks in photoluminescence experim
observed by Kashet al.,25 and by Lipsanenet al.26 We will
illustrate this behavior further below with a few sample r
sults.

Having the eigenvectorsuF&5(nxny
cnxny

unxny&, where

the coefficientscnxny
are the result of the diagonalization o

Hrel , it is interesting to calculate other quantities of physic
significance and experimental relevance to this proble
Among these, and closely related to the different size
gimes, is the mean electron-hole separation for each sta

r exc5~^r e-h
2 &!1/25F (

j 5x,y

\

2mw̃j

^Fu~aj
†aj

†1ajaj1ajaj
†

1aj
†aj !uF&G 1/2

. ~13!

The value ofr exc gives one idea of the binding of the ele
tron and hole and the effective exciton size.

In order to illustrate the effects of magnetic field and s
confinement competition, we calculate a quantity very se
tive to rotational symmetry breaking, which is the expec
tion value of thez component of the angular momentum,

^ l z&5
i\

2
^FuF ~ax

†ay
†2axay!S h̃2

1

h̃
D

1~axay
†2ax

†ay!S h̃1
1

h̃
D G uF&. ~14!
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The calculation of this quantity is useful to assign angu
momentum values and identify angular momentum tran
tions. Although the angular momentum is strictly not a go
quantum number when the rotational symmetry is brok
our angular momentum calculations show that as one rea
the magnetic regime, the exciton states become close to
angular momentum states, in essence restoring rotati
symmetry to the system.

For a direct comparison with recent high spatial and
ergy resolution experiments reporting well-defined pho
and magneto-luminescence peaks for single quantum d
we calculate the excitonic contributions to the optical s
ceptibility of the system,

x~w!5(
l

z^0uPu1& l z2~\w2El2 i\G!21, ~15!

where^0uPu1& l is the dipole matrix element between the o
e-h pair in the excitonic statel and the vacuum.18 El is the
total energy, i.e., the gap energyEg plus the center of mas
and thez-motion component, as well as the relative moti
energy in thel state. Physically,x(w) describes the possibl
radiative transitions or exciton recombination or creati
processes, whose strengths are determined by the dipole
trix elements. A phenomenological Lorentzian weight fac
of width G is assumed. This width mimics the finite spectr
lifetimes and possible instrument resolution of PL and P
experiments. One should note that the transition selec
rules obtained in the presence of magnetic field are form
quite similar to theB50 results,18 since they are also ex
pressed by

z^0uPu1& l z25upcvu2uF rel~r50!u2U E CCOM~R!d2RU2

,

~16!

where pcv is the interband matrix element near theG (k
50) point in these cubic materials, and explicit analytic
expressions for the other factors are obtainable in a strai
forward way.18 These factors give no exact suppression
transitions in the relative coordinate~or ‘‘hard’’ selection
rules!, but do impose the restriction that COM states acc
sible via PLE should have even parity~i.e., with both COM
harmonic oscillator indexesNX andNY even!.

Finally, we will present the results of perturbation theo
to explore the contribution of the coordinate coupling te
Hc . In this case, the full basis of eigenstates of the system
given by the composition of eigenvectors of the relative m
tion, uF rel

k &, with energy Erel
k , and the COM vectors

uNxNy&, with associated energies\wx(Nx11/2)1\wy(Ny
11/2). For convenience in notation, we will denote the
states asukN&. From the form of theHc term, proportional to
the COM momentum components, and given that the CO
states have definite parity along each direction, one can
ily see that the first order in perturbation theory vanish
^kNuHcukN&50, for any set of quantum numbers. Ther
fore, the first non-vanishing energy correction for a giv
stateEkN

0 ~whereN is again a shorthand notation forNX and
NY) is given by~for the non-symmetricdot case!
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DEkN
(2)5 (

k8N8ÞkN

z^k8N8uHcukN& z2

EkN
0 2Ek8N8

0 ~17!

and is then proportional toB2. Consequently, for moderat
values of the magnetic field, as we will see, this effect
small, proving that our decoupling scheme is indeed am
justified.

IV. RESULTS

In this section we present characteristic numerical val
for the quantities described in the last section. To be spec
we consider a quantum dot existing in an Al0.3Ga0.7As/GaAs
quantum-well structure such as those in Ref. 11, with«
513.1 and the various effective masses mentioned in R
27. We also consider a narrow well of 3.1 nm width and
corresponding gap energies. In a simple square well mo
with finite depth ~taking into consideration correspondin
band offsets of 240 and 160 meV in the conduction a
valence band, respectively!, one easily obtains thez-motion
contributions to the energy asE0

ez.145 meV andE0
hz.38

meV. The specific values ofE0
ez andE0

hz are very sensitive to
the input parameters. Since their value, together with
band-gap energy, defines to a great extent the position o
lowest energy PL/PLE peak, these experiments give in
mation not only on the qualitative behavior of the ener
levels with the magnetic field, but are also useful to det
mine directly important input parameters related to
quantum-well effective sizes.23

To calculate the eigenenergies and eigenstates of the
tive motion, we construct complex matrices of dimension
to 4843484 for the relative-motion Hamiltonian in Eq.~8!.
It was shown before,18 that the dimension of the basis s
used has to be larger for larger dots, as more and more s
are mixed by the Coulomb interaction. The convergence i
fact rather slow for dot sizes larger than.25 nm, and the
matrix sizes required then are at the maximum conside
here. We should comment that the model of infinite h
monic confinement is not entirely valid forL&Lz , since it
ignores leaking of the wave function into the surroundi
medium which is likely for small sizes.

As mentioned earlier, Figs. 2 and 3 present samples of
most representative results for symmetric dots. They sum
rize all the physical information of the excitonic states a
their consequent ‘‘oscillator strength,’’ relevant in possib
PLE experiments, for example. Figure 2 shows two sets
prominent peaks indicated by arrows, both of which ar
from the relative-motion ground state of the exciton in th
circularly symmetric (h51) dot. The lower set, here a
about 1760 meV atB50, comes from the zero-point motio
of the COM, while the higher set~at .1860 meV! includes
one quantum of the COM and is then a ‘‘replica’’ of the fir
set.@The replica appears at 2\w̃5102 meV here, since only
(NX ,NY)5(0,0), for lower set, and~0,2! or ~2,0!, for the
higher set, are optically accessible, according to the ‘‘se
tion rules’’ discussed above.# The relatively weak magnetic
field dependence of these two peaks, blue-shifting by.10
meV for 27 T, is the diamagnetic shift of the relative-motio
ground state viaw̃, and made here rather small given t
strong confinement of the 6 nm dot. The other peaks in
s
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figure are excitations of the exciton’s relative coordinate a
show a strong orbital Zeeman splitting~see peaks betwee
the two arrows, in particular! in addition to the diamagnetic
shift. The characteristic ‘‘small dot’’ spectrum would the
exhibit strong Zeeman splittings of the low-lying states,
shown here. Since the COM replicas appear at higher e
gies, they would possibly not be seen in experiments. S
Zeeman splitting behavior has been well described
Rinaldi et al.4 ~although ignoring excitonic effects! and by
Wilson et al.6

In Fig. 3, on the other hand, we show typical results fo
much larger symmetric (h51) dot with 14 nm in lateral
size. Here, the COM replicas appear much closer toget
since 2\w̃518.7 meV. Moreover, the replicas appear ev
closer than excited states of the excitonic relative coordin
which only come after the first replica forB50, and having
a strong magnetic dependence, quickly shift to beyond
second replica forB.10 T.

From these sample dot ‘‘portraits,’’ one can apprecia
that exploring the magnetic field dependence of the spec
features is extremely important in their proper assignmen
is also clear that detailed analysis of this dependence yi

FIG. 2. Optical susceptibility from excitons for a symmetr
quantum dot (h51) 6 nm in size, for several magnetic field value
Arrows point to center of mass replicas of the ground state of
exciton. Other peaks are excited states of the exciton. Here,\wx

5\wy551 meV.

FIG. 3. Optical susceptibility for a larger circular dot,L514
nm. Notice excited exciton states appearafter the first center of
mass replica~shown by arrows!. Here,\wx5\wy59.4 meV.
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also insights into the structural or geometrical features of
dots, as we explain from our analysis below.

Since the center of mass motion has no magnetic fi
dependence, the entire magnetic field evolution of the e
ton level structure comes fromH rel . Figure 4 shows typica
results for symmetric quantum dots with sizesL56 and 14
nm for the low-lying relative-motion exciton states. Th
states are each labeled with the corresponding value of
angular momentuml z , a good quantum number in thes
symmetric (h51) cases. The level arrangement, Zeem
splitting, and overall magnetic-field dependence is clea
reminiscent of atomic levels, with the added diamagne
shift via w̃ being more important for larger dots. One impo
tant feature, mentioned frequently in the literature, is the
ergy difference between the ground and the first exc
states. This difference is clearly proportional to the bind
energy,Ecb , and is directly measurable in PLE experimen
We see that this quantity decreases as a function ofL and is
a good indication of the quantum dot size.

In Fig. 5, we show similar evolution for quantum do
with the same small characteristic lengthL5ALxLy56 nm
but with different ratiosh5Ly /Lx . To show the asymmetry
effects, we plot the low-lying relative-motion energies f
symmetric~solid lines! and asymmetric~dotted lines! states.
We notice a general blueshift of the ground state, produ
by the smaller size of the dot in one direction. This bluesh
tends to disappear as the magnetic field increases~although
slowly for these parameters!, as one would expect the mag
netic field to take over in that limit. The asymmetry-induc
blueshift effect is much more evident if one considers
total energy, however. This is the case with the lumin
cence, and will be shown there. Notice that the full P
spectra depend on the center of mass energies which de
on the asymmetry ratioh through a factor which grows al
most linearly with asymmetry.28 More importantly, however,
the asymmetry breaks the level degeneracies atB50, as

FIG. 4. Six lowest-energy states of the exciton relativ
coordinate component,Erel . Labels indicate the quantized value
^ l z&/\ of each state in these circular dots (h51) with different
sizes.
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clearly shown in Fig. 5. These splits are even rather dram
for the second and third excited states, for increasingh, and
would be quite evident in PLE experiments.

The binding energiesEcb have been plotted in Fig. 6, fo
different quantum-dot sizes and different asymmetry rat
h. The upper three curves correspond toL56 nm, with h
5Ly /Lx51,1.5, and 2. It is clear from these three curv
that one of the effects of asymmetry is to lower the bindi
energy atB50, with respect to the symmetric case, as t
dot getting larger in one direction seems to dominate. T
second set of three curves is forL518 nm. Notice that al-
ready at this size, the binding energy is somewhat close t
asymptotic~size independent, as for large dots! value, which
depends only on the magnetic field. For a given magn
field, the binding energy is closer to its asymptotic value
quantum-dot diameters beyond certainLm , which depends
on the magnetic field. ForB50, this regime is reached fo
Lm;30 nm, while forB527 T, it is reached whenLm;15

- FIG. 5. Relative-motion eigenstates for different asymmetry v
ues andL56 nm. Solid lines are results for the circular dot. Noti
how larger h in ~b! yields larger splittings. For anyhÞ1, the
zero-field degeneracies are lost.

FIG. 6. Exciton binding energy as a function of magnetic fie
for various dot sizes and asymmetries. For larger dots, the bin
energy increases almost linearly with the field over this range.
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nm. At the same time, given the rather strong magn
fields, the asymmetry effects disappear, and the binding
ergy depends mostly onB, as l B controls the effective con
finement geometry. Correspondingly, the behavior of the
citon ‘‘size’’ in the ground state as a function of th
magnetic field shows a fast drop asB increases, especiall
for larger dots~see Fig. 7!. It is clear, but surprising, tha
moderate asymmetries do not influence strongly eitherEcb or
r exc, as they represent perhaps quantities that average
the entire dot domain.

On the other hand, we have seen that excited states o
relative coordinates show clear Zeeman splittings, in ad
tion to the diamagnetic shifts, and one can explore the eff
of dot asymmetries on these quantities. Figure 8 illustra
such effect, by showing the first pair of excited states (E1

and E2) as functions of the magnetic field, for symmetr
(h51, SYM! and asymmetric (h51.25, ASYM! quantum

FIG. 7. Exciton ‘‘size’’ for the ground state and different d
sizes and asymmetries. As field increases, the effective exciton
decreases, as the magnetic length takes over the confinement

FIG. 8. Illustration of the orbital Zeeman level splitting for
symmetric~SYM, h51) and asymmetric~ASYM, h51.25) quan-
tum dot with L518 nm. Shown here are the lowest two excit
states of the exciton, shifted by the zero-field values,E1(B)
2E1(0) andE2(B)2E2(0), to emphasize theB dependence of
the Zeeman shift. Notice that the asymmetry strongly suppresse
linear splitting at low field.
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dots with L5ALxLy518 nm. TheseE6 are the^ l z&56\
states in Fig. 4~b! for the SYM case~but for a largerL).
Notice we have shifted these curves byE6(B50), to em-
phasize the netB-dependent shift produced. In the SYM
case,E6 split apart linearly from each other~due to the
Zeeman term! up to B.0.2 T, commensurate with thei
well-defined angular momentum—although the splitting
later taken over by diamagnetic effects. However, forh
51.25, the ASYM levels hardly split at all for small fields
since their effective angular momentum has basically c
lapsed to zero~as we will show below!, and basically only
the quadratic diamagnetic shift remains~notice, for example,
the lack of negative dispersion of theE2 ASYM branch!.
This strong suppression of the Zeeman splitting provid
then a strong signature of the asymmetry of the dot which
directly accessible spectroscopically and can in princi
even be used to quantifyh.

To further illustrate the effects of asymmetry on the d
levels, we look at the expectation value ofl z . Although these
values are not directly obtainable from experiments, they
affect the PL and PLE oscillator strenghts and help us und
stand the underlying physics. Figure 9 shows typical
amples of^ l z& for different relative-coordinate states of th
exciton. The points are the calculated values of^ l z& and the

ize

the

FIG. 9. Expectation values ofl z ~in units of \) for first 15
relative-motion levels of asymmetric quantum dots. Points are
culated values; solid lines are just guidelines to follow its evolut
in each energy level. Noticêl z& evolves continuously in some lev
els, while in others, it experiences abrupt changes due to en
level crossings. For example, in the ground state~label 1! and the
7th energy level, there are no energy level crossings thus no ab
changes in^ l z&. Changes in the 13th energy level appear as
crosses 12th and 14th, as explained in the text. Notice, the st
suppression of̂ l z& due to asymmetry is lifted for high magneti
fields, and circular symmetry is recovered.
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solid lines are just guidelines to indicate the angular mom
tum evolution of the first, the second, an so on, energy le
In general thez component of the angular momentum of t
i th energy level changes when it crosses with the (i 11)th or
the (i 21)th energy level. For example, thez component of
the angular momenta of the 12th and the 13th energy le
@in Fig. 9~a!# change somewhere betweenB.3 and 4 T~see
the arrow!. The crossed lines indicate that the energy lev
cross each other and the angular momentum of the 12th
ergy level passes from about22\ to about 2.5\, corre-
spondingly, the angular momentum of the 13th energy le
experiences the opposite change. The lowest energy l
~label 1! has alwayŝ l z&50\. Both panels show that th
otherwise quantizedl z values for circularly symmetric dot
(h51) are rather strongly affected by the asymmetry,
gardless of the dot size or evenh value. ForB;0, we see
that ^ l z& is nearly zero for all levels~first 15! shown, for
smallL. As L grows, however, the suppression of^ l z& weak-
ens and gives rise to finite but not quantized values of
angular momentum. Asymptotically, however, strongerB
fields reinstate rotational symmetry to the system and th
fore z-component angular momentum conservation, so
in fact, ^ l z& recovers well-quantized values in this regio
regardless ofL and h values ~of course, smallerL and/or
largerh values require stronger fields for this regime to
reached!. @One should notice that sudden crossings in t
plot are indicative of theB dispersion of the levels, since th
negative dispersion forces rearrangements of level order
~used as the index in the plotting!.# Since differenth values
produce different degree of̂l z& suppression~not shown!,
one can conversely use this feature~measurable in PLE ex
periments, as explained in and by Fig. 8! to evaluate the
degree of asymmetry of the quantum dots. This, toge
with light-polarization-dependent shifts,11 would very nicely
complement the analysis of geometrical effects on the sp
tral response of the system. Notice further that as states
cover well-defined̂ l z&Þ0 values, they also decrease the
overall oscillator strength. This effect, fully included in th
calculation of the PLE figures, give interestingB-dependent
line shapes of the PLE data. We would suggest that deta
analysis of such experiments should serve as additio
probes of effective confinement geometries.

From these calculations, and as a synthesis of all th
effects, we obtain the linear susceptibility spectra defined
Eq. ~15!, which one can compare with the experimen
photo- and magneto-luminescence excitation measurem
Notice, incidentally, that using the parameters mentioned
Ref. 11, we are in qualitative agreement with the experim
tal values both in photon energy and in the separation for
system discussed in that reference forL.18 nm. In Fig. 10
we present another example of linear susceptibility fo
quantum dot with different size and asymmetry factor. In t
figure we plot the susceptibility for several values ofB as
functions of the photon energy, considering a Lorentz
width of the order of the experimental resolution,G50.1
meV. Notice the anticipated diamagnetic shift~quadratic up/
blue shifting of all peaks with theB field!, introduced via the
w̃x andw̃y , both functions of the field. One also clearly se
the Zeeman splitting, just as in Figs. 2 and 3 forh51.

Figure 10~b! illustrates the effect of asymmetry,h51.5,
-
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and the first COM replica moves in closer than in Fig. 10~a!,
being that 2\wy is only 7.6 meV away from the ground sta
~at B50), and the 2\wx replica does not appear until 1
meV from the ground state@the fourth small feature atB
50 in Fig. 10~b!#. ~COM replicas are readily identified sinc
they mimic the field dependence of the ground state.! This is
of course a reflection of the (NX52,NY50) and~0,2! split-
ting produced by the asymmetry of the structure, sincewy
Þwx . Notice, incidentally, that these first replicas appear
half the strength of the ground state~unlike theh51 cases!,
reflecting the asymmetry splitting once more. The third fe
ture for B50 is the lowest~degenerate! pair of ^ l z&56\
excited states of the exciton, at.15 meV from the ground
state. The~in this case nondegenerate! lowest two excited
states of the exciton, split further in the field much mo
slowly, so that atB52 T the additional splitting is less tha
;0.2 meV. This suppressed Zeeman splitting is what
referred to in connection with Fig. 8. Notice that for this s
of parameters, the 4\wy replica also contributes to the thir
feature here~an accidental degeneracy!, and explains the en
hanced strength atB50. This replica remains as the thir
feature at 8 T, while the excited state has shifted to be un
the fifth compound peak at that field value. Similarly, t
fifth peak at zero field contains several excited-state con
butions which split with field, so that the second excited st
of the exciton evolves into the rightmost peak at 8 T, wh
others evolve much faster in field.

FIG. 10. ~a! Exciton contribution to the optical response of
large circular quantum dot,L518 nm. Arrows indicate the center o
mass replicas, as in Figs. 2 and 3. Here,\vx5\vy55.7 meV.~b!
h51.5; notice first center of mass replica is only 7.6 meV fro
ground state, as\vy53.8 meV and\vx58.5 meV.
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Finally, we should comment that we have calculated
lowest nonvanishing order of perturbation theory of the
fect of the center of mass and relative motion coupling te
Hc , as described in the previous section. Although n
shown here, we verify that there is a quadratic field dep
dence of this term, as discussed before, and the contribu
to the lower relative motion energies is negligible. For t
lower states, it has nearly no effect on their magnetic-fi
values, and is found that forB&4 T, the correction to the
energies is&2 meV. Similarly small shifts result for otherL
and h values, so that thisHc term provides only a smal
perturbation, except for the largest of magnetic fields a
high COM replicas.

V. CONCLUSIONS

We have explored the magnetic-field dependence of
excitonic levels in asymmetric quantum dots. We have fou
that, as expected on consideration of the different len
scales of the problem, the behavior of these levels depe
strongly on the relation among the magnetic length, the B
radius of the exciton, and the characteristic size of the d
For small dots~smaller than approximately 10 nm in GaAs!,
L&aB* , the exciton binding energy is strongly sensitive
the magnetic field, dot size, and asymmetry. As the dot s
greatly exceedsaB* , the binding energy increases nearly lin
early with magnetic field, and is basically independent of d
size or symmetry, as the confinement walls are a small p
turbation to the problem.

For asymmetric dots, the lack of angular momentum co
servation is reflected in a strong collapse of the expecta
value of l z for nearly all low-lying exciton states, suppres
ing the orbital Zeeman-like splitting, which is clearly seen
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circular dots. This asymmetry is directly observable in t
magnetic-field dependence of PLE spectra and should p
vide a quantifiable probe of the structural features of t
luminescent states and dots in which they reside. Analysis
the Zeeman splittings, as well as the weaklyB-dispersive
center of mass replicas of excitonic states, provide a co
plete picture of the geometry of the structures.

Although the specific results presented are for a giv
GaAs-based set of quantum dots created in a narrow qu
tum well, similar considerations would be valid in general
experiments of other systems, such as self-assembled q
tum dots.1–3,18 There, of course, the confinement is of
three-dimensional nature, but with a level structure produ
by a combination of geometrical confinement, strains a
dielectric effects. Issues of symmetry of confinement sho
also play an important role in the observed optical respon

Finally, the role of the symmetry of excitonic states
quantum dots would also give rise to interesting signature
inelastic scattering of light experiments, for example, such
those performed recently in related systems.29 Future theo-
retical work on this issue24,30 will be presented elsewhere.
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