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Magnetoplasmon excitations in arrays of circular and noncircular quantum dots

B. P. van Zyl and E. Zaremba
Department of Physics, Queen’s University, Kingston, Ontario, Canada K7L 3N6

D. A. W. Hutchinson
Clarendon Laboratory, Parks Road, University of Oxford, Oxford, England

~Received 17 August 1999!

We have investigated the magnetoplasmon excitations in arrays of circular and noncircular quantum dots
within the Thomas-Fermi-Dirac-von Weizsa¨cker approximation. Deviations from the ideal collective excita-
tions of isolated parabolically confined electrons arise from local perturbations of the confining potential as
well as interdot Coulomb interactions. The latter are unimportant unless the interdot separations are of the
order of the size of the dots. Local perturbations such as radial anharmonicity and noncircular symmetry lead
to clear signatures of the violation of the generalized Kohn theorem. In particular, the reduction of the local
symmetry fromSO(2) to C4 results in a resonant coupling of different modes and an observable anticrossing
behavior in the power absorption spectrum. Our results are in good agreement with recent far-infrared trans-
mission experiments.
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I. INTRODUCTION

Advances in nanofabrication technology have opened
the possibility of studying electronic systems under a w
range of confinement conditions. The systems of interest
usually fabricated by starting with a two-dimensional ele
tron gas and applying various lateral modulati
techniques.1–3 In this way, systems such as wires, dots, rin
and antidot arrays have been realized. A powerful method
studying these systems is far-infrared~FIR! absorption spec-
troscopy. The observation of collective plasmon excitatio
and their dispersion in an applied magnetic field can yiel
great deal of information about the effects of electro
electron interactions and the influence of different forms
geometrical confinement.

In this paper, we are primarily interested in the magne
plasmon excitations in quantum dot arrays. In particular,
focus on the experimental results of Demelet al.4,5 which
reveal interesting features in the absorption spectrum a
function of magnetic field. It is by now well understood th
the observed deviations from the ideal spectrum expected
parabolic confinement6–8 are mainly due to anharmonic pe
turbations of the confining potential.9–12 For parabolic con-
finement, the only allowed dipole excitations correspond
center of mass motion and have the frequenciesv6

5Av0
21(vc/2)26vc/2, wherev0 is the harmonic confining

frequency andvc is the cyclotron frequency. In a previou
paper12 it was shown that an axially symmetricr 4 perturba-
tion leads to a coupling of the center-of-mass mode to o
dipole excitations of the harmonic potential, and gives rise
a satellite peak, which tracks along thev1 excitation. The
calculated absorption spectrum was found to be in g
agreement with experiment with regard to both the posit
and strength of the satellite peak.

One feature, which this earlier calculation12 did not ac-
count for was an anticrossing behavior observed at lo
magnetic fields. It was originally conjectured4,5 that this fea-
ture was due to the nonlocal dynamic response assoc
PRB 610163-1829/2000/61~3!/2107~13!/$15.00
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with the finite compressibility of an electron gas and resp
sible for the wave-vector dispersion of plasmons in a u
form system. An explanation on the basis of a noncircu
confining potential was dismissed on the grounds that
observed anticrossing did not conform with its expected
pendence onN, the number of electrons in the dot. Subs
quent work, however, shifted towards the noncircular con
ing potential as being the most likely explanation of t
observed behavior. Gudmundsson and Gerhardts9 performed
random-phase approximation calculations for a parabolic
with 10<N<30 and argued, on the basis of the coupli
between the center of mass and relative degrees of free
induced by anx2y2 perturbation, that an anticrossing of th
dipole mode with modes of higher multipolarity is to b
expected. Pfannkuche and Gerhardts10 arrived at similar con-
clusions based on an exact diagonalization of the dot Ha
tonian with quartic perturbations, but only forN52. A clas-
sical electrostatic model was used by Nazinet al.11 to study
the magnetoplasmon modes in a parabolic dot with
r 4cos(4u) perturbation. This approach, which treats the el
trons as a charged classical fluid, can be formulated in te
of an approximate energy functional that includes only
effects of the confining potential and the electrostatic rep
sion between the electrons. The model is useful for largN
and was shown to provide a good description of the dyna
ics in anharmonic dots.12 However, the theory proved to b
ill defined for noncircular dots as a result of the singu
behavior of the equilibrium density at the edge of the do11

and a rigorous analysis of the dynamics could not be p
vided.

Our purpose here is to re-examine circular and noncir
lar quantum dots within the Thomas-Fermi-Dirac-von We
säcker ~TFDW! hydrodynamic theory developed in the co
text of parabolically confined electron slabs.13 The theory
was later applied to electron rings14 and was shown to give a
good account of the edge magnetoplasmon modes obse
in this system. The theory improves on the classical elec
static model in that the quantum kinetic energy is included
2107 ©2000 The American Physical Society
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the level of the TFDW approximation. In addition
exchange-correlation effects can also be included. Un
other hydrodynamic-based models,15–19the TFDW hydrody-
namic theory incorporates the calculated equilibrium prop
ties of the electronic density and thereby provides a m
physical description of the collective modes.

The approach that we use is best suited to treating the
response of dots with a large number of electrons where
response is expected to be dominated by collective-like
citations. For few electrons, the underlying electronic str
ture can play an important role. In this situation, metho
based on the random phase approximation are more ap
priate, and calculations for noncircular dots in this regim
have recently appeared.20,21However, these calculations can
not be extended readily to dots with a large number of e
trons, which is the regime of interest in this paper.

Our paper is organized as follows. In Sec. II, we pres
an overview of the TFDW formalism and develop the co
stitutive equations for the theory in the context of a
directionally modulated electronic system. In Sec. III, w
apply our theory to dot arrays and examine the effects
confinement symmetry and interdot coupling on the mag
toplasmon modes of the system. Finally, in Sec. IV,
present our concluding remarks. A brief account of this wo
will appear as a conference proceeding.22

II. THE TFDW FORMALISM

The equilibrium and hydrodynamic properties of a pe
odically modulated two-dimensional electron gas~2DEG!
within the TFDW approximation have already been d
cussed at some length in our previous work on uniaxia
modulated electronic systems.23 In this section, we provide
an overview of the TFDW formalism and extend our earl
work to the more general case of bidirectional modulati
Since these calculations parallel those in Ref. 23, we o
present the essential ingredients of the model here and
to our earlier papers for details.13,23

A. Equilibrium properties

As in all density-functional theory schemes,24 the equilib-
rium properties of the system are obtained by finding
variational minimum of an energy functional. In atomic un
(e2/e5m!5\51), the TFDW functional is given by

E@n#5E d2r Fp

2
n21

lw

8

u¹n~r !u2

n~r !
2

4

3
A2

p
n3/2G

1
1

2E d2rE d2r 8
n~r !n~r 8!

ur2r 8u
1E d2r vext~r !n~r !.

~1!

The first term in Eq.~1! is the Thomas-Fermi kinetic energy
the second term is a von Weizsa¨cker-like correction to the
kinetic energy,25 and the third term is the Dirac local ex
change energy. For simplicity, we neglect any correlat
contribution. Following our earlier work,23 we choose a
value of lw50.25 for the von Weizsa¨cker coefficient. Our
results are not strongly dependent on this value since
systems studied are primarily in the Thomas-Fermi regim
e
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A variation of Eq.~1! with respect to the density leads t
the Euler-Lagrange equation

dE@n#

dn~r !
2m50, ~2!

where the Lagrange multiplierm ~chemical potential! serves
to fix the total number of electronsN. Introducing the so-
called von Weisza¨cker wave function,c(r )[An(r ), into
Eq. ~2! we obtain

2
lw

2
¹2c~r !1veff~r !c~r !5mc~r !, ~3!

where the effective potential is given by

veff~r !5pc2~r !2A8

p
c~r !1f~r !1vext~r !. ~4!

Here,f(r )5*dr 8n(r 8)/ur2r 8u is the electrostatic potentia
arising from the electronic densityn(r ), and vext(r ) is the
externally imposed potential. The latter is assumed to be
riodic with periodicitiesax anday in the x andy directions,
respectively, and to have inversion symmetry about the c
ter of the unit cell.

Equations~3! and ~4! are reminiscent of the usual Kohn
Sham equations except that only a single electronic orb
need be calculated. It should also be noted that the effec
potentialveff includes a term coming from the Thomas-Fer
kinetic energy which does not appear in the usual Ko
Sham potential. The required solution to Eq.~3! is the
ground state von Weisza¨cker wave function,c0, which is
obtained by imposing the boundary condition

n̂•¹c050, ~5!

at the edges of the unit cell. Here,n̂ is a unit normal vector.
To complete the specification ofc0 we must also impose the
normalization

E d2r n0~r !5N, ~6!

which fixes the chemical potentialm.
The self-consistent solution of Eqs.~3! and ~4! can be

obtained by direct iteration,23 but care must be taken to avoi
numerical instabilities associated with charge fluctuatio
Here we adopt an alternative method to avoid this difficul
We use the method of imaginary time evolution defined
the equation

ċ52~H2m!c, ~7!

whereH is the TFDW Hamiltonian given by

H52
lw

2
¹21veff . ~8!

Using a first-order approximation for the time derivative
the left hand side of Eq.~7!, we have

c~ t1dt !5c~ t !1~m2H !c~ t !dt, ~9!

wherem is given by
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m.
E dr c* Hc

E dr c* c

. ~10!

Once an initial guess forc(t50) has been made, Eq.~9!
provides an updatedc(t) which is used in the next iteratio
to determine an updatedH and m, and so on until conver-
gence. This scheme preserves the normalization of the w
function to O(dt2), but the wave function is nonetheles
normalized to unity at each iteration. A combination of re
space and Fourier-space representations is used to eva
the effect ofH on c. We have found this method of gene
ating c0 to be very stable against the charge fluctuation
duced Coulomb instability.

B. Hydrodynamic equations

A theory for the collective excitations of a modulate
2DEG is constructed by treating the electronic system as
inviscid, charged ‘‘classical’’ fluid. In particular, we adop
the hydrodynamic equations13,23

S ]n

]t D1¹•~nv!50, ~11!

and

nF]v

]t
1v•¹vG5nFtot, ~12!

where the total force acting on a fluid element,Ftot5Fint

1Fext, consists of the internal force

Fint~r ,t !52¹Fveff~r ,t !2
lw

2

¹2c~r ,t !

c~r ,t ! G , ~13!

and the force due to external electromagnetic fields (c51)

Fext52~Eext1v3Bext!. ~14!

We wish to show here that these hydrodynamic equati
can be obtained within a Lagrangian formulation. We su
pose that the external electromagnetic field is defined
terms of a scalar potentialfext and a vector potentialAext by

Eext52¹fext2
]Aext

]t
, Bext5¹3Aext, ~15!

and that the velocity fieldv(r ,t) is defined by

v~r ,t !5¹g1~r ,t !1g2~r ,t !¹g3~r ,t !1Aext. ~16!

Here, thegi ’s are three independent scalar functions;g1 is
associated with the irrotational part of the fluid flow andg2
and g3 are introduced to represent the solenoidal part. T
dependence on the vector potential is displayed as a sep
term.

The Lagrangian density that we propose is given by

L5nS v2

2
1

]g1

]t
1g2

]g3

]t D2nfext1«@n#, ~17!
ve

-
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n
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where«@n# is the TFDW energy density. Application of th
principle of least action

dE dtE dr L50, ~18!

for each of the variables$g1 ,g2 ,g3 ,n% generates four equa
tions. It is straightforward to show that independent var
tions of thegi yield the following equations:

]n

]t
1¹•~nv!50, ~19!

]g2

]t
1v•¹g250, ~20!

]g3

]t
1v•¹g350. ~21!

Equation~19! is just the expected continuity equation.
Now, a variation of Eq.~18! with respect ton yields

S v2

2
1

]g1

]t
1g2

]g3

]t D2fext1S veff2
lw

2

¹2c

c D50.

~22!

Taking the gradient of Eq.~22!, along with the time differ-
entiated form of Eq.~16!, we obtain

]v

]t
1~v•¹!v1Eext1v3~¹3v!2

]g2

]t
¹g31

]g3

]t
¹g2

1¹S veff2
lw

2

¹2c

c D50. ~23!

Using Eq.~16! to evaluate the triple cross product, we ha

v3~¹3v!5~v•¹g3!¹g22~v•¹g2!¹g31v3Bext,
~24!

and substituting this result together with Eqs.~20! and ~21!
into Eq. ~23!, we finally obtain

]v

]t
1v•¹v52¹S veff2

lw

2

¹2c

c D2~Eext1v3Bext!.

~25!

Equations~19! and ~25! are equivalent to the two Eqs.~11!
and~12! written down at the beginning of this section. The
are the fundamental hydrodynamic equations of the TFD
theory.

Linearizing our hydrodynamic equations about small d
viations from equilibrium, viz.,n(r ,t)→n01dn(r ,t), and
retaining only first-order quantities, Eqs.~11! and ~12! yield

]dn

]t
1¹•~n0v!50, ~26!

and

]v

]t
5dFint2Eext2v3Bext, ~27!

where the fluctuating force is given by
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dFint~r ,t !52¹F dveff~r ,t !2
lw

2c0
¹2dc~r ,t !

1
lw

2

¹2c0

c0
2

dc~r ,t !G
[2¹ f , ~28!

with

dveff~r ,t !52pc0dc~r ,t !2A8

p
dc~r ,t !1df~r ,t !.

~29!

The quantityf plays the role of an effective potential for th
internal force fluctuation. The magnetic fieldBext will be
taken to be a uniform field in thez direction.

For the moment, we shall consider the normal modes
the system, which are determined in the absence of the d
ing field Eext. Combining Eqs.~26! and ~27! leads to the
following equation for the fluctuating part of the von Wei
säcker wave function (dc5dn/2c0)

v~v22vc
2!dc52

1

2
v¹2~c0f !1

1

2
vS ¹2c0

c0
D ~c0f !

1 ivc~¹c03¹ f !• ẑ. ~30!

Here,vc5eBext/m!c is the cyclotron frequency expressed
natural units. Making explicit use of the periodicity of th
system in both spatial directions, we can write the fluctuat
part of the von Weisza¨cker wave function in the form

dc~r ,t !5ei (q•r2vt)(
G

cGeiG•r, ~31!

wherecG is a Fourier expansion coefficient,q is a 2D Bloch
wave vector restricted to the first Brillouin zone, andG
5(2pm/ax,2pn/ay), with m,n50,61,62, . . . , arerecip-
rocal lattice vectors. The plane-wave basis functions sat
the orthonormality condition

1

AE
A

d2r e2 i (G2G8)•r5dGG8 , ~32!

where A5axay is the area of a unit cell. Expanding th
product (c0f ) in a similar way, viz.,

~c0f !5c0dveff1
lw

2

¹2c0

c0
dc2

lw

2
¹2dc

5ei (q•r2vt)(
G

f GeiG•r, ~33!

and substituting these expansions into Eq.~30!, we obtain the
nonlinear eigenvalue equation

v~v22vc
2!cG5v(

G8
BGG8 f G81vc(

G8
AGG8 f G8 , ~34!

where
f
iv-

g

fy

BGG8[
1

2
~q1G!2dGG81

1

lw
~veff2m!@G2G8#, ~35!

and

AGG8[ i @q3~G2G8!1~G3G8!#• ẑ ln c0@G2G8#.
~36!

We adopt the notation that square braces denote a Fou
transformed variable.

The Fourier coefficientsf G are connected to the fluctua
ing wave-function expansion coefficientscG through Eq.
~33!, viz.,

f G5(
G8

@MGG8
K

1MGG8
X

1MGG8
H

1lwBGG8#cG8

[(
G8

M̃GG8cG8 , ~37!

and

MGG8
K

52pc0
2@G2G8#

MGG8
X

52A8

p
c0@G2G8# ~38!

MGG8
H

54p(
G9

c0@G2G9#c0@G92G8#

A~qx1Gx9!21~qy1Gy9!2
,

are the kinetic, exchange, and Hartree matrices that a
when thec0dveff term is Fourier transformed. The eigenva
uesv of Eq. ~34! give the excitation frequencies of the sy
tem, and the corresponding eigenvectorscW can be used to
determine the density fluctuation of the collective mode.

Equation ~34! represents an infinite dimensional matr
problem that, for practical purposes, must be solved on so
subset of the 2D reciprocal lattice vectors. Any truncation
the basis set must be checked to ensure that the results fo
modes of interest do not depend on the number ofG vectors
retained. If the system is weakly modulated, the coupl
between different reciprocal lattice vectors is likewise we
and the matrix problem is only of a modest size. However
the system is strongly modulated with a large unit cella
*800 nm!, the number of basis functions required to a
equately describe the dynamics of the system can bec
unmanageably large. This is a possible limitation of t
plane-wave expansion technique.

Since our main interest is in making contact with the e
perimental FIR data, we shall only consider theq50 limit of
our calculations.26 In this situation, our dynamical equation
are invariant with respect to the point groupC4v ~for ax
5ay) when vc50. A nonzero magnetic field lowers th
symmetry of the system toC4 because of the additional term
involving theAGG8 matrix in Eq.~34!. In either case, we can
appeal to the inherent symmetry of the reciprocal space
substantially reduce the number of effective basis vec
considered in a calculation. The way in which this is done
discussed in Appendix A.
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C. Power absorption

We now consider the response of the system to a spat
uniform radiation field incident normally on the sample a
polarized in thex direction: Eext(r ,t)5 1

2 E0(e2 ivt1eivt) x̂.
This is the most direct way of making contact with expe
ments, which probe the collective excitations of the syst
by means of FIR spectroscopy.

The physically relevant quantity is the time averag
power absorption, which is given by23

^P& t5 K E d2r j ind~r ,t !•Eext~r ,t !L
t

5
1

2
E0 ReE d2r j x

ind~r ,v!, ~39!

where j x
ind(r ,v)52n0(r )vx(r ,v) is the induced curren

density and the velocity is now a solution of

]v

]t
52gv1dFtot2v3Bext. ~40!

The total fluctuating force includes the external contribut
dFext52Eext. In addition, we have introduced a phenom
enological relaxation rateg, which has the effect of giving
the excitations a finite lifetime. This implies that any fr
quency factors arising from the time-derivative of the velo
ity must be replaced byv→ṽ5v1 ig. In previous studies12

it was found that the experimental transmission data w
most faithfully reproduced by a frequency dependent rel
ation rate,g5g0 /v. We retain the same frequency depe
dence here.

Noting that the current density is itself a periodic functi
of both spatial directions, we can write Eq.~39! as

^P& t

A
5

1

2
E0 Re j x

ind@G50,v#, ~41!

whereA is the sample area and

j x
ind@G,v#5

1

AE d2r e2 iG•r j x
ind~r ,v! ~42!

is the Fourier coefficient of the induced current. TheG50
component is just the average induced current within a
cell. A straightforward calculation paralleling Ref. 23 lea
to the following expression for this component

j x
ind@G50,v#5

22ṽ

ṽ22vc
2 (

G8
Gx8c0@G8# f G8

1
2ivc

ṽ22vc
2 (

G8
Gy8c0@G8# f G81

i ṽn0@G50#E0

ṽ22vc
2

.

~43!

The net effect of including an external driving fieldEext was
previously shown to convert the nonlinear eigenvalue pr
lem in Eq.~34!, into a set of inhomogeneous equations23
lly

-

s
-

-

it

-

v~ṽ22vc
2!cG2ṽ(

G8
BGG8 f G82vc(

G8
AGG8 f G85bG ,

~44!

where

bG52E0~ i ṽGx2vcGy!c0@G#. ~45!

Theq50 solution of Eq.~44! along with Eq.~37! provides a
complete determination ofj x

ind@G50,v#. The substitution of
Eq. ~43! into Eq. ~41! yields the final expression for the FIR
power absorption.

III. QUANTUM DOTS

In Sec. II, the formalism for studying a 2D modulate
electronic system was developed for an arbitrary perio
confining potentialvext(r ). In this section, we restrict ou
attention to potentials that confine the electrons in all th
spatial dimensions, thereby forming an array of quasi-
quantum dots. In particular, we have in mind the experim
performed by Demelet al.4,5 in which an array of quantum
dots was prepared from modulation–dop
Al xGa12xAs/GaAs heterostructures. In this experiment, re
nant anticrossings were observed in the magnetic dispers
for arrays of dots withN525 andN5210 electrons per dot
These anticrossings were tentatively explained in terms
nonlocal interaction associated with the finite compressibi
of the electron gas,4,5 although subsequent work pointed
the importance of noncircular perturbations. Here, we
plore the origin of these anticrossings in greater detail
systematically studying confining potentials of the form

vext~r ,u!5
1

2
kr21

1

4
pr41

1

4
p«r 4cos~4u!, ~46!

whereu is the azimuthal angle in polar coordinates. Forp
50, we have parabolic confinement withv05Ak. Setting
«50 with k,pÞ0 introduces a quartic radial perturbatio
and finally, if all three parameters are nonzero, the last te
in Eq. ~46! breaks the circular symmetry of the potential. It
understood that the potential in Eq.~46! is centered in the
unit cell and periodically extended throughout the arra
Since the dots of interest are localized near the center of
cell, the behavior of the potential near the cell boundarie
of no consequence.

In order to make contact with previous work on this pro
lem, it will prove useful to elaborate on the various para
eters appearing in Eq.~46!. To begin, we set«50. Follow-
ing Ref. 12, we define the anharmonicity parameterh
[pR0

2/2k, whereR0 is the radius of the dot as determine
within a classical calculation that includes only the Hartr
interaction of the electrons. This radius is given implicitly b
the equation12

R05
R0

p

S 11
8

5
h D 1/3, ~47!

whereR0
p is the equilibrium radius for pure parabolic con

finement~hence the superscript ‘‘p’’! given by6
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R0
p5F3p

4

e2N

ek G1/3

. ~48!

It was further shown in Ref. 12 that the zero-field (B50)
frequency of the lowest dipolar mode is given to an excell
approximation by

v085v0A11
8

5
h, ~49!

where v0 is the bare harmonic frequency defined abo
Thus, in the absence of a noncircular perturbation, a gi
zero-field dipole frequency is determined by a family ofv0
and h values. These values are adjusted to reproduce
experimentally observed frequencyv08 , as well as other fea
tures of the observed absorption spectrum. In this way,
quantitiesk andp can be determined. We observe from o
calculations that the subsequent inclusion of the paramet«
has a negligible effect onv08(B50), so that the effect of this
parameter can be investigated independently of the o
two. Typical values forh and« used in the calculations lie
in the range@0,1#.

Finally, we summarize the appropriate physical para
eters for the AlxGa12xAs/GaAs heterostructures under co
sideration: the effective Bohr radiusa0

! is 103 Å and the
effective Rydberg of energy, Ry!5e2/2ea0

!, is 5.4 meV. To
be as consistent as possible with the experimental situat4

we focus on dot arrays withN5210 electrons per dot and
FIR zero field absorption frequency ofv08532 cm21.

A. Parabolic confinement

As mentioned above,h50 provides a potential that de
fines an array of parabolically confined dots. The nature
the collective excitations for such a system are by now w
established in the literature.6–12,27–34In Fig. 1~a! we show the
calculated ground-state density for a square array withax
5ay51000 nm containing well-separated dots withN
5210 electrons per dot. The radius of the dot is about 1
nm, and for the sake of clarity, we show only that portion
the unit cell in which the electronic density is localized. T
radius found here on the basis of the TFDW functional
similar to the value obtained using Eq.~48!, viz., R0

p5160
nm, withv0532 cm21 andN5210. The similarity of these
values indicates that the Hartree interaction is in fact do
nating the equilibrium distribution and that the exchange a
kinetic energies are playing a relatively minor role. T
shape of the distribution is approximately semicircular
found in the classical calculation,12 but with a smooth varia-
tion at the edge of the dot as a result of the von Weisza¨cker
correction. This term in the energy functional allows us
simulate the behavior of the charge density expected with
fully quantum-mechanical calculation.

It is perhaps worth emphasizing that the equilibrium c
culations described above effectively correspond toisolated
quantum dots. The Coulomb interactions between equ
rium charge densities in different cells of the array are elim
nated, so that only intracell Coulomb interactions are
tained in the calculation. Of course the potential within
given cell arises from all other charges in the system,
one should view the parabolic confining potential as the
t
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effect of all these other charges. However, when calcula
the magnetoplasmons, the intercell Coulomb interacti
arising from the density fluctuations arenot neglected. These
multipolar interactions are required in order to simulate
response of an array of coupled dots. We shall exam
shortly the importance of these interdot Coulomb inter
tions.

In Fig. 2, we show the calculated magnetic dispersion
the array of dots described above. To avoid cluttering
diagram, we have chosen to omit the large number of e
modes, which start fromv50 at B50 and lie belowv
5vc . These modes make no observable contribution to
power absorption and are therefore of little interest in
present paper. The mode frequencies found here are
similar to those found in the classical approximation6 and
can be classified according to the localSO(2) symmetry of
circularly symmetric confining potentials. As discussed
Appendix A, the Lie groupSO(2) hasm one-dimensional
irreducible representations given byxm(f)5eimf, with 0
<f<2p, andmPZ. The different branches seen crossi
in Fig. 2 correspond to different irreducible representatio
of SO(2) ~see Table I!, and thus one would not expect an
mode repulsion in the absence of some perturbation. S
the only possible perturbation in the present situation is

FIG. 1. Equilibrium density distributions for various confine
ment geometries:~a! parabolic confinement,~b! radial anharmonic-
ity, and ~c! noncircular symmetry. Parameters defining the confi
ment potential are given in the text. In all cases the dots
arranged on a square lattice withax5ay51000 nm, and contain
N5210 electrons.
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dynamic intercell Coulomb interaction, the results sho
here confirm that this interaction is very weak. As we sh
see, the effect of interdot interactions can be made appa
by reducing the interdot separation.

Within the classical theory, a subset of the dot modes
a dispersion given by the expression6,8,12

v j ,65AV j
21~vc/2!26vc/2. ~50!

The solid curves in Fig. 2 show some fits to Eq.~50!, and
demonstrate that the field dependence is well reprodu
even though the TFDW values ofV j are slightly different
from the analytic classical values. The lowest pair of curv
corresponds to the two circular polarizations of the cen
of-mass ~CM! mode. According to the generalized Koh
theorem,35 the exact separability of theN-body Hamiltonian
into CM and relative coordinates for parabolic confinem
ensures thatV15v0 (v0532 cm21 in this case!, and that
only these dipole modes couple to a uniform external elec
field. This fact is illustrated in the inset to Fig. 2 where w
show the calculated FIR power absorption for the dot ar
for a range of magnetic fields consistent with the experim
in Ref. 4. The single peak atv(B50)532 cm21 reflects
the fact that our model satisfies the generalized Kohn th

FIG. 2. The magnetic dispersion for an array of well separa
parabolically confined dots. The solid circles are the numerical
lutions to Eq.~34! and the solid curves are fits to Eq.~50!. The
figure inset shows the calculated FIR power absorption for a ra
of magnetic fields. The parameters defining the dots are the sam
used to generate Fig. 1~a!.

TABLE I. Compound characters for some of theSO(2) repre-
sentations of the point groupC4.

mp E C4 C4
2 C4

3

01 1 1 1 1
02 1 1 1 1
11 1 i 21 2 i
12 1 2 i 21 i
21 1 21 1 21
22 1 21 1 21
31 1 2 i 21 i
32 1 i 21 2 i
n
ll
nt
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rem. It is also clear from this figure that the two-peak stru
ture appearing forBÞ0, corresponds to the CM-mode dis
persion seen in Fig. 2.

We next consider the effects of interdot Coulomb co
pling on the magnetoplasmon excitations. We have alre
indicated that this interaction is weak for a lattice constan
a51000 nm, and we now support this assertion by observ
the effect of reducing the lattice constant toa5600 nm.
Figure 3 shows a small section of the magnetic dispersion
this case. Although this dispersion looks similar to Fig.
there are some important differences.

First, we notice a slight redshift of thev0(B50) fre-
quency while the higher-lying modes have moved slightly
the opposite direction. The softening of thev0(B50) fre-
quency can be explained by invoking the interaction betw
the induced dipoles on each lattice site. For the square la
being considered, the electric field experienced by themth
dipole due to all other dipoles is given by36

Em5
1

a3 (
l ,n

8
1

~ l 21n2!3/2F 3l 2

l 21n2
21Gpm1 l , ~51!

where we have assumed, consistent with Sec. II C, that
polarization is in thex̂ direction. The quantitiesl andn iden-
tify positions on the 2D lattice, viz.,r5 la x̂1naŷ, and the
primed summation indicates that then5 l 50 point is ex-
cluded. In the FIR regime, each of the dipole momentspm
has a common magnitudep0, and the electric field can be
written as

Em5
p0

a3
S, ~52!

where

S5(
l ,n

8
1

~ l 21n2!3/2F 3l 2

l 21n2
21G . ~53!

The quantitiespm andEm are connected through the relatio
pm5a(v)Em wherea(v) is the dipole polarizability of the

d
-

e
as

FIG. 3. The magnetic dispersion for an array of closely spa
dots. The only difference between this figure and Fig. 2 is a red
tion of the lattice periodicity:ax5ay5600 nm. The consequence
of this shorter periodicity are a softening of thev0 frequency and
the appearance of small anticrossings. Inset: An expanded vie
the boxed region'(1.4 T,39 cm21) clearly showing the mode
anticrossings.
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dot. For parabolic confinement, the polarizability is given
a(v)5Ne2/m!(v0

22v2). Using this result in Eq.~52!, we
find the following frequency for the CM mode

v25v0
22

S

4p
vp

2 , ~54!

where vp
254pNe2/em!a3 is the effective plasmon fre

quency. This simple result shows that the interdot dip
interactions decrease the absorption frequency from that
single dot.

Next, we note the appearance of small anticrossings in
magnetic dispersion that was not discernible for the w
separated dots. These anticrossings are still difficult to
solve, so in the figure inset, we show a close-up view of
boxed region, which clearly illustrates the mode repulsi
These anticrossings arise because the interdot coupling o
dots on the square lattice breaks thelocal circular symmetry
of the confining potential. Specifically, the square symme
of the lattice is lower than the local SO~2! symmetry of the
dots. As shown in Appendix A, the 11 and 32 modes now
transform under the same irreducible representation ofC4
~see Table II!, which means that the modes will repel~anti-
cross! each other under a reduction of the symmetry. W
stress however that these anticrossings are far too wea
account for the mode anticrossings observed in the De
et al. experiments.

B. Radial anharmonic confinement

The inclusion of a perturbative term of the for
dvext(r )5 1

4 pr4 in Eq. ~46! preserves the circular symmetr
of the confining potential, but allows for the mixing of di
ferent dipole modes with a redistribution of the FIR oscil
tor strength. The ground state density is illustrated in F
1~b! and is qualitatively similar to that found in the classic
model.12 This density was generated withv0520 cm21 and
h51. The circular ridge is a result of ther 4 perturbation.
The calculated magnetic dispersion and FIR power abs
tion are shown in Fig. 4.

Comparing Figs. 2 and 4, we see that many of the featu
of the magnetic dispersion in the case of parabolic confi
ment are still present for the anharmonic potential. To e
phasize this point, we have plotted the dispersions descr
by Eq.~50! usingV j as an adjustable parameter. We see t
Eq. ~50! provides a good fit to the data, and indicates that
functional form of the magnetic dispersion is not sensitive
the form of the confining potential. In particular, a fit of th
dispersion to the lowest CM modes doesnot in general pro-
vide a direct measurement of the harmonic term in the c
fining potential. The relative spacing between the CM mo

TABLE II. Character table for the irreducible representations
the point groupC4.

C4 E C4 C4
2 C4

3

D1 1 1 1 1
D2 1 21 1 21
D3 1 i 21 2 i
D4 1 2 i 21 i
e
f a
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and the higher modes does depend on the anharmonicity
the latter are not usually observable in FIR experiments.

The main observable difference between parabolic
radially anharmonic confinement is revealed by the theor
cal power absorption in the inset to Fig. 4. The curves w
generated for a range of magnetic fields corresponding to
experimental situation in Ref. 4. The dominant dipolar pea
found for parabolic confinement are now accompanied b
weak satellite which tracks along thev1 CM-like mode. The
oscillator strength of the satellite is directly controlled by t
parameterh. A value of approximately 1 reproduces th
observed oscillator strength at high fields, while the h
monic confining frequency was adjusted tov0520 cm21 in
order to yield aB50 dipole frequency of 32 cm21. These
parameters imply a strong anharmonicity. TheB50 peak at
v532 cm21 in Fig. 4 can therefore no longer be identifie
as a CM mode in the sense of parabolic confinement.
very appearance of the satellite is an indication that the g
eralized Kohn theorem is no longer valid. Ther 4 perturba-
tion has the effect of coupling the dipolar modes found in
parabolic limit,12 thereby making other dipole modes FI
active. A comparison of our calculated FIR power absorpt
to the experimental data4 leaves little doubt that the satellit
structure observed in the experiment has its origins in
anharmonicity of the confining potential. This conclusio
confirms that reached by other workers using different th
retical approaches.9,10,12The power absorption thus provide
a direct probe for determining the geometry of the confin
potential.

Finally, we mention that calculations were also carri
out for the reduced lattice spacing of 600 nm. As in the c
of parabolic confinement, anticrossings in the magnetic d
persion arise, but the strength of these anticrossings is a
too weak to account for those observed experimentally.
can therefore rule out interdot Coulomb interactions as a
nificant mechanism at the experimental interdot separatio

C. Noncircular confinement

We now consider an explicit symmetry breaking pertu
bation of the form given in Eq.~46! with «Þ0. It is clear

f

FIG. 4. The magnetic dispersion for an array of radially anh
monic dots. The solid circles are the numerical solutions to Eq.~34!
and the solid curves are fits to Eq.~50!. The parameters are th
same as those used to generate Fig. 1~b!. The inset shows the cal
culated FIR power absorption.
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that such a perturbation is consistent with the geometry
the dots studied in Ref. 4. The equilibrium density for t
noncircular confining potential is shown in Fig. 1~c!. This
density profile was generated withN5210, v0520 cm21,
h51, «50.4, andax5ay51000 nm. The maximal radia
extent of this dot is about 155 nm. It is clear from Fig. 1~c!
that the deviation from circular symmetry is very pr
nounced, and one should not expect the same mode dis
sions as obtained for arrays of circularly symmetric dots.

Turning to the magnetic dispersion in Fig. 5, we do
deed find a very differentB-field dependence of the collec
tive modes. Specifically, we note the appearance of str
anticrossings between the lowest-lying modes, and prog
sively weaker anticrossings for the higher modes. These
ticrossing are a consequence of thedvext(r ,u)
5 1

4 p«r 4 cos(4u) perturbation in Eq.~46!, and occur when
the angular momentum of the symmetric modes differ by
integral multiple of four. The lowest anticrossing is betwe
a pair ofm51 andm523 modes and is the most importa
since it is the structure observed in the Demelet al. experi-
ment. A comparison of Fig. 5 with Fig. 2 of Ref. 4 show
that our results are in good agreement with regard to the
and location of the anticrossing. Once again, the solid cur
in Fig. 5 are fits to Eq.~50! and here, they serve to emph
size the difference between circular and noncircular confi
ment geometries.

The magnitude of the gap occurring at each anticross
is directly related to the parameter«. The value«50.4 was
chosen to best fit the observed transmission data4 and the
inset to Fig. 5 shows our calculated power absorption.
low fields there is weak structure to the high-field side of
main resonance, which is probably too weak to be resol
experimentally. However, as one enters the field range of
anticrossing between 1 and 2 T, a new peak appears
leads to an absorption spectrum consisting of three pe
This structure is most distinct at a field ofB51.5 T which is
in the middle of the anticrossing region. ByB52.4 T, the
central peak has already lost most of its oscillator stren

FIG. 5. The magnetic dispersion for an array of noncircu
dots. The solid circles are the numerical solutions to Eq.~34! and
the solid curves are fits to Eq.~50!. The same parameters as in Fi
1~c! are used to generate this figure. The inset shows the calcu
FIR power absorption. The size and position of the pronoun
anticrossing atv'40 cm1 (↑) are in quantitative agreement wit
experiment. ForB.3 T, the power absorption is almost indistin
guishable from Fig. 4.
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and the power absorption takes on the characteristics of
r 4 power spectrum of Fig. 4, including the high-field sate
lite. This overall behavior is entirely consistent wit
experiment.4

IV. CONCLUSIONS

In this paper, we have presented a generalization of
previous work23 on TFDW hydrodynamics in laterally
modulated electronic systems. As a specific application,
have examined the magnetoplasmon excitations in array
both circular and noncircular dots. By considering potentia
which include both radial and noncircular anharmonic p
turbations, we are able to fully explore the effects of geom
ric confinement on the magnetoplasmon excitations of
dots.

In the case of circular dots, our results indicate that anr 4

radial perturbation can account for the satellite-peak str
ture observed in the experiments.4,5,12We have also seen tha
the interdot coupling is too weak at the experimental latt
constant to give rise to any discernible anticrossing effe
in agreement with earlier results.27 These effects only be
come apparent when the lattice spacing is reduced to
order of the size of a dot.

On the other hand, the addition of a noncircular pertur
tion of the formr 4cos(4u) was shown to induce anticross
ings in the magnetoplasmon dispersion that are entirely c
sistent with the experimentally observed transmission d
Specifically, the location for the onset of the first optica
observable anticrossing, along with higherB-field peak
structure, was found to be in good agreement with exp
ment. Based on this result, we conclude that only an exp
noncircular symmetry in the confining potential can ful
account for the mode anticrossings observed in
experiments.4,5

The work presented here is applicable to a wide variety
2D geometrical confinements. Our current interest lies in
application of this formalism to antidot arrays, which a
complementary structures to quantum dot arrays. Recen
perimental work on these systems has revealed a collec
excitation spectrum very different from the dot arrays.37,38A
detailed discussion of these systems will be presented e
where.
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APPENDIX: DERIVATION OF THE SYMMETRY-
REDUCED DYNAMICAL EQUATIONS

The square primitive cell of our problem results in a r
ciprocal lattice with fourfold symmetry, as illustrated in Fi
6. The point group of the square lattice isC4v , and the full
point symmetry isC4v ^ (E,T), where (E,T) is the time-
reversal symmetry group andE is the identity element.39 In
the context of our problem, we recall that we are primar
interested in the calculation of the FIR response of the s
tem, which corresponds to theq50 limit of the general set
of inhomogeneous equations, Eq.~44!. In the absence of a
magnetic field, these equations are invariant underC4v
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^(E,T), however the inclusion of a magnetic field brea
time-reversal symmetry and lowers the symmetry of the s
tem from C4v→C4. This is easily seen if one observes t
symmetry group of theAGG8 matrix in Eq. ~36!. It follows
that C4 is the relevant group symmetry to consider in t
most general case~i.e., magnetoplasma excitations!.

Let us step back for a moment, and consider the full sy
metry group of the square lattice, namely,C4v
5$E,C4 ,C4

3 ,C4
2 ,mx ,my ,su ,sv%, where m are reflections

about thex or y axes, ands is a reflection about a diagona
of the square. We can construct a representation,G @we use
this notation to remind us that we are at theG point of the
first Brillouin zone ~BZ!#, of this group by considering a
function space spanned by the set of functions$uGi&%. One
natural choice would be to consider the set of functions
fined byuGi&[a21eiGi•r with 1< i<4 as shown in Fig. 6. If
we choose as our canonical functionuG1&, the other func-
tions are obtained by acting with theC4 operator on the
function uG1&: C4

n uG1& 5 uG11n&, with uG5&[uG1&. Since
the generators of the groupC4v are$C4 ,mx%, we need only
obtain the representations for the generators ofC4v to con-
struct the entire representation of the group. It is easy
show that generators ofC4v in this representation take th
form

G~C4!5F 0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0
G G~mx!5F 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0
G ,

~A1!

and that the characters forC4v are given by

FIG. 6. A schematic representation of the truncated 2D recip
cal lattice with point group symmetryC4v . The arrows are an ex
ample of a shell of vectors$uGa&% which are generated fromG1 by
the symmetry operationC4. The solid circles illustrate the set ofG
vectors used in the symmetry-reduced calculation; a square arr
points is retained to facilitate the use of fast Fourier transforms
s-

-

-

to

C4v E 2C4 C4
2 2m 2s

G 4 0 0 0 2.

The character table for the irreducible representation ofC4v
is shown in Table III. Since there is no four-dimension
irreducible representation ofC4v , G must be reducible. It is
a simple matter of class-wise character addition to determ
that theG representation must be decomposed according
G5G1% G4% G5.

Now, let us consider the dipole operatorm5er . This op-
erator generates the representationGm5G1% G5 underC4v .
TheG1 representation is derived from thez component ofr ,
whereas theG5 representation is induced by the (x,y) com-
ponents. Owing to the fact that we are only considering
diation polarized in the plane of the 2DEG, we can imme
ately see that the invariant subspace ofG5 contains all of the
dipole active modes of our problem. Thus, rather than c
cerning ourselves with solving the generalized set of eq
tions, viz., Eq.~44!, we can use the symmetry of the syste
to solve for only those eigenvalues that will be of interest
a FIR-mode calculation.

The problem of projecting into theG5 representation is
really a matter of block-diagonalizing our system of equ
tions and picking out that block associated withG5. This
amounts to finding a unitary transformation that will bloc
diagonalize each of theG matrices of the groupC4v . Moti-
vated by the knowledge that under a nonzero magnetic fi
the group symmetry isC4, we consider the eigenvalues an
eigenvectors of the group elementC4PC4. Indeed, sinceC4
is the generator of the point groupC4, it is the only group
element that we need to consider. A simple calculation
veals that the eigenvalues and normalized eigenvector
G(C4) are

l (1)51 uv (1)&5
1

2 F 1

1

1

1

G ; l (2)521 uv (2)&5
1

2 F 1

21

1

21

G
l (3)5 i uv (3)&5

1

2 F 1

i

21

2 i

G ; l (4)52 i uv (4)&5
1

2 F 1

2 i

21

i

G .

~A2!

The four normalized eigenvectorsuv (l)& are applied in this
order to produce the unitary matrixU, and its inverseU21

-

of

TABLE III. Character table for the irreducible representatio
of the point groupC4v .

C4v E 2C4 C4
2 2m 2s

G1 1 1 1 1 1
G2 1 21 1 1 21
G3 1 1 1 21 21
G4 1 21 1 21 1
G5 2 0 21 0 0
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U5
1

2 F 1 1 1 1

1 21 i 2 i

1 1 21 21

1 21 2 i i
G

U215
1

2 F 1 1 1 1

1 21 1 21

1 2 i 21 i

1 i 21 2 i
G . ~A3!

For example, applyingU to the group elementC4 yields

U21C4U5F 1 0 0 0

0 21 0 0

0 0 i 0

0 0 0 2 i
G . ~A4!

The unitary transformation matrix,U, will block diagonalize
all of the G matrices for the groupC4v . In other words, the
eigenvectors$uv&% of C4 define a symmetrized basis forG of
C4v . For the general case,vcÞ0, the symmetry isC4, and
all the matrices in theG representation ofC4 will consist of
131 blocks~i.e., fully diagonalized!. It is now clear that the
eigenvaluesl (1) andl (2) are associated with theG1 andG4
irreducible representations ofC4v respectively. The eigen
valuesl (3) andl (4) are associated withG5; the vector space
spanned by their eigenvectors (uv (3)&,uv (4)&) is the two-
dimensional irreducible representation ofG5.

It is of interest to know how the irreducible represen
tions of C4v relate to those ofC4. This can be done by
appealing to the character tables for both theC4v and C4
point groups~see Tables II and III!. By inspection, we can
see that

G1→D1

G2→D2

G3→D1 ~A5!

G4→D2

G5→D3% D4 .

From Eq.~A5!, we see that the two-dimensional irreducib
representationG5 splits when the symmetry is lowered from
C4v→C4. Note also thatD3 andD4 are complex conjugate
representations. The relevance of this fact is that in the
sence of a magnetic field, these two representations are
generate~time-reversal symmetry!. The application of a
magnetic field will lift this degeneracy, and one should e
pect two modes appearing from theG5 contribution; one
from each of theD ’s appearing in its decomposition. In th
context of our model, the absence of a magnetic field imp
that we only requireoneof eitherl (3) or l (4) to obtain all of
the FIR-active modes of the system.
-

b-
e-

-

s

It is also of interest to determine what the relations a
between the irreducible representations ofC4 and SO(2).
The ~compact! Lie group SO(2) is the symmetry group o
the circular symmetric dots. If the dots are well isolated, th
are unaware of the lattice, and the modes of the system
be classified according to their transformation underSO(2).
If the dots are closer together~close enough to become awa
of neighboring dots!, then the square symmetry of the lattic
will break the localSO(2) symmetry. In Table I, we show
the character table for some of the irreducible representa
of SO(2) for the point groupC4. What is of note is the
compatibility relations between the groupSO(2) and C4,
viz.,

01→D1

02→D1

11→D3

12→D4

~A6!
21→D2

22→D2

31→D4

32→D3 .

Notice that if we are restricting our calculations to the inva
ant subspace ofG5, we will only be projecting out the mode
with odd m; the even modes are generated by projecting i
G1 and G4. From these compatibility relations, we see th
the modes 11 and 32 will mix ~anticross! under the symme-
try lowering fromSO(2)→C4 because they both transform
under the same irreducible representation ofC4. An exami-
nation of Table I reveals that when the symmetry is stric
SO(2), these modes belong to different irreducible repres
tations, and will therefore cross. The same argument can
used if there is an explicit symmetry breaking via the co
fining potential. Specifically, even if the dots are well sep
rated, a confining potential that does not transform un
SO(2) will lower the symmetry of the system and cau
mode mixing~anticrossing! to occur.

So far, our discussion has been restricted to an abs
square lattice. How do we apply these ideas to our proble
We note that our entire reciprocal lattice is made up of s
of reciprocal lattice vectors$uGia&%, (a51, . . . ,4), which
are generated by the symmetry operationC4 acting onuGi1&.
It is therefore sufficient to only consider the reciprocal latti
vectors within the first quadrant of the total reciprocal spa
The index i 51, . . . ,nmax labels these vectors, and the s
$uGia&% will be referred to as ashell. The total number of
shells retained in the calculation isnmax.

The Fourier expansion of an arbitrary functionf (r ) can
then be written as

u f &5(
ia

f iauGia&, ~A7!
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where the amplitudesf ia are the elements of a 4nmax31
column vector. Each set of amplitudesf ia (a51, . . . ,4)
can be expressed in terms of the eigenvectors ofG(C4) as

f ia5(
l

f i
(l)va

(l) , ~A8!

and the orthonormality of the eigenvectors implies the
verse relation

f i
(l)5(

a
f iava

(l)! . ~A9!

The star indicates complex conjugation. Now, consider so
operatorO, which is invariant underC4. The matrix repre-
sentation of the equationOu f &5ud& is given by

(
j b

Oia, j b f j b5dia . ~A10!

Making use of Eqs.~A8! and ~A9! we find

(
j

O i j
(l) f j

(l)5di
(l) , ~A11!

where

di
(l)5(

a
diava

(l)! ~A12!

O i j
(l)5(

ab
va

(l)!Oia, j bvb
(l) . ~A13!

In obtaining Eq.~A11! we have used the fact that the oper
tor O is diagonal in theG(C4) basis. It is clear from Eq
~A11! that each of the eigenvalues,l, defines an indepen
dent matrix problem. This is a direct consequence of the
that we are working in the symmetrized basis of the rep
sentationG of C4. Furthermore, supposeO5PQ with P and
Q both invariant underC4. It is easy to show that

O i j
(l)5(

k
P ik

(l)Q k j
(l) , ~A14!

which means that for a givenl, we need deal only with the
shell matrices rather than the matrices defined over all f
quadrants of the reciprocal space.

Let us now apply what we have learned to Eq.~44! in the
q50 limit. It is readily verified thatAGG8 , BGG8 , andM̃GG8
are invariant under the symmetry groupC4. Therefore, Eq.
~44! can be immediately cast in terms of the symmetriz
functions, viz.,

v~ṽ22vc
2!ci

(l)2ṽ(
k

Bi j
(l)M̃ jk

(l)ck
(l)2vc(

k
Ai j

(l)M̃ jk
(l)ck

(l)

5bi
(l) , ~A15!

where we recall that summations are over the shell index
obtaining Eq.~A15!, we have used the relation

f i
(l)5(

j
M̃ i j

(l)cj
(l) . ~A16!
-

e

-

ct
-

r

d

In

In principle, Eq.~A15! must be solved for each of the fou
eigenvalues ofC4. However, as we mentioned above, if w
are only interested in the FIR-active modes of the system,
can project into the invariant subspace ofG5, and only have
to consider at most,l (3) and l (4). This can be made more
transparent as follows. The reciprocal lattice vectorGia is
given by ~see Fig. 6!

Gia5uGi1u@cos~f ia!,sin~f ia!#, ~A17!

where

f ia5u i1
~a21!p

2
, ~A18!

and

u i[cos21S Gi1,x

uGi1u D . ~A19!

The inhomogeneous vector on the right-hand side of
~A15! is determined from Eq.~A12!. Using Eq.~A17! in Eq.
~45!, we obtain the expressionbia

bia52E0@ i ṽ cos~f ia!2vcsin~f ia!#uGi1uc0@Gi1#,
~A20!

which yields

bi
(l51)50

bi
(l521)50

~A21!

bi
(l5 i )52 i uGi1uc0@Gi1#E0~ṽ1vc!e

iu i

bi
(l52 i )52 i uGi1uc0@Gi1#E0~ṽ2vc!e

2 iu i5bi
(l5 i )!~2v!.

Therefore, as expected, we only require thel56 i eigenval-
ues to fully describe the FIR response. In particular, the
termination of the power absorption is reduced to a solut
of Eq. ~A15! for l56 i . Using these solutions in Eq.~43!,
we finally obtain the following explicit expression of th
power absorption:

^P& t

A
5

1

2
E0 ReF i ṽn0@G50#E0

ṽ22vc
2

2
4

ṽ2vc
(

i
uGi1uc0@Gi1#(

j
M̃ i j

(l5 i )cj
(l5 i )e2 iu i

2
4

ṽ1vc
(

i
uGi1uc0@Gi1#(

j
M̃ i j

(l52 i )cj
(l52 i )eiu iG .

~A22!

To obtain the normal mode frequencies, we use the
mogeneous version of Eq.~A15! with g50. In this case, all
positiveeigenvalues forl56 i can be obtained from the ful
set of eigenvalues forl5 i . The negative eigenvalues simp
correspond to the positive eigenvalues forl52 i . This is the
method used to generate the magnetic dispersion of the
active modes shown in Figs. 2, 4, and 5.



hy

rs
n-

ev

o
,

B

.

tat

tat

.

-
be
ho-

e

um-
re-

n
to

ts.
be

ys.

er-

rth,

,

g,

D.

G.

PRB 61 2119MAGNETOPLASMON EXCITATIONS IN ARRAYS OF . . .
1U. Mackens, D. Heitmann, L. Prager, and J. P. Kotthaus, P
Rev. Lett.53, 1485~1984!.

2D. Heitmann and J. P. Kotthaus, Phys. Today46 ~6!, 56 ~1993!.
3 J. H. Davies,The Physics of Low-Dimensional Semiconducto

An Introduction~Cambridge University Press, Cambridge, E
gland, 1997!.

4T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. R
Lett. 64, 788 ~1990!.

5T. Demel, D. Heitmann, P. Grambow, and K. Ploog, inSixth
International Winterschool on Localization and Confinement
Electrons in Semiconductors, edited by G. Bauer, H. Heinrich
and F. Kuchar~Springer, Berlin, 1990!.

6S. S. Nazin and V. B. Shikin, Fiz. Nizk. Temp.15, 227 ~1989!
@Sov. J. Low Temp. Phys.15, 127 ~1989!#.

7P. A. Maksym and T. Chakraborty, Phys. Rev. Lett.65, 108
~1990!.

8V. Shikin, S. Nazin, D. Heitmann, and T. Demel, Phys. Rev.
43, 11 903~1991!.

9V. Gudmundsson and R. Gerhardts, Phys. Rev. B43, 12 098
~1991!.

10D. Pfannkuche and R. Gerhardts, Phys. Rev. B44, 13 132~1991!.
11S. Nazin, K. Tevosyan, and V. Shikin, Surf. Sci.263, 351~1992!.
12Z. L. Ye and E. Zaremba, Phys. Rev. B50, 17 217~1994!.
13E. Zaremba and H. C. Tso, Phys. Rev. B49, 8147~1994!.
14E. Zaremba, Phys. Rev. B53, R10 512~1996!.
15A. L. Fetter, Ann. Phys.~N.Y.! 88, 1 ~1974!; A. Eguiluz and J. J.

Quinn, Phys. Rev. B14, 1347 ~1976!; S. Das Sarma and J. J
Quinn, ibid. Phys. Rev. B20, 4872~1979!.

16G. Eliasson, P. Hawrylak, J.-W. Wu, and J. J. Quinn, Solid S
Commun.60, 3 ~1986!.

17G. Eliasson, J.-W. Wu, P. Hawrylak, and J. J. Quinn, Solid S
Commun.60, 41 ~1986!.

18W. Y. Lai, A. Kobayashi, and S. Das Sarma, Phys. Rev. B34,
7380 ~1986!.

19V. Cataudella and V. M. Ramaglia, Phys. Rev. B38, 1828
~1988!.

20C. A. Ullrich and G. Vignale, Phys. Rev. B~to be published!.
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