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Magnetoplasmon excitations in arrays of circular and noncircular quantum dots
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We have investigated the magnetoplasmon excitations in arrays of circular and noncircular quantum dots
within the Thomas-Fermi-Dirac-von Weizseer approximation. Deviations from the ideal collective excita-
tions of isolated parabolically confined electrons arise from local perturbations of the confining potential as
well as interdot Coulomb interactions. The latter are unimportant unless the interdot separations are of the
order of the size of the dots. Local perturbations such as radial anharmonicity and noncircular symmetry lead
to clear signatures of the violation of the generalized Kohn theorem. In particular, the reduction of the local
symmetry fromSQ(2) to C, results in a resonant coupling of different modes and an observable anticrossing
behavior in the power absorption spectrum. Our results are in good agreement with recent far-infrared trans-
mission experiments.

[. INTRODUCTION with the finite compressibility of an electron gas and respon-
sible for the wave-vector dispersion of plasmons in a uni-

Advances in nanofabrication technology have opened uform system. An explanation on the basis of a noncircular
the possibility of studying electronic systems under a wideconfining potential was dismissed on the grounds that the
range of confinement conditions. The systems of interest argbserved anticrossing did not conform with its expected de-
usually fabricated by starting with a two-dimensional elec-pendence o, the number of electrons in the dot. Subse-
tron gas and applying various lateral modulationquent work, however, shifted towards the noncircular confin-
techniques:In this way, systems such as wires, dots, rings,ing potential as being the most likely explanation of the
and antidot arrays have been realized. A powerful method fopbserved behavior. Gudmundsson and Gerhapigormed
studying these systems is far-infrar@€lR) absorption spec- random-phase approximation calculations for a parabolic dot
troscopy. The observation of collective plasmon excitationsyith 10<N=<230 and argued, on the basis of the coupling
and their dispersion in an applied magnetic field can yield aetween the center of mass and relative degrees of freedom
great deal of information about the effects of electron-induced by arx®y? perturbation, that an anticrossing of the
electron interactions and the influence of different forms ofdipole mode with modes of higher multipolarity is to be
geometrical confinement. expected. Pfannkuche and GerhalYisrived at similar con-

In this paper, we are primarily interested in the magneto<clusions based on an exact diagonalization of the dot Hamil-
plasmon excitations in quantum dot arrays. In particular, weonian with quartic perturbations, but only fbr=2. A clas-
focus on the experimental results of Denetlal*® which  sjcal electrostatic model was used by Naetral! to study
reveal interesting features in the absorption spectrum as fae magnetoplasmon modes in a parabolic dot with an
function of magnetic field. It is by now well understood that r4cos(49) perturbation_ This approach, which treats the elec-
the observed deviations from the ideal spectrum expected fafons as a charged classical fluid, can be formulated in terms
parabolic confinemefit® are mainly due to anharmonic per- of an approximate energy functional that includes only the
turbations of the confining potenti&ii!? For parabolic con-  effects of the confining potential and the electrostatic repul-
finement, the only allowed dipole excitations correspond tosjon between the electrons. The model is useful for laige
center of mass motion and have the frequencies  and was shown to provide a good description of the dynam-
= \/a)02+(wc/2)2t w/2, wherew is the harmonic confining ics in anharmonic dot¥ However, the theory proved to be
frequency andw, is the cyclotron frequency. In a previous ill defined for noncircular dots as a result of the singular
papet? it was shown that an axially symmetnié perturba-  behavior of the equilibrium density at the edge of the dot,
tion leads to a coupling of the center-of-mass mode to otheand a rigorous analysis of the dynamics could not be pro-
dipole excitations of the harmonic potential, and gives rise tovided.

a satellite peak, which tracks along the. excitation. The Our purpose here is to re-examine circular and noncircu-
calculated absorption spectrum was found to be in goodar quantum dots within the Thomas-Fermi-Dirac-von Weiz-
agreement with experiment with regard to both the positiorsacker (TFDW) hydrodynamic theory developed in the con-

and strength of the satellite peak. text of parabolically confined electron slaisThe theory

One feature, which this earlier calculatiérdid not ac-  was later applied to electron ringsand was shown to give a
count for was an anticrossing behavior observed at lowegood account of the edge magnetoplasmon modes observed
magnetic fields. It was originally conjectufetthat this fea- in this system. The theory improves on the classical electro-
ture was due to the nonlocal dynamic response associateatic model in that the quantum kinetic energy is included at
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the level of the TFDW approximation. In addition, A variation of Eq.(1) with respect to the density leads to
exchange-correlation effects can also be included. Unlikéhe Euler-Lagrange equation
other hydrodynamic-based modé¥s°the TFDW hydrody-
namic theory incorporates the calculated equilibrium proper- oE[n] o 5
ties of the electronic density and thereby provides a more on(r) =5 @
physical description of the collective modes. . ) )
The approach that we use is best suited to treating the FIi¥here the Lagrange multipliqe (chemical potentialserves
response of dots with a large number of electrons where tht9 fix the total number of electror. Introducing the so-
response is expected to be dominated by collective-like exc@lled von Weiszeker wave function,y(r)= yn(r), into
citations. For few electrons, the underlying electronic strucEd- (2) we obtain
ture can play an important role. In this situation, methods N
bgsed on the randqm phase approximation are more appro- — 7WV2¢(r)+veﬁ(r)¢(f)=wﬂ(r)- )
priate, and calculations for noncircular dots in this regime
have recently appearé#? However, these calculations can- here the effective potential is given by
not be extended readily to dots with a large number of elec-
trons, which is the regime of interest in this paper. )
Our paper is organized as follows. In Sec. Il, we present veﬁ(r)=m,//2(r)— \ﬁzp(r)+¢(r)+vext(r). (4)
an overview of the TFDW formalism and develop the con- .
stitutive equations for the theory in the context of a bi-Here, ¢(r)=fdr'n(r’')/|r—r’| is the electrostatic potential
directionally modulated electronic system. In Sec. lll, wearising from the electronic density(r), andve(r) is the
apply our theory to dot arrays and examine the effects oéxternally imposed potential. The latter is assumed to be pe-
confinement symmetry and interdot coupling on the magneriodic with periodicitiesa, anda, in the x andy directions,
toplasmon modes of the system. Finally, in Sec. IV, werespectively, and to have inversion symmetry about the cen-
present our concluding remarks. A brief account of this workter of the unit cell.

will appear as a conference proceedffig. Equations(3) and (4) are reminiscent of the usual Kohn-
Sham equations except that only a single electronic orbital
Il. THE TEDW FORMALISM need be calculated. It should also be noted that the effective

o ) ) . potentialv; includes a term coming from the Thomas-Fermi

The equilibrium and hydrodynamic properties of a peri-yinetic energy which does not appear in the usual Kohn-
odically modulated two-dimensional electron g&&DEG) Sham potential. The required solution to E@) is the
within the TFDW approximation have already been dis'ground state von WeiSzker wave functiong,, which is

cussed at some length in our previous work on uniaxiallypptained by imposing the boundary condition
modulated electronic systerfisin this section, we provide

an overview of the TFDW formalism and extend our earlier n-Vip=0 (5)
.. . . 0 1

work to the more general case of bidirectional modulation.

Since these calculations parallel those in Ref. 23, we onlyt the edges of the unit cell. Herejis a unit normal vector.

present the essential ingredients of the model here and refgo complete the specification gf, we must also impose the

to our earlier papers for detaitd?® normalization

A. Equilibrium properties f d2r No(r)=N (6)

As in all density-functional theory schem&she equilib-
rium properties of the system are obtained by finding thewhich fixes the chemical potential.

variational minimum of an energy functional. In atomic units ~ The self-consistent solution of Egé3) and (4) can be
(e’/e=m*=H=1), the TFDW functional is given by obtained by direct iteratioft but care must be taken to avoid
numerical instabilities associated with charge fluctuations.
o | T, Ay lVn(r)|? 4 [2 2 Here we adopt an alternative method to avoid this difficulty.
E[”FJ dr| 5N o ————2\/N We use the method of imaginary time evolution defined by
2 8 n(r) 3 V7w .
the equation
1 n(ryn(r’
+§J dzrf d%’%jtj d2r Veg(r)n(r). d=—(H=p), )
r—r

(1) whereH is the TFDW Hamiltonian given by
The first term in Eq(1) is the Thomas-Fermi kinetic energy, H=— )\—WV2+V ®)
the second term is a von Weizsar-like correction to the 2 eff-
kinetic energy?’ and the third term is the Dirac local ex- Usi first-ord imation for the time derivati
change energy. For simplicity, we neglect any correlationths'r;gftah'rsd'or.der e;pé)r()?mma '?}n or the time derivative on
contribution. Following our earlier workk we choose a e left hand side of Ed7), we have
value of A,,=0.25 for the von Weizsker coefficient. Our _

. . t+ot) = (t)+(u—H)y(t)dt, 9
results are not strongly dependent on this value since the i )=9(OF (w=H)9(Y ©
systems studied are primarily in the Thomas-Fermi regime.whereu is given by
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whereg[n] is the TFDW energy density. Application of the
f dr y*Hy principle of least action
u=— (10)
fdr VE 5] dtf dr £=0, (18)

Once an initial guess fag(t=0) has been made, E@®) for each of the variablesy, ,g,,9s,n} generates four equa-
provides an updated(t) which is used in the next iteration tions. It is straightforward to show that independent varia-
to determine an updatdd and ., and so on until conver- tions of theg; yield the following equations:
gence. This scheme preserves the normalization of the wave

function to O(4t?), but the wave function is nonetheless (7_n+v (V) =0 (19
normalized to unity at each iteration. A combination of real- ot '
space and Fourier-space representations is used to evaluate
the effect ofH on . We have found this method of gener- 495
ating i to be very stable against the charge fluctuation in- —t TV'V92=0, (20)
duced Coulomb instability.
J
B. Hydrodynamic equations % +Vv-Vg;=0. (21

A theory for the collective excitations of a modulated
2DEG is constructed by treating the electronic system as a
inviscid, charged “classical” fluid. In particular, we adopt

the hydrodynamic equatioh®®

on +V =0 11
ot -(nv)=0, (11
and
ov
n E-FV-VV =nFe (12)

where the total force acting on a fluid elemeRto'=F"
+F® consists of the internal force

Ny V(1 t)
Vet~ g

F(r,t)=-V , (13

and the force due to external electromagnetic fields 1)

FoX= — (E®+ vX B). (14)

We wish to show here that these hydrodynamic equations
can be obtained within a Lagrangian formulation. We sup-
pose that the external electromagnetic field is defined in  Jt

terms of a scalar potentigh®™ and a vector potentigh® by

ext

EeXt: _ V¢ext_ o , BeXt: V X Aext’ (15)

and that the velocity field(r,t) is defined by

V(r,t)=Vgy(r,t)+g,(r,t)Vgs(r,t)+ A (16)

Here, theg;’s are three independent scalar functiogg;is

ﬁquation(lQ) is just the expected continuity equation.
Now, a variation of Eq(18) with respect ta yields

A Vzlp):

V2 ag 993
1 )_¢9Xt+<veﬁ_77

2 T 9

(22

Taking the gradient of Eq22), along with the time differ-
entiated form of Eq(16), we obtain

ov d95 993

_ . ext _ e _9°
o VIV ETH VX (T XV) = — =V g+ — =V g,
Ay V20
+vV Wm‘?%‘JJIO- (23)

Using Eq.(16) to evaluate the triple cross product, we have
vX(VXV)=(v-Vg3)Vg,—(v-Vg,)Vgs+ VX B,
(24)
and substituting this result together with E¢20) and (21)
into Eq. (23), we finally obtain

Ay V20

V
—+v-Vv=-V Veﬁ_77

) — (E®'+vxB*).

(29

Equations(19) and (25) are equivalent to the two Eqéll)
and(12) written down at the beginning of this section. These
are the fundamental hydrodynamic equations of the TFDW
theory.

Linearizing our hydrodynamic equations about small de-
viations from equilibrium, viz.,n(r,t)—ny+én(r,t), and
retaining only first-order quantities, Eq4.1) and(12) yield

associated with the irrotational part of the fluid flow agg @ +V-(ngv)=0 (26)
and gs are introduced to represent the solenoidal part. The at ’
dependence on the vector potential is displayed as a separ%tﬁd
term.
The Lagrangian density that we propose is given by v '
E — 5F|m_ Eext_vx BeXt, (27)

2
Vg J
JO S

> —neg®+g[n], (17

927

where the fluctuating force is given by
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, 1 1
SF™(r,t)=—V| 8ve(r,t) — 7V26¢(r,t) BGG’EE(q+G)25GG’+)\_(Veﬁ_ﬂ)[G_G,]: (35
w
N V2 and
+7W Yos (r t)] )
Ace =i[gX(G—G')+(GXG")]-zIn o[ G—G'].
=-Vf, (28) (36
with We adopt the notation that square braces denote a Fourier-
transformed variable.
3 The Fourier coefficient§g are connected to the fluctuat-
ONVe(r,1)=2mhoSip(r,t)— \ﬁ5¢(r,t)+6¢(r,t). ing wave-function expansion coefficientg; through Eg.
77 (33), viz.,
(29)
The quantityf plays the role of an effective potential for the H
internal force fluctuation. The magnetic fieBP will be fo= Z [MGG’ GG’+MGG’+AwBGG']CG’

taken to be a uniform field in the direction.

For the moment, we shall consider the normal modes of
the system, which are determined in the absence of the driv-
ing field E*. Combining Eqgs.(26) and (27) leads to the
following equation for the fluctuating part of the von Weiz- and
sacker wave function §y= on/2ys)

=> MeeCors (37)
G/

GG, 2771//0[6 G']

1, V2o
o(w’—o )5¢—__WV (¢of)+ ® Vo (lﬂo ) 5
. MX  =— \ﬁ G-G' (38)
Fiwd VX V)-2. (30) ce ol ]
Here,w.=eB™Ym*c is the cyclotron frequency expressed in P n o~
natural units. Making explicit use of the periodicity of the GG, E Yol G~ Gyl G"—C']

system in both spatial directions, we can write the fluctuating G’ \/(qx+ GQ)2+(qy+ Gg)z’
part of the von Weiszzker wave function in the form
are the kinetic, exchange, and Hartree matrices that arise
ot G when theyydv e term is Fourier transformed. The eigenval-
Sy(r,t)=el@re )% cee'” (B)  yesw of Eq. (34) give the excitation frequencies of the sys-
tem, and the corresponding eigenvect5rsan be used to
wherecg is a Fourier expansion coefficiemt,is a 2D Bloch  determine the density fluctuation of the collective mode.

wave vector restricted to the first Brillouin zone, a@l Equation (34) represents an infinite dimensional matrix
=(2mm/a,,2mnl/ay), with m,n=0,£1,+2,..., arerecip-  problem that, for practical purposes, must be solved on some
rocal lattice vectors. The plane-wave basis functions satisfgubset of the 2D reciprocal lattice vectors. Any truncation of
the orthonormality condition the basis set must be checked to ensure that the results for the

modes of interest do not depend on the numbeg afectors
_f 42 e-i(G-G)T— 5 32 retained. If the system is weakly modulated, the coupling
Al 4 — Y66 between different reciprocal lattice vectors is likewise weak,
and the matrix problem is only of a modest size. However, if
where A=a,a, is the area of a unit cell. Expanding the the system is strongly modulated with a large unit call (
product @of) in a similar way, viz., =800 nm), the number of basis functions required to ad-
equately describe the dynamics of the system can become
(,bo Aw unmanageably large. This is a possible limitation of the
(4hof)= ¢05Veff+ 2 e ¢__V o plane-wave expansion technique.
Since our main interest is in making contact with the ex-
perimental FIR data, we shall only consider the0 limit of

=ellar wt)% fee'®, (33 our calculationg® In this situation, our dynamical equations

are invariant with respect to the point gro, (for a,
and substituting these expansions into 8f), we obtain the =a,) when w,=0. A nonzero magnetic field lowers the
nonlinear eigenvalue equation symmetry of the system 16, because of the additional term

involving the Agg: matrix in Eq.(34). In either case, we can
2 o _ appeal to the inherent symmetry of the reciprocal space to
w(w wc)CG_wgf BGG’fG’“L“’Cg' Acefer, (34) substantially reduce the number of effective basis vectors
considered in a calculation. The way in which this is done is
where discussed in Appendix A.
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C. Power absorption ~ -
We now consider the response of the system to a spatially ("= w)Co wg Boerfer— wcg Acc'fer=ba,
uniform radiation field incident normally on the sample and (44)
polarized in thex direction: E®{(r,t)=1Eq(e~'“!+e'“Y)x.
This is the most direct way of making contact with experi-
ments, which probe the collective excitations of the system

where

by means of FIR spectroscopy. bg=—Eo(i 0Gx— wcGy) o[ G]. (45)
The physically relevant quantity is the time averaged-rheq:o solution of Eq(44) along with Eq.(37) provides a
power absorption, which is given By complete determination G’ G=0,w]. The substitution of
Eq. (43) into Eq.(41) yields the final expression for the FIR
<P>t:<fdzrjind(r,t)_Eext(r,t)> power absorption.
t
1 . QUANTUM DOTS
__ 2. :ind
_2E0 Ref dr (@), (39 In Sec. Il, the formalism for studying a 2D modulated

. electronic system was developed for an arbitrary periodic
where j')?d(r,w)=—n0(r)vx(r,w) is the induced current confining potentialve,(r). In this section, we restrict our
density and the velocity is now a solution of attention to potentials that confine the electrons in all three

spatial dimensions, thereby forming an array of quasi-OD
EY; quantum dots. In particular, we have in mind the experiment
AL SF—vx B, (40)  performed by Demeét al*® in which an array of quantum
dots was prepared from modulation—doped
The total fluctuating force includes the external contribution™xGa -xAs/GaAs heterostructures. In this experiment, reso-
SF= —E® |n addition, we have introduced a phenom- Nant anticrossings were observed in the magnetic dispersions
enological relaxation rate, which has the effect of giving for arrays of dots witiN=25 andN =210 electrons per dot.
the excitations a finite lifetime. This implies that any fre- Tese anticrossings were tentatively explained in terms of a
quency factors arising from the time-derivative of the veloc-nonlocal interaction associated with the finite compressibility

~ 5 i
ity must be replaced by— @=w -+ y. In previous studié? of the electron ga$® although subsequent work pointed to

) . . the importance of noncircular perturbations. Here, we ex-
it was found that the experimental transmission data was . . . X .

. plore the origin of these anticrossings in greater detail by
most faithfully reproduced by a frequency dependent relax:

ation rate,y= y,/w. We retain the same frequency depen_systematically studying confining potentials of the form
dence here. 1 1 1

Noting that the current density is itself a periodic function Vexd(,0)= =kr?+ —pré+—pericog46), (46)
of both spatial directions, we can write EQ9) as 2 4 4

where 6 is the azimuthal angle in polar coordinates. For
ﬂ: lEo Re j"[G=00] (41) =0, we have parqbolic confinement' witbb'z Jk. Setting
A 2 X o £=0 with k,p#0 introduces a quartic radial perturbation,

) and finally, if all three parameters are nonzero, the last term
whereA is the sample area and in Eq. (46) breaks the circular symmetry of the potential. It is
understood that the potential in EQ@L6) is centered in the
unit cell and periodically extended throughout the array.
Since the dots of interest are localized near the center of the
cell, the behavior of the potential near the cell boundaries is
is the Fourier coefficient of the induced current. TBe=0  of no consequence.
component is just the average induced current within a unit In order to make contact with previous work on this prob-
cell. A straightforward calculation paralleling Ref. 23 leadslem, it will prove useful to elaborate on the various param-
to the following expression for this component eters appearing in E@46). To begin, we set=0. Follow-
ing Ref. 12, we define the anharmonicity parametgr
=pR3/2k, whereR, is the radius of the dot as determined

. 1 . .
i1G.wl=7 f d?r e 'S w) (42)

A —2w
j'X“d[G=0,w]= = w2 > Gy o[ G' I/ within a classical calculation that includes only the Hartree
W T e G’ interaction of the electrons. This radius is given implicitly by
. [ G=0]E the equatiof?
lw , , |a)n0 = 0
+T02 E Gyz,bo[G 1fer+ =2 2 RP
w w; G’ [0) w¢ 0
Ro:ﬁs 173 (47)
(43 . )
+ g n

The net effect of including an external driving fiek¥* was
previously shown to convert the nonlinear eigenvalue probwhereR} is the equilibrium radius for pure parabolic con-
lem in Eq.(34), into a set of inhomogeneous equatiohs finement(hence the superscript “p’given by’
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p_[?’_ﬂ- eZ_N " (48) N (@)
0~ 4 ek /z,’%";%'j'z%‘o"g“:“;\\\%

It was further shown in Ref. 12 that the zero-field=0) /;;;;;" "’0;0&8%\\\\

frequency of the lowest dipolar mode is given to an excellent ll{!,iw‘:”&&\!‘\\\\

approximation by

[ 8
wi=wo\/ 1+ 4 (49

where wq is the bare harmonic frequency defined above.
Thus, in the absence of a noncircular perturbation, a given S (b)
zero-field dipole frequency is determined by a family«gf / = \

and » values. These values are adjusted to reproduce the ///I’iil"mWﬁ\
experimentally observed frequeney;, as well as other fea- /jlll '"0“’
tures of the observed absorption spectrum. In this way, the = 'Q!"‘““““
guantitiesk andp can be determined. We observe from our L0
calculations that the subsequent inclusion of the paranseter

has a negligible effect om{(B=0), so that the effect of this
parameter can be investigated independently of the other
two. Typical values forp ande used in the calculations lie

in the rangg 0,1].

Finally, we summarize the appropriate physical param-
eters for the AlGa,_,As/GaAs heterostructures under con-
sideration: the effective Bohr radius; is 103 A and the
effective Rydberg of energy, Ry eZ/Zeag, is 5.4 meV. To
be as consistent as possible with the experimental situhtion, ~
we focus on dot arrays withl=210 electrons per dot and a
FIR zero field absorption frequency af=32 cm !,

(c)

S

=
\\\\\\\\‘}}\

|

'77:77;";;;:;
i

A. Parabolic confinement FIG. 1. Equilibrium density distributions for various confine-

As mentioned abovey=0 provides a potential that de- ment geometrie.ia) parabolic confinementb) radigl gnharmonic-.
fines an array of parabolically confined dots. The nature ofY: and(c) nqnc'rCUIar.symmetry' Parameters defining the confine-
the collective excitations for such a system are by now wel["Snt Potential are given in the text. In all cases the dots are

. . . —1227-3 : arranged on a square lattice wig=a,=1000 nm, and contain
established in the literatufs?2’=34n Fig. 1(a) we show the N=210 electrons 4
calculated ground-state density for a square array &jth '
=a,=1000 nm containing well-separated dots witth effect of all these other charges. However, when calculating
=210 electrons per dot. The radius of the dot is about 15@he magnetoplasmons, the intercell Coulomb interactions
nm, and for the sake of clarity, we show only that portion ofarising from the density fluctuations amet neglected. These
the unit cell in which the electronic density is localized. Themultipolar interactions are required in order to simulate the
radius found here on the basis of the TFDW functional isresponse of an array of coupled dots. We shall examine
similar to the value obtained using E@8), viz., RE=160  shortly the importance of these interdot Coulomb interac-
nm, with wg=32 cm * andN=210. The similarity of these tions.
values indicates that the Hartree interaction is in fact domi- In Fig. 2, we show the calculated magnetic dispersion for
nating the equilibrium distribution and that the exchange andhe array of dots described above. To avoid cluttering the
kinetic energies are playing a relatively minor role. Thediagram, we have chosen to omit the large number of edge
shape of the distribution is approximately semicircular asmodes, which start fromw=0 at B=0 and lie beloww
found in the classical calculatiofi but with a smooth varia- =w.. These modes make no observable contribution to the
tion at the edge of the dot as a result of the von Welken power absorption and are therefore of little interest in the
correction. This term in the energy functional allows us topresent paper. The mode frequencies found here are very
simulate the behavior of the charge density expected within aimilar to those found in the classical approximati@nd
fully quantum-mechanical calculation. can be classified according to the lo&D(2) symmetry of

It is perhaps worth emphasizing that the equilibrium cal-circularly symmetric confining potentials. As discussed in
culations described above effectively correspondstdated  Appendix A, the Lie groupSO(2) hasm one-dimensional
quantum dots. The Coulomb interactions between equilibirreducible representations given y"($)=¢€'™m?, with 0
rium charge densities in different cells of the array are elimi-< ¢<2#, andme Z. The different branches seen crossing
nated, so that only intracell Coulomb interactions are rein Fig. 2 correspond to different irreducible representations
tained in the calculation. Of course the potential within aof SO(2) (see Table), and thus one would not expect any
given cell arises from all other charges in the system, angnode repulsion in the absence of some perturbation. Since
one should view the parabolic confining potential as the nethe only possible perturbation in the present situation is the



PRB 61 MAGNETOPLASMON EXCITATIONS IN ARRAYS CF . .. 2113

200 |

0o 2 4 6 8 10
B (T)

FIG. 3. The magnetic dispersion for an array of closely spaced

dots. The only difference between this figure and Fig. 2 is a reduc-

FIG'_Z' The mggnetic dispersion_ for_ an array of well separateqion of the lattice periodicitya,=a,=600 nm. The consequences
parabolically confined dots. The solid circles are the numerical SO%¢ this shorter periodicity are a softening of the frequency and

'9“0”5_ to Eq.(34) and the solid curves are fits to E,CSO)' The the appearance of small anticrossings. Inset: An expanded view of
figure inset shows the calculated FIR power absorption for a rangg o poxed region~(1.4 T,39 cm'!) clearly showing the mode
of magnetic fields. The parameters defining the dots are the same Qﬁticrossings B

used to generate Fig(d.

rem. It is also clear from this figure that the two-peak struc-
dynamic intercell Coulomb interaction, the results showntyre appearing foB+0, corresponds to the CM-mode dis-
here confirm that this interaction is very weak. As we shallpersion seen in Fig. 2.

see, the effect of interdot interactions can be made apparent We next consider the effects of interdot Coulomb cou-

by reducing the interdot separation. pling on the magnetoplasmon excitations. We have already

Within the classical theory, a SUngt of the dot modes hamdicated that this interaction is weak for a lattice constant of

a dispersion given by the expressidr a=1000 nm, and we now support this assertion by observing
the effect of reducing the lattice constant @ae=600 nm.

;.= sz+ (0d2)2% w 2. (50) Figure 3 shows a small section of the magnetic dispersion for

this case. Although this dispersion looks similar to Fig. 2,
there are some important differences.
The solid curves in Fig: 2 show some fit§ to EfO), and First, we notice a slight redshift of they(B=0) fre-
demonstrate that the field dependence is well reproduceqiuenCy while the higher-lying modes have moved slightly in
even though the TFDW values 61; are slightly different  the opposite direction. The softening of tag(B=0) fre-
from the analytic classical values. The lowest pair of curvegjuency can be explained by invoking the interaction between
corresponds to the two circular polarizations of the centerthe induced dipoles on each lattice site. For the square lattice

of-mass (SCM) mode. According to the generalized Kohn peing considered, the electric field experienced bytitle
theoren®> the exact separability of thid-body Hamiltonian dipole due to all other dipoles is given By

into CM and relative coordinates for parabolic confinement

ensures thaf); = wy (wy=32 cmi ! in this casg and that 1 ) 1 32
only these dipole modes couple to a uniform external electric Em=—3 > 2an 22 1|Pmi, (5D
field. This fact is illustrated in the inset to Fig. 2 where we a’ tn (17409~ 1%+n

show the calculated FIR power absorption for the dot arrayyhere we have assumed, consistent with Sec. Il C, that the
for a range of magnetic fields consistent with the eXpe”menbolarization is in thex direction. The quantitiesandn iden-

in Ref. 4. The single peak ab(B=0)=32 cm ! reflects ' - . . ~

the fact that our model satisfies the generalized Kohn thedi?y Positions on the 2D lattice, vizr=lax+nay, and the
primed summation indicates that tlmee=1=0 point is ex-

cluded. In the FIR regime, each of the dipole momeamts

TABLE |. Compound characters for some of t8&X(2) repre- has a common magnitude, and the electric field can be

sentations of the point group,.

written as
m~” E C, (o c3
Po

0+ 1 1 1 1 Em="55 (52)
0~ 1 1 1 1
1" 1 [ -1 —i where
1 1 —i -1 [
2* 1 -1 1 -1 , 1 312

_ S= —-1]. 53
2 1 -1 1 -1 % (|2+n2)3/2 |2+I’12 ( )
37 1 —i -1 i
3~ 1 i -1 —j The quantitiep,, andE,, are connected through the relation

pPm= a(w)E,, wherea(w) is the dipole polarizability of the
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TABLE Il. Character table for the irreducible representations of 200
the point groupC,.
C, E C,4 o c3 150
D, 1 1 1 1 e
D, 1 -1 1 -1 L 100
Ds 1 i -1 =i
D, 1 =i -1 i 3

dot. For parabolic confinement, the polarizability is given by
a(w)=Ne/m*(w3— w?). Using this result in Eq(52), we
find the following frequency for the CM mode

S
wzzwg— Ews, (54)

FIG. 4. The magnetic dispersion for an array of radially anhar-
monic dots. The solid circles are the numerical solutions to(&4).
and the solid curves are fits to E(p0). The parameters are the
where wS:4ﬂ-N e?/em*a® is the effective plasmon fre- same as those used to generate Fip). IThe inset shows the cal-
quency. This simple result shows that the interdot dipoleculated FIR power absorption.
interactions decrease the absorption frequency from that of a
single dot. and the higher modes does depend on the anharmonicity, but

Next, we note the appearance of small anticrossings in th#he latter are not usually observable in FIR experiments.
magnetic dispersion that was not discernible for the well- The main observable difference between parabolic and
separated dots. These anticrossings are still difficult to reradially anharmonic confinement is revealed by the theoreti-
solve, so in the figure inset, we show a close-up view of thecal power absorption in the inset to Fig. 4. The curves were
boxed region, which clearly illustrates the mode repulsiongenerated for a range of magnetic fields corresponding to the
These anticrossings arise because the interdot coupling of tfxperimental situation in Ref. 4. The dominant dipolar peaks
dots on the square lattice breaks theal circular symmetry found for parabolic confinement are now accompanied by a
of the confining potential. Specifically, the square symmetryweak satellite which tracks along tae, CM-like mode. The
of the lattice is lower than the local $2) symmetry of the oscillator strength of the satellite is directly controlled by the
dots. As shown in Appendix A, theland 3~ modes now parametern. A value of approximately 1 reproduces the
transform under the same irreducible representatiol©pf observed oscillator strength at high fields, while the har-
(see Table I\, which means that the modes will regeinti- ~ monic confining frequency was adjusteddag=20 cm * in
crosg each other under a reduction of the symmetry. Weorder to yield aB=0 dipole frequency of 32 cm'. These
stress however that these anticrossings are far too weak f@rameters imply a strong anharmonicity. TBre 0 peak at
account for the mode anticrossings observed in the Demeb=32 cm ! in Fig. 4 can therefore no longer be identified
et al. experiments. as a CM mode in the sense of parabolic confinement. The
very appearance of the satellite is an indication that the gen-
eralized Kohn theorem is no longer valid. Th& perturba-

. ) . tion has the effect of coupling the dipolar modes found in the
The inclusion of a perturbative term of the form parapolic limit!? thereby making other dipole modes FIR
&Vex(r)=2pr* in Eq. (46) preserves the circular symmetry active. A comparison of our calculated FIR power absorption

of the confining potential, but allows for the mixing of dif- to the experimental datdeaves little doubt that the satellite
ferent d|p0|e modes with a redistribution of the FIR oscilla- structure observed in the experiment has its Origins in the
tor strength. The ground state density is illustrated in Figanharmonicity of the confining potential. This conclusion
1(b) and is qualitatively similar to that found in the classical confirms that reached by other workers using different theo-
model? This density was generated withy=20 cmi *and  retical approache®'%*2The power absorption thus provides
»=1. The circular ridge is a result of th& perturbation. g direct probe for determining the geometry of the confining
The calculated magnetic dispersion and FIR power absorgotential.
tion are shown in Fig. 4. Finally, we mention that calculations were also carried
Comparing Figs. 2 and 4, we see that many of the featuregyt for the reduced lattice spacing of 600 nm. As in the case
of the magnetic dispersion in the case of parabolic confineof parabolic confinement, anticrossings in the magnetic dis-
ment are still present for the anharmonic potential. To empersion arise, but the strength of these anticrossings is again
phasize this point, we have plotted the dispersions describe@do weak to account for those observed experimentally. We
by Eq.(50) using{}; as an adjustable parameter. We see thatan therefore rule out interdot Coulomb interactions as a sig-

Eq. (50) provides a good fit to the data, and indicates that theificant mechanism at the experimental interdot separations.
functional form of the magnetic dispersion is not sensitive to

the form of the confining potential. In particular, a fit of this
dispersion to the lowest CM modes daest in general pro-
vide a direct measurement of the harmonic term in the con- We now consider an explicit symmetry breaking pertur-
fining potential. The relative spacing between the CM mode®ation of the form given in Eq(46) with £#0. It is clear

B. Radial anharmonic confinement

C. Noncircular confinement



PRB 61 MAGNETOPLASMON EXCITATIONS IN ARRAYS CF . .. 2115

200 and the power absorption takes on the characteristics of the
r power spectrum of Fig. 4, including the high-field satel-
lite. This overall behavior is entirely consistent with
N 150 experimentt
T
\E/ 100 IV. CONCLUSIONS
3 In this paper, we have presented a generalization of our
50 previous work® on TFDW hydrodynamics in laterally
modulated electronic systems. As a specific application, we
have examined the magnetoplasmon excitations in arrays of
o — ' - ' both circular and noncircular dots. By considering potentials,
0 2 4 6 8 10 which include both radial and noncircular anharmonic per-
B (T) turbations, we are able to fully explore the effects of geomet-

ric confinement on the magnetoplasmon excitations of the
FIG. 5. The magnetic dispersion for an array of noncirculardots.

dots. The solid circles are the numerical solutions to 4) and In the case of circular dots, our results indicate that4an
the solid curves are fits to E(S0). The same parameters as in Fig. yadial perturbation can account for the satellite-peak struc-
1(c) are used to geqerate this flgure. The |q§et shows the calculate(g‘re observed in the experimeﬁt%.”We have also seen that
FIR power absorption. The size and position of the pronounceqye interdot coupling is too weak at the experimental lattice
anticrossing aty~40 ot (1) are in guantitative agreemz_ant_m_th constant to give rise to any discernible anticrossing effects,
experlment. ForB_>3 T, the power absorption is almost indistin- in agreement with earlier resuffé These effects only be-
guishable from Fig. 4. come apparent when the lattice spacing is reduced to the
der of the size of a dot.

On the other hand, the addition of a noncircular perturba-
tion of the formr#cos(49) was shown to induce anticross-
ings in the magnetoplasmon dispersion that are entirely con-
sistent with the experimentally observed transmission data.
Specifically, the location for the onset of the first optically
observable anticrossing, along with high8field peak
structure, was found to be in good agreement with experi-

ient. Based on this result, we conclude that only an explicit
noncircular symmetry in the confining potential can fully

Turning to the magnetic dispersion in Fig. 5, we do in- . . :
deed find a very differenB-field dependence of the collec- Zigzl:imerfg,s the mode anticrossings observed in the

tive_ mod(_'-:s. Specifically, we note the appearance of strong The work presented here is applicable to a wide variety of
anticrossings between the lowest-lying modes, and progres;

vely weaker anticrossinas for the hiaher modes. Th D geometrical confinements. Our current interest lies in the
SIVEly weaker anticrossings for the higher modes. These ar<1§pplication of this formalism to antidot arrays, which are
ticrossing are a consequence of th&vgr,6)

14 S complementary structures to quantum dot arrays. Recent ex-
B“psr C|OS(46) pet[turba?orr: n Eq(46)', and doccg_rffwhgn erimental work on these systems has revealed a collective
the angular momentum of the symmetric modes difter by ar,, wiasion spectrum very different from the dot arrdy2eA
mtegral multiple of four. The lowest ar)tlcrossmg IS betWeendetailed discussion of these systems will be presented else-
a pair ofm=1 andm= — 3 modes and is the most important

since it is the structure observed in the Deraehl. experi- where.
ment. A comparison of Fig. 5 with Fig. 2 of Ref. 4 shows

that our results are in good agreement with regard to the size ACKNOWLEDGMENTS

and location of the anticrossing. Once again, the solid curves This work was supported by a grant from the Natural

in Fig. 5 are fits to Eq(50) and here, they serve to empha- Sciences and Engineering Research Council of Canada.
size the difference between circular and noncircular confine-

that such a perturbation is consistent with the geometry of"
the dots studied in Ref. 4. The equilibrium density for the
noncircular confining potential is shown in Fig(cl This
density profile was generated with=210, wq=20 cm 1,
n=1, e=0.4, anda,=a,=1000 nm. The maximal radial
extent of this dot is about 155 nm. It is clear from Figc)1
that the deviation from circular symmetry is very pro-
nounced, and one should not expect the same mode disp
sions as obtained for arrays of circularly symmetric dots.

ment geometries. _ _ _ APPENDIX: DERIVATION OF THE SYMMETRY-
The magnitude of the gap occurring at each anticrossing REDUCED DYNAMICAL EQUATIONS
is directly related to the parameter The values =0.4 was
chosen to best fit the observed transmission “datal the The square primitive cell of our problem results in a re-

inset to Fig. 5 shows our calculated power absorption. Atiprocal lattice with fourfold symmetry, as illustrated in Fig.
low fields there is weak structure to the high-field side of the6. The point group of the square latticeGs,,, and the full
main resonance, which is probably too weak to be resolvegoint symmetry isC,,® (E,T), where €,T) is the time-
experimentally. However, as one enters the field range of theeversal symmetry group arielis the identity elemer In
anticrossing between 1 and 2 T, a new peak appears aritle context of our problem, we recall that we are primarily
leads to an absorption spectrum consisting of three peakterested in the calculation of the FIR response of the sys-
This structure is most distinct at a field Bf=1.5 T which is  tem, which corresponds to tlgg=0 limit of the general set

in the middle of the anticrossing region. B~=2.4 T, the of inhomogeneous equations, Eg4). In the absence of a
central peak has already lost most of its oscillator strengthmagnetic field, these equations are invariant un@ay,
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Gy TABLE IIl. Character table for the irreducible representations
of the point groupC,, .
Cuy E 2C, o 2m 20
r, 1 1 1 1 1
r, 1 -1 1 1 -1
N 1 1 1 -1 -1
r, 1 -1 1 -1 1
s 2 0 -1 0 0
Cay E 2C, c? 2m 20
r 4 0 0 0 2.
s Hil - The character table for the irreducible representatio@ gf
: a=3 o=4 : . . . . . !
B is shown in Table Ill. Since there is no four-dimensional

irreducible representation @&,,, I' must be reducible. It is
a simple matter of class-wise character addition to determine
that thel” representation must be decomposed according to

FIG. 6. A schematic representation of the truncated 2D reciprol =TI"; &' ;& 1's.
cal lattice with point group symmetrg,, . The arrows are an ex- Now, let us consider the dipole operajer=er. This op-
ample of a shell of vectorf§G,,)} which are generated fro@, by erator generates the representatigp=1';®I's underCy, .
the symmetry operatio@,. The solid circles illustrate the set &f TheT'; representation is derived from taeomponent of,
vectors used in the symmetry-reduced calculation; a square array Qfhereas thd 5 representation is induced by the,y) com-
points is retained to facilitate the use of fast Fourier transforms. ponents. Owing to the fact that we are only considering ra-

diation polarized in the plane of the 2DEG, we can immedi-
®(ET), however the inclusion of a magnetic field breaksately see that the invariant subspacd gfcontains all of the
time-reversal symmetry and lowers the symmetry of the sysdipole active modes of our problem. Thus, rather than con-
tem from C,,—C,. This is easily seen if one observes the cerning ourselves with solving the generalized set of equa-
symmetry group of thé\gs, matrix in Eq.(36). It follows  tions, viz., Eq.(44), we can use the symmetry of the system
that C, is the relevant group symmetry to consider in theto solve for only those eigenvalues that will be of interest in
most general casg@.e., magnetoplasma excitations a FIR-mode calculation.

Let us step back for a moment, and consider the full sym-  The problem of projecting into th&s representation is
metry group of the square lattice, namelyC,,  really a matter of block-diagonalizing our system of equa-
={E,C,4,C3,C5,m,,m,,0,,0,}, wherem are reflections tions and picking out that block associated with. This
about thex or y axes, andr is a reflection about a diagonal amounts to finding a unitary transformation that will block
of the square. We can construct a representafiojwe use  diagonalize each of thE matrices of the grou,, . Moti-
this notation to remind us that we are at thepoint of the  vated by the knowledge that under a nonzero magnetic field
first Brillouin zone (BZ)], of this group by considering a the group symmetry i€,, we consider the eigenvalues and
function space spanned by the set of functi¢|G;)}. One  eigenvectors of the group elemédj e C,. Indeed, sinc&€,
natural choice would be to consider the set of functions deis the generator of the point group,, it is the only group
fined by|G;)=a 1'% " with 1<i<4 as shown in Fig. 6. If element that we need to consider. A simple calculation re-
we choose as our canonical functi¢@;), the other func- veals that the eigenvalues and normalized eigenvectors of
tions are obtained by acting with th@, operator on the TI'(C,) are
function|G1): C) |G1) = |Gy, With |Gs)=|G;). Since

the generators of the group,, are{C,,m,}, we need only 1 17
obtain the representations for the generator€gf to con- 11 1| -1
struct the entire representation of the group. It is easy tox(V)=1 |v(1))=§ ;o A@=-1 |V(2)>=§ 1
show that generators @,, in this representation take the 1

form 1 —1]
0 1 0 O 0 0 O 1 [1]
0010 001 1| i 1| —i

A =i Gy=_ o ANB=—j (Ay=_ )
F'Cd=lo o o 1| T'm)=lo 1 0 ol bV 2| -1 Vi) 2| -1

1 0 00 1 0 00 —i .y

(A2)

(A1)

The four normalized eigenvectofg™)) are applied in this
and that the characters f@r,, are given by order to produce the unitary matrik, and its inverseJ 1
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1 1 1 1 It is also of interest to determine what the relations are
1 -1 P between the irreducible representations@yf and SO(2).
1 The (compact Lie group SO(2) is the symmetry group of
U= 211 1 -1 -1 the circular symmetric dots. If the dots are well isolated, they
1 -1 —ij i are unaware of the lattice, and the modes of the system can
be classified according to their transformation ung€x2).
If the dots are closer togeth@lose enough to become aware
1 1 1 17 of neighboring dotg then the square symmetry of the lattice
1 -1 1 -1 will break the localSQ(2) symmetry. In Table |, we show
U—lzi ] ] (A3) the character table for some of the irreducible representation
2|1 -1 -1 H- of SO(2) for the point groupC,. What is of note is the
1 T - compatibility relations between the gro®O(2) and C,,
- viz.,
For example, applying) to the group element, yields 0+
—D;
1 0 0 O _
0 —D,
0 -1 0 O
uclU=lo o i ol (A4) 1t —D;
0 0 0 —i
i 1"—Dy
The unitary transformation matrixJ, will block diagonalize N (AB)
all of thel" matrices for the grou,, . In other words, the 2"—D»
eigenvectorg|v)} of C, define a symmetrized basis fbrof N
C,, . For the general casey.# 0, the symmetry i<,, and 2 =Dy
all the matrices in thé" representation o€, will consist of
1x 1 blocks(i.e., fully diagonalizedl It is now clear that the 3" —Dy
eigenvalues\() and\ (? are associated with thé; andI’,
irreducible representations @@,, respectively. The eigen- 3" —Dsj.

valuesh® and\(*) are associated withs; the vector space _ _ o _ o
spanned by their eigenvectorsv®),|v(®)) is the two-  Notice that if we are restricting our calculations to the invari-

dimensional irreducible representationIaf. ant subspace df 5, we will only be projecting out the mlode's

It is of interest to know how the irreducible representa-With odd m the even modes are generated by projecting into
tions of C,, relate to those ofc,. This can be done by I'y andI',. From thesg co'mpatlplhty relations, we see that
appealing to the character tables for both g and C, the modes 1 and 3~ will mix (anticros$ under the symme-

see that under the same irreducible representatiorCef An exami-

nation of Table | reveals that when the symmetry is strictly
r,—D; S(O(2), these modes belong to different irreducible represen-

tations, and will therefore cross. The same argument can be
r,—D, used if there is an explicit symmetry breaking via the con-

fining potential. Specifically, even if the dots are well sepa-
I'3—D; (A5) rated, a confining potential that does not transform under

SO(2) will lower the symmetry of the system and cause
mode mixing(anticrossing to occur.

So far, our discussion has been restricted to an abstract
square lattice. How do we apply these ideas to our problem?
We note that our entire reciprocal lattice is made up of sets
of reciprocal lattice vector$|G;,)}, (e=1,...,4), which

F4—> D2

F5—> D3@ D4.

From Eq.(A5), we see that the two-dimensional irreducible i
representatioi’s splitswhen the symmetry is lowered from &r€ generated by the symmetry operatinacting on|G;y).

C4,—C,. Note also thaD andD,, are complex conjugate Itis theref_or_e suffic_ient to only consider the rec_iprocal lattice
representations. The relevance of this fact is that in the ab\feCtO_rS W't,h'n the first quadrant of the total reciprocal space.
sence of a magnetic field, these two representations are d&€ iNdexi=1,... Ny, labels these vectors, and the set
generate (time-reversal symmetiy The application of a 1 Cia); Will be referred to as ahell The total number of
magnetic field will lift this degeneracy, and one should ex-Shells retained in the calculation i,y _

pect two modes appearing from th& contribution; one The Fou_ner expansion of an arbitrary functié¢r) can
from each of theD’s appearing in its decomposition. In the €N be written as

context of our model, the absence of a magnetic field implies

that we only requir@neof eithern® or A (*) to obtain all of =3 £,./Gi.) (A7)

the FIR-active modes of the system. e
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where the amplitudes,;, are the elements of ang, <1 In principle, Eq.(A15) must be solved for each of the four
column vector. Each set of amplituddg, (a«=1,...,4) eigenvalues ofC,. However, as we mentioned above, if we
can be expressed in terms of the eigenvectors(&f,) as are only interested in the FIR-active modes of the system, we
can project into the invariant subspacel@f and only have
=S 000 (ag) 1 consider at most(®) and )\(4).. This can be made more
e & T T transparent as follows. The reciprocal lattice ved®y, is

. . o . given by(see Fig. 6
and the orthonormality of the eigenvectors implies the in-

verse relation Gio=|Gi1|[cog ¢i,),SIN( i o)1, (A17)

where
=2 fiavi”. (A9)
a _ (a—1)m ALS
The star indicates complex conjugation. Now, consider some bia=0it 2 ’ (A18)
operatorQ, which isinvariant underC,. The matrix repre- and

sentation of the equatio®|f)=|d) is given by
G“1x

_ 0, Ecos‘l( '—) . A19

% Oiaipfip=dia- (A10) ' |Gial (AL9)

The inhomogeneous vector on the right-hand side of Eq.
(A15) is determined from EqA12). Using Eq.(A17) in Eq.
(45), we obtain the expressidn,

Making use of Eqs(A8) and (A9) we find

> 0PN =d™, (A11) ~
. bj = — Eqli © cog ¢;,) — 0SIN( $;,) 1| Gi1| ol Gi],
where (A20)
which yields
dM =2 di v (A12) 1)
a bi :0
o) o () bi*~""=0
of :;ﬁ VOO, v (A13) a21)
In obtaining Eq.(A11) we have used the fact that the opera- b= = —i|G;1| o[ Gi1]Eq( @+ we)€'
tor O is diagonal in thel'(C,) basis. It is clear from Eq.
(A11) that each of the eigenvalues, defines an indepen- b‘()\:_i):_i|Gi1|¢0[Gi1]EO(Z’_wc)e_iei:bi()\:i)*(_w)-

dent matrix problem. This is a direct consequence of the fact™
that we are working in the symmetrized basis of the repreTherefore, as expected, we only require e ~i eigenval-
sentatiorl” of C,. Furthermore, suppos@="Q with Pand  ues to fully describe the FIR response. In particular, the de-

Q both invariant undeC,. It is easy to show that termination of the power absorption is reduced to a solution
of Eqg. (A15) for A==*i. Using these solutions in E¢43),
OM = Mo Al4 we finally obtz_iln the following explicit expression of the
1 ; Pic Qi (A1) power absorption:

which means that for a givexn, we need deal only with the o 1 N TG=01E
shell matrices rather than the matrices defined over all fou%: EEO R%M

guadrants of the reciprocal space.
Let us now apply what we have learned to E) in the

~2_ 2
w (O

q=0 limit. It is readily verified thaAgg/ , Bgg/ » andMgg: — 4 E |Gil|'//O[Gi1]2 ,\7|i(,x=i)ch=i)(_:‘—mi
are invariant under the symmetry gro@. Therefore, Eq. W= W, | ] . .
(44) can be immediately cast in terms of the symmetrized
. . 4 - : -
functions, viz., _ 2 |Gi1|¢o[Gi1]E Mi(]-”:_')c](":_')e'ﬂi _
ot we i ]

2 2ye(N) 7 MM e Mg (M) (V)
(l)((,!) wC)Ci wEk B” M]k Ck (,!)CEk A'] Mjk Ck (AZZ)

=b™ (A15) To obtain the normal mode frequencies, we use the ho-

_ _ mogeneous version of EGA15) with y=0. In this case, all
where we recall that summations are over the shell index. Ipositiveeigenvalues fok = +i can be obtained from the full

obtaining Eq.(A15), we have used the relation set of eigenvalues for=i. The negative eigenvalues simply
correspond to the positive eigenvaluesXer —i. This is the
fi(X):E Mi(jx)cgh)_ (A16) method used to generate the magnetic dispersion of the FIR-
]

active modes shown in Figs. 2, 4, and 5.
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