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Two-dimensional vector-coupled-mode theory for textured planar waveguides

P. Paddon and Jeff F. Young
Advanced Materials and Process Engineering Laboratory, Department of Physics and Astronomy, 2355 East Mall,
University of British Columbia, Vancouver, British Columbia, Canada V6T 174
(Received 12 January 1999; revised manuscript received 6 July 1999

We develop a model to treat coupling between guided modes in planar dielectric waveguides that have been
textured in two dimensions with a thin surface grating. The formulation is based on a general Green’s-function
technique that self-consistently determines the field in the surface grating due to the polarization there. With
simplifying approximations, this formalism is cast into a two-dimensid@&l) vector-coupled-mode theory
that is more computationally efficient, and that gives considerable insight into the nature of mode coupling in
2D textured structures. These models are applied, by way of example, to illustrate some interesting properties
of leaky and bound modes that are coupled together by 2D periodic texture. In particular we discuss the
complex photonic band structure describing the dispersion, lifetimes, and polarization properties of the reso-
nant states associated with the textured waveguide. In our analysis we emphasize the fundamental differences
between coupling in 2D textured waveguides and infinite 2D photonic crystals. We also show that the vector-
coupled-mode theory agrees well with the self-consistent formulation.

[. INTRODUCTION modes are excited. The polelike response results in the 100%
reflection for a particular excitation condition near reso-
Surface gratings and slab waveguides each represent funance.
damental building blocks of many important optical compo-  Given the success of the DFB laser, it is then natural to
nents, instruments, and systems. Although diffraction grateonsider the properties of slab waveguides as they are modi-
ings have been studied for almost a century, interestingied by 2D gratings. This viewpoint is intimately related to
applications and fresh understanding of their myriad properthe topic of two-dimensional photonic band-gap structures in
ties are constantly being developed. Recent work has consigianar waveguide geometries. Interest in slab waveguides, in
ered the influence of resonant modes on the specular scattevhich a 2D periodic grating pattern is etched to a depth
ing properties of both one-dimension&lD) and two- comparable to or exceeding the thickness of the waveguide,
dimensional(2D) gratings formed on the surface of planar, has been stimulated by theoretical Wt and the success-
or “slab,” waveguide structurel? It has been noted that the ful experimental demonstration of photonic band-gap struc-
specular reflectivity always reaches 100% in the vicinity oftures at microwave¢ and more recently near-infraréd
phase-matched excitation of slab modes; this has been comavelengths. To open up a true photonic band gap, a range
sidered the possible basis of high-efficiency notch filters. Thef frequencies within which it is impossible for light to
peculiar Fano-like line shape has been analyzed in somgropagate in any direction, regardless of polarization, one
detail®>* and, with the use of 2D gratings, polarization- uses 2D or 3D periodically textured dielectrics with large
insensitive filters may be achievedMost if not all of this  dielectric contrast. Several optoelectronic applications have
body of work has, appropriately, approached the problem abeen suggested for such structures if they can be realized
a resonantly enhanced diffraction process. with lattice constants of from 150 to 500 nm in semiconduc-
On the other hand, considering the properties of slatior hosts:>~%°

waveguide modes as they are modified by the presence of Many of these potential applications assume that a strong
surface diffraction gratings gives an alternate perspective 08D periodic scattering potential will modify the dispersion of
the same physical system. In one dimension, slab modes willab modes in much the same way that infinitely long dielec-
wave vectors at the Brillouin-zone boundaries becomeric cylinders or holes in a dielectric block are known to
coupled through interaction with the gratifigndeed, one of modify the dispersion of plane waves in 2D photonic crys-
the most important components of optical communicationgals. However, the lack of translational invariance perpen-
systems is the distributed feedba@~B) laser, which owes dicular to the textured plane in these porous waveguides fun-
its superior performance to the renormalized slab modes, atamentally alters the nature of the corresponding photonic
photonic eigenstates, that are created in waveguides contaiaigenstates. In particular, the excitations of porous
ing 1D interface gratings. It was noted early on that for DFBwaveguides are manifestly vector fields that cannot be gen-
lasers incorporating second-order gratings, the eigenstates efated from a single scalar field. In addition, even if the 2D
the textured waveguide at the second Brillouin-zone boundtextured slab is infinite in extent, some of the resonant exci-
ary, in general, contain a component of polarization that ratation modes are lossy, and therefore their band structure is
diates into the vacuurhThe connection with the resonantly quite generally complex rather than purely real.
enhanced diffraction process mentioned above is that for ap- We have studied the properties of these waveguide-based
propriately phase-matched plane waves incident from th€D photonic crystal structures both experimentally and
vacuum onto such structures, these renormalized “leaky’numerically'® There we calculated the specular reflectivity
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from the porous waveguide, and used the Fano-like resonar 'AH
features that peak at 100% reflectivity to identify the leaky &g
. =K - - - - A - - - -~
eigenstates of the structure. To handle the extreme nature ¢ crerrss oo oSS
the dielectric texture, which consisted of a free-standing slak [(SSSSS oo SSS. < ,
completely penetrated by a 2D array of air holes, it wast,z =——=—="=>=+=+5 = ====
necessary to employ a numerically-intensive algorithm that T ! y
solves the Maxwell equations “exactly” on a spatial grid ? X
3

that extends throughout the porous waveguides. The polar *
ization and lifetime properties of the resonant states so iden l

tified for a variety of waveguide structures suggested that * |
they can be thought of largely in terms of superpositions of FIG. 1. Schematic of a two-dimensionally textured multilayer
effective TE and TM slab modes characteristic of the avery,, waveguide.

age slab waveguide, coupled via tftetrong 2D dielectric

crystal potential. This realization prompted us to formulate g,
simple, heuristic model to describe the eigenstates of 2D
periodically textured dielectric slabs.

here, for a nonmagnetic medium,

The model described subsequently in this paper applies D=E+4mP,,
rigorously to slab waveguides that have been textured with a L @
thin, 2D surface grating, but many of the results are also H=B.

expected to apply qualitatively to photonic bandgap struc- . . o

tures in the waveguide geometry. Using a Green’s-functiorf © the planar waveguide geometry depicted in Fig. 1, the
technique we are able to self-consistently calculate the totdbtal electric dipole moment per unit volume,, is

field in the grating region. By associating the Fourier com-

ponents of the total field with the TE and TM slab modes of Pi(r)=xs(2)E(r)+Py(r) (3)

the untextured structure, our model simplifies to an eigen-

value problem for the complex eigenfrequencies of the resowhere x4(z) is the linear susceptibility associated with the
nant eigenstates. Heuristically, one may consider thesearious homogeneous layers of the slab waveguide, and
eigenstates as linear superpositions of the dominant TE ar@(r) is the polarizatior(to be determined self-consistently
TM slab modes, as one would in conventional 1D coupledof the grating layer. Thus we are led to solve the inhomoge-
mode theory. All of the texture-induced coupling betweenneous Maxwell equations of the form

these TE and TM slab mode basis states is rigorously ac-

counted for within the Green’s-function formalism. The re- . . defZ) . - L
sults obtained by applying this model are consistent with the €(Z)V-E(r)+ — —E(r)=—4mV-Py(r)
resonant diffraction literature, and the different perspective
provides considerable new insight as to the fundamental na- o e~ N —~ s o
ture of these excitations. VXB(r)+iwey(2)E(r)=—4miwPy(r)
o @)
Il. THEORY V-B(r)=0

A. Self-consistent formulation

In this section we derive a technique for calculating the VXE(r)-iwB(r)=0,
resonant electromagnetic excitations of a multilayered slalyere the dielectric constant of the multilayer slab is given
waveguide that has been textured with a thin 2D surfac%y
grating, as illustrated in Fig. 1. We use a Green’s-function
technique to solve self-consistently for the field in the grating e(2)=1+4myd(2), (5)
region, 0<z<tg, due to the polarization there. This leads to
a simple set of equations for the in-plane spatial Fourieand®=w/c. In this form we see that the polarization in the
components of the field in the grating, which may be solvedyrating layer acts as a spatially dependent source term in the
numerically. In Sec. 11 B we show how to cast the model asusual homogeneous equations for a multilayer slab wave-

an eigenvalue problem in the coupled mode limit. guide.
The macroscopic Maxwell equations are We are primarily interested in cases where the spatial de-
. pendence of the grating polarization is periodic in the plane;
V.D=0, (D) thus we write
. D 5 Py (PET
CVXH-—-=0, Py(r)=xg(NE(r), 6
and expand the spatial dependence of the linear susceptibility
V.B=0, of the grating in a Fourier series as
. B - ) .
CVXE+ =2 =0. Xo(1) =2 X&,(2)eXR(iGr:p), (7)
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where the summation is over all reciprocal-lattice vectorsand

Gm, of the 2D grating, ang is the in-plane coordinate.

The slab waveguide geometry naturally lends itself to the
use of a Green’s-function approach, developed by Sifer,
calculating the fields generated by a planar source in the
presence of a multilayer dielectric structure. In the absence The third term in Eq(10) describes a contribution to the
of any external driving fields, for the periodic polarization electric field present only in the grating layer. It essentially
potentialﬁg(F) of Eq. (6), the particular solution to the in- describes the reduction of the polarization induced in the

b ()= PEWBE (15)

w

homogeneous Maxwell equatiof¥® is given by

E(r*):% E(B+Gn2exdi(f+Gp)-pl, (8

with

E(E;z>=f dZ'§(B:2.2') 2 X6, (2 )E(B=GmiZ)-
)

grating due to thez component of the electric field there.
This depolarization effect can be traced to the requirement

that V-D=0 across the boundaries of the grating layer.
Thus it appears in addition to the usual Green’s-function
terms associated with the scalar wave equation.

The fourth term in Eq(10) describes a contribution to the
electric field due to the components of the field that are
downward propagatingor decaying from the grating layer
which then reflect off the multilayer slab beneath. The sig-
nificant advantage of the generalized Green’s-function tech-

The tensord is a sort of generalized Green'’s function that pigue is found here in that all the boundary conditions for the

correctly takes into account all of the additional multiple yytilayer slab beneath the textured layer are simply con-
reflections associated with the multilayer slab adjacent to theyined within the reflectance tensor. It is defined as

grating layer. To solve self-consistently for the field in the
grating layer, since the Fourier components of the suscepti-
bility XG, are nonzero only in the textured region, we only

need the generalized Green’s function over this regfon.
That is,

§(B;2,2)=§.(B)6(z— 2 Yexdiw(B)(z—2")]
+§_(B)6(z' —2)exd —iw(B)(z—2")]
—4w8(z—2'")2z

+F(B)-§_(Bexdiw(B)(z+2)], (10

where 6(z) and 6(z) are the Heaviside and Dirag func-
tions, respectively. The first two terms in EQ.0) are the

F(B)=r(B)S(B)S(B) +1o(B)P+(BIP-(B), (16)
in which the coefficients ((8) andry(B) are the Fresnel
reflection coefficients for the multi-layer slab ferand p
polarizations, respectivel?. The Fresnel coefficients are, in
fact, simply a restatement of all the boundary conditions for
the multilayer slab and, therefore, in this formulation, any
solution implicitly satisfies the boundary conditions for the
entire textured slab.

To self-consistently calculate the total field in the grating,
we form a system of equations involving the Fourier compo-
nents of the electric field coupled together by the grating. For

each reciprocal-lattice vectcﬁ’;m, there is an equation for
the associated component of the total fiid,3—G,,;2),

vector analogs of the Green’s function for the scalar wavehat has the form of E¢9). To simplify the notation we use
equation, and describe plane waves propagating away from subscript to label the in-plane Fourier component of the

the polarization source in the-z direction with in-plane

wave-vector componené. The tensors are defined using
dyadic notation as

§-(B)=C(B)S(B)S(B)+p~(B)p~(B)], (11
with the constants
c B 27 w? 12
(B)="W(p) (12)
and
w(B)=(w?—B)Y2 (13

Equation(13) follows directly from the dispersion relation
for plane waves in free space) is thez component of

the wave vector. The unit vectos§3) andp.(8) describe
the units and p polarization directions, and are defined in

terms of the in-plane wave vectﬁ’rand the surface normal
as

(14)

electric field associated with the reciprocal-lattice vector
G,,; we write E(2)=E(8—G,,;z), so that Eq.(9) be-
comes

E(2)= f 42 G:(22) 3 xan2)En(2), (17

where d, is the Green’s-function tensor associated with the

in-plane wave vecto,=8— G, , andx,m(z) is the Fourier
coefficient of the grating susceptibility coupling theth
component to thenth one. The infinite system of integral
equations, of which Eq(17) is one, is an exact representa-
tion of Maxwell’'s equationg4), and self-consistently deter-
mines the field in the grating layer for any slab waveguide
textured periodically in the plane.

We now make some simplifying assumptions. For thin
gratings in which the grating thickness is much less than the
wavelength of light in the grating material, i.etg

<2w/(Z)\/e—g), the variation of the electric field in the grat-
ing, as a function of, is small. Thus conceptually, we may
replace the finite thickness grating, which acts as the spa-
tially dependent source polarization in the inhomogeneous
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Maxwell equations(4), by a &-function grating that pos- whereU is the 3N X 3N identity matrix. In general, solutions
sesses the same effective spatially dependent polarizatiofhy Maxwell's equations that correspond to resonant modes of
This allows us to transform the system of integral equationg multilayer dielectric structure appear as poles in the com-

(17) into a system of algebraic equat|on§. First, in assumlngblexzj plane of the reflection coefficient, for a fixed in-plane
that the variation of the electric field in tizedirection in the wave Vectoﬂ-_g One can show that the reflection coefficient
grating is negligible, we takg,(z) ~E,(z,), Wherez, is at  for plane waves incident on the 2D textured waveguide con-
the center of the grating. In addition, for a thin grating, wesjdered here is proportional Wﬁ ~—U]7 %% and thus
havew(B)ty<1 and take the phase factors in the Green’spoles in the reflection matrix are consistent with solutions to
function, Eq.(10), as unity. Thus by defining the average of Eq. (23). For a given textured slab waveguide, these poles
the grating susceptibility for each Fourier component as  represent the allowed complex frequencies of the resonant
1 [t electromagnetic excitations attached to the waveguide. By
9 - . :
X”m:gf Xom(Z)dZ, (18) determining these complex frequencies as a function of real

0 [3 over the first Brillouin zone, we obtain the full photonic
band structure of the guided modes of the textured guide.
The real and imaginary parts of the band structure describe
. - R the dispersion and lifetimes of the resonant excitations of the
En(Z0)=0n 2 tgXnmEm(Z0)- (19 multilayer slab. This simple numerical procedure is com-
" pletely general for thin surface gratings, and is capable of
The Green’s-function tensor is now independentzaind is  treating any 2D periodic texture by inclusion of the appro-
given by priate Fourier components.

Eqg. (17) becomes

PniPns  Pn_Pn_
2 T3

g,=Cp| (1+ rsn)§n§n+ + ranJMf)n_ B. Coupled-mode limit
The simplicity of the above numerical approach is appeal-
4., ing. However, in order to gain some physical insight into the
N t—zz, (20 nature of the resonant excitations of the textured slab, we
9 . .
further simplify Eqs.(21) in a manner analogous to the per-
where again the subscriptindicates the associated in-plane tyrpative coupled mode limftFrom this we are able to cast
wave vector, i.eC,=C(fp), etc. Thus Eqs(19) and(20)  our model in the form of an eigenvalue problem: the eigen-
self-consistently determine the field in&function grating  vajues form the photonic band structure of the multilayer
layer that is approximately equivalent to the thin gratingsjab. This has several advantages. First, eigenvalue problems
layer of Fig. 1. are typically computationally less intensive than pole finding
In order to make the problem tl’aCtable, the summation |$n the Complex p|ane. Second, in Solving the eigenva|ue
over only a finite numbeN of the lowest-order Fourier com- proplem, one obtains the photonic Bloch states directly as
ponents. We reduce thévector equations to a system d3  the corresponding eigenvectors. This gives a physical de-
scalar equations by projection of E(L9) onto the vectors  scription of the resonant excitations in terms of linear com-
S,, Bn, andz. This gives binations of modes of the untextured guide. Third, the nature
of the coupling between the modes of the untextured guided
E.=5.§ 2 t E is plainly revealed. In particular, we have already shown how
sp= o In"& tgXnmEm in 1D gratings the Green’s-function formalism gives physical
insight into the peculiar nature of TM mode coupling due to
o R depolarization effects in the gratig.
Ep,=Bn On- % toXnmEm. (21) A consequence of Bloch’s theorem for periodic structures

is that all modes separated by a reciprocal-lattice veétgr
o R are equivalent. This allows the dispersion of the photonic
E;, =2 0n 2 tgXnmEm - Bloch states to be described using the reduged zone scheme.
m In the reduced zone scheme, those states with energies above

Formally, this system of equations may be written in ma-the vacuum light linew=p, have a radiative component,
trix form as and are leaky. To illustrate the coupled-mode limit to our

model, we consider coupling between guided modes near the
(22) second-order Bragg condition of a 2D texture. This is the
most general situation in which there is coupling between
wherev is a 3NX1 column vector comprised of theN3  guided modes and radiative waves, analogous to the cases
components of the electric field in the gratiig, , E; and ~ We investigated p_revious"l9 and related to the physics of
resonant grating filters.
N - The basic assumptions underlying coupled-mode theory
wave vectorg and the normalized frequenay. Equation  are: first, only the modes of the untextured wavegyite or
(22) only has solutions for TM) that are nearly phased matched to the grating, need to
be included in the expansion of the field; and second, the
de[l\‘/lﬁl;,;,—ﬁ]=0, (23 coupling between these “dominant” modes may be treated

v=Mgz73-v,

=P andM is a 3N 3N matrix parametrized by the in-plane
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perturbatively. For an arbitrary 2D grating, there Brdomi- ~ whereRs andR,, are the residues of the poles at the corre-

nant guided modes near the second-order Bragg Cond't'o'gpondmg gwded mode energieki.e., R, —lim

and a single radiation mode, which we IalEQ)I having po-

larization to be determined by the model. —ws )I's .] We keep only these resonant terms in E20),
For a second-order grating the radiation mode propagatesnd approximate the Green’s function as

nearly normal to the surface of the textured waveguide when

(A)H(A)Sn(w

near the zone center. We treat the coupling to this mode b - ~n A A

. . . P g > y gnmcn[rsnsnsn"' rpnanrpnf]_ - ZZ. (29
first solving the textured waveguide equati¢i®) for Eg ty

explicitly in terms of theN guided modes. This gives Physically, the approximate Green’s function includes only

N the resonant reflection from the multilayer slab due to the

= = = downward “propagating” component of the field radiated b

Eo=f" 2 toXomEm: (24) ° bropagating ‘componer: o1The Y
m=1 the polarization induced in the grating. The term takes

The summation is over thl guided modes that are nearly care of the reduction in the component of the polarization

phase matched to the grating, apgl, is the component of induced in the grating due to tizecomponent of the electric

the grating susceptibility that couples theh guided mode ~field there, self-consistently. This depolarization effect was

to the radiation mode. We have defined the tensor found to be important to obtain the correct form of the
TM-TM coupling coefficient in 1D gratings:

ﬁ:(l_th00§0)7150a (25) With these approximations, Eg1) become

which is dependent on the normalized frequeacynd the (:"_:"sn)Esn:CnRsngn' ( > thnmém
in-plane wave vectoﬁ’ of the radiative component. "

The in-plane and normal components of a given Fourier - R
component of the field are not independent. By substitution +tgXnoh- 2 thOmEm>:
of Eq. (24) into Egs.(21), we show in the Appendix that one "
obtains a relationship of the form o o )
N, (w_wpn)E,Bn:Cann(,Bn'pn+)pn'(2 tgXnmEm
E,=Ks Es+Ky Ep. (26) m

Here the field components have been writterNas1 col- +tgxnoh- 2 thOmEm). (30)
m

umn vectors, and and EB are NXN matrices. Equation

(26) is the textured waveguide analog to the relationship beEquations (30) give a self-consistent calculation of the
tween the in-plane and normal components of the electrienodes of the textured waveguide, within the resonant pole
field in a TM mode of an untextured slab waveguide. Usingapproximation.

this relation, we may eliminate tftézn components from our We now drop the self-consistency and derive an eigen-
set of equations, reducing them to a system Nféjuations  value problem inw. We identify thes, component of the
involving only the in-plane components; andE; of the  field with thenth TE mode, and th@, component with the
electric field. Note that one may have anticipated this resulhth TM mode and consider these as basis states for an ex-
since, for a given wave vector, there are only tmot thre@¢  pansion of the photonic eigenstates of the textured wave-
transverse solutions to Maxwell’'s equations. guide. Note that the polarization unit vectqrs, andp,_ ,

The key approximation that allows us to cast the Green’s C}he coupling to the radiative componeﬁt, the renormaliza-
function formalism as an eigenvalue problem in the couple and the constant§, on the right

mode limit is to keep only the resonant terms in the Green’ §'On matrlcesK and Kﬁ’
function[Eg. (20)]. For in-plane wave vectors corresponding hand side of Eq(30) rigorously depend om. In the spirit of

to a guided mode, the Fresnel reflection coefficients for thé@ perturbative approach, to evaluate these parameters we as-
multilayer slaby andrp , are dominated by the poles at the Sume that they take on their values at the appropriate unper-
turbed mode energ&;&S or wp for TE or TM modes, respec-

tively. This leads to an eigensystem that may be written in
matrix form as

guided mode energlesSn and wp, for TE and TM polariza-
tions, respectively. Therefore, fampolarization, we approxi-

mate
R M ;-u=wu, (32)
S
rs,~ Z)-Zn) , (270 where the matrix elements are given by
Sn ~ A A
. Ms s = 5nmwsn+ CnRsn[tg)(nm(Sn' Sm) + tSXnOXOmhsnsm]a
and, forp polarization, (32)
an ms g =CnRs [thnm(gn'Bm)'l'tSXnOXOmhs 8.1 (33
rpn% — — , (28) nPm n nPm

and
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Mg 5 = 5nm2[,3n+ Cann(,én' E)n+)thnm ferent than that petween _TE modes. ?Eheom.pon.ent of th.e
" TM modes provides additional coupling which is described
A A A through the sum over the matr&ﬁ between them. Since the
X[ (Pn-+Bm) + (Pn-- Z)g‘l thnk(Kﬁ)km} TM-like components of the field are now described solely by

their in-plane component, the normal component coupling
appears effectively as a renormalization of the in-plane cou-

pling through the matrice andK .

This completes the derivation of a simple, heuristic, 2D
vector model that describes coupling in waveguides that
have been textured with a thin 2D surface grating. The TE
and TM modes of the untextured guide are considered as
basis states of the eigenvalue problé¢Ey. (31)]. The com-
plex eigenfrequencies describe the dispersion and lifetimes
N } of the photonic eigenstates of the textured slab, and the

+CyR pnﬁnthnO thOmhpn,Bm

N
+hpn_zk21 thOk(KB)km}’ (34)

Mg sm™ Cann(Bn' E’n+)thnm

X| (Pn—-Sm)+ (Pn_-2) >, taXnk(Ks)km eigenvectors describe the eigenstates themselves. In Sec. lll,
k=1 we solve this model in the case of leaky mode coupling and
bound mode coupling.
+Cananthn0 tg)(Omhpn,sm

N IIl. ILLUSTRATIVE EXAMPLES

+hpn_zk§=:l tgXok(Ks)km |, (39 In this section we use the coupled-mode formalism de-

scribed above to illustrate various distinguishing features in
where, for example, we have used the nOtatibB,,,,sm the photonic band st_ructure of r_esona_nt modes in 2D_ tex-
e a tured, planar waveguides. One-dimensional texture typically
=Pn—-h-spy. . couples two nearly degenerate slab modes that have in-plane
The elements of the coupled-mode matrM,;, have wave vectors approximately equal to half of one of the
simple physical interpretations. The diagonal elememts ~ reciprocal-lattice vectors of the grating. If the modes propa-

andmy , describe the change in the energy of a TE or TMJate parallel to the grating wave vector, the coupling can

mode, respectively, due to the additional material in the tex:OnIy occur between TE modes or between TM modes; there

tured guide associated with the grating. This effect is proporls no TE-TM coupling. This is the usual situation encoun-

tional to x,, which is the average or dc component of theterilOI In DFBblla_lsersl, ‘i‘”ddgfat““g f'ltig" Hot\_/vevetr,_ if the s_:;b
susceptibility in the grating region. As more material is modes are obliquely Incident on a grating, 1t IS possible

added, the energy of a mode is reduced. The self-energy t couple TEtand_Tl:/rI] mod(te@s (;‘?“gt?‘s tr;e ct;JThponednts of
also changed due to the second or@etg) coupling via the € v:/ave velctorﬁ II? fe gra Ifnt%] rection, OIrI t(t)' mo tes, arfe
radiative component. The off-diagonal terms  describe nearly equai to hatt o one of the reciproca-atlice vectors o

. i _ the grating. Already for the oblique incidence case in one
the direct coupling between thgth andmth TE basis states, gimension, the vector nature of the coupling problem intro-

or modes of the untextured guide. The coupling coefficient ,ces subtle but very important effects due to depolarization
used in conventional coupled mode theory is proportional to

this matrix element. The first-order contribution is propor- _Of tbezzlcomponent of the mode{assomateq with thez term .
tional to the Fourier component of the gratig,,, which i g). Although th_e concept of a photqnlc band structure is
causes the basis states to be phase matched, and the ¥8ltid: and is sometimes used to describe 1D textured struc-
product of the unit vectors associated with the electric fieldfUres; it provides litle additional insight. _

of the mode. In the usual 1D case, this dot produet s but The coupling introduced by 2D texture is far richer: the
in two dimensions, TE mode coupling depends strongly orfmportance of depolarization fields remains, while the flex-
the direction of propagation in the plane. In fact, TE modedbility of having five distinct Bravais lattices substantially
propagating perpendicularly to each other in the plane do ndficreases the number of modes that can be coupled to one
couple together to first order. The second-order contributionOther. By judicious choice of the slab mode dispersion, the
in the off-diagonal terms is due to coupling to the radiatingdrating symmetry, and the lattice constant, it is possible to
wave and to coupling from the radiating wave back into thecouple TE(TM) modes with other TETM) modes, or with
guided mode: the effect is proportional to the appropriateTM (TE) modes, at virtually any point in the first Brillouin

matrix element of the radiative tenslor This matrix element zone. The relevant modes may or may not propagate along

o . o the same direction in the plane. The photonic band-structure
is in general complex, and thus coupling to radiative waves . . ) :
. . ; . : interpretation of the coupled modes in two dimensions does
is described in conventional coupled-mode theory using a

. C 7 - offer significant advantages in understanding these com-
complex coupling coefficienk.’ In a similar manner, the

. . plexities. For instance, the labels TE and TM cannot be rig-
coupl[ng between thgth TE mode and thmth TM mode is orously applied to the resonant eigenstates of 2D textured
described by a combination of the matrix element; and

. waveguides: all eigenstates contain some admixture of both
mg s,- The coupling between the TM modes themselves;Te and TM modes. However, we show below that it is pos-
described by the matrix elemen'u;;mﬁn, is qualitatively dif-  sible to label each photonic band with a well-defined polar-
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ization that is associated with the Fourier component of thgyuided mode so calculated)s , is used to determine the
eigenstate that lies within the first Brillouin zone. When the 0

eigenmode exists above the light line, this lowest order Fougffective index through the relation; "= 5/ ws,. The varia-
rier component actually radiates into the surroundingtion in the unperturbed mode energy of thin TE mode is
vacuum, rendering the state leaky, and giving it a finite life-approximated as a function of in-plane wave vector as
time. The band structure is therefore inherently complex.
However, there are important symmetries associated with the ~ By | Bn— ,ég|
imaginary part of the band structure which can lead to eigen- D5~ s + “h (37)
states that exist above the light line having infinite lifetimes. ¢ g
Thus, in special cases, bound states can still exist above thgheren, is the TE effective index, and
light line in 2D textured waveguides.

These properties, the inherent vector nature of the photo- Ng=nNe+ B(dn/dpB) (38
nic eigenstates and their manifestly complex band structure,
are fundamental differences between 2D textureds the group effective index of the TE guided mode. An
waveguides and 2D photonic crystals composed of infinitelyanalogous calculation is performed for the TM guided
long dielectric cylinders or holes in a dielectric block. The modes. This approximation serves to limit the number of
following provides explicit examples of band structures, bothtimes that the untextured waveguide problem must be solved.
real and imaginary, calculated using the formalism develHowever, the extent to which the dispersion of the guided
oped in this paper that illustrate these fundamental differmodes of the untextured guide is accurately described by Eq.
ences. All examples use a 2D square lattice because it is th87) limits the range in wave vectors that this form of the
simplest nontrivial symmetry that illustrates most of the ef-model is applicable. Finally, the residuBs andR,, are cal-
fects alluded to above. culated from the well-known reflection coefficients for a
multilayer slabs using Fresnel coefficiefts.

The parameters associated with the 2D textured layer are
also needed. The linear susceptibility of the grating is related

We begin by studying the coupling of TE and TM slab y, the gielectric function of the grating layee,(r)=1
modes with wave vectors in the vicinity of the smallest four

reciprocal-lattice vectors of a square latti@@ght modes in
all). The corresponding eigenstates represent the eig ) :
lowest-energy modes near the Brillouin zone center in th@verage over the grating layer using Efg).

reduced zone scheme. Since all of these eigenstates existWIth these parameters,.we then. solve the eigenvalue
above the vacuum light line, they are all in general leaky problem(Eq. (31)], as a function of the in-plane wave vector.

and it is the polarization of the leaky component of each’The real part of the eigenstate frequency is plotted in Fig. 2
mode that represents a “good quantum number.” versus the in-plane propagation constgnas it is detuned
Maxwell's equations scale as/L, where L is some away from the second-order Bragg condition in ¥€1-0)

. direction on the right half of the figure, and thé (1-1)
length scalé® For a textured waveguide, we choose the™. ~~.
length scale to be the lattice constantof the 2D texture. direction on the left half. The general form of the band struc-

L : : _ ; : _ture can be understood simply in terms of zone folding the
gglr d:m;]? It'ﬁ:tc);n\gse Sc;)/r\]s_ldle(r) ahz\r/]ialg Eﬁglgglfcdégngz\ﬁ guided mode dispersion of the untextured guide into the first
S Y

e—12.25, above which is a grating of thickness/A Brillouin zone using square lattice symmetry. However, in

=0.1, that has been textured in two dimensions with a regu[egmns where zone folding leads to overlapping bands, the

lar square lattice, with period, of air holes. The diameter degeneracy is split, and where zone folding gives band cross-

. P o . ings, anticrossings can appear due to the coupling induced b
of the holes is such that the air-filling fraction in the grating thg grating. Unlige infinitngD photonic crysteﬁs ?hese anti- y

layer is 0.5. The reciprocal-lattice vectors of the grating may . . -7
be written as crossings can occur between _band; associated principally
with TE and TM modes. The anticrossings appear at the zone
. . . boundaries, as usual, but also may appear away from zone
G=]Bgx+kBgy (36)  boundaries as discussed below.

) ) ] ) At the zone center there are two “gaps,” each character-
for all integersj andk, where we have defined the grating jzeq by four bands anticrossing. The higher-energy gap cor-
wave vectoiB, =27/ A. For a 2D square lattice grating, near responds to perturbed TM slab modes, and the lower-energy
the second-order Bragg condition, there are four dominangne corresponds to the perturbed TE slab modes. The energy
guided modes witlB~{* 84,0} and{0,+ B4} for each po-  separation between these two gaps occurs because the effec-
larization. Thus, to capture the basic physics involved, weive index for TM slab modes is lower than that for TE slab
include eight guided modd$our TE and four TM and one  modes in an untextured guide. We now focus our attention
radiation mode in our coupled-mode formalism. on the character of the photonic eigenstates near the band

To determine the band structure, we first calculate theedges of the TM gap, shown on an expanded scale in Fig. 3.
parameters that depend only on properties of the untextured The highest-energy states near the band-edge state of the
waveguide. The effective indiceg = andn.™ for the guided  TM gap consist primarily of an in-phase superposition of all
modes of the untextured guide at the second-order Bragfpur TM modes traveling in th¢=+ B,,0} and{0,* B4} di-
condition are determined simply by solving the planar wave+ections/[i.e., with eigenvector: (1,1,1,1]. Thus the photo-
guide problem aB=g,. The normalized energy of the TE nic modes are essentially 2D standing waves, and in the grat-

A. Leaky mode coupling

+477Xg(F). We calculate the Fourier coefficientg,, of the
[llipear susceptibility using the inverse of E(f) and then
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FIG. 2. Real part of the photonic band structure for a 2D square FIG. 4. Imaginary part of the photonic band structure for a 2D

lattice texture illustrating the dispersion of photonic eigenstates neatquare lattice texture illustrating the decay rates of the TM-like
the zone center as the in-plane wave vector is detuned X tfe0) photonic eigenstates shown in Fig. 3. The in-plane wave vector is

symmetry direction on the right half and thé (1-1) symmetry  detuned in theX (1-0) symmetry direction on the right half, and in

direction on the left half. The band-edge states near the highetheM (1-1) symmetry direction on the left half. The TE-like pho-
energy “gap” are TM-like states; the lower-energy ones are TE-tonic eigenstategnot shown are qualitatively the same. The line

like. The polarization of the radiative componestdr p) associ-  tYPes used indicate the corresponding real part in Fig. 3.

ated with each band is also indicated. The structure contains a

square lattice of air holes with filling fraction 0.5, with/A=0.1 Unique to the waveguide geometry, the first-order Fourier
andts/A=1.0. components of the 2D grating couple the slab modes propa-

ing layer, the mode intensity is greatest in the air holes of th@ating in the plane of the guide to a radiative component
2D lattice. The lowest-energy states in the vicinity of thepropagating nearly normal to the surface of the guide. Since
band edge consist mainly of in-phase superpositions of thell of the eigenstates shown in Fig. 2 are above the vacuum
forward- and backward-traveling TM modes in thedirec-  light line, =8, they are expected to be leaky. The leaki-
tion, out of phase with those traveling in thielirection,[i.e., ~ness of photonic eigenstates is described in terms of the
(1,1-1,—1)]. The middle band-edge eigenstates of the TMimaginary part of the eigenstate frequenay, The lifetime
gap, in this case, are degenerate in energy. These two staigsan eigenstate is inversely proportionaidh for @' =0 the
consist primarily of in-phase superpositions of forward- andgjgenstates are not lossy, and have infinite lifetimes. Figure 4

backward-traveling TM slab modes in thedirection, and  g0ys5,1 versusB, corresponding to the four bands emanat-
antiphase superpositions in tlyedirection and vice versa. ing from the TM-like gap shown in Fig. 3. At the zone cen-
[ie., (1,1,1-1) and (1,—-1,1,1)]. This symmetry, the exis- ter, the highest- and lowest-energy band-edge eigenstates
tence of two degenerate and two nondegenerate states at fige infinite lifetimes and are not leaky but true bound ex-
Zone center, Is a fundamental property of a square lattice Qfitations of the texture slab waveguide. Since these eigen-
circular holes’ states are in-phase superpositions of the forward- and
backward-propagating slab modes described above, the re-
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FIG. 3. Expanded scale view of Fig. 2 near the TM gap showin
the fundamental symmetry of the band-edge states at the zone ¢
ter for a square lattice of circular holes. The in-plane wave vector i
detuned in theX (1-0) symmetry direction on the right half, and in

0.02

X

Ehe strength of this coupling. Thus one may expect that prob-

sulting radiative components add destructivéiecall that
due to the vector nature of the problem, forward- and
backward-traveling modes have their in-plane electric-field
vectors in opposite directions. Thus an in-phase superposi-
tion is one of destructive interfereng&he degenerate band
edge states are lossy for the converse reason.

As the propagation constant is detuned from the zone cen-
ter (second-order Bragg conditiprall of the eigenstates be-
come lossy regardless of the direction in the plane of the
detuning. Clearly some of the states, those witlsmall, are
tightly bound to the slab waveguide, whereas others are rela-
tively weakly bound. These lossy eigenstates are analogous
to Fano resonances; the texture couples the discrete slab
modes of the untextured guide to the radiation mode con-
Ij]r_luum, and the imaginary part of the eigenfrequency reflects

ing these states via their radiative components will result in a

the M (1-1) symmetry direction on the left half. Various line types Sharp, narrow resonance fot small, and a broad resonance
are used to indicate correspondence with the imaginary part of théor the weakly bound statés.The existence of the degener-
band structure shown in Fig. 4.

ate and lossy band-edge states is the basis for polarization-
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FIG. 5. Real part of the photonic band structure near the anti- FIG. 6. Imaginary part of the photonic band structure corre-
crossing between TE-like and TM-like bands. sponding to Fig. 5. Note thad' goes to zero for the higher-energy
band-edge states near the anticrossing, indicating a truly bound
. " . . . eigenstate.
insensitive resonant grating filters; the degeneracy allows thée

state to be excited by a plane wave with any incident p°|ar'system, indicated by the imaginary part of the eigenfre-

ization. . : .

A calculation of the eigenvectors associated with a parguciih, SO 2 T SYUR (0T SRS BDE
%E)upling in 2D textured waveguides introduces additional
symmetries not found in plane wave propagation in infinite
2D photonic crystals.

The coupling between the slab modes themselves at the
second-order gap is primarily facilitated by the second-order
ourier components of the dielectric function describing the
D grating. Thus the details of the symmetry of the band-
dge states depend on the relative amplitudes of these com-
ponents which in turn depend on the air-filling fraction of the
holes forming the texture. The main effect of changing the
; TN o felative amplitude of the Fourier components is to change the
Fourier component qf the_ polarlzauon in t.he grating is anordering of the degenerate and nondegenerate states. A con-
appropriate label for identifying the photonic bands. sequence of this is that the locations of the anticrossings

A remarkable fe_ature of the 2D band structure of the ph_o'described above are also modified, leading to an additional
tonic eigenstates in the planar waveguide geometry, Whic{},iation in the behavior of the dispersion away from the
does not occur for plane-wave propagatiam the plane of zone center.
the periodicity of infinite 2D photonic crystals studied pre- Another way of modifying the symmetry of the band-edge
viously by other otheré? is th.e occurrence of anticrossings states is to change the strength of the texture. By changing
between TE'. and TM-I|ke_ eigenstates. For example, WheThe depth of the grating, one leaves the relative strength of
the propagation constant |s_detuned from the zone center fhe Fourier components the same but changes the overall
Y c_hrectlon(left half of Fig. 2, the upper bant_js assocr- strength of the coupling between the modes. As the coupling
ated with the. TE gap become phase m‘?‘mhe‘?' with the IOWe:.rtrength is increased, the width of both the TE and TM gaps
bands assomated_ with the TM gap; antl_crossmgs OCCUr N€&fcraase. Then, in the case of very strong coupling, the TE
B! By~ —0.025. Figure 5 shows th|s_ region on an expand_e nd TM gaps would eventually become so wide that they
scale. There are two separate anticrossings here associafgd |q overlap. There would be considerable mixing between
with two nearly degenerate bands having orthogonal radi e TE and TM components of the eigenstates at the zone

t'r:/e ccc)imponents. The band§ with tEe same pqlarlzgtlon ﬁ enter, making it meaningless to denote the photonic Bloch
the radiative component anticross. For one anticrossing, thg g 55 predominantly TE- or TM-like. However, in this
lower-energy band-edge eigenstate is predominantly an oug1

t-oh " t the backward ing TE sl mit the thin grating approximation breaks down, and one
of-phase superposition of the backward-propagating S'8fhust use more complicated modelling techniques to describe
modes and forward-propagating TM slab modes, and th

. . Nd MEtryuctures which have holes that penetrate through the'$lab.
upper-energy state is predominantly the corresponding in-

phase superposition. Interestingly, the coupling strength here
between TE and TM slab modes is as large as TE-TE or
TM-TM coupling at the zone center, as indicated by the In this section, we consider another application of 2D

width of the gaps, due to the shared radiative componengratings in planar waveguides, illustrating coupling between
Figure 6 shows the imaginary part of the band structure corbound TE modes and bound TM modes. This is achieved by
responding to the four bands near this anticrossing. Heralesigning an untextured waveguide such that TE and TM
away from zone center, phase cancellation results in one aghodes with wave vectors separated by a reciprocal-lattice
the band-edge eigenstates being a true bound mode of tiwvector of the 2D grating are nearly degenerate in energy, and

purely TE nor purely TM in character. However, the polar-
ization of the radiative component of a particular photonic
band, calculated via Eq24), is well defined as indicated on
Fig. 2. For an arbitrary detuning direction, the polarization of
the radiative component of a particular eigenstate near th
second-order gap is elliptical with an orientation dependen&
on the detuning direction. In general, however, for detuninge
along axes possessing reflection symmé&tnch as< or M),

the polarization of the radiation is always eitlsasr p. Thus,
for leaky eigenstates, the polarization of the zeroth-orde

B. Bound mode coupling
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.FIG' /- Regl part qf the phptonlc_band structu_re fgr a 2D square FIG. 8. Comparison of the real part of the photonic band struc-
lattice texture illustrating the dispersion of photonic eigenstates negr

re near the zone center using th led-m formulde
the zone boundary 8= B,/2). The upper two band-edge states ure near the zo ece ter usi g_t € coup ed-mode or ulged
- .9 ] and the self-consistent formulatigright). The structure is a square
(solid circleg are TM-like states; the four lower-energy ones are

predominantly TE-like stategsopen circleg The structure is a ltat/tfig{);mes with filling fraction 0.75, witfts/A=0.3 and
square lattice of holes with filling fraction 0.35, witQ/A =0.22 9 o

dt,/A=0.022.
andle the{—B4/2,84} and{— B4/2,— B4} TE modes of the untex-

are below the light line in the reduced zone scheme. Théured guide. The coupling between TE and TM basis states
coupling between the modes appears in the band structure 8§CuUrs because, in two dimensions, _the electric-field vectors
an anticrossing between the photonic bands associated wiff modes not traveling parallébr antiparallel share com-
bound TE modes and bound TM modes. mon in-plane components in the grating. Again we note that,
Consider a slab of thickness/ A =0.22, and a 2D grating N contrast, TE and TM plane waves traveling in the plane of
of thicknesst, /A =0.022 with holes of diameter such that the periadicity of infinite 2D photonic crystals, do not couple
the air-filling fraction in the grating layer is 0.35. For this together. Thus the nature of the coupling in the textured
structure the resonant coupling occurs between TE modes #aveguides is fundamentally different from that in infinite
{+B4/2,% B,} and TM modes af+ B,/2,0}. Since these 2D photonic crystals, due to the lack of translational symme-
modes exist below the vacuum light line, there is no radiative"y in the z direction.
component to include. This may be treated simply within our
model by settindh=0. Also note that the TE modes are not C. Comparison with self-consistent formulation
traveling in the same direction in the plane as the TM modes, |n order to illustrate the validity of the eigenvalue formu-
suggesting a possible application of this structure as #tjon, in this last section we compare the band structure
TE-TM mode converter. _ calculated using the 2D coupled-mode approfgt. (31)],
To determine the photonic bandstructure, we include 13yith that solving the self-consistent formulatipgg. (23)].
modes(six TE and six TM at the resonant wave vectors\ye consider the general case that TE and TM slab modes,

listed above in the model and determine the properties ofyot traveling in the same direction, couple together above the

the untextured guidens®,ng®,Rs, etc., for these modes. |ight line.

Figure 7 shows the results of solving the eigenvalue equation Again, we consider a single-layer dielectric waveguide
(31 as the in-plane wave vector is detuned from the firsthaving a dielectric constart=12.25 that has been textured
order Bragg conditiorﬁ:(ﬁg/2)x toward the zone center. in two dimensions with a regular square lattice of air holes,
The eigenfrequencies are all purely real, indicating that theswith period A and thickness,/A=0.03. The diameter of
photonic eigenstates are all bound to the slab with infinitehe holes is such that the air-filling fraction in the grating
lifetimes. layer is 0.75. For a slab of thicknesstig A = 0.3, dispersion
One sees that there are six band-edge states below tioé the guided modes is such that the TE mode$-aB,,
(dashedllight line: the upper two eigenstatésolid dotg are  + 3.} and the TM modes af* 34,0} and {0,+ B4} are
primarily associated with the TM-like gap due to out-of- nearly degenerate in energy. Therefore these modes will
phase(highest energyand in-phasésecond highest energy resonantly couple near the zone center.
superpositions of the TM basis states {at 3,/2,0;. The Figure 8 shows a comparison of the photonic eigenstate
lower four eigenstate®pen circleg are associated with su- dispersion as calculated by the self-consistent theldty,
perpositions of mostly the TE basis states {at 34,/2, (23)] on the right, and the coupled-mode liniq. (31)] on
* By} the left. Figure 9 shows a similar comparison of the imagi-
The band structure of Fig. 7 shows that significant cou-nary part of the eigenfrequency. Qualitatively the agreement
pling may occur between the TE and TM basis states diis quite good as seen in both figures. In Fig. 8, the four upper
rectly, even in the absence of a radiative componentBAt band-edge photonic eigenstates are TM-like, shown with
~—0.018, from the zone boundary, there is an anticrossingthick lines, and the lower ones are TE-like, shown with thin
between a band representing the forward-travefigg,0}  lines. The self-consistent theory and the coupled-mode limit
TM mode and a band representing mainly a superposition dpoth predict the width of the gaps to be effectively the same,
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being complex. Second, unlike plane waves traveling in the

0.0000 - N £ plane of infinite 2D photonic crystals, TE modes can couple
to TM modes in 2D textured waveguides.
-0.0002 We illustrated, with three different examples, that the set

of modes of the untextured guide that become coupled to-
gether may be controlled by judicious choice of structural
parameters. TE modes couple to TE and/or TM modes, as
long as the modes are nearly degenerate in energy, and a
-0.0006 reciprocal-lattice vector of the grating separates their wave
‘ vectors. This occurs for both bound and leaky photonic

-0.0004

Im {m/[ig}

0.0008 Coupled Mode Self-consistent eigenstates. More generally, although not explicitly shown
' 0.06 -0.04 -002 000 002 0.04 006 here, fir;t-order guided_ modes may be coupled to higher-
y order guided modes using 2D gratings when the above con-

B L)‘9 dition is satisfied.

Finally we note that although we have restricted the dis-
cussion to a square lattice of circular holes for pedagogical
reasons, our model may be used to calculate similar proper-
ties for any 2D lattice type. It remains to be seen
experimentall§* to what extent the coupled-mode limit
quantitatively applies to the dispersion and lifetimes of the
fgsonant excitations for photonic band-gap structures in
aveguide geometries.

FIG. 9. Comparison of the imaginary part of the photonic band
structure for the TM-like eigenstates shown in Fig. 9 using the
coupled-mode formulatiofieft) and the self-consistent formulation
(right). The thick(thin) lines correspond to bands emanating from
the TM-like (TE-like) gap.

and give the same ordering of the eigenstate degeneracy. T
major difference is a quantitative one due to the difference i
calculating the self-energy term of a mode approximately in
the coupled-mode limit. Thus the center frequency of the
gaps is slightly off in the coupled-mode case, but only by
less than~0.1% for both TE and TM. The quantitative dis-  This research was supported by the Natural Sciences and
crepancy is somewhat more severe for the imaginary part gEngineering Research Council of Canada and the Canadian
the eigenfrequency, as shown in Fig. 9, about 20% in thecable Labs Fund.

worst case. This is good agreement considering that the grat-

ing is 1/10 the thickness of the slab.
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Finally, the coupled-mode formulation is a perturbative APPENDIX
calculation, and so is restricted in the range of wave vectors _ ) ) ) )
that may be considered due to approximatidf). We have In this appendix we derive the relationship between the

shown how it may be used to calculate the dispersion nedP-Plane and normal components of the electric field in a
the zone center or, as in Sec. Il B near a zone boundary. THEXtured waveguide. We start by writing EQO) as
advantage of the self-consistent formulation is that it may be
used to calculate the band structure throughout the first Bril- o o ~n
louin zone. The penalty one pays for this is simply one of On=0n—4m7/tgz2, (A1)
computation time.
and substitute this into E¢19) which gives,
IV. CONCLUSION

The 2D vector coupled-mode theory developed in this pa- R N .. N R
per gives considerable insight into the nature of coupling E,t+4mzz- E XnmEm= 9y E toXnmEm.  (A2)
between guided modes in planar dielectric waveguides that m=0 m=0
have been textured in two dimensions with a thin surface
grating. The photonic eigenstates of such structures may bgow substituting in the expression for the radiative compo-
thought of as linear superpositions of modes of the untexpent gives
tured guide. The phase relationship between the components
forming the eigenstates determines many of the interesting
properties of the textured waveguide, including the polariza- R .
tion properties and the lifetimes of the leaky eigenstates. The E,+4mzz- (
polarization of the radiative component turns out to be a

good quantum number for labeling the photonic bands asso-

ciated with leaky eigenstates. _ :tgar/f( XnmEm+XnOﬁ thOmEm)
There are two fundamental differences between 2D tex- m=1 m=1

tured waveguides and infinite 2D photonic crystals, both due (A3)

to the lack of translational invariance normal to the plane of

the texture. First, the photonic eigenstates may contain a ra-

diative component, and thus have a finite lifetime. ThisUSing the expression for the green’s functid. (20)], the
manifests itself in the eigenfrequencies of the photonic states component of this equation can be written as
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o, . R There areN of these equations, one for each Fourier compo-
E,, + (47— 2mityBAWn)Z-| 2 XnmEm nent, which can be written in matrix form as
m
M, E,= Ny B+ N, Ep (A7)
+XnOh'% thOmEm) where the field components have been written adNanl

column vector, andi,, M, and Mz are NXN matrices.
Equation(A7) may be rewritten as an explicit expression for

ettt b | S XoErt oo S ¢ é), ; licit ex
Palafn/ @Pn ( = Xnm=m T AnoT £ fgXom=m the z components in terms of the in-plaseand 8 compo-

(Ad) nents:
. ~ . - _ < 1,7 - v 1 - _ > - > -
while the 8,, component is E,=M,; Mg Esct M, Mg Eg=Ks Es+Kg-Ep.
(A8)
Eg —27Titgwnﬁn- E XnmEm+Xn0ﬁ' E thOmEm One may have anticipated this result since, for a giyen wave
n m m vector, there are only twnot three transverse solutions to

Maxwell's equations.
= —fpnthn/wpn— . ( % XnmEm+Xn0h'§ thOmEm)- The matrix elements are found to be
(M) = 6ij + Aixij T tgxioxoj(Aih,z—Bihg ),  (A9)

(A5)
The right-hand sides of these two equations are proportional (Mg)ij= _thioXOj(Aihzsﬁ_ Bihﬁisj)! (A10)
to within a constant factor, and thus
(MB)ij =—Bilw; 5ij + BiXij _thiOXOj(Aihzﬁj_Bihﬁiﬁj)a
. - - All
E, +(4m—2mitgBawWn)Z: | 2 XnmEm (A1)
m where
- = A — 2 it . BAIW;

+Xn0h : % thOmEm) =—PBn /WnE,Bn Ai=am ZWIthI /WI ' (A12)

+ Zﬂitgﬁn,@n' ( > XomEm+ Xnoh - 2 thOmém Finally we note that if there is no radiativeAcomponent to the
m m field then the matridM is zero, and only th@, components

(AB) are related to the components of the field.
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