
PHYSICAL REVIEW B 15 JANUARY 2000-IVOLUME 61, NUMBER 3
Two-dimensional vector-coupled-mode theory for textured planar waveguides

P. Paddon and Jeff F. Young
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~Received 12 January 1999; revised manuscript received 6 July 1999!

We develop a model to treat coupling between guided modes in planar dielectric waveguides that have been
textured in two dimensions with a thin surface grating. The formulation is based on a general Green’s-function
technique that self-consistently determines the field in the surface grating due to the polarization there. With
simplifying approximations, this formalism is cast into a two-dimensional~2D! vector-coupled-mode theory
that is more computationally efficient, and that gives considerable insight into the nature of mode coupling in
2D textured structures. These models are applied, by way of example, to illustrate some interesting properties
of leaky and bound modes that are coupled together by 2D periodic texture. In particular we discuss the
complex photonic band structure describing the dispersion, lifetimes, and polarization properties of the reso-
nant states associated with the textured waveguide. In our analysis we emphasize the fundamental differences
between coupling in 2D textured waveguides and infinite 2D photonic crystals. We also show that the vector-
coupled-mode theory agrees well with the self-consistent formulation.
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I. INTRODUCTION

Surface gratings and slab waveguides each represent
damental building blocks of many important optical comp
nents, instruments, and systems. Although diffraction g
ings have been studied for almost a century, interes
applications and fresh understanding of their myriad prop
ties are constantly being developed. Recent work has con
ered the influence of resonant modes on the specular sca
ing properties of both one-dimensional~1D! and two-
dimensional~2D! gratings formed on the surface of plana
or ‘‘slab,’’ waveguide structures.1,2 It has been noted that th
specular reflectivity always reaches 100% in the vicinity
phase-matched excitation of slab modes; this has been
sidered the possible basis of high-efficiency notch filters. T
peculiar Fano-like line shape has been analyzed in s
detail,3,4 and, with the use of 2D gratings, polarizatio
insensitive filters may be achieved.5 Most if not all of this
body of work has, appropriately, approached the problem
a resonantly enhanced diffraction process.

On the other hand, considering the properties of s
waveguide modes as they are modified by the presenc
surface diffraction gratings gives an alternate perspective
the same physical system. In one dimension, slab modes
wave vectors at the Brillouin-zone boundaries beco
coupled through interaction with the grating.6 Indeed, one of
the most important components of optical communicatio
systems is the distributed feedback~DFB! laser, which owes
its superior performance to the renormalized slab modes
photonic eigenstates, that are created in waveguides con
ing 1D interface gratings. It was noted early on that for DF
lasers incorporating second-order gratings, the eigenstat
the textured waveguide at the second Brillouin-zone bou
ary, in general, contain a component of polarization that
diates into the vacuum.7 The connection with the resonant
enhanced diffraction process mentioned above is that for
propriately phase-matched plane waves incident from
vacuum onto such structures, these renormalized ‘‘leak
PRB 610163-1829/2000/61~3!/2090~12!/$15.00
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modes are excited. The polelike response results in the 1
reflection for a particular excitation condition near res
nance.

Given the success of the DFB laser, it is then natura
consider the properties of slab waveguides as they are m
fied by 2D gratings. This viewpoint is intimately related
the topic of two-dimensional photonic band-gap structures
planar waveguide geometries. Interest in slab waveguide
which a 2D periodic grating pattern is etched to a de
comparable to or exceeding the thickness of the wavegu
has been stimulated by theoretical work8–10 and the success
ful experimental demonstration of photonic band-gap str
tures at microwave11 and more recently near-infrared12

wavelengths. To open up a true photonic band gap, a ra
of frequencies within which it is impossible for light t
propagate in any direction, regardless of polarization, o
uses 2D or 3D periodically textured dielectrics with lar
dielectric contrast. Several optoelectronic applications h
been suggested for such structures if they can be real
with lattice constants of from 150 to 500 nm in semicondu
tor hosts.13–15

Many of these potential applications assume that a str
2D periodic scattering potential will modify the dispersion
slab modes in much the same way that infinitely long diel
tric cylinders or holes in a dielectric block are known
modify the dispersion of plane waves in 2D photonic cry
tals. However, the lack of translational invariance perp
dicular to the textured plane in these porous waveguides
damentally alters the nature of the corresponding photo
eigenstates. In particular, the excitations of poro
waveguides are manifestly vector fields that cannot be g
erated from a single scalar field. In addition, even if the
textured slab is infinite in extent, some of the resonant ex
tation modes are lossy, and therefore their band structur
quite generally complex rather than purely real.

We have studied the properties of these waveguide-ba
2D photonic crystal structures both experimentally a
numerically.16 There we calculated the specular reflectiv
2090 ©2000 The American Physical Society
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from the porous waveguide, and used the Fano-like reso
features that peak at 100% reflectivity to identify the lea
eigenstates of the structure. To handle the extreme natu
the dielectric texture, which consisted of a free-standing s
completely penetrated by a 2D array of air holes, it w
necessary to employ a numerically-intensive algorithm t
solves the Maxwell equations ‘‘exactly’’ on a spatial gr
that extends throughout the porous waveguides. The po
ization and lifetime properties of the resonant states so id
tified for a variety of waveguide structures suggested t
they can be thought of largely in terms of superpositions
effective TE and TM slab modes characteristic of the av
age slab waveguide, coupled via the~strong! 2D dielectric
crystal potential. This realization prompted us to formulat
simple, heuristic model to describe the eigenstates of
periodically textured dielectric slabs.

The model described subsequently in this paper app
rigorously to slab waveguides that have been textured wi
thin, 2D surface grating, but many of the results are a
expected to apply qualitatively to photonic bandgap str
tures in the waveguide geometry. Using a Green’s-funct
technique we are able to self-consistently calculate the t
field in the grating region. By associating the Fourier co
ponents of the total field with the TE and TM slab modes
the untextured structure, our model simplifies to an eig
value problem for the complex eigenfrequencies of the re
nant eigenstates. Heuristically, one may consider th
eigenstates as linear superpositions of the dominant TE
TM slab modes, as one would in conventional 1D coupl
mode theory. All of the texture-induced coupling betwe
these TE and TM slab mode basis states is rigorously
counted for within the Green’s-function formalism. The r
sults obtained by applying this model are consistent with
resonant diffraction literature, and the different perspect
provides considerable new insight as to the fundamental
ture of these excitations.

II. THEORY

A. Self-consistent formulation

In this section we derive a technique for calculating t
resonant electromagnetic excitations of a multilayered s
waveguide that has been textured with a thin 2D surf
grating, as illustrated in Fig. 1. We use a Green’s-funct
technique to solve self-consistently for the field in the grat
region, 0,z,tg , due to the polarization there. This leads
a simple set of equations for the in-plane spatial Fou
components of the field in the grating, which may be solv
numerically. In Sec. II B we show how to cast the model
an eigenvalue problem in the coupled mode limit.

The macroscopic Maxwell equations are

“•DW 50, ~1!

c“3HW 2
]DW

]t
50,

“•BW 50,

c“3EW 1
]BW

]t
50.
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where, for a nonmagnetic medium,

DW 5EW 14pPW t ,
~2!

HW 5BW .

For the planar waveguide geometry depicted in Fig. 1,
total electric dipole moment per unit volume,PW t , is

PW t~rW !5xs~z!EW ~rW !1PW g~rW ! ~3!

wherexs(z) is the linear susceptibility associated with th
various homogeneous layers of the slab waveguide,
PW g(rW) is the polarization~to be determined self-consistently!
of the grating layer. Thus we are led to solve the inhomo
neous Maxwell equations of the form

es~z!“•EW ~rW !1
]es~z!

]z
EW ~rW !524p“•PW g~rW !

“3BW ~rW !1 i ṽes~z!EW ~rW !524p i ṽPW g~rW !

~4!

“•BW ~rW !50

“3EW ~rW !2 i ṽBW ~rW !50,

where the dielectric constant of the multilayer slab is giv
by

es~z!5114pxs~z!, ~5!

andṽ5v/c. In this form we see that the polarization in th
grating layer acts as a spatially dependent source term in
usual homogeneous equations for a multilayer slab wa
guide.

We are primarily interested in cases where the spatial
pendence of the grating polarization is periodic in the pla
thus we write

PW g~rW !5xg~rW !EW ~rW !, ~6!

and expand the spatial dependence of the linear susceptib
of the grating in a Fourier series as

xg~rW !5(
m

xGW m
~z!exp~ iGW m•rW !, ~7!

FIG. 1. Schematic of a two-dimensionally textured multilay
slab waveguide.
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2092 PRB 61P. PADDON AND JEFF F. YOUNG
where the summation is over all reciprocal-lattice vecto
GW m , of the 2D grating, andr is the in-plane coordinate.

The slab waveguide geometry naturally lends itself to
use of a Green’s-function approach, developed by Sipe,17 for
calculating the fields generated by a planar source in
presence of a multilayer dielectric structure. In the abse
of any external driving fields, for the periodic polarizatio
potentialPW g(rW) of Eq. ~6!, the particular solution to the in
homogeneous Maxwell equations~4! is given by

EW ~rW !5(
m

EW ~bW 1GW m ;z!exp@ i ~bW 1GW m!•rW #, ~8!

with

EW ~bW ;z!5E dz8gJ~bW ;z,z8!•(
m

xGW m
~z8!EW ~bW 2GW m ;z8!.

~9!

The tensorgJ is a sort of generalized Green’s function th
correctly takes into account all of the additional multip
reflections associated with the multilayer slab adjacent to
grating layer. To solve self-consistently for the field in t
grating layer, since the Fourier components of the susce
bility xGW m

are nonzero only in the textured region, we on
need the generalized Green’s function over this regio17

That is,

gJ~bW ;z,z8!5gJ1~bW !u~z2z8!exp@ iw~b!~z2z8!#

1gJ2~bW !u~z82z!exp@2 iw~b!~z2z8!#

24pd~z2z8!ẑẑ

1 rJ~bW !•gJ2~bW !exp@ iw~b!~z1z8!#, ~10!

whereu(z) and d(z) are the Heaviside and Diracd func-
tions, respectively. The first two terms in Eq.~10! are the
vector analogs of the Green’s function for the scalar wa
equation, and describe plane waves propagating away f
the polarization source in the6 ẑ direction with in-plane
wave-vector componentbW . The tensors are defined usin
dyadic notation as

gJ6~bW !5C~b!@ ŝ~bW !ŝ~bW !1 p̂6~bW ! p̂6~bW !#, ~11!

with the constants

C~b!5
2p i ṽ2

w~b!
~12!

and

w~b!5~ṽ22b2!1/2. ~13!

Equation~13! follows directly from the dispersion relatio
for plane waves in free space;w(b) is the ẑ component of
the wave vector. The unit vectorsŝ(bW ) and p̂6(bW ) describe
the unit s and p polarization directions, and are defined
terms of the in-plane wave vectorbW and the surface normalẑ
as

ŝ~bW !5b̂3 ẑ ~14!
,

e

e
e

e

ti-

e
m

and

p̂6~bW !5
b ẑ7w~b!b̂

ṽ
. ~15!

The third term in Eq.~10! describes a contribution to th
electric field present only in the grating layer. It essentia
describes the reduction of the polarization induced in
grating due to theẑ component of the electric field there
This depolarization effect can be traced to the requirem
that “•DW 50 across the boundaries of the grating lay
Thus it appears in addition to the usual Green’s-funct
terms associated with the scalar wave equation.

The fourth term in Eq.~10! describes a contribution to th
electric field due to the components of the field that a
downward propagating~or decaying! from the grating layer
which then reflect off the multilayer slab beneath. The s
nificant advantage of the generalized Green’s-function te
nique is found here in that all the boundary conditions for
multilayer slab beneath the textured layer are simply c
tained within the reflectance tensor. It is defined as

rJ~bW !5r s~b!ŝ~bW !ŝ~bW !1r p~b! p̂1~bW ! p̂2~bW !, ~16!

in which the coefficientsr s(b) and r p(b) are the Fresne
reflection coefficients for the multi-layer slab fors and p
polarizations, respectively.18 The Fresnel coefficients are, i
fact, simply a restatement of all the boundary conditions
the multilayer slab and, therefore, in this formulation, a
solution implicitly satisfies the boundary conditions for th
entire textured slab.

To self-consistently calculate the total field in the gratin
we form a system of equations involving the Fourier comp
nents of the electric field coupled together by the grating.
each reciprocal-lattice vectorGW m , there is an equation fo
the associated component of the total field,EW (bW 2GW m ;z),
that has the form of Eq.~9!. To simplify the notation we use
a subscript to label the in-plane Fourier component of
electric field associated with the reciprocal-lattice vec
GW m ; we write EW m(z)5EW (bW 2GW m ;z), so that Eq.~9! be-
comes

EW n~z!5E dz8gJn~z,z8!•(
m

xnm~z8!EW m~z8!, ~17!

wheregJn is the Green’s-function tensor associated with t
in-plane wave vectorbW n5bW 2GW n , andxnm(z) is the Fourier
coefficient of the grating susceptibility coupling themth
component to thenth one. The infinite system of integra
equations, of which Eq.~17! is one, is an exact represent
tion of Maxwell’s equations~4!, and self-consistently deter
mines the field in the grating layer for any slab wavegu
textured periodically in the plane.

We now make some simplifying assumptions. For th
gratings in which the grating thickness is much less than
wavelength of light in the grating material, i.e.,tg

!2p/(ṽAeg), the variation of the electric field in the gra
ing, as a function ofz, is small. Thus conceptually, we ma
replace the finite thickness grating, which acts as the s
tially dependent source polarization in the inhomogene
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PRB 61 2093TWO-DIMENSIONAL VECTOR-COUPLED MODE THEORY . . .
Maxwell equations~4!, by a d-function grating that pos-
sesses the same effective spatially dependent polariza
This allows us to transform the system of integral equati
~17! into a system of algebraic equations. First, in assum
that the variation of the electric field in theẑ direction in the
grating is negligible, we takeEW n(z)'EW n(z0), wherez0 is at
the center of the grating. In addition, for a thin grating, w
havew(b)tg!1 and take the phase factors in the Gree
function, Eq.~10!, as unity. Thus by defining the average
the grating susceptibility for each Fourier component as

xnm5
1

tg
E

0

tg
xnm~z8!dz8, ~18!

Eq. ~17! becomes

EW n~z0!5gJn•(
m

tgxnmEW m~z0!. ~19!

The Green’s-function tensor is now independent ofz and is
given by

gJn5CnF ~11r sn
!ŝnŝn1

p̂n1p̂n1

2
1

p̂n2p̂n2

2
1r pn

p̂n1p̂n2G
2

4p

tg
ẑẑ, ~20!

where again the subscriptn indicates the associated in-plan
wave vector, i.e.Cn5C(bn), etc. Thus Eqs.~19! and ~20!
self-consistently determine the field in ad-function grating
layer that is approximately equivalent to the thin grati
layer of Fig. 1.

In order to make the problem tractable, the summation
over only a finite numberN of the lowest-order Fourier com
ponents. We reduce theN vector equations to a system of 3N
scalar equations by projection of Eq.~19! onto the vectors
ŝn , b̂n , and ẑ. This gives

Esn
5 ŝn•gJn•(

m
tgxnmEW m

Ebn
5b̂n•gJn•(

m
tgxnmEW m , ~21!

Ezn
5 ẑ•gJn•(

m
tgxnmEW m .

Formally, this system of equations may be written in m
trix form as

vW 5MJ bW ,ṽ•vW , ~22!

where vW is a 3N31 column vector comprised of the 3N
components of the electric field in the grating,Esn

, Ebn , and

Ezn
; andMJ is a 3N33N matrix parametrized by the in-plan

wave vectorbW and the normalized frequencyṽ. Equation
~22! only has solutions for

det@MJ bW ,ṽ2UJ #50, ~23!
n.
s
g

s

is

-

whereUJ is the 3N33N identity matrix. In general, solutions
to Maxwell’s equations that correspond to resonant mode
a multilayer dielectric structure appear as poles in the co
plex ṽ plane of the reflection coefficient, for a fixed in-plan
wave vector.19 One can show that the reflection coefficie
for plane waves incident on the 2D textured waveguide c
sidered here is proportional to@MJ bW ,ṽ2UJ #21,20 and thus
poles in the reflection matrix are consistent with solutions
Eq. ~23!. For a given textured slab waveguide, these po
represent the allowed complex frequencies of the reson
electromagnetic excitations attached to the waveguide.
determining these complex frequencies as a function of
bW over the first Brillouin zone, we obtain the full photon
band structure of the guided modes of the textured gu
The real and imaginary parts of the band structure desc
the dispersion and lifetimes of the resonant excitations of
multilayer slab. This simple numerical procedure is co
pletely general for thin surface gratings, and is capable
treating any 2D periodic texture by inclusion of the appr
priate Fourier components.

B. Coupled-mode limit

The simplicity of the above numerical approach is appe
ing. However, in order to gain some physical insight into t
nature of the resonant excitations of the textured slab,
further simplify Eqs.~21! in a manner analogous to the pe
turbative coupled mode limit.6 From this we are able to cas
our model in the form of an eigenvalue problem: the eige
values form the photonic band structure of the multilay
slab. This has several advantages. First, eigenvalue prob
are typically computationally less intensive than pole findi
in the complex plane. Second, in solving the eigenva
problem, one obtains the photonic Bloch states directly
the corresponding eigenvectors. This gives a physical
scription of the resonant excitations in terms of linear co
binations of modes of the untextured guide. Third, the nat
of the coupling between the modes of the untextured gui
is plainly revealed. In particular, we have already shown h
in 1D gratings the Green’s-function formalism gives physic
insight into the peculiar nature of TM mode coupling due
depolarization effects in the grating.21

A consequence of Bloch’s theorem for periodic structu
is that all modes separated by a reciprocal-lattice vectorGW m
are equivalent. This allows the dispersion of the photo
Bloch states to be described using the reduced zone sch
In the reduced zone scheme, those states with energies a
the vacuum light line,ṽ5b, have a radiative componen
and are leaky. To illustrate the coupled-mode limit to o
model, we consider coupling between guided modes near
second-order Bragg condition of a 2D texture. This is t
most general situation in which there is coupling betwe
guided modes and radiative waves, analogous to the c
we investigated previously16 and related to the physics o
resonant grating filters.5

The basic assumptions underlying coupled-mode the
are: first, only the modes of the untextured waveguide~TE or
TM! that are nearly phased matched to the grating, nee
be included in the expansion of the field; and second,
coupling between these ‘‘dominant’’ modes may be trea
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perturbatively. For an arbitrary 2D grating, there areN domi-
nant guided modes near the second-order Bragg condi
and a single radiation mode, which we labelEW 0, having po-
larization to be determined by the model.

For a second-order grating the radiation mode propag
nearly normal to the surface of the textured waveguide w
near the zone center. We treat the coupling to this mode
first solving the textured waveguide equation~19! for EW 0
explicitly in terms of theN guided modes. This gives

EW 05hJ• (
m51

N

tgx0mEW m. ~24!

The summation is over theN guided modes that are near
phase matched to the grating, andx0m is the component of
the grating susceptibility that couples themth guided mode
to the radiation mode. We have defined the tensor

hJ5~12tgx00gJ0!21gJ0 , ~25!

which is dependent on the normalized frequencyṽ and the
in-plane wave vectorbW of the radiative component.

The in-plane and normal components of a given Fou
component of the field are not independent. By substitut
of Eq. ~24! into Eqs.~21!, we show in the Appendix that on
obtains a relationship of the form

EW z5KJ s•EW s1KJb•EW b . ~26!

Here the field components have been written asN31 col-
umn vectors, andKJ s and KJb are N3N matrices. Equation
~26! is the textured waveguide analog to the relationship
tween the in-plane and normal components of the elec
field in a TM mode of an untextured slab waveguide. Us
this relation, we may eliminate theEzn

components from our

set of equations, reducing them to a system of 2N equations
involving only the in-plane componentsEsn

andEbn
of the

electric field. Note that one may have anticipated this re
since, for a given wave vector, there are only two~not three!
transverse solutions to Maxwell’s equations.

The key approximation that allows us to cast the Green
function formalism as an eigenvalue problem in the coup
mode limit is to keep only the resonant terms in the Gree
function @Eq. ~20!#. For in-plane wave vectors correspondin
to a guided mode, the Fresnel reflection coefficients for
multilayer slab,r sn

andr pn
, are dominated by the poles at th

guided mode energiesṽsn
andṽpn

for TE and TM polariza-
tions, respectively. Therefore, fors polarization, we approxi-
mate

r sn
'

Rsn

ṽ2ṽsn

, ~27!

and, forp polarization,

r pn
'

Rpn

ṽ2ṽpn

, ~28!
n,

es
n
y

r
n

-
ic
g

lt

-
d
’s

e

whereRsn
andRpn

are the residues of the poles at the cor

sponding guided mode energies.@i.e., Rsn
5 limṽ→ṽsn

(ṽ

2ṽsn
)r sn

.# We keep only these resonant terms in Eq.~20!,
and approximate the Green’s function as

gJn'Cn@r sn
ŝnŝn1r pn

p̂n1p̂n2#2
4p

tg
ẑẑ. ~29!

Physically, the approximate Green’s function includes o
the resonant reflection from the multilayer slab due to
downward ‘‘propagating’’ component of the field radiated b
the polarization induced in the grating. Theẑẑ term takes
care of the reduction in theẑ component of the polarization
induced in the grating due to theẑ component of the electric
field there, self-consistently. This depolarization effect w
found to be important to obtain the correct form of th
TM-TM coupling coefficient in 1D gratings.21

With these approximations, Eqs.~21! become

~ṽ2ṽsn
!Esn

5CnRsn
ŝn•S (

m
tgxnmEW m

1tgxn0hJ•(
m

tgx0mEW mD ,

~ṽ2ṽpn
!Ebn

5CnRpn
~ b̂n• p̂n1! p̂n2•S (

m
tgxnmEW m

1tgxn0hJ•(
m

tgx0mEW mD . ~30!

Equations ~30! give a self-consistent calculation of th
modes of the textured waveguide, within the resonant p
approximation.

We now drop the self-consistency and derive an eig
value problem inṽ. We identify theŝn component of the
field with thenth TE mode, and theb̂n component with the
nth TM mode and consider these as basis states for an
pansion of the photonic eigenstates of the textured wa
guide. Note that the polarization unit vectorsp̂n1 and p̂n2 ,
the coupling to the radiative component,hJ, the renormaliza-
tion matricesKJ s andKJb , and the constantsCn on the right
hand side of Eq.~30! rigorously depend onṽ. In the spirit of
a perturbative approach, to evaluate these parameters w
sume that they take on their values at the appropriate un
turbed mode energyṽsn

or ṽpn
for TE or TM modes, respec

tively. This leads to an eigensystem that may be written
matrix form as

MJ bW •uW 5ṽuW , ~31!

where the matrix elements are given by

msnsm
5dnmṽsn

1CnRsn
@ tgxnm~ ŝn• ŝm!1tg

2xn0x0mhsnsm
#,
~32!

msnbm
5CnRsn

@ tgxnm~ ŝn•b̂m!1tg
2xn0x0mhsnbm

#, ~33!

and
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mbnbm
5dnmṽbn

1CnRpn
~ b̂n• p̂n1!tgxnm

3F ~ p̂n2•b̂m!1~ p̂n2• ẑ!(
k51

N

tgxnk~Kb!kmG
1CnRpnbntgxn0F tgx0mhpn2bm

1hpn2z(
k51

N

tgx0k~Kb!kmG , ~34!

mbnsm
5CnRpn~ b̂n• p̂n1!tgxnm

3F ~ p̂n2• ŝm!1~ p̂n2• ẑ!(
k51

N

tgxnk~Ks!kmG
1CnRpnbntgxn0F tgx0mhpn2sm

1hpn2z(
k51

N

tgx0k~Ks!kmG , ~35!

where, for example, we have used the notation,hpn2sm

5 p̂n2•hJ• ŝm .
The elements of the coupled-mode matrix,MJ bW , have

simple physical interpretations. The diagonal elementsmsnsn

andmbnbn
describe the change in the energy of a TE or T

mode, respectively, due to the additional material in the t
tured guide associated with the grating. This effect is prop
tional to xnn which is the average or dc component of th
susceptibility in the grating region. As more material
added, the energy of a mode is reduced. The self-energ
also changed due to the second order~in tg) coupling via the
radiative component. The off-diagonal termsmsnsm

describe

the direct coupling between thenth andmth TE basis states
or modes of the untextured guide. The coupling coefficienk
used in conventional coupled mode theory is proportiona
this matrix element. The first-order contribution is propo
tional to the Fourier component of the gratingxnm , which
causes the basis states to be phase matched, and th
product of the unit vectors associated with the electric fi
of the mode. In the usual 1D case, this dot product is21, but
in two dimensions, TE mode coupling depends strongly
the direction of propagation in the plane. In fact, TE mod
propagating perpendicularly to each other in the plane do
couple together to first order. The second-order contribut
in the off-diagonal terms is due to coupling to the radiati
wave and to coupling from the radiating wave back into t
guided mode; the effect is proportional to the appropri
matrix element of the radiative tensorhJ. This matrix element
is in general complex, and thus coupling to radiative wav
is described in conventional coupled-mode theory usin
complex coupling coefficientk.7 In a similar manner, the
coupling between thenth TE mode and themth TM mode is
described by a combination of the matrix elementmsnbm

and

mbmsn
. The coupling between the TM modes themselv

described by the matrix elementsmbmbn
, is qualitatively dif-
-
r-

is

o
-

dot
d

n
s
ot
n

e
e

s
a

,

ferent than that between TE modes. Theẑ component of the
TM modes provides additional coupling which is describ

through the sum over the matrixKJb between them. Since th
TM-like components of the field are now described solely
their in-plane component, the normal component coupl
appears effectively as a renormalization of the in-plane c

pling through the matricesKJ s andKJb.
This completes the derivation of a simple, heuristic, 2

vector model that describes coupling in waveguides t
have been textured with a thin 2D surface grating. The
and TM modes of the untextured guide are considered
basis states of the eigenvalue problem,@Eq. ~31!#. The com-
plex eigenfrequencies describe the dispersion and lifetim
of the photonic eigenstates of the textured slab, and
eigenvectors describe the eigenstates themselves. In Se
we solve this model in the case of leaky mode coupling a
bound mode coupling.

III. ILLUSTRATIVE EXAMPLES

In this section we use the coupled-mode formalism
scribed above to illustrate various distinguishing features
the photonic band structure of resonant modes in 2D t
tured, planar waveguides. One-dimensional texture typic
couples two nearly degenerate slab modes that have in-p
wave vectors approximately equal to half of one of t
reciprocal-lattice vectors of the grating. If the modes prop
gate parallel to the grating wave vector, the coupling c
only occur between TE modes or between TM modes; th
is no TE-TM coupling. This is the usual situation encou
tered in DFB lasers, and grating filters. However, if the s
modes are obliquely incident on a 1D grating, it is possi
to couple TE and TM modes~as long as the components o
the wave vectors in the grating direction, for both modes,
nearly equal to half of one of the reciprocal-lattice vectors
the grating!. Already for the oblique incidence case in on
dimension, the vector nature of the coupling problem int
duces subtle but very important effects due to depolariza
of the ẑ component of the modes~associated with theẑẑ term
in gJ).21 Although the concept of a photonic band structure
valid, and is sometimes used to describe 1D textured st
tures, it provides little additional insight.

The coupling introduced by 2D texture is far richer: th
importance of depolarization fields remains, while the fle
ibility of having five distinct Bravais lattices substantial
increases the number of modes that can be coupled to
another. By judicious choice of the slab mode dispersion,
grating symmetry, and the lattice constant, it is possible
couple TE~TM! modes with other TE~TM! modes, or with
TM ~TE! modes, at virtually any point in the first Brillouin
zone. The relevant modes may or may not propagate a
the same direction in the plane. The photonic band-struc
interpretation of the coupled modes in two dimensions d
offer significant advantages in understanding these c
plexities. For instance, the labels TE and TM cannot be
orously applied to the resonant eigenstates of 2D textu
waveguides: all eigenstates contain some admixture of b
TE and TM modes. However, we show below that it is po
sible to label each photonic band with a well-defined pol
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ization that is associated with the Fourier component of
eigenstate that lies within the first Brillouin zone. When t
eigenmode exists above the light line, this lowest order F
rier component actually radiates into the surround
vacuum, rendering the state leaky, and giving it a finite li
time. The band structure is therefore inherently compl
However, there are important symmetries associated with
imaginary part of the band structure which can lead to eig
states that exist above the light line having infinite lifetime
Thus, in special cases, bound states can still exist above
light line in 2D textured waveguides.

These properties, the inherent vector nature of the ph
nic eigenstates and their manifestly complex band struct
are fundamental differences between 2D textu
waveguides and 2D photonic crystals composed of infinit
long dielectric cylinders or holes in a dielectric block. Th
following provides explicit examples of band structures, bo
real and imaginary, calculated using the formalism dev
oped in this paper that illustrate these fundamental dif
ences. All examples use a 2D square lattice because it is
simplest nontrivial symmetry that illustrates most of the
fects alluded to above.

A. Leaky mode coupling

We begin by studying the coupling of TE and TM sla
modes with wave vectors in the vicinity of the smallest fo
reciprocal-lattice vectors of a square lattice~eight modes in
all!. The corresponding eigenstates represent the e
lowest-energy modes near the Brillouin zone center in
reduced zone scheme. Since all of these eigenstates
above the vacuum light line, they are all in general lea
and it is the polarization of the leaky component of ea
mode that represents a ‘‘good quantum number.’’

Maxwell’s equations scale asv/L, where L is some
length scale.10 For a textured waveguide, we choose t
length scale to be the lattice constantL of the 2D texture.
For simplicity, we consider a single-layer dielectric wav
guide of thicknessts /L51.0, having a dielectric constan
es512.25, above which is a grating of thicknesstg /L
50.1, that has been textured in two dimensions with a re
lar square lattice, with periodL, of air holes. The diamete
of the holes is such that the air-filling fraction in the grati
layer is 0.5. The reciprocal-lattice vectors of the grating m
be written as

GW 5 j bgx̂1kbgŷ ~36!

for all integersj and k, where we have defined the gratin
wave vectorbg52p/L. For a 2D square lattice grating, ne
the second-order Bragg condition, there are four domin
guided modes withbW '$6bg ,0% and$0,6bg% for each po-
larization. Thus, to capture the basic physics involved,
include eight guided modes~four TE and four TM! and one
radiation mode in our coupled-mode formalism.

To determine the band structure, we first calculate
parameters that depend only on properties of the untext
waveguide. The effective indicesne

TE andne
TM for the guided

modes of the untextured guide at the second-order Br
condition are determined simply by solving the planar wa
guide problem atb5bg . The normalized energy of the TE
e
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guided mode so calculated,ṽs0
, is used to determine the

effective index through the relationne
TE5b/ṽs0

. The varia-

tion in the unperturbed mode energy of thenth TE mode is
approximated as a function of in-plane wave vector as

ṽsn
'

bg

ne
1

ubW n2bW gu
ng

, ~37!

wherene is the TE effective index, and

ng5ne1b~dne /db! ~38!

is the group effective index of the TE guided mode. A
analogous calculation is performed for the TM guid
modes. This approximation serves to limit the number
times that the untextured waveguide problem must be solv
However, the extent to which the dispersion of the guid
modes of the untextured guide is accurately described by
~37! limits the range in wave vectors that this form of th
model is applicable. Finally, the residuesRs andRp are cal-
culated from the well-known reflection coefficients for
multilayer slabs using Fresnel coefficients.18

The parameters associated with the 2D textured layer
also needed. The linear susceptibility of the grating is rela
to the dielectric function of the grating layer,eg(rW)51
14pxg(rW). We calculate the Fourier coefficientsxnm of the
linear susceptibility using the inverse of Eq.~7! and then
average over the grating layer using Eq.~18!.

With these parameters, we then solve the eigenva
problem@Eq. ~31!#, as a function of the in-plane wave vecto
The real part of the eigenstate frequency is plotted in Fig
versus the in-plane propagation constantb as it is detuned
away from the second-order Bragg condition in theX ~1-0!
direction on the right half of the figure, and theM ~1-1!
direction on the left half. The general form of the band stru
ture can be understood simply in terms of zone folding
guided mode dispersion of the untextured guide into the fi
Brillouin zone using square lattice symmetry. However,
regions where zone folding leads to overlapping bands,
degeneracy is split, and where zone folding gives band cr
ings, anticrossings can appear due to the coupling induce
the grating. Unlike infinite 2D photonic crystals, these an
crossings can occur between bands associated princip
with TE and TM modes. The anticrossings appear at the z
boundaries, as usual, but also may appear away from z
boundaries as discussed below.

At the zone center there are two ‘‘gaps,’’ each charact
ized by four bands anticrossing. The higher-energy gap c
responds to perturbed TM slab modes, and the lower-ene
one corresponds to the perturbed TE slab modes. The en
separation between these two gaps occurs because the
tive index for TM slab modes is lower than that for TE sla
modes in an untextured guide. We now focus our attent
on the character of the photonic eigenstates near the b
edges of the TM gap, shown on an expanded scale in Fig

The highest-energy states near the band-edge state o
TM gap consist primarily of an in-phase superposition of
four TM modes traveling in the$6bg ,0% and $0,6bg% di-
rections,@i.e., with eigenvector} ~1,1,1,1!#. Thus the photo-
nic modes are essentially 2D standing waves, and in the g
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PRB 61 2097TWO-DIMENSIONAL VECTOR-COUPLED MODE THEORY . . .
ing layer, the mode intensity is greatest in the air holes of
2D lattice. The lowest-energy states in the vicinity of t
band edge consist mainly of in-phase superpositions of
forward- and backward-traveling TM modes in thex̂ direc-
tion, out of phase with those traveling in theŷ direction,@i.e.,
~1,1,21,21!#. The middle band-edge eigenstates of the T
gap, in this case, are degenerate in energy. These two s
consist primarily of in-phase superpositions of forward- a
backward-traveling TM slab modes in thex̂ direction, and
antiphase superpositions in theŷ direction and vice versa
@i.e., ~1,1,1,21! and ~1,21,1,1,!#. This symmetry, the exis
tence of two degenerate and two nondegenerate states a
zone center, is a fundamental property of a square lattic
circular holes.22

FIG. 2. Real part of the photonic band structure for a 2D squ
lattice texture illustrating the dispersion of photonic eigenstates n
the zone center as the in-plane wave vector is detuned in theX ~1-0!
symmetry direction on the right half and theM ~1-1! symmetry
direction on the left half. The band-edge states near the hig
energy ‘‘gap’’ are TM-like states; the lower-energy ones are T
like. The polarization of the radiative component (s or p) associ-
ated with each band is also indicated. The structure contain
square lattice of air holes with filling fraction 0.5, withtg /L50.1
and ts /L51.0.

FIG. 3. Expanded scale view of Fig. 2 near the TM gap show
the fundamental symmetry of the band-edge states at the zone
ter for a square lattice of circular holes. The in-plane wave vecto
detuned in theX ~1-0! symmetry direction on the right half, and i
the M ~1-1! symmetry direction on the left half. Various line type
are used to indicate correspondence with the imaginary part o
band structure shown in Fig. 4.
e

e

tes
d

the
of

Unique to the waveguide geometry, the first-order Four
components of the 2D grating couple the slab modes pro
gating in the plane of the guide to a radiative compon
propagating nearly normal to the surface of the guide. Si
all of the eigenstates shown in Fig. 2 are above the vacu

light line, ṽ5b, they are expected to be leaky. The lea
ness of photonic eigenstates is described in terms of

imaginary part of the eigenstate frequency,ṽ i . The lifetime

of an eigenstate is inversely proportional toṽ i ; for ṽ i50 the
eigenstates are not lossy, and have infinite lifetimes. Figu

showsṽ i versusb, corresponding to the four bands eman
ing from the TM-like gap shown in Fig. 3. At the zone ce
ter, the highest- and lowest-energy band-edge eigens
have infinite lifetimes and are not leaky but true bound e
citations of the texture slab waveguide. Since these eig
states are in-phase superpositions of the forward-
backward-propagating slab modes described above, the
sulting radiative components add destructively.~Recall that
due to the vector nature of the problem, forward- a
backward-traveling modes have their in-plane electric-fi
vectors in opposite directions. Thus an in-phase superp
tion is one of destructive interference.! The degenerate ban
edge states are lossy for the converse reason.

As the propagation constant is detuned from the zone c
ter ~second-order Bragg condition!, all of the eigenstates be
come lossy regardless of the direction in the plane of
detuning. Clearly some of the states, those withṽ i small, are
tightly bound to the slab waveguide, whereas others are r
tively weakly bound. These lossy eigenstates are analog
to Fano resonances; the texture couples the discrete
modes of the untextured guide to the radiation mode c
tinuum, and the imaginary part of the eigenfrequency refle
the strength of this coupling. Thus one may expect that pr
ing these states via their radiative components will result i
sharp, narrow resonance forṽ i small, and a broad resonanc
for the weakly bound states.23 The existence of the degene
ate and lossy band-edge states is the basis for polariza

e
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FIG. 4. Imaginary part of the photonic band structure for a
square lattice texture illustrating the decay rates of the TM-l
photonic eigenstates shown in Fig. 3. The in-plane wave vecto
detuned in theX ~1-0! symmetry direction on the right half, and i
the M ~1-1! symmetry direction on the left half. The TE-like pho
tonic eigenstates~not shown! are qualitatively the same. The lin
types used indicate the corresponding real part in Fig. 3.



th
la

a
ith
r-

nic
n
o
th

en
in

de
an

ho
ic

-
s

he
r

i-
w
ne
e
ia

di

t
o
sla
th
i
e
o

he
en
o

er
e
f

re-
the
he
nal
ite

the
der
the
d-
om-

he
he
the
con-
ngs
nal

he

ge
ing
of

erall
ling
ps
TE
ey
en
one
och
is
ne
ribe
b.

D
en
by

TM
tice
and

nt re-

y
und

2098 PRB 61P. PADDON AND JEFF F. YOUNG
insensitive resonant grating filters; the degeneracy allows
state to be excited by a plane wave with any incident po
ization.

A calculation of the eigenvectors associated with a p
ticular photonic band shows that the eigenstates are ne
purely TE nor purely TM in character. However, the pola
ization of the radiative component of a particular photo
band, calculated via Eq.~24!, is well defined as indicated o
Fig. 2. For an arbitrary detuning direction, the polarization
the radiative component of a particular eigenstate near
second-order gap is elliptical with an orientation depend
on the detuning direction. In general, however, for detun
along axes possessing reflection symmetry~such asX or M ),
the polarization of the radiation is always eithers or p. Thus,
for leaky eigenstates, the polarization of the zeroth-or
Fourier component of the polarization in the grating is
appropriate label for identifying the photonic bands.

A remarkable feature of the 2D band structure of the p
tonic eigenstates in the planar waveguide geometry, wh
does not occur for plane-wave propagation~in the plane of
the periodicity! of infinite 2D photonic crystals studied pre
viously by other others,10 is the occurrence of anticrossing
between TE- and TM-like eigenstates. For example, w
the propagation constant is detuned from the zone cente
the M direction ~left half of Fig. 2!, the upper bands assoc
ated with the TE gap become phase matched with the lo
bands associated with the TM gap; anticrossings occur
b/bg'20.025. Figure 5 shows this region on an expand
scale. There are two separate anticrossings here assoc
with two nearly degenerate bands having orthogonal ra
tive components. The bands with the same polarization
the radiative component anticross. For one anticrossing,
lower-energy band-edge eigenstate is predominantly an
of-phase superposition of the backward-propagating TE
modes and forward-propagating TM slab modes, and
upper-energy state is predominantly the corresponding
phase superposition. Interestingly, the coupling strength h
between TE and TM slab modes is as large as TE-TE
TM-TM coupling at the zone center, as indicated by t
width of the gaps, due to the shared radiative compon
Figure 6 shows the imaginary part of the band structure c
responding to the four bands near this anticrossing. H
away from zone center, phase cancellation results in on
the band-edge eigenstates being a true bound mode o

FIG. 5. Real part of the photonic band structure near the a
crossing between TE-like and TM-like bands.
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system, indicated by the imaginary part of the eigenf
quency going to zero, even though it exists above
vacuum light line. In other words, the vector nature of t
coupling in 2D textured waveguides introduces additio
symmetries not found in plane wave propagation in infin
2D photonic crystals.

The coupling between the slab modes themselves at
second-order gap is primarily facilitated by the second-or
Fourier components of the dielectric function describing
2D grating. Thus the details of the symmetry of the ban
edge states depend on the relative amplitudes of these c
ponents which in turn depend on the air-filling fraction of t
holes forming the texture. The main effect of changing t
relative amplitude of the Fourier components is to change
ordering of the degenerate and nondegenerate states. A
sequence of this is that the locations of the anticrossi
described above are also modified, leading to an additio
variation in the behavior of the dispersion away from t
zone center.

Another way of modifying the symmetry of the band-ed
states is to change the strength of the texture. By chang
the depth of the grating, one leaves the relative strength
the Fourier components the same but changes the ov
strength of the coupling between the modes. As the coup
strength is increased, the width of both the TE and TM ga
increase. Then, in the case of very strong coupling, the
and TM gaps would eventually become so wide that th
would overlap. There would be considerable mixing betwe
the TE and TM components of the eigenstates at the z
center, making it meaningless to denote the photonic Bl
states as predominantly TE- or TM-like. However, in th
limit the thin grating approximation breaks down, and o
must use more complicated modelling techniques to desc
structures which have holes that penetrate through the sla16

B. Bound mode coupling

In this section, we consider another application of 2
gratings in planar waveguides, illustrating coupling betwe
bound TE modes and bound TM modes. This is achieved
designing an untextured waveguide such that TE and
modes with wave vectors separated by a reciprocal-lat
vector of the 2D grating are nearly degenerate in energy,

i- FIG. 6. Imaginary part of the photonic band structure cor

sponding to Fig. 5. Note thatṽ i goes to zero for the higher-energ
band-edge states near the anticrossing, indicating a truly bo
eigenstate.
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PRB 61 2099TWO-DIMENSIONAL VECTOR-COUPLED MODE THEORY . . .
are below the light line in the reduced zone scheme. T
coupling between the modes appears in the band structu
an anticrossing between the photonic bands associated
bound TE modes and bound TM modes.

Consider a slab of thicknessts /L50.22, and a 2D grating
of thicknesstg /L50.022 with holes of diameter such th
the air-filling fraction in the grating layer is 0.35. For th
structure the resonant coupling occurs between TE mode
$6bg/2,6bg% and TM modes at$6bg/2,0%. Since these
modes exist below the vacuum light line, there is no radiat
component to include. This may be treated simply within o
model by settinghJ50. Also note that the TE modes are n
traveling in the same direction in the plane as the TM mod
suggesting a possible application of this structure a
TE-TM mode converter.

To determine the photonic bandstructure, we include
modes~six TE and six TM at the resonant wave vecto
listed above! in the model and determine the properties
the untextured guide,ne

TE ,ng
TE ,Rs , etc., for these modes

Figure 7 shows the results of solving the eigenvalue equa
~31! as the in-plane wave vector is detuned from the fir
order Bragg conditionbW 5(bg/2)x̂ toward the zone center
The eigenfrequencies are all purely real, indicating that th
photonic eigenstates are all bound to the slab with infin
lifetimes.

One sees that there are six band-edge states below
~dashed! light line: the upper two eigenstates~solid dots! are
primarily associated with the TM-like gap due to out-o
phase~highest energy! and in-phase~second highest energy!
superpositions of the TM basis states at$6bg/2,0%. The
lower four eigenstates~open circles! are associated with su
perpositions of mostly the TE basis states at$6bg/2,
6bg%.

The band structure of Fig. 7 shows that significant co
pling may occur between the TE and TM basis states
rectly, even in the absence of a radiative component. Ab
'20.01bg from the zone boundary, there is an anticross
between a band representing the forward-traveling$bg,0%
TM mode and a band representing mainly a superpositio

FIG. 7. Real part of the photonic band structure for a 2D squ
lattice texture illustrating the dispersion of photonic eigenstates n
the zone boundary (b5bg/2). The upper two band-edge stat
~solid circles! are TM-like states; the four lower-energy ones a
predominantly TE-like states~open circles!. The structure is a
square lattice of holes with filling fraction 0.35, withts /L50.22
and tg /L50.022.
e
as
ith

at

e
r

s,
a

2

f

n
-

se
e

the

-
i-

g

of

the $2bg/2,bg% and$2bg/2,2bg% TE modes of the untex-
tured guide. The coupling between TE and TM basis sta
occurs because, in two dimensions, the electric-field vec
of modes not traveling parallel~or antiparallel! share com-
mon in-plane components in the grating. Again we note th
in contrast, TE and TM plane waves traveling in the plane
the periodicity of infinite 2D photonic crystals, do not coup
together.10 Thus the nature of the coupling in the texture
waveguides is fundamentally different from that in infini
2D photonic crystals, due to the lack of translational symm
try in the z direction.

C. Comparison with self-consistent formulation

In order to illustrate the validity of the eigenvalue form
lation, in this last section we compare the band struct
calculated using the 2D coupled-mode approach@Eq. ~31!#,
with that solving the self-consistent formulation@Eq. ~23!#.
We consider the general case that TE and TM slab mo
not traveling in the same direction, couple together above
light line.

Again, we consider a single-layer dielectric wavegui
having a dielectric constantes512.25 that has been texture
in two dimensions with a regular square lattice of air hol
with period L and thicknesstg /L50.03. The diameter of
the holes is such that the air-filling fraction in the gratin
layer is 0.75. For a slab of thickness ists /L50.3, dispersion
of the guided modes is such that the TE modes at$6bg ,
6bg% and the TM modes at$6bg ,0% and $0,6bg% are
nearly degenerate in energy. Therefore these modes
resonantly couple near the zone center.

Figure 8 shows a comparison of the photonic eigens
dispersion as calculated by the self-consistent theory,@Eq.
~23!# on the right, and the coupled-mode limit@Eq. ~31!# on
the left. Figure 9 shows a similar comparison of the ima
nary part of the eigenfrequency. Qualitatively the agreem
is quite good as seen in both figures. In Fig. 8, the four up
band-edge photonic eigenstates are TM-like, shown w
thick lines, and the lower ones are TE-like, shown with th
lines. The self-consistent theory and the coupled-mode li
both predict the width of the gaps to be effectively the sam

e
ar

FIG. 8. Comparison of the real part of the photonic band str
ture near the zone center using the coupled-mode formulation~left!
and the self-consistent formulation~right!. The structure is a squar
lattice of holes with filling fraction 0.75, withts /L50.3 and
tg /L50.03.
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2100 PRB 61P. PADDON AND JEFF F. YOUNG
and give the same ordering of the eigenstate degeneracy
major difference is a quantitative one due to the difference
calculating the self-energy term of a mode approximately
the coupled-mode limit. Thus the center frequency of
gaps is slightly off in the coupled-mode case, but only
less than;0.1% for both TE and TM. The quantitative dis
crepancy is somewhat more severe for the imaginary pa
the eigenfrequency, as shown in Fig. 9, about 20% in
worst case. This is good agreement considering that the g
ing is 1/10 the thickness of the slab.

Finally, the coupled-mode formulation is a perturbati
calculation, and so is restricted in the range of wave vec
that may be considered due to approximation~37!. We have
shown how it may be used to calculate the dispersion n
the zone center or, as in Sec. III B near a zone boundary.
advantage of the self-consistent formulation is that it may
used to calculate the band structure throughout the first B
louin zone. The penalty one pays for this is simply one
computation time.

IV. CONCLUSION

The 2D vector coupled-mode theory developed in this
per gives considerable insight into the nature of coupl
between guided modes in planar dielectric waveguides
have been textured in two dimensions with a thin surfa
grating. The photonic eigenstates of such structures ma
thought of as linear superpositions of modes of the unt
tured guide. The phase relationship between the compon
forming the eigenstates determines many of the interes
properties of the textured waveguide, including the polari
tion properties and the lifetimes of the leaky eigenstates.
polarization of the radiative component turns out to be
good quantum number for labeling the photonic bands a
ciated with leaky eigenstates.

There are two fundamental differences between 2D t
tured waveguides and infinite 2D photonic crystals, both d
to the lack of translational invariance normal to the plane
the texture. First, the photonic eigenstates may contain a
diative component, and thus have a finite lifetime. T
manifests itself in the eigenfrequencies of the photonic st

FIG. 9. Comparison of the imaginary part of the photonic ba
structure for the TM-like eigenstates shown in Fig. 9 using
coupled-mode formulation~left! and the self-consistent formulatio
~right!. The thick ~thin! lines correspond to bands emanating fro
the TM-like ~TE-like! gap.
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being complex. Second, unlike plane waves traveling in
plane of infinite 2D photonic crystals, TE modes can cou
to TM modes in 2D textured waveguides.

We illustrated, with three different examples, that the
of modes of the untextured guide that become coupled
gether may be controlled by judicious choice of structu
parameters. TE modes couple to TE and/or TM modes
long as the modes are nearly degenerate in energy, a
reciprocal-lattice vector of the grating separates their w
vectors. This occurs for both bound and leaky photo
eigenstates. More generally, although not explicitly sho
here, first-order guided modes may be coupled to high
order guided modes using 2D gratings when the above c
dition is satisfied.

Finally we note that although we have restricted the d
cussion to a square lattice of circular holes for pedagog
reasons, our model may be used to calculate similar pro
ties for any 2D lattice type. It remains to be se
experimentally24 to what extent the coupled-mode lim
quantitatively applies to the dispersion and lifetimes of t
resonant excitations for photonic band-gap structures
waveguide geometries.
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APPENDIX

In this appendix we derive the relationship between
in-plane and normal components of the electric field in
textured waveguide. We start by writing Eq.~20! as

gJn5gJn824p/tgẑẑ, ~A1!

and substitute this into Eq.~19! which gives,

EW n14p ẑẑ• (
m50

N

xnmEW m5gJn8• (
m50

N

tgxnmEW m . ~A2!

Now substituting in the expression for the radiative comp
nent gives

EW n14p ẑẑ•S (
m51

N

xnmEW m1xn0hJ• (
m51

N

tgx0mEW mD
5tggJn8•S (

m51

N

xnmEW m1xn0hJ• (
m51

N

tgx0mEW mD .

~A3!

Using the expression for the green’s function@Eq. ~20!#, the
ẑ component of this equation can be written as

d
e
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Ezn
1~4p22p i t gbn

2/wn!ẑ•S (
m

xnmEW m

1xn0hJ•(
m

tgx0mEW mD
5r pn

tgbn /ṽ p̂n2•S (
m

xnmEW m1xn0hJ•(
m

tgx0mEW mD ,

~A4!

while the b̂n component is

Ebn
22p i t gwnb̂n•S (

m
xnmEW m1xn0hJ•(

m
tgx0mEW mD

52r pn
tgwn /ṽ p̂n2•S (

m
xnmEW m1xn0hJ•(

m
tgx0mEW mD .

~A5!

The right-hand sides of these two equations are proportio
to within a constant factor, and thus

Ezn
1~4p22p i t gbn

2/wn!ẑ•S (
m

xnmEW m

1xn0hJ•(
m

tgx0mEW mD 52bn /wnEbn

12p i t gbnb̂n•S (
m

xnmEW m1xn0hJ•(
m

tgx0mEW mD
~A6!
A

D

al

There areN of these equations, one for each Fourier comp
nent, which can be written in matrix form as

MJ z•EW z5MJ s•EW s1MJ b•EW b . ~A7!

where the field components have been written as anN31
column vector, andMJ z , MJ s , and MJ b are N3N matrices.
Equation~A7! may be rewritten as an explicit expression f
the ẑ components in terms of the in-planeŝ and b̂ compo-
nents:

EW z5MJ z
21MJ s•EW s1MJ z

21MJ b•EW b5KJ s•EW s1KJb•EW b .
~A8!

One may have anticipated this result since, for a given w
vector, there are only two~not three! transverse solutions to
Maxwell’s equations.

The matrix elements are found to be

~Mz! i j 5d i j 1Aix i j 1tgx i0x0 j~Aihzz2Bihb i z
!, ~A9!

~Ms! i j 52tgx i0x0 j~Aihzsj
2Bihb i sj

!, ~A10!

~Mb! i j 52b i /wid i j 1Bix i j 2tgx i0x0 j~Aihzb j
2Bihb ib j

!,
~A11!

where

Ai54p22p i t gb i
2/wi , ~A12!

Bi52p i t gb i . ~A13!

Finally we note that if there is no radiative component to t
field then the matrixMs is zero, and only theb̂n components
are related to theẑ components of the field.
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